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 

Abstract— Telehealth has shown potential to improve access to 

health-care cost-effectively in respiratory illness. However, it has 

failed to live up to expectation, in part because of poor objective 

measures of symptoms such as cough events, which could lead to 

early diagnosis or prevention. Considering the burden that these 

conditions constitute for national health systems, an effort is 

needed to foster telehealth potential by developing low cost 

technology for efficient monitoring and analysis of cough events. 

This paper proposes the use of local Hu moments as a robust 

feature set for automatic cough detection in smartphone-acquired 

audio signals. The final system feeds a k-Nearest Neighbors 

classifier with the extracted features. To properly evaluate the 

system in a diversity of noisy backgrounds, we contaminated real 

cough audio data with a variety of sounds including noise from 

both indoor and outdoor environments, and non-cough events 

(sneeze, laugh, speech, etc.). The created database allows flexible 

settings of Signal to Noise Ratio (SNR) levels between background 

sounds and events (cough and non-cough). This evaluation was 

complemented using real patient data from an outpatient clinic. 

The system is able to detect cough events with high sensitivity (up 

to 88.51%) and specificity (up to 99.77%) in a variety of noisy 

environments, overcoming other state-of-the-art audio features. 

Our proposal paves the way for ubiquitous cough monitoring with 

minimal disruption in daily activities. 

 
Index Terms— Cough Detection, Respiratory Illness, mHealth, 

Hu moments, k-NN, SVM. 

 

I. INTRODUCTION 

OUGH is one of the commonest symptoms causing patients 

seek medical advice. Cough can be understood as a natural 

reflex physiologically aiming at clearing the lower airways 

of debris, especially mucus. It is thus a defense mechanism for 

ejecting foreign material out of the respiratory system [1], [2]. 

From the signal processing perspective, an audio cough event 

is a non-stationary signal without a clear formant structure and 

composed of three phases: the explosive phase, the intermediate 

phase and the voice phase. The average duration is 

approximately 300 ms. Its spectrum exhibits a high-energy peak 

around 400 Hz and a secondary peak between 1000 and 1500 

Hz [3].  
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 Over one hundred pathological conditions are associated 

with cough [4]. Many of them are respiratory illnesses such as 

pneumonia, asthma, laryngitis or chronic obstructive 

pulmonary disease, while others are more generic (cold, flu, 

allergies, etc.). In addition, cough can be associated to life style 

(smokers, sedentary people, etc.). Cough treatments constitute 

a significant burden for national health systems – an estimation 

of £100 million/year cost for NHS Scotland [5] and $40 billion 

per annum in the USA from direct and indirect costs of the 

common cold [6] – and economies, with an average yearly 

productivity loss cost of £2176 per patient [7]. 

 Despite the fact that cough sounds convey vital information 

of the state of the respiratory system, there are no gold standard 

methods to objectively assess cough [8]. This explains why, 

until recent years, the study of cough has been restricted to 

subjective measurement tools: the practitioner usually asks the 

patient to provide his/her own appreciation of the frequency and 

severity of their coughs and how they affect their quality of life. 

Cough scores, diaries and symptom questionnaires are typically 

used in this process [9], [10]. However, this approach presents 

some drawbacks that can lead to misinterpretation of cough 

symptoms [11]. First, the actual limitations of the human 

hearing system and other tools employed (e.g., stethoscopes), 

which behave as low-pass filters [12]. Secondly, there exists 

inter-expert variability [13]. Finally, secondary aspects of the 

underlying diseases like their physical and psychological 

comorbidity: urinary incontinence, chest pain, sleep 

disturbance, relationship difficulties, social embarrassment or 

depression [8], [14]. 

To overcome these limitations, governmental institutions 

have highlighted the potential of telemedicine in the 

management of respiratory conditions [15]. Even though the 

first cough monitors arose in the 1950s, it was not until the 

development of the new digital devices and processing 

techniques when the measurement of cough was rigorously 

undertaken [11], [16]. Current systems rely on pattern 

recognition engines primarily based on features extracted from 

cough sounds. Most of the so far proposed cough detectors 

suffer from some limitations which make them unsuitable for 
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real-time monitoring in real-life situations. Some rely on 

complex recording systems (low-noise microphones, pre-

amplifiers, etc.) and have only been tested in quiet and 

controlled environments [17]. Others focus on a very specific 

population [18], [19] (infants, patients with a particular 

pathology, etc.) and thus present lack of generalization. On the 

other hand, some methods were conceived to solve a wider 

problem than cough detection [20], [21] and fail to achieve 

optimal performance. Finally, some approaches have not been 

designed with efficiency in mind (large feature sets or many 

classifiers [22] iterative algorithms [23] , etc.) and may not be 

advisable in real-time situations. Apart from the limitations 

mentioned above, these bespoke systems can be considered as 

expensive and uncomfortable (i.e., non-wearable during daily 

activity) solutions at a time when telehealth has moved towards 

generic readily available sensors. 

The recent advances in smartphone and watch technology 

additionally allow employing these daily use devices as 

intelligent cough monitoring systems since they feature a 

number of embedded sensors able to measure cough sounds and 

related movement. Moreover, the computational capability of 

these devices is increasingly growing while, at the same time, 

they feature real-time connectivity to offload complex 

operations to higher performance computing systems. 

 The proposal from Larson et al. [18] processed the audio 

signal acquired from lapel microphones and a consumer-grade 

recorder worn in a fanny pack. This solution forced the user to 

carry multiple devices and upload the data to a server for 

analysis. If the device was carried in the pocket with just the 

specific application running on it at full functionality or with 

slight seamless modifications to its configuration, the impact on 

their activity would be minor, and the patient would be less 

conscious of the medicalization of their life. This raises 

important research challenges in using a smartphone as a 

medical device, namely the necessity to deal with noisy inputs 

in mobile environments as well as battery consumption issues 

related to continuous sensor monitoring and computing [24]. 

Efficient and robust signal processing methods to deal with 

continuous monitoring of noisy inputs from the mobile 

microphone or misaligned acceleration signals due to carrying 

the device need to be investigated. 

Our preliminary work in [25] showed the promising 

applicability of local Hu moments for automatic segmentation 

of cough events. This feature set was recently imported from 

the image processing field to speech emotion recognition [26]. 

Assessing emotions in speech requires characterizing subtle 

differences within the signal, which to some extent, is 

equivalent to distinguishing two different signals with 

comparable acoustic properties.  

On this basis, this paper proposes the use of local Hu 

moments as robust feature set for an automatic cough detection 

system based on smartphones. The proposed cough detector is 

evaluated using two signal databases. In the first one, we 

combined different types of real cough sounds (male/female, 

adult/children/babies, smokers/non-smokers, etc.) with noisy 

signals from a variety of indoor and outdoor environments and 

non-cough events (sneezing, laughing, speech, snore, etc.). The 

created database allows flexible setting of the Signal to Noise 

Ratio (SNR), defined as the ratio between the average power of 

the background sounds and the average power of the foreground 

sounds/events (cough and non-cough). Further evaluation was 

performed over twenty-six hours of ambulatory patient audio 

recordings. The acquisition protocol leading to this second 

database simulated different environments and daily life 

activities. 

The finally proposed system relies on a k-Nearest Neighbor 

(k-NN) classifier using Hu moments of the audio signal as 

inputs. The system is able to detect cough events with high 

sensitivity and specificity in a variety of noisy environments. 

To demonstrate the robustness of the study, we have performed 

a comparison of the proposed feature set with a number of 

different audio features. These have been employed in fields 

such as speech processing, automatic music classification, 

asthma wheeze recognition, speech emotion recognition, 

among others. Similarly, two extended classifiers have been 

used: a Support Vector Machine (SVM) and a k-NN classifier. 

Derived from the problem context, our study also analyzes the 

trade-off between performance and efficiency (measured as 

CPU execution time) to inform the decision on the final 

implementation on a smartphone. 

