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Abstract  

Deep learning and machine learning methods have been used for addressing the problems 

in the biomedical applications, such as diabetic retinopathy assessment and Parkinson's 

disease diagnosis. The severity of diabetic retinopathy is estimated by the expert’s 

examination of fundus images based on the amount and location of three diabetic 

retinopathy signs (i.e., exudates, hemorrhages, and microaneurysms). An automatic and 

accurate system for detection of these signs can significantly help clinicians to make the 

best possible prognosis can result in reducing the risk of vision loss. For Parkinson's disease 

diagnosis, analysis of a speech voice is considered as the earliest symptom with the 

advantage of being non-intrusive and suitable for online applications. While some reported 

outcomes of the developed techniques have shown the good results and ongoing progress 

for these two applications, designing new algorithms is a thriving research field to overcome 

the poor sensitivity and specificity of the outcomes as well as the limitations such as dataset 

size and heuristic selection of the network parameters.  

This thesis has comprehensively studied and developed various deep learning frameworks 

for detection of diabetic retinopathy signs and diagnosis of Parkinson's disease. To improve 

the performance of the current systems, this work has had an investigation on different 

techniques: (i) color space investigation, (ii) examination of various deep learning methods, 

(iii) development of suitable pre/post-processing algorithms and (iv) appropriate selection 

of deep learning architectures and parameters.  

For diabetic retinopathy assessment, this thesis has proposed the new color space as the 

input for the deep learning models that obtained better replicability compared with the 

conventional color spaces. This has also shown the pre-trained model can extract more 

relevant features compared to the models which were trained from scratch. This has also 

presented a deep learning framework combined with the suitable pre and post-processing 

algorithms that increased the performance of the system. By investigation different 

architectures and parameters, the suitable deep learning model has been presented to 

distinguish between Parkinson's disease and healthy speech signal.  
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Chapter 1 

1 Introduction 

1.1 Introduction 

A combination of machine learning, image and signal processing methods have been used 

to address various problems in the biomedical applications, such as Diabetic Retinopathy 

(DR) assessment and Parkinson’s Disease (PD) diagnosis (Kahai, Namuduri et al. 2006, 

Rahn, Chou et al. 2007, Lee, Zhou et al. 2008, Gracas, Gama et al. 2012, Zaki, Zulkifley et 

al. 2016). Unlike the conventional pipeline that required hand-crafted feature extraction, 

Deep Learning (DL) methods have overcome this issue by automatically learning 

informative features from the input data (Schmidhuber 2015, van Grinsven, Venhuizen et 

al. 2016, Kamal Maried, Abdalla Eldali et al. 2017, Tan, Fujita et al. 2017). Achieving the 

promising results in different applications by the DL methods has led to increasing a demand 

for developing new DL techniques to improve the performance of the current systems. This 

thesis has investigated to develop novel DL frameworks for two biomedical applications: 

 

• DR Assessment 

• PD Diagnosis  

    

Diabetic Retinopathy Assessment. The severity of DR is currently estimated by the expert’s 

examination of fundus images based on the amount and location of three retinopathy signs 

(i.e., exudates, hemorrhages, and microaneurysms) across the retina surface (Hansen, 

Abramoff et al. 2015). If the DR severity is misdiagnosed, it can lead to irreversible vision 

loss (Mohamed, Gillies et al. 2007, Shaw, Sicree et al. 2010). Consequently, an automatic 

and accurate system for detection of the DR signs can significantly help clinicians to make 

the best possible prognosis about the severity of DR and risk of vision loss. For this purpose, 
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DL and other machine learning methods have been employed (Hajeb Mohammad Alipour, 

Rabbani et al. 2012, Lazar and Hajdu 2013, Tang, Niemeijer et al. 2013). 

 

Parkinson’s Disease Diagnosis. The speech impairment in PD, as one of the earliest 

symptoms, has been considered for the diagnosis of the disease. It has the advantage of 

being non-intrusive and suitable for online applications, and hence researchers have 

investigated the speech features to diagnose PD (Tsanas, Little et al. 2010, Zhang, Yang et 

al. 2016, Pompili, Abad et al. 2017). Machine learning and speech processing techniques 

have been utilized to analyse the speech signals to classify between PD and control subjects.  

1.2 Problem Statement  

Among the three DR signs, the presence of exudate is observed as the earliest sign of DR. 

For automatic exudate detection, various DL and machine learning methods have been 

developed. However, the current methods have some drawbacks described as follow.  

• Retina image analyses have been conducted using color spaces such as RGB, HSV, 

and LUV. Majority of the DL methods use three channels of the RGB space as the 

input to the networks (Gargeya and Leng 2017, Quellec, Charrière et al. 2017, 

Grassmann, Mengelkamp et al. 2018). However, other color spaces haven’t been 

explored and tested with DL methods.  

• Most of pervious DL frameworks are based on the Convolutional Neural Networks 

(CNNs) architecture. This requires identifying the suitable architecture and optimal 

parameters. However, there is no exact method for the selection of the network 

parameters (He, Zhang et al. 2016).  

• Another concern in using the CNN-based methods is the need for a large dataset to 

train the CNN. For overcoming these limitations, there is a need to investigate 

different DL methods to identify a network that gives good performance and is not 

reliant on large datasets. 
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The success of diagnosis of DR requires the detection of all the three signs: exudate, 

hemorrhage and microaneurysm. For the simultaneous detection of all DR signs, a few 

studies have been conducted by employing the CNN-based methods, but their methods 

achieved poor performance for distinguishing between hemorrhage and microaneurysm 

(Tan, Fujita et al. 2017). One of the main drawbacks in these works is not using the suitable 

DL-based framework with appropriate pre/pro-processing methods in their algorithm. It is 

observed that pre-processing methods have significant effect on enhancing the contrast 

between the DR signs and backgrounds. Although various pre-processing techniques have 

been developed for the DR assessment, comparing the performance of these methods have 

not been tested for the DL-based methods. Additionally, the effect of post-processing 

methods on the output of these methods have not been investigated for automatic DR signs 

detection. As a result, it is essential to investigate various pre/pre-processing methods to 

find the suitable one for improving the performance of the CNN-based methods. 

For PD diagnosis based on the speech signal, many studies have attempted to extract and 

analysis the time-frequency-based features, such as Jitter, Shimmer, Pitch, Harmonics to 

Noise Ratio, Autocorrelation, voiced and unvoiced frames (Sakar, Isenkul et al. 2013). 

However, there is the need for improving the performance for diagnosis. This aim of this 

sub-section was to investigate CNN-based models can provide informative features while 

the efficiency of such these models have not been tested yet.  

1.3 Hypotheses 

This thesis aims to investigate and develop different DL methods for assessment of DR and 

PD. This research has been conducted based on the following hypothesis:  

i. An appropriate choice of color channels is expected to enhance the performance of 

the system for automatic DR signs detection. 

ii. Identify a suitable DL method is able to overcome the limitations of the CNN-based 

methods for automatic DR signs detection.  

iii. A combination of suitable pre/post-processing algorithms is expected to increase the 

performance of the DL-based method for automatic DR signs detection. 
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iv. DL methods are able to extract suitable informative features from the speech signals 

for distinguishing between PD and healthy individual. 

1.4 Research Aim and Objectives 

The aim of this research is to study and investigate the use of DL for two biomedical 

applications: (i)- retinal image analysis for DR assessment and (ii)- for speech analysis for 

PD diagnosis. The objectives of this research are to: 

i. Develop a framework of DL for detection and segmentation of DR signs in the color 

fundus images. 

ii. Investigate and compare different color spaces of fundus images for DR signs 

detection  

iii. Compare different DL methods (CNN, pre-trained and Restricted Boltzmann 

Machine (RBM) models) for detecting the DR signs. 

iv. Investigate different image enhancement methods to improve the performance of 

DL-based techniques. 

v. Develop a post-processing algorithm to improve the performance of DL-based 

techniques. 

vi. Develop a DL model for automatic and simultaneous detection of three DR signs. 

vii. Propose a DL model for assessment of PD using speech signal. 

viii. Investigate various DL architectures to identify suitable architecture for PD 

assessment.  

This research has comprehensively studied and developed various DL methods for detection 

of DR signs and diagnosis of PD. This demonstrates the importance of combining the 

machine learning, image and signal processing techniques to the DL techniques and assess 

the impact of them on the clinical applications. This also suggests using suitable color 

channels and DL’s architecture combined with appropriate pre/post processing algorithms 

can have a significant impact on the performance of the system. This thesis also delivers the 

effect of different designs of DL architectures on the system’s performance.        
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1.5 Outline of the Thesis 

The chapters of the thesis are organized as follow:  

Chapter 1 describes the overall thesis with an introduction, problem statement, hypothesis 

and aims, and objectives of the work. 

Chapter 2 presents a literature review of the DL methods used in this thesis. 

Chapter 3 investigates and compares the performance of different color spaces of fundus 

images for automatic detection of exudates. 

Chapter 4 investigates different DL techniques to maximize the sensitivity and specificity 

of the method for automatic detection of exudates. 

Chapter 5 proposes a novel pre-processing layer in the CNN architecture to increase the 

performance of the system for DR signs detection.  

Chapter 6 develops a method using the probabilistic output of the CNN model to 

automatically and simultaneously detect the DR signs.  

Chapter 7 investigates the efficiency of the CNN model in distinguishing between 

Parkinson’s and healthy voices. 

Chapter 8 concludes the findings of the thesis and discusses future studies to be 

undertaken. 

 

 

 

 

 

 

 

 

 



 

 

16 

 

Chapter 2 

2 Methodology Background 

2.1 Overview  

This chapter provides a literature review of the fundamentals of DL with a focus on the 

methods used in this thesis. It also provides a description of the software and hardware that 

is required for implementation of the algorithms. This introduces the fundamental concepts 

of the DL methods and comparison of their performances in the different applications of 

biomedical data analysis.  

2.2 Deep Learning Algorithms 

In common machine learning pipelines for different applications, extracting informative 

features are conducted by the machine learning experts on the basis of their knowledge 

about the target domain (Shen, Wu et al. 2017). However, DL methods have overcome this 

issue by learning a hierarchy of features from input data (Schmidhuber 2015, Kamal Maried, 

Abdalla Eldali et al. 2017). Instead of a handy-crated feature selection and extraction, the 

DL methods automatically learn the informative representation in a self-taught manner 

(LeCun, Bengio et al. 2015). 

Researches have become interested in using DL methods because these methods not only 

require less engineering efforts but also have achieved record-breaking performances in the 

variety of artificial intelligence applications (Collobert and Weston 2008, Mikolov, Deoras 

et al. 2011, Sutskever, Martens et al. 2011, Hinton, Deng et al. 2012, Krizhevsky, Sutskever 

et al. 2012, Farabet, Couprie et al. 2013, Sainath, Mohamed et al. 2013, Tompson, Jain et 

al. 2014, Suk and Shen 2015, Szegedy, Wei et al. 2015, Zhang, Li et al. 2015, Kleesiek, 

Urban et al. 2016, Wu, Kim et al. 2016).  
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DL methods, generally, can be categorized into the five main groups (shown in Figure 2.1):  

• CNNs   

• Pre-trained models  

• Deep neural networks (Auto-Encoders) 

• Deep generative models (Restricted Boltzmann Machines (RBMs)) 

• Sequential models (Recurrent Neural Networks (RNNs))  

 

 

Figure 2.1. Different deep learning models. 

In this thesis, three DL methods are used and described in this section:  

• CNNs 

• Pre-trained Models  

• RBMs   

2.2.1 Convolutional Neural Network 

CNN architectures and their applications are explained as folow.  

Deep Learning

Convolutional 
Neural 

Network 

Pre-trained 
Model

Deep Neural 
Network 

Deep 
Generative 

Model

Sequential 
Model 
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2.2.1.1 Convolutional Neural Network’s Architecture   

 A CNN architecture, basically, is comprised of different layers including convolutional and 

pooling (down-sampling) layers that are followed by fully connected layers (similar to 

multi-layer neural networks). A typical CNN architecture is shown in Figure 2.2.  

 

Figure 2.2. A typical CNN architecture (Zhou, Greenspan et al. 2017). 

 

Convolutional layer 

The purpose of the convolutional layer is to detect local features at different positions of the 

feature map of the pervious layer where a feature map is the output of one filter applied to 

the pervious layer. According to formula (2.1), each neuron from the same convolutional 

matrix generates 𝑛 feature maps in the convolutional layer if there are 𝑛 kernels. 

 𝐴𝑖 = 𝑓 (∑𝐼𝑗 ∗ 𝐾𝑖 + 𝐵𝑗

𝑁

𝑗=1

) (2.1) 

 

In formula (2.1), 𝐼𝑗 is  𝑗th input matrix, where there is only one input matrix from the input 

layer, and 𝑓(. ) is a nonlinear activation function. 𝑘𝑖, 𝐵𝑖, ∗ indicate the 𝑖th convolutional 

kernel matrix, bias matrix and a convolutional operation, respectively. 

 

Pooling Layer 

A pooling layer follows the convolutional layer to downsample and reduce the size of the 

feature map of the preceding convolution layer. This layer is responsible to progressively 
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reduce the spatial size of the feature map and decrease the number of computations and 

parameters. Another advantage of pooling layer is for transformation invariance over small 

spatial shifts in the input. Among different types of the pooling layers, Max-Pooling is the 

most privilege method which is widely used in the CNN’s architectures. This layer selects 

the maximum number of each stride. Figure 2.3 shows an example of the transformation 

invariance feature of the Max-Pooling operation on the two different feature maps. While 

the blue matrix by the size of 2×2 in the feature maps is different, the output for both are 

same because the blue matrix in feature map B is the horizontally flipped version of the 

feature map A.  

 

Figure 2.3. Max-Pooling processing on two different feature maps. While the blue matrixes are different, the output are 

same due to transformation invariance feature. 

Fully Connected layer 

 Fully connected layers have the characteristic as same as the multi-layer neural networks 

(Abbod, Catto et al. 2007, van Gerven and Bohte 2017). The input units are the last 

proceeding feature map which is reshaped to a vector followed by the hidden layers and the 

output units are mostly the number of target classes which varies from one application to 

another one.    
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In a CNN architecture, updating learnable parameters (weights and biases) require a training 

phase which is described as follow.   

 

Training Convolutional Neural Networks  

To train a CNN model, the back-propagation algorithm is used to update the network 

parameters (weights and biases). Assuming that 𝜃 = {𝑊𝑖, 𝑏𝑖} defined as network 

parameters, where 𝑤 and 𝑏 correspond to weight and bias in the convolutional and fully 

connected layers, respectively. For the training process, the loss function of 𝐿𝑐 is defined as 

follow: 

 𝐿𝑐 = −
1

|𝐶|
 ∑ln (𝑝(𝐷𝑖|𝐶𝑖))

|𝐶|

𝑖=1

 (2.2) 

Where |𝐶| represents the number of items in the training data, 𝐶𝑖 and 𝐷𝑖 denote the ith 

training sample and its label, respectively. To update 𝜃 parameters, stochastic gradient 

descent (SGD) (Pang, Yu et al. 2017) method is used. The 𝜃 in each iteration is updated by 

(2.3): 

 θ(p + 1) = θ(p) −  γ
∂Lc

∂θ
+ ∆θ(p) − µγθ(p) (2.3) 

 

where γ, ϑ and µ denote learning rate, momentum rate and weight delay rate, respectively.  

One of the main challenges in training a deep CNN architecture is the backpropagated error 

message that becomes inefficient due to vanishing gradient after repeated multiplications 

which is called ‘Vanishing Gradient’ (Schmidhuber 1992).  This causes the slower learning 

process in the layers close to the input layer compared to ones are closer to the output layer. 