Compared to our preliminary study, the work in [25] 

employed a more limited data source for evaluation, both in 

terms of quantity (number of signals) and quality (diversity of 

noisy sounds and foreground events). The only noisy source 

therein was the friction between the embedded microphone and 

the fabric when the smartphone was carried in the pocket. In 

addition, the main objective in [25] was to analyze the 

suitability of importance sampling techniques to cope with the 

class-unbalance in the cough detection problem. Finally, no 

comparison of the proposed system with other feature sets and 

classifiers was provided in [25] as opposed to this paper. 

 The rest of the paper is organized as follows. Section II 

summarizes the state-of the art in cough detection and further 

motivates our proposal. Section III describes the methodology 

of the proposed cough detector. Section IV is devoted to the 

experimental results, discussed in Section V. Finally, Section 

VI outlines some future research lines and the conclusions of 

the study. 

II. STATE-OF-THE-ART 

The commercial Lifeshirt monitor (no longer available since 

the company was liquidated in 2009) was based on a wireless 

health monitoring system integrating electrocardiogram, 

respiratory inductance plethysmography, 3-axis accelerometer, 

and a contact microphone placed on the throat. It achieved a 

sensitivity of 78.2% in laboratory conditions [27]. The Hull 

Automated Count Counter relies on audio recordings fed to an 

adaptive neural network. It offered a sensitivity of 80% 

measured in a group of 33 patients [28]. The Leicester Cough 

Monitor performs a preliminary detection of the events by 

means of Hidden Markov Models (HMM) followed by a 

semiautomatic classification stage. In the analysis of the 

recording of 26 subjects, it reached a sensitivity of 85.7% [29].  

The VitaloJAK employs a contact microphone placed on the 
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chest wall to detect cough sounds. A preliminary study over a 

small patient group achieved 98% sensitivity [8]. The 

PulmoTrack-CC launched by Karmelsonix in 2010 used a 

combination of sounds recorded from the neck and a movement 

sensor placed in the chest wall, and achieved a sensitivity 

around 96% in counting voluntary cough events [30].  

 From the strict point of view of signal processing, there are 

also recent studies which have focused on audio cough signals. 

They exploit several features and classifiers with the aim of 

cough counting or cough assessment. Amrulloh et al. [17] 

performed cough segmentation within pediatric wards using 

Shannon entropy, Mel Frequency Cepstral Coefficients 

(MFCC) and a non-gaussianity measure as features. After 

classification with an Artificial Neural Network (ANN), they 

achieved a sensitivity of 93%.  Larson et al. [18] assessed the 

recovery of pulmonary tuberculosis by analyzing cough sound 

recordings. They respectively employed MFCC and Sequential 

Minimal Optimization as features and classifier, achieving a 

sensitivity of 75.5%. Yatani and Truong [20] developed a 

wearable acoustic sensor which records the sounds produced in 

the user’s throat area for activity recognition (including 

coughing). Using features such as spectral roll-off, spectral 

flux, spectral centroid or MFCC, which fed a SVM, their 

sensitivity in cough detection was between 62% and 74%. They 

also analyzed the performance of two other classifiers: a Naïve 

Bayes classifier and a k-NN classifier. No specific results of 

cough classification performance were reported for these two 

cases. Drugman et al. used a set of 50 features (after 

dimensionality reduction by feature selection) and two ANN to 

create a system for automatic, objective and reliable detection 

of cough events. The set of features included MFCC, a 

measurement of loudness in the Bark scale and several 

parameters describing the audio spectral shape. They achieved 

average sensitivity was 94.7% [22]. Matos et al. [19] evaluated 

the intensity and frequency of occurrence of cough events for 

the assessment of patients with chronic disease. They followed 

a keyword-spotting approach using a HMM classifier, which 

resulted in an average detection rate of 82%. Finally, this 

problem has also been tackled in the field of audio event-

detection. Drugman presented a new technique consisting of an 

iterative process to synchronize features and cough labels. This 

was applied to cough detection and results showed 

improvements both in feature selection and detection 

capabilities compared to more classical approaches [23]. Ezgi 

and Sert [21] proposed an optimized MFFC-SVM approach to 

recognize events such as cough, throat clearings, speech, 

knockings, etc. within an office live environment. Sensitivity 

values of 63.6% were reported for cough events. You et al. [31] 

provided and ad-hoc feature extraction method for cough 

detection based on non-negative matrix factorization. They 

achieved sensitivity and specificity values around 85% on a 

database encompassing signals from 18 patients (80 min. of 

recording each). 

 Other approaches based on Convolutional Neural Networks 

(CNN) and deep neural networks have also been explored [32], 

[33]. Amoh and Odame [33] employed CNN and a Recurrent 

Neural Network (RNN) to perform cough segmentation. Both 

networks offered sensitivity around 83%, whereas the 

specificity of the CNN was better (93%) than the RNN one 

(75%). Approaches which are based on Wavelet transform [34] 

or time domain analysis [3] have been also explored. Finally, 

some patents four cough analysis have been recently presented, 

e.g. [35].  

 Following the European Respiratory Society (ERS) 

guidelines on the assessment of cough [6], cough monitors 

should be capable of digitally capturing and processing 24-hour 

recordings. Likewise, Smith and Woodcock [8] established 

other critical and desirable characteristics:  

a) Differentiation of cough from background noise 

b) Differentiation of cough from other sounds produced by 

the patient such as laugh, speech, throat clearing, etc. 

c) Dealing with the variability of cough acoustics: both 

within and between individuals, as well as the additional 

complexity of different respiratory diseases. 

 Most of the reported systems and methods for cough analysis 

have been tested in idyllic conditions where noise was present 

at low level or even absent. Moreover, the use of smartphones 

implies environmental changes from time to time depending on 

the daily life activities of the user/patient. Accordingly, the 

captured signals may be a mixture of background sounds – e.g. 

babble noise, music, environmental noise, footsteps, or even 

noise generated from the smartphone moving inside the pocket 

of the user/patient. – together with cough and non-cough events. 

In addition, some of the non-cough events – e.g., throat clearing 

and sneeze events – have very similar acoustical characteristics 

to cough. Thus, features that simulate the cochlea response such 

as MFCC may struggle to detect cough in noisy environments. 

This makes exploring more robust alternatives advisable. 

III. METHODOLOGY  

A. Overview of the system 

Fig. 1 depicts the pipeline of our cough detection system. It 

is composed of four blocks namely, pre-processing, feature 

extraction, classification and post-processing.  

The pre-processing module separates the signal into frames 

by means of a Kaiser window with 3.5  . This window 

showed the best tradeoff between spectral resolution and 

leakage among other evaluated windows (Kaiser with b =1.5, 

Taylor, and Hamming). As we showed in [36], the frequency 

band between 0 and 2 kHz is sufficient to detect cough events. 

Thus, there is no need to keep the original sampling frequency 

44.1 kHz (see section IV.A). So, we downsampled the acquired 

signals lowering the sampling frequency to 8820 Hz. The 

window length is 50 ms (N=441 samples) and the window shift 

25 ms (221 samples). As a starting point for most of the 

computed feature sets, the power spectral density of each 

window (PSD[k]) was estimated as the Fourier transform of the 

autocorrelation function, according to the Wiener-Khinchin-

Einstein theorem [37]. Later, each PSD was normalized using 

the following factor derived from the Kaiser:  






N

n

nwNU

1

2
][)·/1(   (1) 

where w[n] is temporal shape of the Kaiser window. Finally, the 

one-sided PSD was selected: 
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1],[

][    (2) 

where Nfft is the number of FFT points and Nend =   21Nfft  

for odd Nfft and   12 Nfft  otherwise.   

Different feature sets and classifiers have been developed 

and compared to find the most suitable combination for the final 

implementation of the system. The following subsections 

describe them. 

B. Evaluated Feature sets 

1) Multidimensional spectral features 

A number of features aiming at the recognition of specific 

types of audio signals do exist in the literature. Two of the most 

employed are MFCC and Linear Prediction Cepstral 

Coefficients (LPCC). They were initially designed for 

automatic speech recognition but, over time, they were used for 

other purposes. MFCC account for the non-linear response of 

the human ear across the audio spectrum and are obtained using 

a frequency transform of the log spectrum [38] whereas LPCC 

are an extension of linear prediction via autoregressive 

modeling in the cepstral domain [39]. Derived from their 

success, MFCC became a de facto standard, so other features 

based on the same philosophy were proposed. Among this 

group, the following can be highlighted: GammaTone Cepstral 

Coefficients (GTCC), Normalized Audio Spectral Envelope 

(NASE), Octave Spectral Contrast (OSC) or Spectral Subband 

Centroid Histograms (SSCH). 

GTCC – together with MFCC – have been the most widely 

used in cough detection [40], even though they have other uses 

like non-speech audio classification [41]. Others have been 

employed in music genre classification (OSC, [42]) whereas 

NASE was defined in the MPEG-7 standard for sound 

classification [42], [43]. Finally, SSCH can be considered as a 

more noise-robust improved version of MFCC [44]. 

The underlying rationale of these features is the 

characterization of the signal spectrum in different frequency 

bands. The main differences among them lie in the scale 

employed in the frequency representation – e.g. cepstral scale 

[38]-[41], octave scale [42], [43] and Bark scale [44] – or in the 

type of filters defining those frequency bands – e.g. triangular 

filters [38], biologically inspired gammatone filters [41] and 

highly overlapped rectangular filters [44] – as well as the 

metrics to apply in each frequency band – e.g. energy as in [38], 

[40], [43], mean power and frequency centroids as in [44] or the 

peaks and valleys of the spectrum as in [42]. The dimensionality 

of these features directly depends on the value of their inner 

parameters. We have implemented and tested all of these 

features in our study. The configuration of the inner parameters 

for each feature set is summarized in Table I.  

2) Unidimensional spectral features 

We analyzed a set of features which have shown to be 

meaningful in the biomedical signal processing field and had 

never been used in this problem (to our knowledge). To this 

end, we grouped several unidimensional features into a feature 

set with a comparable dimension to the above described (13 for 

all of them except 12 for OSC). 

In particular, we computed the following thirteen features 

(henceforth referred as SpecBlock13):  

 Spectral Centroid (SpecCen): center of gravity of the 

magnitude spectrum [45]. 

 Spectral Bandwidth (SpecBand): a measure of the 

spectral dispersion [45]. 

 Spectral Crest Factor (SpecCresFac), a measure of 

tonality [45]. 

 Spectral Turbulence (SpecTurb), which quantifies 

variations over time in the spectral content [46]. 

 Spectral Flux (SpecFlux): this measure also enables 

detecting variations over time in the spectral content 

[47]. 

 Ratio f50 vs f90 (Ratiof50f90): Ratio between f50 and 

f90, frequencies for which the concentrated energy 

below them is 50% and 90%, respectively [48]. 

 Spectral Roll-off (SpecRolloff): it accounts for the 

frequency below which, 85% of the energy is 

concentrated [47]. 

 Spectral Standard Deviation (SpecSD), Spectral 

Skewness (SpecSkew) and Spectral Kurtosis 

(SpecKurto) aim to distinguish spectra on the basis of 

their shape. For example, the kurtosis describes how the 

spectrum in concentrated around the mean whereas 

 
Fig. 1. Pipeline of our system for cough detection. 

TABLE I 

ALGORITHMS AND CONFIGURATION OF INNER PARAMETERS FOR MFCC, 
LPCC, OSC, SSCH AND GTCC FEATURES 

Feature Algorithm Parameters 

MFCC [38] 

• Filterbank edges: [0 2000] Hz 

• Number of filters: 26 

• Number of lifter coefficients: 22 
• Number of DCT coefficients: 13 

• Nfft = 1024 

LPCC [39] 
• Number of coefficients: 13 
• Nfft = 1024 

NASE [43] 
• Frequency limits: [0 2000] Hz 

• Nfft = 8192 

OSC [42] 

• Frequency limits: [0 3200] Hz 

•  2.0  

• Nfft = 1024  

• 6 contrast + 6 valleys were chosen 

SSCH [44] 

• Filterbank edges: [0 2000] Hz 
• Number of filters: 26 

• Number of DCT coefficients: 13 

• Width of each filter: 3 Barks 
• Number of bins in the histogram: 38 

• Nfft = 2048 

GTCC [40] 
• Filterbank edges: [0 2000] Hz 
• Number of DCT coefficients: 13 

• Nfft = 2048 
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skewness is a measure of asymmetry. We computed 

these features using logarithmic units [48]. 

 Spectral Peak Entropy (SpecPeakEn): it is a measure 

based on the local maxima of the spectrum [48]. 

 Renyi Entropy (RenyiEn): It can be considered as an 

estimation of the irregularity of the spectrum [49]. 

 Tsallis Entropy (TsallisEn): It is a non-logarithmic 

entropy to explore the properties of a spectral probability 

distribution in a different scale [49].  

The computational details for the aforementioned features 

are presented in Appendix A.  

 

3) Local Hu moments 

Finally, we calculated local Hu moments as a robust 

candidate feature set for cough detection in noisy environments.  

To do so, the following steps were carried out [26]: 

First, the PSD for each window was obtained using 4096 

points in the FFT algorithm. 

Second, we computed the logarithm of the spectral energies 

for every window in a series of bands defined by a filterbank in 

the Mel scale: 














 



masf

ff

mkk fHfPSDmE

min

][]·[log)(  Mm 0   (3) 

where k refers to the k-th window and m denotes each filter 

within the filterbank. minf and maxf  are 0 and 2 kHz, 

respectively. The filterbank in the Mel scale is defined as: 

 

 
  

         
   

  
         

   
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




























1,0

1,
1·11

1·2

1,
1·11

1·2

1,0

mCf

mCfmC
mCmCmCmC

fmC

mCfmC
mCmCmCmC

mCf

mCf

fH m

 (4) 

C(m) Mm 0  are the centers of each filter in the 

filterbank [Hz], uniformly spaced between minf  and maxf  in 

the Mel scale. The equations to convert natural frequencies to 

the Mel scale and viceversa are shown below: 

 700][1·log2595][ 10 HzfMelf    (5) 














 110·700][ 2595

][Melf

Hzf   (6) 

The total number of filters was 75M . Consequently, after 

performing this step for all the signal windows, a   1 MK
 

matrix was obtained, with K the number of signal windows. 

Next, we computed the local Hu moments of the energy 

matrix E. To do so, we divided E into    1 wMK  blocks

ijB , with w the block size. In our calculation, we used 5w  as 

in [26]: 

   

   


















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1··
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B
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ii
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





  (7)  

Ki 1    11  wMj   

The latest  1w  blocks, corresponding to KwKi ,,2 

, are padded with zeros up to the size  ww . 

We got the first invariant moment  of each ijB  as: 

   2,00,2  qpqp    (8) 

 
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



    22 qp   (9) 
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 


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w

v

qp
vugvvuuqp

1 1

,··,   (10) 

   vuBvug ij ,,   ,2,1,0, qp  

 

In (10), u and v  are    0,00,1  qpqpu   and 

   0,01,0  qpqpv  , with: 

   
 



w

u

w

v

pp
vugvuqp

1 1

,··,   (11) 

To finish this step, all   are used to construct a real 

   1 wMK
 
matrix, Q. 

To conclude, the discrete cosine transform (DCT) is 

computed for each row in Q and coefficients 2-14 are finally 

kept. The result is a  13K
 
matrix TQ, being the rows of this 

matrix the local Hu moments for each window in the signal. 

Fig. 2 depicts a diagram of the latest local Hu moments 

computation steps, for the sake of clarity.  

C. Classifiers 

To finally achieve cough event detection, the 50 ms windows 

feed a classifier after feature computation. We compared two 

classifiers, namely SVM [50] and k-NN [51]. 

SVM and k-NN were selected as the most prominent classifiers 

in a wide range of machine hearing problems. Simpler 

classifiers such as decision trees, discriminant analysis or 

logistic regression have shown poor performance in such 

problems [52] whereas other solutions such as ensemble 

classifiers or random forests could lead to complex final 

implementations in mobile devices.  
 The classifiers were trained using 60% of the observations, 

and tested using 30% of them. The remaining 10% were used 

to validate the inner configuration of each classifier. SVMs with 

2nd-5th order polynomial, linear, Gaussian, and radial basis 

function kernels were evaluated to finally select a SVM with 4th 

order polynomial as best performing on the validation set. As 

for k-NN classifiers, we tested k={1,3,5} and different distance 

metrics: standardized Euclidean, Chebychev, cityblock, cosine, 

and Mikowski. The best performing over the validation set used 

standardized Euclidean distance with the inverse of the distance 

as weighting function, exhaustive computation of all the 

distances, and k=1. Prior to classification, all the feature sets 

were normalized to have zero-mean and unitary standard 

deviation. 