To tackle this issue, some techniques are proposed as follow: 

• Rectified Linear Unit  

• Batch Normalization  

• Dropout 
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Rectified Linear Unit  

A neuron activation function is a step after the convolutional and fully connected layer.  In 

the multi-layer neural networks, the hyperbolic tangent and sigmoid are the two most 

common non-linear activation functions methods which are used.  Using such these 

functions, however, lead to decreasing the classification accuracy in the deep CNNs because 

of the saturation characteristics which could make the output gradient drop close to zero (Li, 

Cai et al. 2014). To address this issue, non-linear non-saturating functions, such as Rectified 

Linear Unit (RELU) and maxout (Goodfellow, Warde-Farley et al. 2013) functions, are used 

in the CNN architectures. The RELU function can vanish the gradient problem (Hinton and 

Salakhutdinov 2006, Glorot and Bengio 2010), and consequently, leads to improving the 

learning speed. The RELU is given by formula (2.4). 

 

 𝐹(𝑥) = max(0, 𝑥) (2.4) 

   

Batch Normalization  

Due to the change in the network parameters during the training phase, it’s observed that 

the change in the distribution of the network activations could cause longer training time. 

To address this problem, Ioffe and Szegedy (Ioffe and Szegedy 2015) presented a batch 

normalization method by applying the normalization for each mini-batch and 

backpropagating the gradients through the normalization parameters such as scale and shift. 

This layer follows the Max-Pooling layer to refine the pooling layer. Each unit of feature 

map is normalized by 2.5 :  

 𝑢̂𝑖 = 
𝑢𝑖 −  Ē[𝑢𝑖]

√𝑉𝑎𝑟 [𝑢𝑖]
 (2.5) 

 

Where 𝑖 stands for an index of the units (𝑢𝑖) in the layer. In the next step, a pair of learnable 

parameters 𝛼𝑖 and 𝛽𝑖 are introduced to scale and shift the normalized values as follow: 

 𝑦𝑖 = 𝛼𝑖  𝑢̂𝑖 + 𝛽𝑖  (2.6) 
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The output of equation 2.6 (𝑦𝑖) then is fed into the following layer.  

Dropout 

The aim of dropout technique is to randomly deactivate a fraction of the units, e.g., 50%, in 

a network on each training iteration. This method prevents a complex co-adaptation among 

units that helps the CNN to avoid overfitting. The temporal and random removal of unites 

in the training phase can be assumed to train the different networks with sharing connections 

weights. This method is used in the training phase, while all units must be activated in the 

test phase.  Figure 2.4 shows a neural network before and after applying the dropout, where 

the circles with a cross symbol inside denote deactivated units.  

 

Figure 2.4. Comparison of a neural network before and after applying dropout method, where the circles with a cross 

symbol inside denote deactivated units (Zhou, Greenspan et al. 2017). 

2.2.1.2 Application of Convolutional Neural Networks 

Different CNN architectures and number of parameters have resulted in presenting various 

networks used in addressing different problems. The main CNN’s applications can be 

categized into:  

• Image classification, segmentation and registration  

• Object detection  

• Speech analysis 

• Text detection and recognition 

• Action and pose estimation  
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In this thesis, image classification and segmentation and speech analysis are used. 

 

Image Classification  

In 1990, the first version of the CNN model was introduced by LeCun et al. for hand-written 

digits recognition (Cun, Boser et al. 1990). The main purpose of this network (LetNet) was 

to classify handwritten digits into the ten classes. LetNet with five layers could not achieve 

a promising result due to the lack of a large number of data sets for training the model. In 

2012, Krizhevsky et al. (Krizhevsky, Sutskever et al. 2012) presented the ‘AlexNet’ with 

eight layers including five convolutional and pooling layers and three fully connected layers 

(shown in Figure 2.5) which won the completion of ImageNet challenge (Russakovsky, 

Deng et al. 2015) and attracted lots of attention from the other researchers in machine 

learning and computer vision field.   

 

Figure 2.5. AlexNet Architecture (Krizhevsky, Sutskever et al. 2012). 

The results of the AlexNet showed a decent accuracy although training these numbers of 

weights took lots of time. For addressing this issue, the ability of graphical processing units 

(GPUs) for parallel processing were used to decrease the training time while it took a long 

time just by using central processing units (CPUs). Currently, both GUPs and CUPs are 

managed to do some parts of the process together. By using smaller kernel size in the 

convolutional layer, a similar function can be represented with fewer parameters. Another 

advantage of such networks is having a lower memory footprint which makes a reliable and 

feasible deployment of these models on some devices such as esdge devices. In 2014, 
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Simonyan and Zisserman (Simonyan and Zisserman 2014) proposed a CNN architecture ( 

VGGNet ) with 19 layers that won the ImageNet challenge of 2014. Presenting the deeper 

models continued until ‘GoogleNet’ was proposed by Szegedy et al. (Szegedy, Liu et al. 

2014). Beside using deeper architecture, this model introduced inception blocks (Lin, Chen 

et al. 2013). Unlike the previous networks (AlexNet and VGGNet), the inception block in 

GoogleNet extracts features with the different kernel sizes in the inception block that then 

they are concatenated at the end of the inception block. Comparison of different topologies 

used in AlexNet and VGGNet with GoogleNet are shown in Figure 2.6. This image shows 

that the AlexNet employs different kernel sizes (11×11, 5×5 and 3×3) and VGGNet uses 

the small kernel size (3×3). However, GoogleNet utilizes the inception module was able to 

extract features by different kernel sizes.  

 

Figure 2.6.  Comparison of the three different topologies used in AlexNet, VGGNet and GoogleNet. 

After presenting GoogleNet, the researchers tried to develop a deeper network to increase 

the performance of the system. However, it was observed that increasing the number of 

layers was led to decreasing the accuracy due to the vanishing gradient problem that even 

was not compensated even by using the RELU and dropout layers. In 2015, the solution was 

devised by He et al. (He, Zhang et al. 2016) by introducing residual connections (He, Zhang 

et al. 2016). In the residual setup, this does not only pass the output of convolutional layer 

(F(x)) to the next layer, but this also adds up the input of convolutional layer (x) and then 



 

 

25 

 

pass (F(x) + x) to the next layer (Figure 2.7). Expanding this principle into the entire network 

resulted in introducing the new architecture ‘ResNet’ that won ImageNet completion in 

2015.   

 

 

Figure 2.7. Residual block. (Conv: convolutional layer) 

In Figure 2.8, the 34-layer residual network is compared with 34-layer plain network and 

VGG-19. 
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Figure 2.8. Comparison of the 34-layer residual network with 34-layer plain network and VGG-19 (He, Zhang et al. 

2016). 
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Image Segmentation  

One of the drawback of using a fully convolutional neural network (fCNN) for the 

segmentation of the entire image is losing resolutions due to the pooling layers.  ‘Shift-and-

stitch’ is one of the several techniques proposed to prevent this resolution decrease 

(Shelhamer, Long et al. 2017). The fCNN was applied to a shifted version of the input image 

and by stitching the result together, one obtains a full resolution version of the final 

output, minus the pixels lost due to the ‘valid’ convolutions.  

Using an upsampling path was become popular among the proposed CNN-based methods 

for the segmentation purpose (Long, Shelhamer et al. 2015). In 2015, Ronneberger et al. 

(Ronneberger, Fischer et al. 2015) proposed ‘U-net’ architecture comprising a fCNN 

followed by an upsampling section which increased the image size (shown in Figure 2.9). 

The authors combined it with skip-connections to directly connect opposing expanding and 

contracting convolutional layers. Milletari et al. (Milletari, Navab et al. 2016) extended this 

U-Net layout that incorporates ResNet and a Dice loss layer that could directly minimize 

segmentation error.  

https://www.sciencedirect.com/topics/computer-science/full-resolution
https://www.sciencedirect.com/topics/medicine-and-dentistry/alginic-acid
https://www.sciencedirect.com/topics/medicine-and-dentistry/mustard-gas
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Figure 2.9. U-net architecture for segmentation application (Ronneberger, Fischer et al. 2015). 

As another example of a CNN-based model for segmentation purpose, mitosis detection for 

screening the breast cancer was one the first work in this area (Ciresan, Giusti et al. 2013). 

For pixel classification, they used ‘sliding-window’ approach that each pixel was presented 

by the neighborhood pixels. The developed CNN architecture could win the ICPR 

competition in 2012. However, a drawback of this naïve method is producing huge overlaps 

for analyzing the pixels as well as variability of the window sizes. Small patches can 

introduce just local information of the image while the larger ones are the presenter of global 

characteristics. However, both local and global features can play an important role in some 

applications (Shyu, Brodley et al. 1998, Murphy, Torralba et al. 2006). To address this issue, 

Zho and Jia (Zhao and Jia 2016) proposed a multiscale CNN model for brain tumor 

segmentation. Instead of one fixed patch size, they trained three networks with the three 

different patch sizes (48×48, 28×28 and 12×12) and the output was yielded by a 
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combination of the three networks (Figure 2.10). In comparison to the traditional one-

pathway architecture, their algorithm was more accurate and robust.  

 

Figure 2.10. The architecture of multiscale three-layer neural network (Zhao and Jia 2016). 

As a segmentation application of the CNN-based method for retinal image analysis, Li et 

al. (Li, Feng et al. 2016) turned the segmentation task into vessel mapping problem by using 

a 5-layer deep neural network for segmentation of the vessels in retinal fundus images. In 

2016, Liskowski and Krawiec (Liskowski and Krawiec 2016) proposed a structure 

prediction scheme to highlight the context information with a 7-layers CNN architecture 

without any pooling layer. Similarly, Fu et al. (Fu, Xu et al. 2016) with a combination of 

the 7-layer CNN and conditional random field presented a recurrent neural network to model 

long-range pixel interactions. In 2018, a combination of the wavelet transform with a CNN 

model was presented to overcome the variability of width and direction of the vessel 

structure in the retina (Oliveira, Pereira et al. 2018). As a result of features of CNN-based 

model described above, the main advantages and drawbacks of these models can be 

concluded as follow (Pak and Kim 2017, Batmaz, Yurekli et al. 2018, Khan and Yairi 2018, 

Nash, Drummond et al. 2018). 
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Advantages: 

• State-of-the-art performance in a variety of applications. 

• Automatically salient features extraction from different types of data. 

• The ability to perform function operation rapidly on multiple core GPUs up to 

5000% over CPU-only implementations.  

Drawbacks: 

• Require large datasets to train the model from scratch (small dataset could just train 

the limited number of the neurons which not reflecting the high-level 

representations). 

• Evaluating and tuning lots of parameters in order to get high performance, such as 

number of the layers, kernel size, filters, learning rate and type of activation function. 

2.2.2 Pre-trained Model  

As mentioned in section 2.2.1.2, training a CNN model from scratch requires a large dataset. 

However, most of the medical datasets are typically small ( hundreds/thousands of samples) 

compared to millions of images in the computer vision application (Russakovsky, Deng et 

al. 2015). Therefore, using pre-trained models (Transfer Learning) has become popular 

among the researchers, especially in medical image applications.  

Transfer learning is a method that transfer the knowledge from the source domain to the 

target domain (Figure 2.11). 
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Figure 2.11. Transfer learning process (Tan, Sun et al. 2018). 

There are two strategies for transfer learning:  

• Using a pre-trained network as a feature extractor  

• Fine-tuning a pre-trained network 

Compare to the fine-tunning method, the extra benefit of using a pre-trained network as a 

feature extractor is not requiring a training stage and tunning network’s parameters that is 

easily plugged into the existing image analysis pipelines. To compare the performance of 

these two strategies, different studies were investigated (Azizpour, Razavian et al. 2015, 

Gulshan, Peng et al. 2016, Kim, Corte-Real et al. 2016, Tajbakhsh, Shin et al. 2016, Esteva, 

Kuprel et al. 2017, Tiulpin, Thevenot et al. 2018). For instance, Li et al. (Li, Pang et al. 

2017) used three different approaches for classification of DR: (i) find-tunning, (ii) transfer 

learning and (iii) full training. Their results showed that the transfer learning method 

outperformed the other approaches.  

For different applications, different pre-trained models were used. For classification of 

tissues in histological images, Mazo et al. (Mazo, Bernal et al. 2018) used four different pre-

trained models (VGG-16, VGG-19, GoogleNet  and ResNet) which initially trained on the 

ImageNet dataset (Russakovsky, Deng et al. 2015). It is worth to mention that each network 

has a different architecture with a different number of parameters (Table 2.1). 
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Table 2.1. Detail of the different architectures used in (Mazo, Bernal et al. 2018). 

Item VGG-16 VGG-19 GoogleNet ResNet 

General     

Parameters  15.5 M 20.8 M 24.1 M 25.9 M 

Channels 3 3 3 3 

Input size 100×100 100×100 150×150 200×200 

Number of layers     

Convolutional  13 16 94 53 

Max- Pooling 5 5 4 1 

Fully connected  3 3 3 3 

Presence of modules     

Batch normalization No No Yes Yes 

Residual connection  No No No Yes 

 

Abbasi-Sureshjani et al. (Abbasi-Sureshjani, Dashtbozorg et al. 2018) used the ResNet 

architecture for extracting a feature from retinal fundus images for DR assessment.  

It can be seen that different pre-trained models have been used in different applications. 

Therefore, the success of the transfer learning method (either fixed feature extractor or fine-

tuning) is subjected to the application and the type of network.  

 

2.2.3 Restricted Boltzmann Machine 

The first version of the Restricted Boltzmann Machine (RBM) models was presented by 

Smolensky in 1986 (Smolensky 1986) and it was then represented based on the fast learning 

algorithm by Hinton (Hinton 2012). An RBM model is an unsupervised method and energy-

based stochastic neural networks composed of two different layers: (i) Visible layer and (ii) 

Hidden layer. These layers include a different number of visible (𝑉) and hidden (ℎ) units, 
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respectively. A weight matrix (𝑊𝑚×𝑛) stands for the connection weights between the visible 

and hidden layer with 𝑚 and 𝑛 units, respectively. This connection is bidirectional, so given 

an input vector 𝑉 that one can obtain the latent feature representation ℎ and vice versa 

(Figure 2.12) 

 

Figure 2.12. An example of the RBM architecture. 

An energy function of 𝐸(𝑣, ℎ) is defined and minimized by: 

 𝐸(𝑣, ℎ) =  − ∑𝑎𝑖𝑣𝑖

𝑚

𝑖=1

− ∑𝑏𝑗ℎ𝑗

𝑛

𝑗=1

− ∑∑𝑣𝑖ℎ𝑗𝑊𝑖𝑗

𝑛

𝑗=1  

𝑚

𝑖=1

  (2.7) 

 

Where 𝑎 and 𝑏 are the biases of visible and hidden unites, respectively.  

The probability of joint configuration (𝑣, ℎ) is computed as follow: 

 

𝑃(𝑣, ℎ) =  
1

𝑧
 𝑒−𝐸(𝑣,ℎ)  (2.8) 

 

Where 𝑍 is the normalization factor computed over all possible configurations including 

hidden and visible unites called the partition function. The marginal probability of the 

visible vector is given by: 

𝑃(𝑣) =  
1

𝑧
 ∑𝑒−𝐸(𝑣,ℎ)

ℎ

  (2.9) 

 



 

 

34 

 

As the activations of the visible and hidden units are independent, 𝑃(𝑣|ℎ) is leading to 

following conditional probability:  

𝑃(𝑣|ℎ) =  ∏𝑃(𝑣𝑖|ℎ)

𝑚

𝑖=1

 

  

(2.10) 

 

𝑃(ℎ|𝑣) =  ∏𝑃(ℎ𝑗|𝑣)

𝑛

𝑗=1

 

  

(2.11) 

Where: 

𝑃(𝑣𝑖 = 1|ℎ) =   ∅ (∑𝑊𝑖𝑗ℎ𝑗

𝑛

𝑗=1

+ 𝑎𝑖 )  (2.12) 

 

𝑃(ℎ𝑗 = 1|𝑣) =   ∅ (∑𝑊𝑖𝑗𝑣𝑗

𝑛𝑚

𝑖=1

+ 𝑏𝑗  )  

 

(2.13) 

 

Note that ∅ (. ) stands for the logistic-sigmoid function and assume that 𝜃 = (𝑊, 𝑎, 𝑏) are 

the RMB’s learnable parameters. The aim is maximizing the product of the probabilities 

given by the training data set (𝐷) as follow: 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃  ∏ 𝑃(𝑣)

𝑣 ∈𝐷

   (2.14) 

 

To solve the equation 2.14, the contrastive divergence method was proposed by Hinton 

(Hinton 2002) and it was then developed and expanded in 2012 (Montavon, Orr et al. 2012). 