 
Fig. 2. Example of local Hu moments computation. 
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D. Post-processing 

To improve sensitivity, we carried out a simple post-

processing task avoiding isolated false negatives by setting 

every non-cough window surrounded by cough ones to actual 

coughs.  

IV. EXPERIMENTS 

A. Materials 

In order to assess the performance of the system in a variety 

of noise conditions, we designed two experiments leading to the 

corresponding signal databases. The following subsections 

describe them in detail. 

 

1) Real cough sounds in changing noisy environments 

The first database included a wide range of real cough sounds 

which were artificially contaminated using noise from different 

environments and non-cough events. The noise signals were 

added at different levels, thus enabling full control of the SNR 

as a parameter. This way, the performance of different 

classifiers and feature sets could be assessed as a function of the 

SNR this enabling an informed decision on the most suitable 

method. The following paragraphs describe the database 

creation procedure: 

1. We collected or recorded the raw signals one by one – 

cough events, non-cough events and background 

sounds, all of them acquired at 44.1 kHz, with 16 bits 

per sample, and a lossless format. We used publicly-

available audio signals databases [53], [54]. 

2. Due to the diversity of origins of the raw sounds and 

the uncontrolled recording conditions, prior to the 

synthesis, we equalized all the raw signals to have the 

same average power. 

3. After that, we synthesized the signals for different 

SNR values. For the particular experiments in this 

paper, we used eight SNR values: -6, -3, 0, 3, 6, 9, 12 

and 15 dB. To do so, we firstly selected the foreground 

events and the background sounds that would compose 

each final signal. The foreground events were collated 

one after the others in a larger signal. Between each 

foreground event, zero samples with random duration 

between 0.25 and 1 s were inserted. The reason why 

we included these gaps is due to the fact that two 

foreground events of different nature are very unlikely 

to occur one immediately after the other. Next, we 

calculated a gain value, G, to be applied to the 

background sounds signal to get the desired SNR (12). 

Finally, both the event and background signals are 

added. Fig. 3 shows eight SNR versions of one of the 

synthesized signals.  

  10
10 10/1·log10

dBSNR

dB GGSNR


  (12) 

 

The first database is composed of 26 signals with durations 

between 15 and 155 s. The total duration of each SNR version 

of the database is 1245 s. Thus, the overall length of the signal 

database for the 8 SNR values evaluated in this paper is 

8x1245=9960 s. As far as possible, we tried to define each 

signal with the greatest realism. For instance, one of the 

samples replicates a situation in which a person is jogging in a 

park. The background sounds include steps of the jogger, wind, 

etc. As for the foreground events, they come up in the following 

order: normal breathing, sounds of breathless breathing, a 

cough episode and finally throat clearing.  Neither any 

foreground event nor background sound was used more than 

once in the synthesis. Background sounds cover both indoor (air 

conditioning, an office, the subway, a supermarket, toilets, a 

crowded restaurant, the indoor of an airport, a classroom during 

a lecture, a hall of a train station, a buffet restaurant, a casino, a 

court house, a post office, a museum or the corridor of a 

hospital, etc.) and outdoor (breeze, strong wind, rain under an 

umbrella, a crowded street, a park with children playing, a quiet 

residential area, a street with traffic, an open-air market, etc.) 

environments. Among the non-cough foreground events, the 

database includes throat clearing, sniffing, sneezing, burping, 

breathing, breathless breathing, laughs (male and female), 

speech (male and female), blowing nose, snoring or 

swallowing. 

 

2) Ambulatory patient recordings 

The second database includes ambulatory recordings 

emulating the functional conditions of a smartphone-based 

cough detector. We recruited thirteen adult patients from the 

Outpatient Chest Clinic, Royal Infirmary of Edinburgh (UK), 

all presenting cough as a symptom from a variety of conditions 

(see Table II).  

One hour of audio was acquired from each patient, divided 

in three parts:  

 The first part simulates a low-noise environment. In this 

situation, the patient is sitting and is requested to speak 

or read aloud. From time to time, we asked the patient to 

produce other foreground events such as throat clearing, 

swallowing (by drinking a glass of water), blowing nose, 

sneezing, breathless breathing or laugh (by reading a 

joke or a humor comic).  

 The second part emulated a noisy environment with a 

external source of contamination, i.e., the noisy 

background sounds are not produced by the patient. To 

do so, we repeated the same experiment as in part one 

with either a television set or radio player on. Besides, 

the door of the room was left open so that noisy sounds 

from the corridor of the hospital were recorded as well. 

TABLE II 

BASIC CLINIC INFORMATION OF THE PATIENT POPULATION 

Patient Age Gender Pathology 

1 70 Female Bronchiectasis 

2 45 Male Asthma 

3 69 Female COPD* 

4 48 Male COPD 

5 48 Female Bronchiectasis 

6 72 Female Asthma 

7 66 Female COPD 

8 66 Female Bronchiectasis 

9 61 Female COPD 

10 68 Female Bronchiectasis 

11 65 Female COPD 

12 72 Female Asthma 

13 67 Male COPD 

    *COPD: Chronic Obstructive Pulmonary Disease 
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These included trolleys, phones ringing, babble noise, 

typing noise, etc.  

 Finally, the third part of the protocol was designed to 

represent noisy environments where the own patients 

become also a source of contamination because of their 

movements and other activities. In this case, the patient 

could move freely around the room while we asked her 

to perform some activities like turning on/off the radio, 

opening/closing the window, opening/closing a drawer, 

moving a chair, washing hands, lying on the bed and 

standing up immediately, typing, putting on the coat and 

taking it off immediately, picking up something from the 

floor, etc. As in part two, the door was left open. Equally, 

while the patient was performing these activities, we 

requested her to produce other foreground events as in 

the first and second part.  

Each hour was doubly recorded by two smartphones. The 

first smartphone (Samsung Galaxy S6 Edge running Android 

5.1.1) was placed on a table in the center of the room. The 

second one (Sony Xperia Z2 with Android 5.1.1) was placed 

into the pocket or the handbag of the patient. When placed in 

the handbag, the patient carried it during the third part of the 

protocol. The acquisition parameters were the same as in the 

first database. Overall the patient database contained 78 signals 

lasting 1560 minutes. The percentage of cough samples ranges 

between 5% and 18% depending on the specific patient. 

B. Performance metrics 

The performance in our two-class classification problem can 

be summarized using the confusion matrix in Table III. Given 

the imbalance between classes, our segmentation process will 

be mainly assessed by means of the following metrics: 

Sensitivity (SEN), as a metric quantifying the capacity of the 

system to detect a true positive (cough events):

 FNTPTPSEN  / . 

Specificity (SPE), as a metric quantifying the performance in 

detecting a true negative (non-cough events and isolated 

background sounds):  FPTNTNSPE  / . 

Matthew Correlation Coefficient (MCC), as a metric of the 

whole performance of a classification process, i.e. equivalent to 

the accuracy –    FNFPTNTPTNTPACC  /  – 

when the classes are unbalanced: 

    

    FNTNFPTNFNTPFPTP

FNFPTNTP
MCC






···

··
. 

Additionally, we provide the positive and negative predictive 

values (PPV and NPV), since they are the probabilities that the 

system correctly predicts a randomly-chosen positive or 

negative sample, respectively. They both depend on the 

prevalence of the classes:  FPTPTPPPV   and

 FNTNTNNPV  . MCC, PPV, and NPV provide reliable 

measures of the performance of the system even in cases where 

there is clear unbalance between the positive and negative 

classes. 

C. Results 

1) Analysis over different SNR values 

After training the SVM and the k-NN classifier using the 

training data in the first database, we assessed their 

performance for detection of cough events using the test group. 

Classification results are presented in Fig. 4. To test the 

statistical significance in the comparison between k-NN and 

SVM we ran Mann Whitney’s U tests [55] on the test group 

using 10 different random partitions of the datasets for each 

SNR and feature set. The obtained p-values for sensitivity and 

specificity are presented in Table IV.  

Considering SVM we can see that performance improves for 

all features as SNR increases. In particular, Hu moments 

offered the best PPV for all SNRs and their MCC results are 

also the best ones between -6 dB and 6 dB, although they are 

outperformed by MFCC for the most favorable SNRs. On the 

other hand, the sensitivity of Hu moments is the worst for SNRs 

equal to 0, 6, 9, 12 and 15 dB. In any case, the values of 

sensitivity are quite low even in the case of the highest SNR: 

the best sensitivity, around 75%, is reached by OSC for the best 

SNR. 

The rest of features exhibit similar tendencies. For instance, 

LPCC reported medium values of sensitivity but its specificity 

is the best just behind the Hu moments, with the exception of 

SNR equal to 12 dB, in which MFCC are slightly better. The 

most remarkable aspect in OSC results is their superiority in 

terms of sensitivity. However, OSC is among the features with 

lower specificity, which reduces the global classification 

performance (ACC and MCC). Finally, it is worth highlighting 

that the feature sets with higher improvements in performance 

depending on the SNR are SSCH and SpecBlock13. 

As for the k-NN classifier results, the superiority of Hu 

moments in all metrics is the major evidence. Their sensitivity 

is above 80% for all SNRs. The same behavior is observed for 

specificity, which is above 96% for all SNRs as well. MCC and 

ACC are also high as could be expected. If we compare Hu 

moments with the remaining features, the smallest sensitivity 

difference is 18.59% (LPCC and SNR equal to 15 dB). This 

pattern is maintained for all the other of metrics, being LPCC, 

MFCC and GTCC slightly better than the rest of features.  

From this analysis, using Hu moments together with a k-NN 

classifier is the best choice. The performance of this 

combination is the highest for all the metrics and SNR values, 

with statistical significance on the superiority of using k-NN vs. 

SVM according to Table IV (p-value <1.8·10-4 for all SNR 

values). 

 

 

 

TABLE III 

CONFUSION MATRIX OF OUR TWO CLASSES CLASSIFICATION PROBLEM 

 Predicted Class 

Non-cough Cough 

Real Class 
Non-cough True Negative (TN) False Positive (FP) 

Cough False Negative (FN) True Positive (TP) 
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Fig. 3. Representation of the eight SNR versions of one of the synthesized signals: (a) -6 dB; (b) -3 dB; (c) 0 dB; (d) 3 dB; (e) 6 dB; (f) 9 dB; (g) 12 dB; (h) 15 dB. 

 
Fig. 4. Pairwise comparison of k-NN and SVM in terms of all the performance metrics described in Section IV.B. 

 

 

2) Computational load 

Regarding computational efficiency, Table V shows that the 

feature set demanding less computational resources is LPCC 

whereas, alternatively, Hu moments require the largest 

computing time. Concerning the two classifiers, both display 

the same behavior among all the features. In general terms, the 

classification task using SVM needs approximately 5 s, whereas 

with k-NN classifier around 7 s. These results are based on a PC 

with a processor Intel(R) Core(TM) i7-3930K CPU @ 3.20 

GHz, 64 GB of RAM and running Windows 7 Enterprise SP1. 
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3) Superiority of Hu moments in a real scenario with varying 

noise-levels 

In order to verify that our results were indeed true, we carried 

out a validation process. It aimed to assess the superiority of Hu 

moments in noisy-background environments. To do so, we used 

a mixed group of 26 signals from the first database with 

different SNR values in the range [-6, 15] dB. After computing 

the Hu moments of this new group we created a partition with 

the previous percentages of observations for training (60%), test 

(30%), and validation (10%) and kept the ratio between classes 

in each group. The obtained results after classification are 

shown in Table VI. Again, the k-NN classifier outperforms the 

SVM. Moreover, the obtained results are aligned with the ones 

computed in the previous section, where each SNR version of 

the database was classified separately. Thus, we confirm the 

preliminary conclusion that Hu moments are by far the most 

robust against noisy-background environment among the 

studied features. 

 

4) Additional improvements from post-processing: final 

implementation 

Table VII presents the classification results in a real scenario 

with post-processing, showing an improvement on both 

sensitivity and overall performance. 

 

5) Analysis over ambulatory patient recordings 

To show the performance of the final system over real patient 

data, we separately evaluated the best performing approach 

above (Hu moments and k-NN classifier) using the patient 

database for each of the three parts of the protocol. The inner 

parameters of the Hu moments algorithm and the configuration 

of the k-NN classifier were the same as in previous experiments.  

For each part of the protocol, the dataset was divided in two 

groups: 60% of observations for training and 40% for testing. 

The experiment was based on a repeated random hold-out 

validation of five experiments, as in other sound event 

classification problems [56], being the feature space partition of 

each run different. Likewise, we also applied the post-

processing technique described in Section III.D. The final 

TABLE V 

COMPUTING TIME THE EXTRACTION OF EACH FEATURE AND THE 

CLASSIFICATION TASK BASED ON SVM AND K-NN CLASSIFIERS 

Feature 
Feature 

computation (s) 

SVM 

classification (s) 

k-NN 

classification (s) 

GTCC 50.44 5.19 7.18 

Hu moments 323.03 5.25 7.19 

LPCC 4.10 5.10 7.12 

MFCC 23.17 5.55 7.95 

NASE 71.90 5.14 7.22 

OSC 33.44 5.84 7.28 

SpecBlock13 187.2 5.71 7.61 

SSCH 130.7 4.95 7.03 

 

TABLE VI 

CLASSIFICATION RESULTS IN A REAL SCENARIO  

Class. 
SEN 

(%) 

SPE 

(%) 

ACC 

(%) 

MCC 

(%) 

PPV 

(%) 

NPV 

(%) 

k-NN 82.49 97.25 94.51 81.49 87.23 96.06 

SVM 62.83 85.41 81.22 44.21 49.55 90.97 

 

TABLE VII 

CLASSIFICATION RESULTS IN A REAL SCENARIO WITH POST-PROCESSING 

Class. 
SEN 

(%) 

SPE 

(%) 

ACC 

(%) 

MCC 

(%) 

PPV 

(%) 

NPV 

(%) 

k-NN 88.42 96.85 95.28 84.54 86.47 97.35 

SVM 66.55 84.04 80.79 45.21 48.73 91.68 

 

TABLE IV 

P-VALUES OBTAINED FROM MANN-WHITNEY’S U TEST ON SENSITIVITY AND SPECIFICITY VALUES FOR ALL FEATURE SETS AND SNR VALUES. TESTS FAILING TO 

REJECT THE NULL HYPOTHESIS AT Α=0.05 CONFIDENCE LEVEL ARE SHOWN IN LIGHTER FONT. 