The next generation of the RBM models is Deep Belief Networks (DBNs) (Bengio, Lamblin 

et al. 2006, Hinton, Osindero et al. 2006) and Deep Boltzmann Machines (DBMs) 

(Salakhutdinov and Larochelle 2010) which had the similar application with the slight 
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difference from the original RMB model. One of the challenges in using the RBM models 

for image application was that the original RBM model was only suitable for the binary 

image processing. In order to deal with the real images (gray scale and color images), a 

series of RBM variants are put forward, such as Gaussian-Binary RBM (GRBM) (Lee, 

Grosse et al. 2009, Cho, Ilin et al. 2011), the covariance RBM (cRBM) (Ranzato, 

Krizhevsky et al. 2010), the mean and covariance RBM (mcRBM) (Ranzato and Hinton 

2010) and the spike-slab RBM (ssRBM) (Courville, Bergstra et al. 2011, Courville, Bergstra 

et al. 2011, Goodfellow, Courville et al. 2012, Goodfellow, Courville et al. 2012, Courville, 

Desjardins et al. 2014).  

The original and developed RBM models are commonly used for various applications in 

image processing and machine learning. Lee et al. proposed a method by a combination of 

a CNN and RBM model that could learn the two-dimensional structure information of 

images and realized classification task (Lee, Grosse et al. 2009, Lee, Yan et al. 2009, 

Norouzi, Ranjbar et al. 2009, Lee, Hong et al. 2011). It is worth to mention that the 

application of the RBM models is not limited in the image analysis and these such models 

are widely used in analyzing the sequential data for speech and metadata analysis (Sutskever 

and Hinton 2007, Sutskever, Hinton et al. 2009, Swersky, Tarlow et al. 2012, Mittelman, 

Kuipers et al. 2014, Reed, Sohn et al. 2014, Montúfar, Ay et al. 2015, Montúfar and Morton 

2015).  

2.3 Software and Hardware 

As mentioned in section 2.2, it can be concluded that the success of the DL methods is due 

to the two main factors (Hinton and Salakhutdinov 2006, Vincent, Larochelle et al. 2010, 

Srivastava, Hinton et al. 2014):  

• Accessing the big dataset  

• Advances in high-tech GPUs  

The widespread availability of GPUs and GPU-computing libraries (CUDA, OpenCL) has 

the main contribution in developing the DL methods. With current high-tech GPUs, 

deployment of the DL methods becomes roughly 10-30 times faster than on CPUs.  
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Another reason for popularity in using the DL methods is the availability of the open-source 

software package. It allows to user to implement ideas at a high level rather than worrying 

about efficient implementation. The most popular packages are: 

• Caffe (Jia, Shelhamer et al. 2014) provides C++ and python interface, developed by 

UC Berkeley.  

• Tensorflow (Abadi, Agarwal et al. 2016) comes with C++ and python interface 

which was developed by Google research. 

• Theano (Bastien, Lamblin et al. 2012) provides a python interface, developed by 

MILA lab in Montreal. 

• Torch (Collobert, Kavukcuoglu et al. 2011) provides the Lua and python interface 

which wad developed by Facebook AL research.  

In this thesis, The Caffe platform is used for implementing the DL algorithms.  

2.4 Conclusion 

This chapter has described the literature review of the methodology used in this thesis. The 

general concept of DL methods including the three main DL approaches are explained in 

detail: (i) CNNs, (ii) Transfer Learning method and (iii) RBMs. The pros and cons of these 

methods are discussed and compared together. A review of the literature on successful 

applications of the DL methods has been explained. This chapter also covers the detail of 

the required software and hardware for implementing the DL algorithms. 

Further to the investigation of the current DL approaches, this thesis has proposed the novel 

methods to improve the performance of the current DL-based method in the biomedical 

applications as follow: 

i. Color space analysis of fundus images for automatic exudate detection (Chapter 3) 

ii. Investigation different DL methods for automatic exudate detection (Chapter 4) 
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iii. A novel pre-processing layer in convolutional neural network for automatic 

identification of diabetic retinopathy (Chapter 5) 

iv. Analysis of deep probabilistic features for detection of exudates, hemorrhages and 

microaneurysms (Chapter 6) 

v. Parkinson’s disease diagnosis based on multivariate deep features of speech signals 

(Chapter 7)  

vi. Conclusion and future work (Chapter 8) 
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Chapter 3 

3 Color Space Analysis of Fundus Images for 

Automatic Exudates Detection 

 

3.1 Overview  

This chapter has compared the performance of different color spaces of fundus images for 

automatic detection of exudates. A convolutional neural network was employed to assess 

the performances of different color spaces generated by orthogonal transformation of the 

original colors in red/green/blue (RGB) space. Experiments were conducted on two publicly 

available databases: 1- DIARETDB1 and 2- e-Ophtha. Based on the experimental results, 

this chapter has proposed a new color space of fundus images with three channels: (i) second 

eigenchannel of the RGB space, (ii) hue and (iii) saturation channels of Hue/Saturation and 

Intensity (HSI) space. This achieved an accuracy, sensitivity and specificity of 98.2%, 0.99 

and 0.98, respectively. Twenty times 20-fold cross validation technique confirmed that 

proposed color space obtained higher replicability compared with conventional color 

spaces. 

3.2 Introduction  

DR is a common cause of vision impairment in the world population (Abràmoff, Reinhardt 

et al. 2010, Mookiah, Acharya et al. 2013, Leontidis, Al-Diri et al. 2017) and presence of 

exudates on retina has been found to have impact on vision loss (Kaur and Mittal 2018). 

However, vision loss can be prevented in 50% of patients if DR is diagnosed and treated in 

time (Ege, Hejlesen et al. 2000, Hsu, Pallawala et al. 2001, Hove, Kristensen et al. 2004). 
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DR diagnosis requires detection of exudates on the retina which is performed by visual 

examination of eye fundus images. However, this is a time-consuming task and the 

outcomes are dependent on expertise of the examiner. While fully automatic analysis of 

retinal images for exudate detection is highly desirable, significant variations in shape, size 

and texture of the exudates makes this a challenging task. 

A number of automatic exudate detection methods have been developed which can be 

divided into two main categories: (i) Morphological and (ii) Machine learning based 

methods (Walter, Klein et al. 2002, Fleming, Philip et al. 2007, Niemeijer, van Ginneken et 

al. 2007, Jaafar, Nandi et al. 2010, Ali, Sidibé et al. 2013, Harangi and Hajdu 2014, Naqvi, 

Zafar et al. 2015, Pereira, Gonçalves et al. 2015, Zaki, Zulkifley et al. 2016). Sopharak et 

al. (Sopharak, Uyyanonvara et al. 2008) employed morphological operations to detect 

exudates based on the intensity channel (I) of HSI space. Sánchez et al. (Sánchez, García et 

al. 2009) used a statistical mixture model-based clustering for dynamic thresholding of the 

exudate pixels. García et al. (García, Sánchez et al. 2009) compared three different 

classification methods to identify the candidate pixels from the green channel of retinal 

images which include the multilayer perception (MLP), radial basis function (RBF) and 

support vector machine (SVM). Giancardo et al. (Giancardo, Meriaudeau et al. 2012) used 

the green channel and the intensity channel from eye retinal images to detect the exudate. 

In 2014, Zhang et al. (Zhang, Thibault et al. 2014) identified exudates from the green 

channel of fundus images using random forest classifier after image normalization and de-

noising. In 2017, Fraz et al. (Fraz, Jahangir et al. 2017) used combination of morphological 

reconstructions, Gabor filter banks and a bootstrap decision tree for multiscale segmentation 

of exudates. However, most of these methods suffer from poor sensitivity and accuracy, 

especially near the vascularized region. 

DL techniques have delivered promising results in various computer vision applications 

(Long, Shelhamer et al. 2015, Fu, Xu et al. 2016, Charron, Lallement et al. 2018, Chen, 

Papandreou et al. 2018, Fu, Liu et al. 2018), including retinal image analyses (van Grinsven, 

Venhuizen et al. 2016, Tan, Fujita et al. 2017, Khojasteh, Aliahmad et al. 2018, Khojasteh, 

Aliahmad et al. 2018). Prentašić and Lončarić (Prentašić and Lončarić 2015) trained a ten-

layered Convolutional Neural Network (CNN) to detect exudate pixels on RGB retinal 
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images. However, the results suffered from the poor sensitivity of 0.77. In 2016 Perdomo et 

al. (Perdomo, Otalora et al. 2016) used CNN and achieved a high sensitivity of 92%, but the 

specificity of the method was poor (40.6%). Yu et al. (Yu, Xiao et al. 2017) and Prentašić 

et al. (Prentašić and Lončarić 2016) developed different CNN architectures to distinguish 

between exudate and non-exudate pixels. Their algorithm achieved sensitivity of 0.88 and 

0.78 on a pixel level, respectively. In 2019, Khojasteh et al. (Khojasteh, Júnior et al. 2019) 

compared performance of a CNN-based model with other DL methods (pre-trained 

networks and Discriminative Restricted Boltzmann Machines) for exudates detection and 

they obtained accuracy of 89.1% for the CNN model. Literature indicates that DL 

approaches are promising for automated exudate from the eye-fundus images but require 

further research. 

Retina image analyses have been conducted using color spaces such as RGB, HSV and 

LUV, and most of them have employed green channel of the RGB space because this has 

been found to have the highest contrast (Pachiyappan, Das et al. 2012). However, discarding 

other channels could lead to loss of information (Unnikrishnan, Aliahmad et al. 2013). 

Majority of the earlier DL methods have used three channels of the RGB space as the input 

of the networks (Gargeya and Leng 2017, Quellec, Charrière et al. 2017, Grassmann, 

Mengelkamp et al. 2018). To the best of our knowledge, no study has been reported a 

comparison between different color spaces. 

We hypothesis that appropriate choice of color channels will enhance performance of the 

system for detection of exudates using a CNN-based model. This chapter reports a 

comparison of using different combination of color channels to identify a combination that 

gives the best performance of automatic exudate detection using a CNN model. Experiments 

were conducted using publicly available dataset to identify the combination of color 

channels that yielded the best performance measured based on sensitivity, specificity and 

accuracy, and 20-fold cross validation was used to test the replicability of the spaces. 

The remainder of this chapter is organized as follows. Section 3.3 presents the methodology 

regarding the techniques used in this paper, sections 0 and 3.5 discuss the material and 

experiment setup adopted for exudate identification. Tables showing the results are in 
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Section 3.6, and the observations have been discussed in section 3.7. Finally, the 

conclusions are drawn, and limitations listed in the section 3.8. 

3.3 Methodology  

There are two sub-sections to the methodology: (i) Color space identification and (ii) CNN-

based model for exudate detection. Three conventional color spaces of fundus images 

(RGB, HSI and LUV), orthogonal transformed version of these spaces and combinations of 

these were investigated. The images were segmented to obtain two patch groups were 

prepared in all the spaces belonging to (i) Exudate and (ii) Non-exudate regions. These were 

then used to train and test the CNN to detect the exudates and the performance was the basis 

for determining the most suitable set of color channels. Twenty times 20-fold cross 

validation approach was used and the performance of the different combination of color 

channels were compared. The details are described below. 

3.3.1 Color Space Identification 

Original images in RGB space were transformed into HSI and LUV spaces as reported in 

(Sopharak, Uyyanonvara et al. 2008, Welfer, Scharcanski et al. 2010). Principal component 

analysis (PCA) was later applied on the images for the three color spaces. The rationale 

behind the transformation is based on the study by Unnikrishnan et al. (Unnikrishnan, 

Aliahmad et al. 2013) which showed that application of PCA on the RGB space can provide 

eigenchannels with better contrast between background and foreground objects compared 

to the green channel. In this study, we used PCA transformation on each color space (RGB, 

HSI and LUV) and the procedure is described below. 

 

PCA on an Image 

By applying PCA on an image with three channels, three eigenchannels (principle 

components) are created. It is assumed that intensity of a pixel (P) for an image (I) is 

presented by the equation 2.1: 



 

 

42 

 

 

 𝑃(𝑥,𝑦) = (𝐼𝑐ℎ1(𝑥, 𝑦), 𝐼𝑐ℎ2(𝑥, 𝑦), 𝐼𝑐ℎ3(𝑥, 𝑦)); 1 ≤ 𝑥 ≤ 𝑚, 1 ≤ 𝑦 ≤ 𝑛 (3.15) 

 

where IchZ corresponded to intensity of Zth (1 ≤ Z ≤ 3) channel (Ich) and (x, y) is the location 

of the pixel. To apply PCA on an image, each channel is reshaped to a vector (vz) with size 

of [1, m × n] and, consequently, that creates matrix V = [v1  v2  v3] where vz is described in 

3.16: 

 

 𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑣1 𝑣2 𝑣3

𝐼𝑐ℎ1(1,1) 𝐼𝑐ℎ2(1,1) 𝐼𝑐ℎ3(1,1)

𝐼𝑐ℎ1(1,2) 𝐼𝑐ℎ2(1,2) 𝐼𝑐ℎ3(1,2)
⋮ ⋮ ⋮

𝐼𝑐ℎ1(1, 𝑛) 𝐼𝑐ℎ2(1, 𝑛) 𝐼𝑐ℎ3(1, 𝑛)

𝐼𝑐ℎ1(2,1) 𝐼𝑐ℎ2(2,1) 𝐼𝑐ℎ3(2,1)

𝐼𝑐ℎ1(2,2) 𝐼𝑐ℎ2(2,2)  𝐼𝑐ℎ3(2,2)
⋮ ⋮ ⋮

𝐼𝑐ℎ1(2, 𝑛) 𝐼𝑐ℎ2(2, 𝑛) 𝐼𝑐ℎ3(2, 𝑛)
⋮ ⋮ ⋮

𝐼𝑐ℎ1(𝑚, 1) 𝐼𝑐ℎ2(𝑚, 1) 𝐼𝑐ℎ3(𝑚, 1)

𝐼𝑐ℎ1(𝑚, 2) 𝐼𝑐ℎ2(𝑚, 2) 𝐼𝑐ℎ3(𝑚, 2)
⋮ ⋮ ⋮

𝐼𝑐ℎ1(𝑚, 𝑛) 𝐼𝑐ℎ2(𝑚, 𝑛) 𝐼𝑐ℎ3(𝑚, 𝑛)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.16) 

 

In the next step, PCA was applied on V to produce eigenvector matrix EG = [eg1 eg2 eg3], 

where egz corresponds to Zth eigenvector and TchZ (m,n) stands for value of PCA 

transformation (equation 3.17). 
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 𝐸𝐺 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑒𝑔1 𝑒𝑔2 𝑒𝑔3

𝑇𝑐ℎ1(1,1) 𝑇𝑐ℎ2(1,1) 𝑇𝑐ℎ3(1,1)

𝑇𝑐ℎ1(1,2) 𝑇𝑐ℎ2(1,2) 𝑇𝑐ℎ3(1,2)
⋮ ⋮ ⋮

𝑇𝑐ℎ1(1, 𝑛) 𝑇𝑐ℎ2(1, 𝑛) 𝑇𝑐ℎ3(1, 𝑛)

𝑇𝑐ℎ1(2,1) 𝑇𝑐ℎ2(2,1) 𝑇𝑐ℎ3(2,1)

𝑇𝑐ℎ1(2,2) 𝑇𝑐ℎ2(2,2)  𝑇𝑐ℎ3(2,2)
⋮ ⋮ ⋮

𝑇𝑐ℎ1(2, 𝑛) 𝑇𝑐ℎ2(2, 𝑛) 𝑇𝑐ℎ3(2, 𝑛)
⋮ ⋮ ⋮

𝑇𝑐ℎ1(𝑚, 1) 𝑇𝑐ℎ2(𝑚, 1) 𝑇𝑐ℎ3(𝑚, 1)

𝑇𝑐ℎ1(𝑚, 2) 𝑇𝑐ℎ2(𝑚, 2) 𝑇𝑐ℎ3(𝑚, 2)
⋮ ⋮ ⋮

𝑇𝑐ℎ1(𝑚, 𝑛) 𝑇𝑐ℎ2(𝑚, 𝑛) 𝑇𝑐ℎ3(𝑚, 𝑛)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.17) 

 

Each eigenvector was reshaped back to the original image size [m,n] to obtain an image in 

the space corresponding to PCA of original color space. Figure 2.13 shows the schematic 

of the transformation method. After applying this to the three color spaces (RGB, HSI and 

LUV), it resulted in three new spaces. The total of six color spaces (three original and three 

PCA) were used for further analysis. 
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Figure 2.13.Schematic of PCA transformation procedure on an image. 

 



 

 

45 

 

Introducing New Color Space 

The different color spaces were ranked based on the CNN performance measured using 

accuracy of classification. The new color space was identified experimentally by combining 

sets of three high ranking channels and comparing their performances. To reduce the 

number of combinations, a selection rule was formulated to combine only those channels 

with the low similarities measured using structural similarity index method (SSIM) (Wang, 

Bovik et al. 2004) (equation 3.18). This was calculated between each channel of the image 

against rest of the channels and ranked based on their similarity with the target channel.   

 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝛼𝑥𝛼𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝛼𝑥
2 + 𝛼𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (3.18) 

where 𝛼𝑥, 𝛼𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 are the local means, standard deviations and cross-covariance 

for images x and y, respectively. 𝑐1 = (0.01 ×  𝐿)2
 and 𝑐1 = (0.03 ×  𝐿)2, where L is 

dynamic range of the pixel-values. The SSIM is a value between -1 and +1, +1 indicates 

that the two images are identical. By comparing all the possible pairs from the nominated 

channels, the channels were ranked and the three channels with lowest similarity index were 

identified to form the new space. In the next step, the CNN was trained and tested to 

distinguish between exudates and non- exudates patches. 

3.3.2 CNN-Based Method 

To assess the performance of different color spaces for exudate detection, a CNN model 

was developed, and its architecture is described in Table 2.2. 
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Table 2.2. Architecture of the proposed CNN. I - Input image, C - Convolutional layer, MP - Max pooling layer, FC - 

fully-connected, FM - Feature map, CH - Channels, Neurons-N. 

Layer Type Feature Maps and Neurons Filter Size Weights 

0 I 3CH-25×25 - - 

1 C 16FM-23×23N 3×3 448 

2 MP 16FM-12×12N 2×2 - 

3 C 16FM-10×10N 3×3 2,320 

4 C 16FM-8×8N 3×3 2,320 

5 MP 16FM-4×4N 2×2 - 

6 C 16FM-2×2N 3×3 2,320 

7 MP 16FM-1×1N 2×2 - 

8 FC 100N 1× 1 202 

 

In this architecture, four convolutional layers were used with 16 feature maps in each layer 

of size 3 × 3 pixels. Rectified linear unit (ReLU) was used as the neuron activation function 

to ensure that the output was positive. Max-pooling layers of the size 2 × 2 pixels were used 

after the first, third and fourth convolutional layer. For updating network parameters, 

backpropagation training approach and stochastic gradient descent (SGD) was used.  

3.4 Material  

Two publicly available databases were used in this chapter and are described below: 

 

DIARETDB1 

The DIARETDB1 database (Kauppi, Kalesnykiene et al. 2007) consists of 89 color retinal 

images of the size 1500 × 1152. All images were taken by digital fundus camera with a 50 
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degree field of view and there are differences between the quality of the different images. 

The exudates have been manually annotated and evaluated by four independent medical 

experts. In this work, hard and soft exudates were grouped together and considered as a 

single class. The Figure 2.14 on the left shows an example of a manually segmented retinal 

image of a diabetic patient with exudates marked in blue while on the right shows the retinal 

image of a healthy subject with no sign of exudate. It can be seen that the size of the 

exudate’s spots varies from small specks to large patches. 

  

e-Ophtha 

This database comprises of 47 color retina images and have been provided with manual 

annotated exudates (Decencière, Cazuguel et al. 2013). In this database, the image sizes 

vary from 1400 × 960 to 2544 × 1696 pixels, and hence all images were resized to the size 

of images in the DIARETDB1 database (1500 × 1152 pixels) using average size of the optic 

disk (OD) as the reference. 

 

 

(a) 

 

(b) 

Figure 2.14. Samples from DIARETDB1 database: (a) Image from a patient where exudates are highlighted in blue, and 

(b) Image from a healthy subject without any exudate. 
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3.5 Experimental Setup 

The experimental setup for this chapter contains three main sections: (i) Color space 

transformation, (ii) Patch preparation and (iii) Network setup. 

3.5.1 Color Space Transformation 

As described in section 3.3, the retinal images were first transformed from RGB to LUV 

and HSI spaces and PCA was then applied on each space to obtain three sets of 

eigenchannels: (i) PCA-RGB, (ii) PCA-LUV and (iii) PCA-HSI. An example of retina 

image in RGB space, its eigenchannels after color transformation are shown in Figure 2.15. 

Exudate spots were marked by yellow color on each eigenchannels for visual comparison. 

From the Fig. 3, it is observed that the second eigenchannel for each color representation 

indicates the highest contrast between exudate spots and background while the third and 

first eigenchannel include lower contrast detail. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 2.15. Eigenchannels of RGB, HSI and LUV: (a) Original RGB image; (b) 1st Eigenchannel of RGB; (c) 2nd 

Eigenchannel of RGB; (d) 3rd Eigenchannel of RGB; (e) 1st Eigenchannel of HSI; (f) 2nd Eigenchannel of HSI; (g) 3rd 

Eigenchannel of HSI; (h) 1st Eigenchannel of LUV; (i) 2nd Eigenchannel of LUV; (j) 3rd Eigenchannel of LUV. 
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3.5.2 Patch Preparation 

The patch size was selected such that it enclosed only one exudate spot. The smallest spot 

that had been annotated corresponded to the patch size of 25 × 25 pixels which was selected 

for further analysis. This resulted in total of 90800 exudate patches from the two databases. 

To obtain a balanced dataset, similar numbers of patches (i.e. 100000) with no exudate signs 

were extracted and referred to Non-exudate patches. The Non-exudate patches contained 

vessels, background tissue and optic nerve head. There was no overlap between adjacent 

patches. Figure 2.16 and Figure 2.17 show the example of some exudate and non-exudate 

patches. 

 

 

Figure 2.16. Examples of Exudate patches. 

 

Figure 2.17. Examples of Non-Exudate patches. 
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3.5.3 Network Setup 

The CNN parameters used in this chapter are summarized in Table 2.3. Training of the 

network requires identifying the maximum number of epochs to ensure that the network is 

not over-trained.  

Table 2.3. CNN parameters for train and test phases. 

CNN Parameters 

Learning Rate 0.01 

Momentum 0.9 

Gaussian Weight Filters 0.01 

Training Batch Size 128 

Validation and Test Batch Size 32 

Solver Method SGD 

Gamma 0.1 

Policy of the SGD Step-Down 

Step size of SGD 33 

Number of training epochs 30 

 

It is also essential that the number of epochs is sufficient, so that the network is trained such 

that the error is minimized. The number of epochs were obtained by plotting the error and 

the number of epochs which has been shown in Figure 2.18.  
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Figure 2.18. Accuracy and loss values over 40 training epochs for the RGB space. A saturation can be observed after the 

30th epoch. 

From this Figure 2.18, it is observed that for the RGB space, the accuracy monitored over 

40th epochs shows that the average accuracy reached 88% after 10th epoch, then gradually 

improved to 91% after 30th epochs where it was saturated. As a result, the filter weights of 

the 30th epoch were fixed and used for the test phase. This procedure was performed for 

each color spaces and the suitable number of epochs were identified for each. The 

implementation of the CNN was performed on the caffe platform (Jia, Shelhamer et al. 

2014) with GeForce GTX 1070 graphics processing unit which took total of 150 seconds 

for the training phase. 

3.6 Results 

Performance of the algorithm was evaluated by four parameters: (i) accuracy (ACC), (ii) 

sensitivity (SN), (iii) specificity (SP) and (iv) positive predictive value (PPV) (Fraz, 

Jahangir et al. 2017). To consider a reliable evaluation of the spaces, the experiments were 
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validated using 20-fold cross validation approach. Mean of the results was calculated and 

are shown in Table 2.4. 

 

Table 2.4. Performance of the six spaces for the detection of the exudates. 

Space ACC SN SP PPV 

RGB 90.07% 0.91 0.90 0.90 

HSI 97.62% 0.97 0.98 0.97 

LUV 89.21% 0.89 0.88 0.87 

PCA-RGB 96.16% 0.95 0.96 0.96 

PCA-HSI 95.48% 0.94 0.96 0.96 

PCA-LUV 87.75% 0.89 0.86 0.85 

 

The best performance among the six spaces was obtained by HSI space with 97.62% 

accuracy and 0.98 sensitivity. The next rank went to PCA-RGB space with 96.16% accuracy 

and 0.96 sensitivity. Based on these results, HSI and PCA-RGB space were identified as the 

most suitable spaces for representing the images for automated recognition of exudates. 

3.6.1 New Color Space 

The two spaces (HSI and PCA-RGB) consisting of total size channels achieved the best 

performances for exudate identification and these were used to create a new color space. To 

assess the similarity between the six channels of HSI and PCA-RGB spaces, mean of the 

SSIM was calculated for all the patches as shown in Figure 2.19 where PCA1, PCA2 and 

PCA3 correspond to the first, second and third eigenchannel of the PCA transformation, 

respectively. 
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Figure 2.19. SSIM index between channels of HSI and PCA-RGB spaces. 

Figure 2.19 shows that the highest similarity was between PCA2-RGB and intensity (0.97). 

The second rank went to similarity between PCA2-RGB and PCA1-RGB (0.70). 

Consequently, PCA2-RGB was selected among these three channels as a representative 

channel. As the PCA3-RGB contains uncorrelated noise reported by Unnikrishnan et al. 

(Unnikrishnan, Aliahmad et al. 2013), it was excluded from the analysis. Consequently, the 

new space was formed by three channels: (i) PCA2-RGB, (ii) hue and (iii) saturation which 

we have called “PHS” space. 

Different sample selection of the subsets (train and test sets) from the all samples leads to 

the differences in the performance of the algorithm. Therefore, it is important to test the 

repeatedly of the CNN-model to assess the reliability of the different color spaces and the 

range of potential accuracies. For this purpose, the experiments for the proposed color space 

(PHS) and the two-color spaces which achieved the best accuracies (HSI and PCA-RGB) 

were compared together using 20-fold cross validation approach with 20 runs. Accuracy 

over the twenty runs for the three spaces are shown in Figure 2.20 and Figure 2.21. 
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Figure 2.20. Comparing replicability of the three spaces (PHS, HSI and PCA-RGB) using 20-fold cross validation 

approach with 20 runs. 

 

Figure 2.21. Variation of the accuracy changes for the three spaces (PHS, HSI and PCA-RGB) using 20-fold cross-

validation approach with 20 runs. 
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It can be seen that PHS space obtained highest accuracy (98.5%) and most repeatable results 

with less than 0.7% variability between highest and lowest accuracy. Other color spaces 

were less accurate and had higher variability, with HSI's accuracy varying between 94.9% 

to 97.85% and PCA-RGB between 88.1% and 97.3%. 

3.7 Discussion  

This chapter has shown the importance in the choice of color space for representing the eye-

fundus images for exudate detection. It has also identified a new color space which gives 

higher accuracy when used the CNN model for automatic detection of exudates from eye-

fundus images.  

In this chapter, a nine-layered CNN was developed and trained to distinguish between 

Exudate and Non-exudate patches. Patch size of 25 × 25 pixels pixel was found to cover the 

smallest exudate and used for the analysis. This, however, is different from some previous 

studies who determined the size based on the ratio of the average optic disc (OD) size but 

failed to detect the small exudates. 

This chapter compared different color representations to detect the exudate using the CNN-

model: (i) three conventional color spaces (RGB, HSI and LUV) and (ii) PCA 

transformation of the three spaces (PCA-RGB, PCA-HSI and PCA-LUV). The six color 

channels of these spaces were then combined based on information rule and then tested 

using the CNN-model. It was observed that PCA transformation leads to reduction in the 

performance of HSI and LUV spaces but improvement for RGB space.  

The distribution of the pixels in the patches were assumed to be Gaussian and they were 

labelled as exudate and non-exudate using Gaussian Mixture Models (GMM) (Balafar 

2014) (Figure 2.22).  
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Figure 2.22. Distribution of the exudate and background pixels of an exudate patch sample in different color spaces. 

The Gaussian models were presented by (µ1,Σ1) and (µ2,Σ2) where µ and Σ correspond to 

mean and covariance of each Gaussian models. The Euclidean distance between the means 

(Dµ) and covariances (DΣ) of the two Gaussian models was considered as a factor to measure 

the overlap between the two models. These two parameters were calculated for 1000 

exudate patches which were obtained randomly from the datasets and the difference in these 

parameters were calculated for each space and shown in Table 2.5. 

 

Table 2.5. Changes of Dµ and DΣ from a color space to transformed orthogonal space (↑ = increase, ↓ = decrease). 

 RGB to PCA-RGB HSI to PCA-HSI LUV to PCA-LUV 

Dµ 7% ↑ 4% ↓ 2% ↓ 

DΣ 15% ↑ 10% ↓ 4% ↓ 
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It is seen that PCA transformation increases the overlap between two Gaussian models for 

HSV and LUV spaces, reducing the classification performance. However, the overlap for 

the PCA-RGB space was lower. 

The SSIM index was used to assess the similarity between color channels and to identify 

the new color space. The results showed that combination of second eigenchannel of PCA-

RGB, Hue and Saturation channels (PHS) achieved higher accuracy with lower variability 

between repetitions compared to other color spaces. The results have been compared with 

the previous works reported in the literature as shown in Table 2.6. It can be seen that the 

CNN-model using “PHS” achieved significantly better accuracy (98.2%) and specificity 

(0.96) than the recent work by Fraz et al. (Fraz, Jahangir et al. 2017). Our method also 

achieved significantly better sensitivity (0.99) compared to the work by Jaafar et al. (Jaafar, 

Nandi et al. 2010) (0.89). Most of the previous works in Table 2.6 used the average metric 

for testing their method on one dataset. In this work, we created train and test set from both 

datasets together based on by twenty-fold cross validation technique. We then reported 

average performance of the test set that is one strength of our work. 

This is the first study that has investigated the reliability and repeatability of the proposed 

space using 20-fold cross validation in 20 runs of the CNN-model. The results showed that 

the “PHS” space not only outperformed the conventional spaces, the results were consistent 

over multiple iterations. 

Another strength of this work is that it was validated on two databases simultaneously to 

obtain a reliable assessment of the performance of different spaces. 