SENSITIVITY 

Feature set SNR (dB) 

 -6 -3 0 3 6 9 12 15 

GTCC 1.82∙ 10−4 1.81∙ 10−4 1.81∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.80∙ 10−4 1.70∙ 10−3 

Hu Moments 1.80∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.80∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.79∙ 10−4 

LPCC 0.821 0.473 0.472 2.70∙ 10−3 5.77∙ 10−4 3.60∙ 10−3 0.053 2.44∙ 10−4 

MFCC 1.80∙ 10−4 1.81∙ 10−4 2.44∙ 10−4 1.81∙ 10−4 3.28∙ 10−4 0.028 0.015 0.212 

NASE 1.82∙ 10−4 1.81∙ 10−4 0.473 1.70∙ 10−4 0.037 0.0623 0.017 0.025 

OSC 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.78∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

SpecBloc13 1.82∙ 10−4 2.80∙ 10−3 4.60∙ 10−4 0.052 1.82∙ 10−4 9.10∙ 10−3 0.241 3.60 ∙ 10−3 

SSCH 1.81∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

SPECIFICITY 

Feature set SNR (dB) 

 -6 -3 0 3 6 9 12 15 

GTCC 1.83∙ 10−4 1.81∙ 10−4 1.81∙ 10−4 1.81∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

Hu Moments 1.79∙ 10−4 1.81∙ 10−4 1.78∙ 10−4 1.80∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

LPCC 1.82∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.80∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 

MFCC 1.79∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.79∙ 10−4 

NASE 1.82∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

OSC 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

SpecBloc13 1.77∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 0.473 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 

SSCH 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.81∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 1.82∙ 10−4 
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classification average results are shown in Table VIII 

(smartphone on the table) and Table IX (smartphone in the 

pocket or handbag). In both tables, the standard deviation is 

always below 2%. Based on the aforementioned tables, the best 

classification results are obtained in the first part of the protocol 

(quieter environment) whereas the lowest performance is 

obtained in the third part (daily activities), both when the 

smartphone is on the table and when it is in the pocket or 

handbag. As could be expected, when the smartphone is on the 

table, the classification results are better (approximately 5% of 

improvement in terms of SEN) than when it is in the pocket or 

handbag. Finally, from a general perspective, these 

classification results are in line with the ones achieved for the 

synthetic-signal database. 

V. DISCUSSION 

We studied a variety of feature sets to characterize audio 

cough signals. Next, a SVM and a k-NN classifier were used to 

separate coughs from non-cough events and background noise. 

The most remarkable result is the symbiosis between Hu 

moments and the k-NN classifier. This combination reported 

results that confirm our hypothesis and make Hu moments the 

most robust feature against noisy-background environments in 

comparison with the others. It is worth noting that the achieved 

classification metrics are significantly high even for low SNR 

values and also remain almost constant between -6 dB and 15 

dB. This means that Hu moments are able to extract practically 

the same information from cough events despite the degree of 

contamination due to background sounds. An explanation to 

this fact may lie in some of the properties of Hu moments as a 

feature set. Hu moments have successfully been applied for 

object recognition in image processing. This requires features 

to be invariant with respect to translation, scaling, and rotation. 

Hu moments do have these properties [26]. Thus if we 

understand the variations introduced by the background sounds 

as the equivalent for signals to translations, scaling and rotation 

in images, our results confirm that these properties translate to 

noise robustness in our problem. Likewise, this is also positive 

to deal with inter- and intra-variability of cough events 

depending on the user/patient. 

In the same line, another explanation is derived from the 

particular extension of Hu moments to 1D signal processing 

that Sun et al. carried out [26]. The first steps of the algorithm 

are shared with a widely used feature set in audio signal 

processing: MFCC, which actually emulates the response of the 

cochlea. The difference is that, after getting the energy matrix 

in each frequency band, MFCC does not consider the 

relationship between the frequency bands within a window and 

between windows, whereas Hu moments does it using block 

processing (see (7)). 

Unfortunately, the combination of Hu moments and k-NN 

classifier is the worst in terms of efficiency. However, in our 

opinion, their large performance outweighs their inefficiency, 

becoming them also the most cost-effective feature. We hold 

this opinion since the lack of efficiency can be treated from 

other perspectives. For instance, today graphics processing 

units (GPU) are available in many smartphones. This allows to 

parallel compute a lot of simple operations, exactly what must 

be done with ijB  blocks in the algorithm of Hu moments. 

Therefore, a GPU-implementation of the Hu moments would 

increase the opportunities for technological transfer of our 

research. Alike, other more efficient implementations of the k-

NN classifier should be tested. We have used an exhaustive k-

NN classifier, i.e. the distance between each new observation 

and previous observations is computed at high computational 

cost. Nevertheless, an efficient implementation of the k-NN 

classifier based on vantage trees can work well without a severe 

degradation of the classification metrics. Finally, as we proved 

in [36], some signal processing techniques such as 

downsampling beyond the Nyquist limit or compressive 

sensing could additionally be explored to enlarge Hu moments 

efficiency. 

When comparing our results to previous studies, we observe 

that some of them achieved higher sensitivity values [17], [22], 

[19], [57] although they cannot be directly compared to our 

work. For example, Martinek et al. [57] created a monitoring 

system to distinguish between voluntary cough sounds and 

speech in healthy volunteers. They achieved sensitivity close to 

98% but their spectral analysis was based on windows of 512 

samples (45 ms) with a shift of 5 samples. This shift may 

introduce such amount of correlation between windows that the 

principle of independency between observations which is 

supposed in pattern recognition can be questioned. Matos et al. 

[19] achieved average sensitivity values between 50% and 99%. 

Our signal database, however, has been specifically designed to 

emulate multiple noisy background environments with minimal 

disturbance for the users – e.g. without a microphone attached 

to the patients’ chest, as in [19], so our experimental scenario is 

more challenging in terms of noise content..  

Even though the k-NN classifier showed to be the best option 

for Hu moments, for the rest of features it was the SVM with 

statistical significance for most of them (see Table IV). 

Focusing on the SVM results, MFCC presents the best 

performance in general terms or, in order words, they have 

acceptable values of both sensitivity and specificity. This can 

also be appreciated in the MCC results. These results are in 

accordance with other studies such as Ezgi and Sert [21], where 

SVM is usually the best performing classifier. Lastly, we would 

like to discuss the behavior of SSCH. This feature was designed 

TABLE VIII 
AVERAGE CLASSIFICATION RESULTS OF PATIENT-SIGNAL DATABASE WITH 

POST-PROCESSING (SMARTPHONE ON THE TABLE) 

Part 
SEN 

(%) 

SPE 

(%) 

ACC 

(%) 

MCC 

(%) 

PPV 

(%) 

NPV 

(%) 

1st  88.51 99.72 99.72 86.85 87.51 99.78 

2nd  87.37 99.77 99.59 85.96 84.99 99.81 

3rd  86.41 99.70 99.49 84.44 83.02 99.77 

 

TABLE IX 
AVERAGE CLASSIFICATION RESULTS OF PATIENT-SIGNAL DATABASE WITH 

POST-PROCESSING (SMARTPHONE IN THE POCKET OR HANDBAG) 

Part 
SEN 

(%) 

SPE 

(%) 

ACC 

(%) 

MCC 

(%) 

PPV 

(%) 

NPV 

(%) 

1st  84.27 99.73 99.44 84.63 85.56 99.70 

2nd  83.98 99.77 99.53 84.15 84.80 99.86 

3rd  79.04 99.69 99.38 79.14 79.87 99.68 

 



JBHI-00181-2017.R3 

 

 

11 

to improve the robustness against noise of MFCC. Surprisingly, 

MFCC resulted to be more robust than SSCH for all SNR and 

according to all metrics. We believe that this effect is due to 

different conceptions of noise. Gajic and Paliwal [44] 

considered only three types of noise: white Gaussian noise, 

factory noise and babble noise, whereas our database 

encompasses more noise types. The fact that speech is the target 

of detection in [44] but here is actually something to discard 

may also influence. On the other hand, SSCH experience the 

greatest improvement when increasing SNR. 

Regarding performance on real patient data, our results 

confirm three main points: (1) the suitability of using the first 

database to identify the best performing method for audio 

signals; (2) the superiority of Hu moments plus k-NN respect to 

so far-employed audio features and classifiers; (3) the internal 

coherence of the acquisition protocol for ambulatory 

recordings.  

The first and the second points are confirmed since the results 

over both databases are strongly aligned, in particular when the 

smartphone is placed into the pocket or handbag. This is 

equivalent to lower SNR values in the synthetic database, as 

opposed to higher in quieter environments. The third point is 

supported from better classification results in the first part of 

the protocol (quite environment) compared to the second part 

(only external source of auditory contamination). These latter 

are also better than the ones from the third-part, where external 

noise and daily activity were the sources of contamination). 

This behavior is observed for both smartphones (the one on the 

table and the one in the pocket or handbag). In any case, from a 

holistic perspective, all the performance figures are high for the 

range of analyzed situations and SNR values, which confirm the 

suitability of our final proposal for continuous monitoring of 

audio cough events using a smartphone. 