Another advantage of the proposed algorithm is using a simple CNN architecture designed 

with approximately 7500 parameters that is significantly less than its network counterparts 

(i.e. AlexNet, GoogleNet, Residual networks). As a result, this has less computational 

complexity and high-speed response specially for training phase which is taken just 150 

seconds. One limitation of this study is that the proposed space was tested for the application 

of exudate detection and this was not applied for other applications. 

 

 

 



 

 

59 

 

Table 2.6. Comparison the result of proposed method with previous works reported in the literature. The symbol ‘-‘ 

stands for unreported results. DR1 and EO corresponding to DIARETDB1 and e-Ophtha databases, respectively. 

Technique Color Space Database ACC SN SP PPV 

Proposed Method PHS DR1_EO 98.2% 0.99 0.96 0.97 

Fraz et al. (Fraz, 

Jahangir et al. 

2017) 

RGB DR1 87% 0.92 0.81 0.90 

Walter et al. 

(Walter, Klein et 

al. 2002) 

LUV DR1 - 0.76 - 0.59 

Jaffar et al. 

(Jaafar, Nandi et 

al. 2010) 

RGB DR1 99.0% 0.89 0.99 - 

Welfer et al. 

(Welfer, 

Scharcanski et al. 

2010) 

HSI DR1 - 0.70 0.98 0.92 

Harangi et al. 

(Harangi and 

Hajdu 2014) 

RGB DR1 82% 0.86 - 0.84 

Harangi et al. 

(Harangi and 

Hajdu 2014) 

RGB DR1 - 0.73 - 0.69 

Zhang et al. 

(Zhang, Thibault 

et al. 2014) 

HSI EO - 0.74 - - 
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3.8 Conclusion  

This chapter has shown that the choice of color space is an important factor when 

performing fundus image analysis. It is seen that HSI and PCA-RGB outperformed other 

spaces. This work has also developed a new color space where the Intensity channel of the 

HSI space was replaced with the second eigenchannels of the RGB space to propose the 

new “PHS” space. The results show that the PHS space achieved the most reliable and 

repeatable results compared to the conventional spaces.  
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Chapter 4 

4 Investigation Different Deep Learning Methods for 

Exudate Detection  

4.1 Overview  

This chapter describes the investigation of different DL techniques to maximize the 

sensitivity and specificity of the methods for automatic detection of the exudates. I have 

compared multiple DL methods, and both supervised and unsupervised classifiers for 

improving the performance of automatic exudate detection, i.e., CNNs, pre-trained Residual 

Networks (ResNet-50) and RBMs. The results show that ResNet-50 with Support Vector 

Machines outperformed other networks with an accuracy and sensitivity of 98% and 0.99, 

respectively. This shows that ResNet-50 can be used for the analysis of the fundus images 

to detect exudates. 

4.2 Introduction  

Different DL methods have been used for automatic exudate detection. In 2015, Prentašić 

and Lončarić (Prentašić and Lončarić 2015) developed a ten-layered CNN to detect 

exudates. However, it had low sensitivity (0.77). Perdomo et al. (Perdomo, Otalora et al. 

2016) used a different CNN architecture and achieved a sensitivity of around 0.90 but the 

specificity was poor (0.40). While Yu et al. (Yu, Xiao et al. 2017) and Prentašić et al. 

(Prentašić and Lončarić 2016) achieved a reasonable sensitivity (0.88), their method 

required manual pre-processing steps for optic disk removal and vessel segmentation. Tan 

et al. (Tan, Fujita et al. 2017) overcame the shortcomings of manual feature extraction and 

pre-processing, and their sensitivity was 0.87. 
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CNN-based methods do not require hand-crafted feature extraction, but it is necessary to 

identify suitable architectures and optimal parameters. As there is no exact method for 

selection of the network parameters such as the number of convolutional layers and filter 

sizes, these have been determined heuristically (He, Zhang et al. 2016). The size of the 

datasets is another limitation of using such networks because the full training of these 

requires large volumes of data. For overcoming these limitations, there is a need to 

investigate different DL methods and identify a network that gives good performance and 

is not reliant on large datasets. 

The aim of this chapter is to identify a suitable DL method for good a performance to 

overcome the limitations mentioned above. We have compared the performance of multiple 

DL methods, and both, supervised and unsupervised classifiers. The CNN model, pre-

trained residual networks (ResNet-50) with a supervised classifier and RBMs were 

investigated. The sensitivity, specificity and accuracy of the proposed methods were 

compared with previous works using two publicly available databases: (i) DIARETDB1 and 

(ii) e-Ophtha. The novelty of this chapter is that it has compared the performance of different 

DL methods for detection of exudates in the fundus images. 

The remainder of this chapter is organized as follows. Section 4.3 presents the theoretical 

background of the techniques used in this chapter. Section 4.4 describes the experiments 

conducted to compare the different deep-learning methods adopted for exudate detection. 

The results are presented in section 4.5 and discussed in section 4.6 followed by conclusions 

and future works in section 4.7. 

4.3 Theoretical background  

This chapter has considered three DL techniques (i) CNN, (ii) pre-trained residual network 

with a classifier, and (iii) DRBM-based model. This section presents a brief description of 

these approaches. 
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4.3.1 Convolutional Neural Networks 

The network parameters, i.e., connection weights and biases, are 𝜃, and 𝜃𝑡  is the updated 𝜃 

at time step t. Parameters 𝜂, α and β denote the learning rate, momentum, and weight decay, 

respectively. Figure 2.23 shows the hierarchical architecture of the proposed network where 

I, C, FM, MP, NM, FC denote the input image, convolutional layer, feature map, max 

pooling, normalization layer, and fully connected layer, respectively. SGD was used to 

update network parameters. 

 

Figure 2.23. Architecture of the proposed CNN used in this work. 

4.3.2 Deep Residual Networks 

In this section, Residual Network (ResNet-50) (He, Zhang et al. 2016) which was pre-

trained using ImageNet dataset (Russakovsky, Deng et al. 2015) has been used but the 

associated fully-connected softmax layer was replaced with supervised classifiers. Three 

classifiers were tested and have been described below. 

The convolutional layers had filters of sizes 1×1, 3×3 and 1×1. The overall architecture 

followed two design rules: (i) for the same output size, the layers should have the same 

number of filters and (ii) if the feature map size is halved, the number of filters should be 

doubled. Max-pooling layers were performed directly by convolutional layers with the 
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stride of 2 followed by batch normalization after each convolution operation and before 

ReLU (Nair and Hinton 2010) activation function. 

The rules for the residual block shortcuts were based on the relative dimension of input and 

output. When the input and output had the same dimension, an identity shortcut was applied. 

When the difference in the dimension of the input and output increased, the shortcuts, there 

were two options: (i) extra zero entries were padded for increasing dimensions (notice that 

this option introduces no extra parameter), and (ii) the projection shortcut was used to match 

dimensions (performed by 1x1 convolutions). For both options, when the shortcuts go 

through the feature maps of two sizes, they are performed with a stride of 2. 

The ResNet-50 model was pre-trained for the object detection task on the ImageNet 2012 

dataset with 1.28 million images from 1,000 classes. We then used the first 49 layers of 

ResNet-50 as feature extractors to generate deeply-learnable features which were then fed 

to the classifier. The weights learned from the first step were kept the same, and we added 

an extra layer composed of different supervised classifiers which are described in the next 

section. Three different classifiers were considered: Support Vector Machine (SVM), 

Optimum-Path Forest (OPF), and k-Nearest Neighbours (KNN). These have been discussed 

below. 

 

Support Vector Machines 

 SVM is a non-probabilistic, binary, linear classifier based on statistical learning theory. It 

uses kernels for transforming the feature space such that after transformation the samples 

from two different classes are linearly separable. It uses soft margins to maximize the inter-

class distance. 

 

Optimum-Path Forest 

Optimum-Path Forest (OPF) (Papa, Falcao et al. 2009, Papa, FalcãO et al. 2012, Papa, 

Fernandes et al. 2017) is a graph-based supervised approach whose training samples are 

represented as nodes in a graph, and the distance between them corresponds to the weight 

of the two nodes. The training step consists of finding the most representative samples (i.e., 
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the prototypes) for each class, thus obtaining the optimal partition (according to some path-

cost function) of the graph representing this training set. The classification of a test sample 

is achieved by computing its optimum-paths to the whole training graph and assigning to it 

the label of the root (i.e., prototype) whose path has strongest connections. 

 

k-Nearest Neighbours 

In the k-Nearest Neighbours ( k-NN), data is classified based on the majority votes of its 

neighbours (Altman 1992). The object is assigned to the class that is most frequent in its k-

sized neighbourhood. In the simplest form, if k=1, then the object is assigned to the class of 

its nearest neighbour. In this chapter, we have considered different values of k. 

4.3.3 Discriminative Restricted Boltzmann Machines 

In this section, a modified RBM (named Discriminative Restricted Boltzmann Machine 

(DRBM)) which includes classification is used (Larochelle and Bengio 2008). This 

comprises one additional input layer, i.e., the label layer, which contains the label of each 

input sample using one-hot encoding. This additional layer is connected to both, the hidden 

and visible layers, but with a different set of weights. 

4.4 Material and Methodology 

In this chapter, two publicly available databases were used: (i) DIARETDB1 and (ii) e-

Ophtha (described in Chapter 3) and preparation of the dataset is described as follow. 

 

4.4.1 Data Preparation  

The size of the exudates varies, and thus the patch size required to box these can be very 

different. Figure 2.24 shows a variation of patch sizes corresponding to all extracted patches, 

where the X and Y axes correspond to the length and width of a patch. It shows that after 

ignoring the outliers, the range of exudate patch varies from (25 × 25) to (286 × 487). To 
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have one size of the patch for the analysis of the image, this was selected to be the smallest 

patch corresponding to the smallest pathological sign identified by the examiners. This is 

similar to the work reported by Shan and Li (Shan and Li 2016) and Cao et al. (Cao, Shan 

et al. 2017) on the same database (DIARETDB1). 

 

Figure 2.24. Samples of exudate patches 

In this chapter, we used patches of size 25 × 25 with three color channel (i.e. Red, Green, 

Blue (RGB)) which were labelled in two groups: (i) Exudate and (ii) Non-exudate. As a 

result, 67,600 and 23,200 exudate patches were manually extracted from the DIARETDB1 

and e-Ophtha databases, respectively. To obtain a balanced dataset, 70,000 and 25,000 non-

exudate patches were extracted from the regions without exudate from the two databases. 

Non-exudate patch group contained vessels, background tissues and optic nerve heads. All 

patches were extracted without any overlap.  

4.4.2 Methodology 

Figure 2.25 shows the flowchart of the tasks. Pre-labelled exudate and non-exudate patches 

were used for training and testing the three deep-learning methods: (i) CNN, (ii) ResNet-50 

+ classifier (three different types), and (iii) DRBMs. In the ResNet-50, the softmax layer of 

the original architecture was replaced with three different classifiers: OPF, SVM, and k-NN. 

Ten-fold cross-validation with ten runs technique was used to evaluate each method. 
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. 

 

Figure 2.25. Flowchart for detecting exudate and non-exudate patches. 

4.4.2.1 Network Design 

In this section, the network setup and corresponding results are presented 

 

Network Setup 

CNN Model. The CNN parameters were obtained empirically as follows: learning rate = 

0.01, momentum = 0.9, and the variance corresponding to the Gaussian filters for the 

convolutional layers was set to 0.01. Optimization was performed using stochastic gradient 

descent with the step-down policy and step size of 33. The batch sizes for training, 

validation, and test phases were 128, 32 and 32, respectively. 

The CNN was implemented on Caffe platform (Jia, Shelhamer et al. 2014) with a Geforce 

GTX 1070 graphics card. The optimum number of epochs was identified after evaluating 

the network during the training procedure for 40 epochs. Figure 2.26 shows the convergence 

curve during training using the DIARETDB1 database. 
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Figure 2.26. Accuracy and loss changes over 40 training epochs concerning the DIARETDB1 database. A saturation is 

observed after the 30th epoch. 

From Figure 2.26, it is observed that there was a significant improvement in the accuracy 

and reduction in loss after the 5th epoch. The accuracy saturated around the 30th epoch, 

where its value reached 90.6%. Thus, the number of epochs was fixed to 30 for training and 

corresponding weights were used for the test phase. 

Deep Residual Networks. The patches corresponding to exudate and non-exudate groups 

were resized to 224 × 224 to match the input image size required by Resnet-50. Feature 

reduction was applied to the 2048 dimensional output feature vector of the last convolution 

layer using Principal Component Analysis (PCA) (Sarkar, Saha et al. 2014) for 

dimensionality reduction and 100 dimensional features were obtained. Three classifiers 

were investigated in this study: OPF, SVM, and k-NN. The classifier parameters were 

optimized using a grid-search approach. The results obtained from each classifier were 

compared with the ones obtained by Resnet-50 with softmax layer. 
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DRBM. To apply an image to DRBM model, the intensity value of the pixels in the RGB 

space (i.e., pixels from each patch) were normalized to the range of [0,1]. The three channels 

of each patch were concatenated to one vector which was the input for the DRBM model. 

Contrastive Divergence training algorithm using single sampling for each iteration was used 

and trained with mini-batches of size 100 and 200 epochs. The meta-parameters such as 

learning rate and the number of hidden units were optimized using a grid-search as shown 

in Figure 2.27. It was observed that the higher accuracies (values in dark red) were located 

in the central region of the heat map and thus the number of hidden neurons was selected to 

be in the range [3,000- 4,000] and learning rate in the range [0.1- 0.17]. 

 

 

Figure 2.27. Heat map obtained from the grid-search showing the best combination of learning rate and the number of 

hidden units. 

4.5 Results 

The performance of the different methods was evaluated using the measures described by 

Loong (Loong): overall accuracy (ACC), sensitivity (SN), and specificity (SP). The mean 

results obtained from 10-fold cross-validation approach with 10 runs corresponding to 

DIARETDB1 and e-Ophtha databases are presented in Table 2.7 and Table 2.8, 

respectively. 
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Table 2.7. Performance of the proposed methods for DIARETDB1 database: overall accuracy, sensitivity, and specificity. 

Technique ACC SN SP 

CNN 90.6% 0.90 0.91 

ResNet-50+KNN 97.1% 0.98 0.95 

ResNet-50+OPF 95.7% 0.93 0.99 

ResNet-50+SVM 98.2% 0.99 0.96 

DRBM 76.37% 0.70 0.78 

 

Table 2.8. Performance of the proposed methods for e-Ophtha database: overall accuracy, sensitivity, and specificity. 

Technique ACC SN SP 

CNN 89.1% 0.89 0.91 

ResNet-50+KNN 96.0% 0.98 0.91 

ResNet-50+OPF 94.7% 0.90 0.99 

ResNet-50+SVM 97.6% 0.98 0.95 

DRBM 70.37% 0.70 0.78 

 

From Table 2.7 and Table 2.8, it is seen that the performances for both the databases were 

similar. For DIARETDB1 database, “Resnet-50 + SVM” achieved the best sensitivity and 

accuracy of 0.99 and 98.2%, respectively. “Resnet-50 + OPF” obtained the highest 

specificity (0.99) compared to “Resnet-50 + SVM”, “Resnet-50 + KNN” and CNN model 

with the specificity of 0.96, 0.95 and 0.91, respectively. The “Resnet-50 + SVM” model 

also performed the best for e-Ophtha database. It is observed that the Residual Networks 

outperformed the CNN and DRBM models. 

Since the best results were achieved through “Resnet-50 + SVM”, this was used to compare 

with works reported in the literature (Table 2.9). For the DIARETDB1 database, the 

proposed approach (i.e., “Resnet-50 + SVM”) achieved significantly better sensitivity 

compared to worked by Jaafar et al. (Jaafar, Nandi et al. 2010) (0.99 vs 0.89), while both 
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methods obtained similar accuracies. It also achieved significantly better accuracy (98.2%) 

and specificity values (0.96) compared with Fraz et al. (Fraz, Jahangir et al. 2017). For the 

e-Ophtha database, the proposed method outperformed the recent work by Mo et al. (Mo, 

Zhang et al. 2018) with 0.18 improvement in sensitivity, but there was 0.04 decrease in the 

specificity. 
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Table 2.9. Comparison of the proposed approach against other works reported in the literature. The symbol `-' stands for 

unreported results. 

Database Technique ACC SN SP 

DIARETDB1 Proposed Method 98.2% 0.99 0.96 

Fraz et al. (Fraz, 

Jahangir et al. 2017) 

87% 0.92 0.81 

Jaafer et al. (Jaafar, 

Nandi et al. 2010) 

99.0% 0.89 0.99 

Welfer et al. 

(Welfer, 

Scharcanski et al. 

2010) 

- 0.70 0.98 

Walter et al. (Walter, 

Klein et al. 2002) 

- 0.76 - 

Harangi et al. 

(Harangi and Hajdu 

2014) 

82% 0.86 - 

Harangi et al. 

(Harangi and Hajdu 

2014) 

- 0.73 - 

e-Ophtha Proposed Method 97.6% 0.98 0.95 

Mo et al. (Mo, 

Zhang et al. 2018) 

- 0.92 - 

Das et al. (Das and 

Puhan 2017) 

- 0.85 - 

Imani et al. (Imani 

and Pourreza 2016) 

- 0.80 0.99 

Liu et al. (Liu, Zou 

et al. 2017) 

- 0.76 - 
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4.6 Discussion  

This chapter has investigated three DL techniques for the detection of exudates using fundus 

images. The results show that there is a significant difference in the results (i.e., accuracy, 

sensitivity, and specificity). The accuracy obtained using “Resnet-50 + SVM” (i.e. 98%) 

was the highest among all methods with sensitivity and specificity values as of 0.99 and 

0.96, respectively. The performance achieved by “Resnet-50 + SVM” was significantly 

better than the other methods considered in this study, as well as those reported in the 

literature. However, there is potential for further improvements with computationally 

efficient classifiers, and the specificity may be improved using approaches such as Twin 

SVM. 

The CNN-based model requires investigation on finding suitable parameters, which is one 

of the challenging tasks when using such models. Learning rate is important for the network 

convergence and hence the effect of different learning rates, ranging from 0.0001 to 0.2, 

was investigated while momentum and variance were fixed to 0.01. Figure 2.28 shows the 

accuracy of the network corresponding to different learning rates, where the best accuracy 

(90.6%) corresponded to learning rate of 0.01, which was similar to that reported in Alexnet 

experiments (Krizhevsky, Sutskever et al. 2012). It was also found that learning rates less 

than 0.001 and larger than 0.1 resulted in the network not converging and were not evaluated 

further. Because the proposed CNN architecture was a modified version of the Alexnet, 

other parameters (i.e., batch size, momentum, and variance) were set as the same as of the 

Alexnet model. 
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Figure 2.28. Change of accuracy of the network corresponding to different learning rates. 

The results show that DRBMs achieved an accuracy of only 73%. This poor performance 

can be attributed to a number of reasons such as preparation of data, and the shallow 

architecture. Normalized vectors used as the input of the DRBM were obtained by the 

concatenation of the three color channels (i.e., red, green, and blue) to obtain a single vector. 

This may not be the best method for representation of an image as an input of the DRBM. 

In this chapter, the DRBMs were used without additional layers such as used for Deep Belief 

Networks and Deep Boltzmann Machines. Thus, the tested network was comparatively 

shallow, while the deeper networks would be capable of extracting more detailed and 

intrinsic information from the data. 

This chapter has shown that the selection of the parameters for CNN and DRBM models is 

challenging because there are no direct rules. Additionally, a limited number of samples for 

training purposes might have an impact on the performance of the network. One advantage 

of using “Resnet-50” is that it does not require a large training dataset. 

Another point that deserves attention concerns the OPF classifier. Although it did not 

outperform SVM relating to the overall accuracy, it obtained the best specificity (i.e. 0.99). 

Additionally, OPF is parameterless and much faster for training should be explored in the 

future.  

The results obtained in this chapter show that pre-trained deep-learning methods have the 

potential for detecting exudates in retinal images. This can significantly help the experts to 
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obtain better, faster and more accurate estimation of exudate spots on the retina. The choice 

of the network parameters has been found to be important for obtaining good results and 

our experiments suggest the use of “Resnet-50 + SVM”. 

4.7 Conclusion  

The novelty of this chapter is that it has compared different deep-learning approaches for 

automatic detection of exudate based on the experimentally obtained accuracy, sensitivity, 

and specificity. It has shown that “Resnet-50 + SVM” is the best among these for automatic 

detection of exudates in the fundus images, especially the sensitivity, which is important for 

medical diagnostics. This method also has the advantage of incorporating pre-trained feature 

extraction layers which does not require large datasets for training.  

This chapter has shown that the outcome of deep-learning approach is independent on the 

choice of the parameters. The next steps are to investigate other deep neural networks such 

as the Generative Adversarial Networks. It is also important to determine the most 

appropriate method for presenting the data to the networks. Data augmentation through 

synthetic image generation and DBMs could be considered to build generative models that 

can better aggregate different color channels than their concatenation. 
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Chapter 5 

5 A Novel Pre-processing Layer in Convolutional 

Neural Network for Automatic Identification of 

Diabetic Retinopathy 

5.1 Overview  

This chapter has proposed a novel framework for the convolutional neural network 

architecture by embedding a pre-processing layer followed by the first convolutional layer 

to increase the performance of the network. Two image enhancement techniques i.e. 1- 

Contrast Enhancement 2- Contrast-limited adaptive histogram equalization were separately 

embedded in the proposed layer and the results were compared. For identification the DR 

signs (exudates, hemorrhages and microaneurysms), the proposed framework achieved the 

total accuracy of 87.6%, and 83.9% for the contrast enhancement and contrast-limited 

adaptive histogram equalization layers, respectively. However, the total accuracy of the 

convolutional neural network alone without the pre-processing layer was found to be 81.4%. 

Consequently, the new convolutional neural network architecture with the proposed pre-

processing layer improved the performance of convolutional neural network. 

 

5.2 Introduction  

Severity of DR is currently estimated by the expert’s examination of fundus images based 

on the amount and location of three retinopathy signs (i.e. exudates, hemorrhages and 

microaneurysms) across the retina surface (Hansen, Abramoff et al. 2015). An automatic 

and accurate system for detection of the DR signs can significantly help clinicians make the 

best possible prognosis about the severity of DR and risk of vision loss. For this purpose, 
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DL and other machine learning methods have been widely employed (Hajeb Mohammad 

Alipour, Rabbani et al. 2012, Lazar and Hajdu 2013, Tang, Niemeijer et al. 2013). 

To increase the performance DR detection algorithms, different image pre-processing 

techniques have been employed mainly to enhance the contrast of retina images (van 

Grinsven, van Ginneken et al. 2016, Tan, Fujita et al. 2017, Kaur and Mittal 2018). Hajeb 

et al. (Hajeb Mohammad Alipour, Rabbani et al. 2012) used Contrast-limited adaptive 

histogram equalization (CLAHE) as the image enhancement technique. To detect the DR 

signs, they employed curvelet transform to extract features from color fundus images and 

fed them into a support vector machine. Agurto et al. (Agurto, Murray et al. 2010) applied 

multi-scale amplitude-modulation-frequency-modulation (AM-FM) on color fundus images 

to extract texture features to distinguish between DR and Normal signs. In 2016, Grinsven 

et al. (van Grinsven, van Ginneken et al. 2016) proposed a nine-layer CNN only for 

hemorrhage detection. As the pre-processing technique, they applied the contrast 

enhancement (CE) method on original color fundus images. For exudates detection, they 

achieved areas under the receiver operating characteristic (ROC) curve of 0.97. In 2017, 

Tan et al. (Tan, Fujita et al. 2017) used a CNN for automatic segmentation of exudates, 

hemorrhages and microaneurysms. For the image enhancement, the original retina images 

were first converted from RGB to LUV color space and then the L channel was corrected 

for local contrast and uneven illumination.  

For automatic DR sign detection, image enhancement techniques were widely used to 

increase the performance of conventional machine learning and image processing 

techniques. However, no study has embedded that in CNN architecture as a separate layer 

for enhancing the input images. In this chapter, we present a novel framework and 

architecture for CNN by embedding a pre-processing layer (PPL) for automatic 

identification of exudates, hemorrhages and microaneurysms using color fundus images. 

The novelty of this work is the application of a pre-processing layer in the CNN architecture 

for the first time for detection of DR. 
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5.3 Materials  

DIARETDB1 dataset was used as a benchmark for detection of DR signs (Kauppi, 

Kalesnykiene et al. 2007). The annotation of DR signs (exudates, hemorrhages and 

microaneurysms) were manually performed and evaluated by four independent medical 

experts. In this chapter hard and soft exudates were grouped together and considered as a 

single class. 

5.4 Methodology  

From the original retina images, four patch groups of size 25×25 pixels corresponding to 

exudates, hemorrhages and microaneurysms and backgrounds were manually extracted. For 

the classification of these four groups, a CNN architecture was proposed by designing a 

PPL before the first convolutional layer. As a pre-processing method, CLAHE and CE were 

individually implemented in the PPL. The CNN architecture and pre-processing techniques 

are discussed in the following sections. 

5.4.1 Convolutional Neural Network Architecture 

A new CNN architecture with 11 layers was developed. We proposed PPL as the first layer 

followed by first convolutional layer in the network. In the proposed architecture, four 

convolutional layers were designed with 16 kernels of size 3×3 pixels. Three max pooling 

layers with kernel size 2×2 pixels were utilized after the first, the third and the fourth 

convolutional layers. Three normalization layers were applied after each max pooling layer. 

From the last max pooling layer, 16 features were extracted and fed into 100 neurons of the 

fully connected layer which is shown in Figure 5.1. The backpropagation algorithm with 

stochastic gradient descent (SGD) was used for the training process (Pang, Yu et al. 2017). 
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Figure 5.1. Architecture of the proposed CNN- I: input image, PPL: pre-processing layer C: convolutional layer, FP: 

feature map, MP: max pooling, FC: fully-connected layer. 

5.4.2 Image Enhancement Techniques 

As CLAHE and CE methods showed a significant improvement in contrast of the retinal 

images (Hajeb Mohammad Alipour, Rabbani et al. 2012, van Grinsven, van Ginneken et al. 

2016), we individually implemented these two techniques in the PLL. With respect to 

CLAHE method, pixel values of a small region of the input image are transformed to a 

particular distribution, in this chapter Rayleigh distribution was used (Hajeb Mohammad 

Alipour, Rabbani et al. 2012). This is then followed by combining the neighboring region 

using bilinear interpolation to avoid introduction of artificially induced boundaries. The 

CLAHE technique was applied to the neighbourhood size of 25 × 25 pixels with the bottom 

histogram clipping limit set to 0.8 %. 

By applying the CE method on the original image 𝐼(𝑥, 𝑦), ICE  is obtained as follows (van 

Grinsven, van Ginneken et al. 2016): 

 𝐼𝐶𝐸 = 𝛼𝐼(𝑥, 𝑦) +  𝛽𝐺(𝑥, 𝑦; 𝜎) ∗ 𝐼(𝑥, 𝑦) + µ  (19) 
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where * represents the convolution operator.  𝐺(𝑥, 𝑦; 𝜎)  is a Gaussian filter with the scale 

𝜎. Parameter values of the 𝛼, 𝛽, 𝜎 and µ were empirically chosen as 4, −4, 300/30 and 

128, respectively. In this method, the local average color with 𝛽 coefficient was subtracted 

from the original image (multiplied by a coefficent) and the local average was mapped to 

50% gray scale level (µ). 

5.5 Experiment  

From the 89 retinal images, a number of patches corresponding to four DR classes (exudate, 

hemorrhage, microaneurysm and background) were manually extracted which are shown in 

Figure 5.2.  

 

    

    

   

 

 

(a) (b) (c) (d) 

Figure 5.2. Patch examples corresponding to four classes: (a) exudate; (b) hemorrhage; (c) microaneurysm; (d) 

background. 

A patches was centered by the target class of each group. The background patches were 

randomly extracted from the retinal regions that did not have any DR sign. The patch size 

was found empirically as the optimum size covering DR signs. To achieve reliable results, 

there was no overlap between patches of the test set. Table 5.1 summarizes the number of 
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patches corresponding exudate (EX), hemorrhage (HM), microaneurysm (MA) and 

background (BK). 

 

Table 5.1. Statistics of the patches- exudate (EX), hemorrhage (HM), microaneurysm (MA) and background (BK). 

 EX HM MA BK 

Training 47320 30643 12723 35013 

Validation 10140 6566 2726 7503 

Test 10140 6567 2727 7502 

Total 

Number 
67600 43776 18176 50018 

 

For training the CNN, the parameters were empirically set as follows:  

The learning rate and the momentum were set to 0.01 and 0.9 respectively. The weight of 

Gaussian filters for all convolutional layers was set to 0.01. The SGD method was used as 

the solver with step-down policy and with a step size of 33. The Gamma value was set to 

0.1 for each iteration. The training batch size was fixed to 128 images and for both validation 

and test processes it was set to 32. 

5.6 Results and Discussion  

In this section, performances of three CNN frameworks were assessed: 1- without PPL (No-

PPL), 2- with PPL implemented by CLAHE and 3- with PPL implemented by CE. The 

training process of three CNNs during 100 epochs is shown in Figure 5.3.  
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Figure 5.3. The training process for three designed CNNs. After 53, 65 and 74 epochs, the training process stopped for 

CE, CLAHE and No-PPL, respectively. 

The accuracy associated with validation set was calculated by mean of four pre-class 

accuracies. To avoid overfitting, the training process stopped after epoch 53, 65 and 74 for 

CE, CLAHE and No PLL, respectively. The CNN with CE, CLAHE and No PLL achieved 

an accuracy of 90.1%, 86.2% and 84.2%, respectively. Additionally, the training process 

approximately took eight minutes on the Geforce GTX 1070.The Caffe platform was used 

for implementation of the algorithm (Jia, Shelhamer et al. 2014). 

The test set was used for evaluating the performance of the three CNNs. For classification 

of exudates (EX), hemorrhages (HM) and microaneurysms (MA) and backgrounds (BK), 

three parameters including accuracy (ACC), sensitivity (SN) and specificity (SP) (Dice 

1945) were calculated to evaluate the CNN’s performances. To obtain reliable results, the 

experiments were repeated twenty times by random selection of training, validation and 

testing sets and the mean of the parameters are shown in Table 5.2. 
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Table 5.2. Performance of three proposed CNNs- exudate (EX), hemorrhage (HM), microaneurysm (MA) and 

background (BK). 

CNN design  EX HM MA BK 

 

No-PPL 

SN 0.90 0.75 0.79 0.88 

SP 0.93 0.93 0.96 0.95 

ACC 89.9% 81.3% 64.9% 89.5% 

 

PPL with CLAHE 

SN 0.90 0.77 0.82 0.94 

SP 0.94 0.94 0.96 0.97 

ACC 90.2% 83.3% 67.8% 94.4% 

  

PPL with CE 

SN 0.91 0.80 0.84 0.98 

SP 0.94 0.94 0.97 0.99 

ACC 91% 82.5% 78.8% 98.4% 

 

The proposed CNN without PPL achieved sensitivity of 0.79 for the microaneurysm (MA) 

detection while with CLAHE and CE it obtained sensitivity of 0.82 and 0.84, respectively. 