VI. CONCLUSIONS 

In this work, we present a suitability analysis on the use of 

several spectral features and two classifiers for audio-cough 

detection in noisy environments. The analysis led to the 

proposal of a system using local Hu moments as feature set and 

a k-NN classifier as the best, featuring sensitivity and 

specificity values up to 88.51% and 99.77% respectively. The 

evaluation has been carried out using a novel synthesized 

database including a variety of environment noise types which 

can be tested with flexible SNR settings and sixteen hours of 

ambulatory recordings from real respiratory patients. 

From the medical point of view, cough is not generally a 

serious symptom, so patients can self-manage their own 

respiratory diseases [58]. The availability of a reliable 

monitoring device can be very helpful to track the evolution of 

these people, avoiding unreported or fabricated symptoms. The 

outcome of our research paves the way to create a device which 

will be convenient and minimally disruptive for patients and in 

which practitioners can rely on. Besides, thanks to these devices 

the number of hospitalizations and consultant referrals from 

respiratory disease may be reduced. This would significantly 

decrease costs for national health systems. 

APPENDIX. COMPUTATION OF SPECTRAL FEATURES  

The following summarizes the computation of 

unidimensional spectral features presented in Section III.B.2). 

A. Spectral Centroid 

1 1

[ ]· [ ] [ ]

Nend Nend

k k

SpecCen f k PSD k PSD k

 

     (13) 

with f[k]: vector of discrete frequencies. 

B. Spectral Bandwidth 

 [ ] [ ] [ ]bC k f k SpecCen PSD k   (14) 

 
2

1 1

[ ] · [ ] [ ]

Nend Nend

b

k k

SpecBand C k PSD k PSD k

 

     (15) 

C. Spectral Crest Factor 

   max [ ] min [ ] 1cC f k f k     (16) 

   
1

max [ ] 1 · [ ]

Nend

c

k

SpecCresFac PSD k C PSD k



    (17) 

D. Spectral Turbulence 

 ][],[
1

kPSDkPSDcorrSpecTurb
ii 

   (18) 

where ][kPSD
i

 is the PSD of  the ith signal window and corr the 

correlation coefficient. 

E. Spectral Flux 

 
2

1

1

[ ] [ ]

Nend
i i

k

SpecFlux PSD k PSD k




    (19) 

F. Ratio f50 vs f90 

50

1 1

[ ] 0.5· [ ]

k Nend

k k

PSD k PSD k

 

    (20) 

90

1 1

[ ] 0.9· [ ]

k Nend

k k

PSD k PSD k

 

    (21) 

)( 5050 kff   and )( 9090 kff    (22) 

90509050 ffRatioff     (23) 

G. Spectral Roll-off 

85

1 1

[ ] 0.85· [ ]

k Nend

k k

PSD k PSD k

 

    (24) 

)( 85kffSpecRollof    (25) 

H. Spectral Standard Deviation, Spectral Skewness and 

Spectral Kurtosis 

 1 10[ ] 10·log [ ]HC k PSD k   (26) 

 2 1

1

1 · [ ]

Nend

H H

k

C Nend C k



    (27) 

 1 3[ ]H HSpecSD SD C k C    (28) 

where SD refers standard deviation. 
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   
3 3

1 2 3

1

1 · [ ]

Nend

H H H

k

SpecSkew Nend C k C C



    (29) 

   
4 4

1 2 3

1

1 · [ ]

Nend

H H H

k

SpecKurto Nend C k C C



    (30) 

I. Spectral Peak Entropy 

The local maxima (lm) of the PSD are first sought to 

subsequently compute: 

 ][][ lmlm kPSDkPSDP   (2) 

klm refers to the discrete frequency at which the lm are found. 

 PPSpecPeakEn  10·log)·1(   (31) 

J. Renyi Entropy 

RenyiEn     
1

1 1 ·log [ ]

Nend
q

k

q PDS k



  
   

  
 , 2q    (32) 

K. Tsallis Entropy 

 1[ ] [ ] [ ]
q

KC k PSD k PSD k  , 2q    (33) 

2 1 1KC q    (34) 

2 1

1

·log [ ]

Nend

K K

k

TsallisEn C C k



  
  

  
   (35) 

1024 points were used in the FFT algorithm for the computation 

of these unidimensional features. 

ACKNOWLEDGEMENTS 

The authors would like to thank the Smartcough clinical team 

at the University of Edinburgh (Prof. Brian McKinstry, Dr. 

Hilary Pinnock, Dr. Roberto Rabinovich, and Dr. Lucy 

McCloughan) for their help and support in clinical matters. 

Thanks are also given to Chest Heart and Stroke Scotland 

(Lorna Stevenson, Dave Bertin, and Jill Adams) for her support 

in setting up the patient panel for the Smartcough project. 

REFERENCES 

[1] K. K. Lee and S. S. Birring, “Cough,” Medicine, vol. 40, no. 4, pp. 173-

176, Apr. 2012. 

[2] G. A. Fontana, “Before we get started: what is a cough?,” Lung, vol. 186, 
Suppl. 1, pp. S3-S6, Oct. 2007. 

[3] S. A. Walke and V. R. Thool, “Differentiating nature of cough sounds in 

time domain analysis,” International Conference on Industrial 

Instrumentation and Control (ICIC), 2015, pp. 1022-1026. 

[4] G. A. Fontana and J. Widdicombe, “What is cough and what should be 

measures?,” Pulm Pharmacol Ther, vol. 20, no. 4, pp. 307-312, Dec. 
2007. 

[5] Clinical standards for chronic obstructive pulmonary disease services. 

National Health Service. Edinburgh. NHS quality improvement Scotland, 
2010. 

[6] A. H. Morice, et al., “ERS guidelines on the assessment of cough,” Eur 

Respir J, vol. 29, no. 6, pp. 1256-1276, Jun. 2007. 
[7] M. J. Fletcher, et al., “COPD uncovered: an international impact of the 

chronic obstructive pulmonary disease [copd] on a working age 

population,” BMC Public Health, vol. 1, no. 11, pp. 612, Aug. 2011. 
[8] J. Smith and A. Woodcock, “New developments in the objective 

assessment of cough,” Lung, vol. 186, Suppl. 1, pp. S48-S54, Dec. 2007. 

[9] C. T. French, et al., “Evaluation of a cough-specific quality-of-life 
questionnaire,” Chest, vol. 121, no. 4, pp. 1123-1131, Apr. 2002. 

[10] S. S. Birring, et al., “Development of a symptom specific health status 

measure for patients with chronic cough: Leicester Cough Questionnaire 
(LCQ),” Thorax, vol. 58, no. 4, pp. 339-343, Apr. 2003. 

[11] K. F. Chung, “Measurement of cough,” Respir Physiol Neurobiol, vol. 

152, no. 3, pp. 329-339, Jul. 2006. 
[12] K. Kosasih, et al., “High frequency analysis of cough sounds in pediatric 

patients with respiratory diseases,” in Proc IEEE Annu. Int. Conf. Eng. 

Med. Boil. Soc., 2012, pp. 5654-5657.  
[13] J. A. Smith, et al., “The description of cough sounds by healthcare 

professionals,” Cough, vol. 2, no. 1, Jan. 2006. 

[14] L. PA. McGarvey, et al., “Prevalence of psychomorbidity among patients 
with chronic cough,” Cough, vol. 2, no. 4, Jun. 2006. 

[15] Communication from the Commission of the European Parliament, the 

Council, the European Economic and Social Committee and the 
Committee of the Regions on telemedicine for the benefit of patients, 

healthcare systems and society, 2008.  

[16] J. Smith, “Monitoring chronic cough: current and future techniques,” 
Expert Rev Resp Med, vol. 4, no. 5, pp. 673-683, Oct. 2010. 

[17] Y. A. Amrulloh, et al., “Automatic cough segmentation from non-contact 

sound recordings in pediatric wards,” Biomed Signal Process Control, 
vol. 21, pp. 126-136, Aug. 2015. 

[18] S. Larson, et al., “Validation of an automated cough detection algorithm 

for tracking recovery of pulmonary tuberculosis patients,” PLoS One, vol. 
7, no. 10, pp. e46229, Oct. 2012. 

[19] S. Matos, et al., “Detection of cough signals in continuous audio 

recordings using Hidden Markov Models,” IEEE Trans Biomed Eng., vol. 
53, no. 6, pp. 1078-1083, Jun. 2006. 

[20] K. Yatani and K. N. Truong, “BodyScope: a wearable acoustic sensor for 
activity recognition,” in Proc. ACM Annu. Int. Conf. Ubiq. Comp., 2012, 

pp. 341-350. 

[21] S. Ezgi and M. Sert, “Audio-based event detection in office live 
envrionments using optimized MFCC-SVM approach,” in Proc. IEEE 

Annu. Int. Conf. Semantic Computing, 2015, pp. 475-480. 

[22] T. Drugman, et al. (2012, Sep.). Audio and contact microphones for cough 
detection. INTERSPEECH 13th Annu. Int. Conf. Speech Communication 

Association. [Online]. Available: 

http://tcts.fpms.ac.be/publications/papers/2012/interspeech2012_cough_t
djurctd.pdf 

[23] T. Drugman, “Using mutual information in supervised temporal event 

detection: application to cough detection,” Biomed Signal Process 
Control, vol. 10, pp. 50-57, Mar. 2014. 

[24] E. Agu, et al., “The smartphone as a medical device: assessing enablers, 

benefits and challenges,” IEEE Int. Workshop of IoT-NC, 2013, pp. 48-
52. 

[25] J. Monge-Álvarez, et al., “Effect of importance sampling on robust 

segmentation of audio-cough events in noisy environments,” Annual 
International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), 2016, pp. 3740-3744 

[26] Y. Sun, et al., “Weighted spectral features based on local Hu moments for 
speech emotion recognition,” Biomed Signal Process Control, vol. 18, pp. 

80-90. 

[27] M. A. Coyle, et al., “Evaluation of an ambulatory system for the 
quantification of cough frequency in patients with chronic obstructive 

pulmonary disease,” Cough, vol. 1, no. 3, Aug. 2005. 

[28] S. J. Barry, et al., “The automatic recognition and counting of cough,” 
Cough, vol. 2, no. 8, Sep. 2006. 

[29] S. S. Birring, et al., “The Leicester cough monitor: preliminary validation 

of an automated cough detection system in chronic cough,” Eur Respir J, 
vol. 31, no. 5, pp. 1013-1018, May. 2008. 

[30] E. Vizel, et al., “Validation of an ambulatory cough detection and 

counting application using voluntary cough under different conditions,” 
Cough, vol. 6, no. 3, May. 2010. 

[31] M. You et al., “Novel feature extraction method for cough detection using 

NMF,” IET Signal Processing, vol. 11,  no. 5, p. 515-520, 2017. 
[32] J-M. Liu et al., “Cough detection using deep neural networks,” in IEEE 

Int. Conf. on Bioinformatics and Biomedicine (BIBM), 2014, pp. 560-563.   

[33] J. Amoh and K. Odame, “Deep Neural Networks for identifying cough 
sounds,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 5, pp. 1003-

1011, Oct. 2016.  

[34] K. Kosasish, et al., “Wavelet Augmented Cough Analysis for Rapid 
Childhood Pneumonia Diagnosis,” IEEE Trans. Biomed. Eng., vol. 62, 

no. 4, pp. 1185-1194, Apr. 2015.  

[35] J. MacAuslan, “Cough Analysis,” U.S. Patent 20170055879 A1, Mar. 2, 
2017. 



JBHI-00181-2017.R3 

 

 

13 

[36] P. Casaseca-de-la-Higuera, et al., “Effect of downsampling and 

compressive sensing on audio-based continuous cough monitoring,” in 
Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2015, pp. 6231-6235. 

[37] S. Haykin, Communication systems, John Wiley & Sons, New York, 

2001. 
[38] K. Tokuda, et al., “Mel generalized cepstral analysis – a unified approach 

to speech spectral estimation,” in Proc. Annu. Int. Conf. on Spoken 

Language and Processing, vol. 3, 1994, pp. 1043-1046. 
[39] R. Mammone, et al., “Robust speaker recognition: a feature-based 

approach,” IEEE Signal Process Mag, vol. 13, no. 5, pp. 58-71, 1996. 

[40] J. M. Liu, et al., “Cough signal recognition with gammatone cepstral 
coefficients,” in Proc. IEEE Int. Conf. on Sig. and Img. Processing, 2013, 

pp. 160-164. 

[41] X. Valero and F. Alías, “Gammatone cepstral coefficients: biologically 
inspired features for non-speech audio classification,” IEEE T 

Multimedia, vol. 14, no. 6, pp. 1684-1689, Dec. 2012. 

[42] C. H. Lee, et al., “Automatic music genre classification using modulation 
spectral contrast feature,” IEEE T Multimedia, vol. 11, no. 4, pp. 670-682, 

May. 2009. 

[43] H. G. Kim, et al., “Audio classification based on MPEG-7 spectral basis 
representations,” IEEE T Circ Syst Vid, vol. 14, no. 5, pp. 716-725, May. 

2004. 

[44] B. Gajic and K. K. Paliwal, “Robust speech recognition in noisy 
environments based on subband spectral centroid histograms,” IEEE T 

Speech Audi P, vol. 14, no. 2, pp. 600-608, Mar. 2006. 

[45] A. Ramalingam and S. Krishman, “Gaussian mixture modeling of short-
time Fourier transform features for audio fingerprinting,” IEEE T Inf 

Foren Sec, vol. 1, no. 4, Dec. 2006. 
[46] P. R. B. Barbosa, et al., “Spectral turbulence analysis of the signal-

averaged electrocardiogram of the atrial activation as predictor of 

recurrence of idiopathic and persistent atrial fibrillation,” Int J Cardiol, 
vol. 107, no. 3, pp. 307-316, Mar. 2006. 

[47] X. Chen and P. J. Ramadge, “Music genre classification using multiscale 

scattering and sparse representations,” in Proc. IEEE Annu. Conf. on 
Information Sciencie and Systems, 2013, pp. 1-6. 

[48] M. Wisniewski and T. P. Zielinski, “Application of tonal index to 

pulmonary wheezes detection in asthma monitoring,” in Proc. Annu. 
European Conf. Signal Processing, 2011, pp. 1544-1548. 

[49] J. Poza, et al., “Regional analysis of spontaneous MEG rhythms in 

patients with Alzheimer’s disease using spectral entropies,” Ann Biomed 
Eng, vol. 36, no. 1, pp. 141-152, Nov. 2007. 

[50] S. Haykin, “Support Vector Machines,” in Neural networks: a 

comprehensive foundation, 2nd ed., Upper Saddle River, NJ, 1998, pp. 
340-365. 

[51] R. O. Duda, P. E. Hart, D. G. Stork, “Nonparametric techniques”, in 

Pattern classification, 2nd ed., Ed. Wiley, 2000, pp. 174-188. 
[52] Theodoros Giannakopoulos and Aggelos Pikrakis. Introduction to Audio 

Analysis: A MATLAB Approach (1st ed.). Academic Press, 2014.. 

[53] 4uall, http://www.4uall.net/free-sound-effects/, latest visit: 15/11/2015. 
[54] Universal soundbank, http://eng.universal-soundbank.com/, latest visit: 

15/11/2015. 

[55] B. Rosner, Fundamentals of Biostatistics. Pacific Grove, CA: Duxbury 
Thomson Learning, 2000. 

[56] J. Dennis, et al., “Spectrogram image feature for sound event 

classification in mismatched conditions,” IEEE Signal Process. Lett., vol. 
18, no. 2, pp. 130-133, Feb. 2011. 

[57] J. Martinek, et al., “Distinction between voluntary cough sounds and 

speech in volunteers by spectral and complexity analysis,” J Physiol 
Pharmacol, vol. 59, suppl. 6, pp. 433-440, Dec. 2008. 

[58] P. G. Gibson, et al., “Self-management education and regular practitioner 

review for adults with asthma,” Cochrane Database Syst Rev, vol. 1, 
CD001117, Jul. 2002. 

 

 

 

 

 

http://eng.universal-soundbank.com/