Almost the similar increasing trend achieved for hemorrhage (HM) detection by using 

CLAHE and CE. The accuracy of background (BK) detection after applying CE and CLAHE 

increased by 9% and 5%, respectively, compared to the No-PPL architecture. Mean of the 

four pre-class accuracies was calculated as the total accuracy for three CNN architectures 

and is shown in Figure 5.4.  
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Figure 5.4. Total accuracy of the classification corresponding to three CNNs. 

The CNN with No-PPL achieved the total accuracy of 85% which was increased to 87% 

and 90% by using CLAHE and CE design, respectively.  

According to the Table 5.2 and Figure 5.4, it can be seen that the CNN’s performance for 

classification of DR signs was increased by the proposed architecture, especially for 

identification of MA and HM. 

5.7 Conclusion  

In this chapter, CNN-based techniques have been developed for identifying DR using color 

fundus images. In this chapter, a novel CNN architecture was proposed by embedding a 

PPL as the first layer of the network for enhancing input images. Three CNN architectures 

were assessed in this work: 1- without PPL  2- with the PPL implemented by CLAHE and 

3- with PPL implemented by CE. Three major DR signs including EX, HM and MA were 

tested. The study found that the proposed PPL effectively improved the performance of the 

system for detection of DR signs compared to the conventional CNN without the PPL. In 

comparison to the CLAHE, the CE was found more suitable for detection of DR signs.  
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Chapter 6 

6 Analysis of Deep Probabilistic Features for 

Detection of Exudates, Hemorrhages and 

Microaneurysms 

6.1 Overview   

This chapter has proposed a method using probabilistic output from a convolution neural 

network to automatically and simultaneously detect exudates, hemorrhages and 

microaneurysms. The method was evaluated using two approaches: patch and image-based 

analysis of the fundus images on two public databases: DIARETDB1 and e-Ophtha. The 

novelty of the proposed method is that the images were analyzed using probability maps 

generated by score values of the softmax layer instead of the use of the binary output. The 

sensitivity of the proposed approach was 0.96, 0.84 and 0.85 for detection of exudates, 

hemorrhages and microaneurysms, respectively when considering patch-based analysis. 

The results show overall accuracy for DIARETDB1 was 97.3 % and 86.6 % for e-Ophtha. 

The error rate for image-based analysis was also significantly reduced when compared with 

other works. This also obtained accuracy and sensitivity which were significantly better 

than the reported studies and makes it suitable for automatic diabetic retinopathy signs 

detection.  

6.2 Introduction  

DR is diagnosed by visual examination of retinal images to detect three most common 

pathological signs i.e. (i) exudate (ii) hemorrhage and (iii) microaneurysm (Hansen, 

Abramoff et al. 2015). However, this is a manual time-consuming procedure and outcomes 

are subjective and dependent on expertise, thus, there is potential bias of the examiner. The 
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diagnosis can be performed by analysis of color fundus images or fluorescein angiograms 

(FA) to identify pathological signs. Although FA enables better differentiation between 

microaneurisms and micro hemorrhages, due to its invasive nature along with costs and the 

risk of allergic reactions, fundus images are the preferred modality. For automatic detection 

of pathological signs, most computer-based studies have developed algorithms for the 

automatic analysis of the fundus images with the aim to make the diagnosis more objective 

and easier to access by people in remote communities. However, this is very challenging 

because of variation in size, color, texture and shape of these signs (Figure 5.5). 

 In computer-based methods, detection of exudate, hemorrhage and microaneurysm can 

either be done separately for each sign (Walter, Klein et al. 2002, Osareh, Mirmehdi et al. 

2003, Niemeijer, van Ginneken et al. 2005, Fleming, Philip et al. 2006, Walter, Massin et 

al. 2007, Quellec, Lamard et al. 2008, Sopharak, Uyyanonvara et al. 2008, Welfer, 

Scharcanski et al. 2010, Bae, Kim et al. 2011, Giancardo, Meriaudeau et al. 2012, Lazar and 

Hajdu 2013, Tang, Niemeijer et al. 2013, Akram, Tariq et al. 2014, Grinsven, Ginneken et 

al. 2016, Shan and Li 2016, van Grinsven, Venhuizen et al. 2016, Fraz, Jahangir et al. 2017) 

or all signs simultaneously (Gardner, Keating et al. 1996, Sinthanayothin, Boyce et al. 2002, 

Agurto, Murray et al. 2010, Garcia, Lopez et al. 2010, Acharya, Ng et al. 2012, 

Roychowdhury, Koozekanani et al. 2014, Imani, Pourreza et al. 2015, Tan, Fujita et al. 

2017). For exudate detection, Sánchez et al. (Sánchez, García et al. 2009) used a statistical 

mixture model-based clustering for dynamic thresholding to separate exudate from 

background. The algorithm obtained sensitivity of 90.2 % and 96.8 % for lesion and 

background, respectively. Giancardo et al. (Giancardo, Meriaudeau et al. 2012) proposed a 

method based on color and wavelet decomposition features from exudate candidates to train 

classifiers. They achieved the best result using support vector machine (SVM) classifier 

with areas under the receiver operating characteristics (AUC) between 0.88 and 0.94, 

depending on different datasets. In 2017, Fraz et al. (Fraz, Jahangir et al. 2017) developed 

a method to detect exudate based on the multiscale segmentation. They used combination 

of morphological reconstructions and Gabor filter banks for feature extraction followed by 

bootstrap decision tree for classification of exudate pixels. In 2018, Kaur and Mittal (Kaur 

and Mittal 2018) used a dynamic thresholding method for detection of exudate boundaries. 
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The algorithm obtained sensitivity of 88.85 % and 94.62 % in lesion-based and image-

based, respectively. 

 

 

Figure 5.5. Example of Retina Images containing three DR sings. This image shows an entire retina image with 

haemorrhage, microaneurysm and exudate labelled by graders, and which was then cropped to illustrate individual patch. 

Hemorrhage detection was reported by Tang et al. (Tang, Niemeijer et al. 2013) who divided 

the image into small sub-images (also called splats) for extracting splat features such as 

texture, splat area, and color. They evaluated their method based on patch and image level 

analysis and obtained AUC 0.96 and 0.87, respectively. For automatic detection of 

microaneurysm, Walter et al. (Walter, Massin et al. 2007) used morphological operations 

and kernel density estimation to extract a feature vector applied to a KNN, Gaussian and 

Bayesian risk-minimizing classifiers; their method achieved an accuracy of 88.5%. 

In the past few years, DLGrinsven et al. (Grinsven, Ginneken et al. 2016) presented 

Convolutional Neural Network (CNN) architecture for detecting hemorrhage with nine 

layers trained by the selective misclassified negative samples. Their algorithm obtained 

AUC of 0.89 and 0.97 for two different datasets. In 2016, Shan and Li (Shan and Li 2016) 

used a patch-based analysis method to detect microaneurysm and applied a stacked sparse 

auto-encoder to distinguish between those two groups and they obtained 91.38 % accuracy.  
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The success of diagnosis of DR requires the detection of all the three signs: exudate, 

hemorrhage and microaneurysm. While some of the studies reported earlier achieved 

acceptable performance for detection of single pathological sign, they were not suitable for 

identification of all the three signs simultaneously. Agurto et al. (Agurto, Murray et al. 2010) 

used multiscale amplitude-modulation-frequency-modulation (AM-FM) method for 

extracting texture features from segmented retinal images to differentiate between groups 

with and without DR. To distinguish between these two groups, they computed distance 

metrics between the texture features. While they identified the segments with DR signs, the 

method did not discriminate between the three DR signs, which is essential for treatment 

planning. In 2017, Tan et al. (Tan, Fujita et al. 2017) proposed a ten layers CNN architecture 

for DR sign detection. Their proposed network achieved a sensitivity of 0.87 for exudate 

detection, but this was only 0.62 and 0.46 for detection of hemorrhage and microaneurysm, 

respectively. Another limitation of this chapter was that they detected individual patches but 

did not consider the entire image which may explain the poor sensitivity due to 

misclassification of the background (with no pathological sign). Table 1 compares 

performance of the pervious methods for detection of exudate, hemorrhage and 

microaneurysm. 
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Table 5.3. Comparison between performance of the pervious methods for detection of exudate, hemorrhage and 

microaneurysm. 

Methodology Exudate  Hemorrhage  Microaneurysm 

 sensitivity specificity  sensitivity specificity  sensitivity specificity 

Tan et al. (Tan, 

Fujita et al. 

2017) 

0.87 0.98  0.62 0.98  0.46 0.97 

Sinthanayothin 

et al. 

(Sinthanayothin, 

Boyce et al. 

2002) 

0.88 0.99  0.77 0.88  0.77 0.88 

Grandet et al. 

(Gardner, 

Keating et al. 

1996) 

0.94 -  0.89 -  - - 

Naqvi et 

al.(Naqvi, Zafar 

et al. 2015) 

0.92 0.81       

Walter et al. 

(Walter, Klein et 

al. 2002) 

0.92 -  - -  - - 

Fraz et al.(Fraz, 

Jahangir et al. 

2017) 

0.92 0.81  - -  - - 

Sopharak et al. 

(Sopharak, 

Uyyanonvara et 

al. 2008) 

0.82 0.99  - -  - - 

Prentašić et 

al.(Prentašić and 

Lončarić 2015) 

0.78 -  - -  - - 

Welfer et at. 

(Welfer, 

0.7 0.98  - -  - - 
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Scharcanski et 

al. 2010) 

Niemeijer et al. 

(Niemeijer, van 

Ginneken et al. 

2005) 

- -  0.31 -  0.31 - 

Fleming et al. 

(Fleming, Philip 

et al. 2006) 

- -  - -  0.63 - 

Walter et al. 

(Walter, Massin 

et al. 2007) 

- -  - -  0.88 - 

Garcia et al. 

(Garcia, Lopez 

et al. 2010) 

- -  0.86 -  0.86 - 

Quellec et al. 

(Quellec, 

Lamard et al. 

2008) 

- -  - -  0.89 - 

Bae et al. (Bae, 

Kim et al. 2011) 

- -  0.85 -  - - 

Walter et al. 

(Walter, Massin 

et al. 2007) 

- -  - -  0.88 - 

  

The patch-based analysis has been commonly used for CNN-based retinal image analysis 

(Shuang Yu, Di Xiao et al. 2017, Tan, Fujita et al. 2017). However, this approach can lead 

to disparity in the size of the sign due to patch size (Tan, Fujita et al. 2017), and the inexact 

evaluation because of the focus on the pathological signs without considering the 

neighbourhood and the background. While there are studies that have separated the 

background from the microaneurysm, and there are other studies that have accurately 

contoured the exudate, these perform analysis for one sign rather than all three signs. Such 

an approach can lead to the detection with overlaps between the three signs. Another 
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shortcoming is that while there are a number of isolated techniques that perform image 

enhancement, detect the presence of DR signs and perform processing to contour the signs, 

there is no framework that covers all the aspects. 

In this chapter, the framework for a complete CNN-based system has been described for 

automatic and simultaneous detection and segmentation of exudate, hemorrhage and 

microaneurysm from fundus images. A ten-layered CNN architecture was designed and 

trained using images with annotated patches corresponding to the three signs and the 

background (No-sign) which was then used to obtain probability maps corresponding to 

each category (i.e. three sign and background). A post-processing algorithm was developed 

to differentiate pixels corresponding to a type of pathology from similar-looking cluttered 

pixels. Receiver Operating Characteristic (ROC) curve analysis was used to find a suitable 

threshold for differentiating between different types of pathologies This proposed 

framework was evaluated for both, patch and image-based analysis. Two publicly available 

databases were used, one was used for training while both were used for evaluation of the 

proposed method. The performance of the algorithm with and without probabilistic analysis 

was measured by taking the mean accuracy of ten repetitions. 

6.3 Material  

In this chapter, two public databases were used: 1- DIARETDB1, 2- e-Ophtha with total of 

284 fundus images. 75 images from DIARETDB1 were used for patch-based analysis, while 

209 images were used for image-based analysis.  

DIARETDB1. Out of this database, 75 images were used for training the CNN while the 

remaining 14 images were used for testing and validating the performance of this method. 

In the training data, exudate, hemorrhage and microaneurysm were manually contoured by 

an experienced grader.  

E-Ophtha. This is made up of two subsets: (i) “e-Ophtha EX” which contains 47 color retina 

images with annotated exudate, (ii) “e-Ophtha MA” which has 148 color retina images with 

annotated microaneurysm (Decencière, Cazuguel et al. 2013). In this database, there is a 
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variation in the size and resolution of the images, ranging from 1440×960 to 2544×1696 

pixels. All images were resized to the size of the DIARETDB1 (1500×1152 pixels).  

6.4 Methodology  

The proposed framework consists of two main phases: 1) patch-based and 2) image-based 

analysis. The images were enhanced and then segmented in patches which were manually 

annotated and used to train the CNN. This trained CNN was used to analyze the other images 

for each pixel and a probability map was created using with which the locations of the 

pathological signs were identified. These images were processed to remove the isolated 

signs because these were noise and the spread of the signs which occurs during the earlier 

stages. The resultant images were compared with the manually annotated images to 

determine the accuracy of this method. An overview of the proposed method is shown in 

Figure 5.6 and the steps are described below.  
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Figure 5.6. Overview of the proposed framework contains two main phases: 1) patch-based and 2) image-based analysis. 

The patch-based section corresponds to training and testing a CNN model to discriminate between the different DR 

signs. Image-based analysis of the entire image generates probability maps for each sign. 

6.4.1 Pre-processing  

CE technique was used in this chapter to enhance the contrast between three DR 

pathological signs and background. The result of image enhancement has been shown in 

Figure 5.7 that revealing that some new lesions can be singularized by image enhancement, 

as specified by the yellow marks. 
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Figure 5.7. Applying the image enhancement technique on an example retina image. (a) Original retina image; (b) After 

image enhancement. This shows that some new lesions can be singularized by image enhancement shown by yellow 

annotations). 

6.4.2  Convolutional neural network 

The enhanced images were segmented into patches of size of S×S which were labelled based 

on the ground truth images corresponding to the three pathological signs: exudate, 

hemorrhage, microaneurysm and background (without any pathological sign). These 

patches were the input to the CNN which was trained against the target labels. The choice 

of CNN architecture and the parameters were as same as section 3.3.2. 

6.4.3 Image analysis  

In this chapter, pixel-based analysis of the image was performed by taking a patch of size 

S×S centered around pixel (𝑥𝑖, 𝑦𝑖). This patch is the input to trained CNN which gives 

membership probabilities (range 0 to 1) at location (𝑥𝑖, 𝑦𝑖) for the three pathological signs: 

i.e. exudate, hemorrhage and microaneurysm (shown by PE,xi,yi, PH,xi,yi and PM,xi,yi). 

Consequently, three probability maps for the image are created and the scheme of this 

mapping process is shown in Figure 5.8. 

To identify the signs, a threshold was determined for each of the probability maps. This 

threshold (Th) was obtained by maximizing the receiver operating characteristics curve and 

used to binarize each probability map and obtain a binary map corresponding to the three 
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signs. Overlaps were avoided by ranking the points with overlap based on the probability 

values.  

One difficulty that is faced by such methods is the appearance of redundant boundaries and 

cluttered pixels (False positive pixels) around the segmented signs. To overcome this 

shortcoming, three morphological operations: closing, opening and erosion were performed 

with masks of size 5×5, 5×5 and 4×4 pixels, respectively (Zana and Klein 1997, Soille 

2003). This was followed by a rule based post-processing where signs with area of less than 

𝑆2

4
 were removed. 

 

 

 

Figure 5.8. Process of generating three probability maps corresponding to exudate, hemorrhage and microaneurysm from 

a retina image. By taking a patch of size S×S centered around pixel (𝑥𝑖 , 𝑦𝑖), each patch is fed to the trained CNN that 

determines the membership probabilities at location (𝑥𝑖 , 𝑦𝑖) for the three pathological signs: i.e. exudate, hemorrhage 

and microaneurysm (shown by PE,xi,yi, PH,xi,yi and PM,xi,yi). 
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6.4.4 Validation Parameters 

The performance was evaluated based on false positive (FP), true positive (TP), true 

negative (TN) and false negative (FN) rates (Dice 1945) (Table 5.4). 

 

Table 5.4. Validation parameters 

Parameter Equation 

Accuracy TP + TN

TP + TN + FP + FN
 

Error rate FP + FN

TP + TN + FP + FN
 

Positive predict value (PPV) TP

TP + FP
 

Sensitivity TP

TP + FN
 

Specificity TN

TN + FP
 

 

6.5 Experiments  

6.5.1 Data preparation  

The image was segmented into patches by the size of 𝑆 × 𝑆, with 𝑆 = 50, which was 

determined based on the smallest pathological signs in these images. Patches corresponding 

to the signs were manually extracted from 75 retina images of the DIARETDB1 database 

and used for the training the network. These resulted in 22719, 18882 and 17824 patches 

for exudate, hemorrhage and microaneurysm and 50518 patches with no pathological signs 

(No-Sign). The No-Sign patches contained vessels, background tissue and optic nerve head. 

There was no overlap between each to adjacent patch. To increase the robustness of the 

algorithm, data augmentation was performed using both horizontal and vertical filliping and 
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rotating (Roth, Lee et al. 2015, Pang, Yu et al. 2017). Figure 5.9 shows patch examples 

corresponding to four classes and Table 3 summarizes the number of patches considered for 

the training (75%), validation (15%) and testing (15%) CNN. 

 

 

Figure 5.9. Patch examples corresponding to the four classes; (a) exudate. (b) hemorrhage. (c) microaneurysm. (d) no-

sign. 

Table 5.5. Statistics information of sign patches. 

 Exudate Haemorrhage Microaneurysm No-Sign 

Training 15646 13339 12477 35013 

Validation 3353 2859 2674 7503 

Test 3720 2684 2333 8002 

Total 

Number 
22719 18882 17484 50518 
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6.5.2 Image Analysis  

The test image set of DIARETDB1 and all images of e-Ophtha were used to evaluate the 

performance of the proposed method using image-based analysis. These images were 

analyzed (section 6.4.3) and the probability map was created of the all pixels in the image 

which resulted in three probability maps corresponding to exudate, hemorrhage and 

microaneurysm. Figure 5.10 shows an example with the three probability maps. Figure 5.11 

shows the images after applying post-processing. It can be seen that the algorithm’s outcome 

accurately segmented the actual pixel’s signs from the all pixels which were assigned as 

potential pixels for the signs with different probability. 

 

 

Figure 5.10. Three probability maps were generated from an example retina image: (a) original retina image; (b) Exudate 

probability map; (c) Hemorrhage probability map; (d) Microaneurysm probability map. Colorbar shows the severity 

level of a pixel belong to the sign that is ranging between 0 to 1 corresponding to blue to red color. 
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Figure 5.11. Three examples of pathological signs before and after post-processing. (a) Original image. (b) Probability 

map corresponding to the sign. (c) Image output after post-processing 

6.6 Results  

For the patch-based evaluation, the mean results of ten repetitions for the training are 

described in Table 5.6 and Figure 5.12 shows the ROC curve for the CNN performance.  

Table 5.6 shows the sensitivity, specificity and accuracy for the proposed method. The best 

results were for the exudates with sensitivity, specificity and accuracy of 0.96, 0.98 and 

0.98, respectively, while that for hemorrhages was 0.84, 0.92 and 0.90, and 0.85, 0.96 and 

0.94 for microaneurysm.   

Table 5.6. Sensitivity, specificity, accuracy and PPV of the proposed method in patch-level evaluation for detection of 

exudate, hemorrhage and microaneurysm. 

 Exudate Hemorrhage Microaneurysm No-Sign 

Accuracy 0.98 0.90 0.94 0.96 

Sensitivity 0.96 0.84 0.85 0.95 

Specificity 0.98 0.92 0.96 0.97 

PPV 0.94 0.85 0.83 0.96 
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Figure 5.12. ROC curve corresponding classification of the four classes (exudate, hemorrhage, microaneurysm and no-

sign). This shows that the CNN-model obtained the highest AUC for detection of exudate (yellow color) and almost same 

AUC for detection hemorrhage and microaneurysm. 

For image-level evaluation, performance of the proposed method was compared to the 

method which used the binary outputs of the network for both datasets and shown in Figure 

5.13. It is observed that for DIARETDB1, the proposed method achieved the accuracy of 

0.96, 0.98 and 0.97 and error rate of 3.9 %, 2.1 % and 2.04 % for segmentation of exudate, 

hemorrhage and microaneurysm, respectively which shows that this technique outperforms 

techniques reported in literature. Similarly, there was significant improvement for exudate 

and microaneurysm detection in the e-Ophtha dataset with accuracy of 0.88, and 3.0 and 

error rate of 4.2 % and 3.1 %, respectively. Figure 5.14 shows example of a retinal image 

with pathological signs detected by the proposed algorithm.  
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Figure 5.13. Performance of proposed framework for the sign detections using two databases (DIARETDB1 and e-

Ophtha) compared to the method with binary outputs of the network. 

 

Figure 5.14. Segmentation output image of the example retina image. (a) Manually annotated images that exudate, 

hemorrhage, and microaneurysm signs marked by blue, green and pink color, respectively. (b) Segmented output by the 

proposed algorithm. 
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6.7 Discussion  

This chapter has presented a CNN-based framework to analyze the retina fundus images for 

detection of pathologic signs indicative of DR: exudate, hemorrhage and microaneurysm. 

The images were first pre-processed to enhance the contrast and then segmented in patches 

which were then manually annotated and used for training the CNN network. This network 

was then used to determine the probability for each pixel to belong to the four classes of 

exudate, haemorrhage, microaneurysm, and background (no pathologic sign). The resultant 

probability map was then used to determine the locations of all the three types of 

pathological signs corresponding to DR. The isolated signs and the spread due to 

convolution were automatically removed in a post-processing step described earlier.   

The results show that there was a difference in the accuracy, sensitivity and specificity when 

using the two databases: DIARETDB1 and e-Ophtha which could be because the CNN was 

trained using only DIARETDB1. Compared to previous works in which the two databases 

were used (Table 5.3), the performance of the proposed approach was higher. It also 

observed that average sensitivity and specificity for detecting exudates (0.96 and 0.98) is 

higher than for hemorrhage and microaneurysm. According to Table 5.3, most of the 

previous studies suffer from poor sensitivity, particularly for discrimination between 

hemorrhages and microaneurysms. Comparing our results with the work by Tan et al (Tan, 

Fujita et al. 2017) shows that our method achieved significantly better sensitivity for 

detection of hemorrhage (0.84 vs 0.62) and microaneurysm (0.85 vs 0.46), although the 

specificity is similar. Our method also obtained better performance for both, sensitivity and 

specificity, for detection of the three DR signs when compared to the work by 

Sinthanayothin et al. (Sinthanayothin, Boyce et al. 2002).  

Our method simultaneously detects the three pathological signs with improved performance 

compared to previous studies where only one sign was considered. This makes it suitable 

for more reliable detection of DR because when the signs are identified individually, there 

is the potential error of identifying the same region for multiple signs. This method performs 

comprehensive analysis and detects all the three signs simultaneously. The other study that 
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attempted the simultaneous detection of the three signs was by Tan et al. (Tan, Fujita et al. 

2017) which suffered from poor performance.  

One innovation of this method is the use of score values obtained from the softmax layer 

instead of using the binary output of the network. This results in the generation of the 

probability map of the locations of the pathological signs on the image, which with suitable 

post-processing reduces the error rate in the size of the signs.  

The first significant strength of this chapter is that we considered two different publicly 

available databases, with the training done on one and the testing on both with comparable 

results. The second strength of this chapter is that fundus images were analysed using both, 

patch and image-based analysis, and the results show that this method is significantly better 

than other studies. The third strength is that this method simultaneously identifies the three 

different pathological signs on the images which makes it suitable for automatic detection 

of diabetic retinopathy because when the signs are identified individually, there is potential 

error when the same region is identified for multiple signs. 

A limitation of this method is that it is unable to differentiate between hemorrhages and 

microaneurysms if there is an overlap between these. This is also a limitation of the dataset 

because overlaps in the original images have not been labelled. Another limitation is that 

the database of 284 images was imbalanced with very few images with hemorrhages. There 

is the need for further testing of this method for databases belonging to different 

demographics to determine the suitability for different societies. 

6.8 Conclusion  

This chapter reports a CNN based framework for the analysis of retinal images to detect the 

three major signs of diabetic retinopathy: exudates, hemorrhages and microaneurysms. The 

novelty of this system is that it uses the softmax output of the layers to generate the 

probability map for the three pathologic signs of DR which is then used to segment the 

fundus image and identify the signs. The system was trained using one dataset and tested 

on two datasets which shows the universality of the approach. The results show that such a 
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system can be used for automatic analysis of fundus images for the detection of diabetic 

retinopathy without requiring a large dataset for training the network.  
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Chapter 7 

7 Parkinson's Disease Diagnosis Based on 

Multivariate Deep Features of Speech Signals 

7.1 Overview 

In this chapter, we have tested the effectiveness of deep convolutional neural network 

(DCNN) in distinguishing between Parkinson’s and healthy voices using spectral features 

from sustained phoneme /a/ (as pronounced in “car”). Various designs of the DCNN 

architecture were investigated on raw pathological and healthy voices of varying lengths. 

This chapter also investigated the effect of parameters such as frame size, number of 

convolutional layers and feature maps as well as topology of fully connected layers on the 

accuracy of the classification outcome. The best network achieved accuracy of 75.7% 

corresponding on 815 ms of data for distinguishing between Parkinson’s and healthy 

samples. This chapter has demonstrated that online speech recording has the potential for 

being used to screening people for Parkinson’s disease. 

7.2 Introduction  

PD is a neurodegenerative disorder that is characterised by motor and non-motor features 

including tremor, rigidity, bradykinesia, cognitive impairment, sleep disturbances and 

depression (Watson and Leverenz 2010, DeMaagd and Philip 2015). In clinical practice, 

Unified Parkinson’s disease scale (UPDRS) is used for PD diagnosis which is subjective 

and dependent on the expertise of the clinician. It also requires the patients’ presence in the 

clinic, and the tests are time consuming for the patient and the clinicians. There is an urgent 

need for alternate diagnostic methods that could be performed online. 
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Associated with PD speech disorder referred to as Hypokinetic Dysarthria. The speech of 

the PD patient is less intelligible, breathy and soft. The speech impairment in PD is one of 

the earliest symptoms and has been considered for diagnosis of the disease. It has the 

advantage of being non-intrusive and suitable for online applications and hence researchers 

have investigated the speech features to diagnose PD (Tsanas, Little et al. 2010, Zhang, 

Yang et al. 2016, Pompili, Abad et al. 2017). It also provides a platform for objective 

monitoring of the progression of the disease. 

Many studies have utilised time-frequency based features extracted from the speech signal 

to classify between PD and control subjects (Rahn, Chou et al. 2007, Lee, Zhou et al. 2008, 

Gracas, Gama et al. 2012, Viswanathan, Khojasteh et al. 2018). These features include Jitter, 

Shimmer, Pitch, Harmonics to Noise Ratio, Autocorrelation, voiced and unvoiced 

frames (Sakar, Isenkul et al. 2013) which provide information such as the breathiness and 

hoarseness of the voice. However, features such as Jitter and shimmer measure the short-

term fluctuations in phonation and have been found to be unsuitable to evaluate the 

fluctuations in more severely impaired voices (Lee, Zhou et al. 2008). To address this 

shortcoming, studies have used a combination of time-frequency based non-linear dynamics 

features such as detrended fluctuation analysis, correlation dimension and recurrence period 

entropy for classification of the two groups (Little, McSharry et al. 2007, Rahn, Chou et al. 

2007, Tsanas, Little et al. 2010) and have obtained different classification accuracies. 

In recent years, application of deep-learning in speech processing such as speech emotion 

recognition (Fayek, Lech et al. 2017) and voice pathology detection (Harar, Alonso-

Hernandezy et al. 2017) has achieved promising outcomes. Deep-learning can extract 

automatic learnable features from large data arrays and model high-level abstractions. 

Unlike conventional machine learning methods, it supports unsupervised learning from raw 

data and identifies the most important features relevant to the study objectives. This has 

been the major motivation for this current study to use DL to distinguish between normal 

and pathological voices in patients with PD.   

Deep convolutional neural network (DCNN) has the potential of identifying the suitable 

features of the data to automatically classify the signal and hence has been proposed for 
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speech-based diagnosis of PD. This chapter presents a framework based on DCNN for 

obtaining the spectral features to distinguish between speech recordings of PD and Healthy 

volunteers. It also reports the effect of parameters such as audio length, frame size, number 

of convolutional layers, feature maps and the topology of fully connected layers on the 

performance of the DCNN. 

7.3 Material and Experimental Protocol  

The recordings obtained by my colleagues, Ms Rekha Viswanathan and other members 

of the BioSignal Lab were used with their permission for this study. Total of 81 subjects 

participated in this study comprising of 41 PD (mean age ± SD=70.8 ± 8.2) in their mild to 

moderate stage of the disease (UPDRS ≤ 40) and 40 age-matched (mean age ± SD = 66.9 ± 

6.21) control subjects (UPDRS ≤ 12). Patients were recruited from the Dandenong 

Neurology, Centre, Melbourne, Australia and control subjects were recruited from 

retirement villages. Non-English speakers, participants with Dementia, stage four PD, 

presence of stuttering or stammering in the voice and subjects with any other neurological 

or psychological illness were excluded from the study. Subjects were asked to produce 

sustained /a/ vowel phonation (as in “car”) of length greater than 5 seconds. Voice samples 

were collected using Apple iPhone 6S plus® with a high quality omni directional condenser 

microphone. All voice samples were recorded in .wav format (i.e. no compression) with 

sampling rate of 8 KHz and 32-bit resolution. All the PD subjects were on Levodopa 

medication during the experiment and they were considered as in ‘on state’ condition. The 

experimental protocol was approved by RMIT University Human Research Ethics 

Committee (I was not a co-applicant in the Ethics) and in accordance with Declaration of 

Helsinki (revised 2004). All participants were enrolled after obtaining their oral and written 

consent. 
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7.4 Methodology  

This chapter has investigated the use of DCNN to distinguish between the spectrogram of 

voices of PD and Healthy subjects. It has identified the suitable framework of the DCNN 

and the number of frames of the spectrogram that are input to the DCNN (Figure 5.15).To 

overcome any inter-experimental differences such as distance between the mouth and the 

microphone, all recordings were normalized prior to the analysis. 

 

 

Figure 5.15. Overview of the proposed framework. 

7.4.1 Deep Convolutional Neural Network 

We investigated seven DCNN architectures to determine the effect of some of the 

parameters on the performance of the proposed algorithm.  Factors such as the number of 

convolutional layers, feature maps as well as different topologies of the fully connected 

layers were considered. Table 5.7 lists seven network architectures. In all networks, rectified 

linear unit (ReLU) was used after each convolutional layer and a normalization layer was 



 

 

109 

 

applied after each max-pooling layer. The backpropagation algorithm with stochastic 

gradient descent (SGD) was used for the training process (Pang, Yu et al. 2017). 

 

Table 5.7. Proposed DCNN’s architectures. Conv (𝑎 × 𝑏 × 𝑐):  convolutional layer with 𝑎 feature maps and size of 𝑏 × 𝑐 

pixels, MP (𝑒 × 𝑓) : max-pooling layer with kernel size of 𝑒 × 𝑓 pixels, FC (𝑛): fully connected layer with 𝑛 neurons. 

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 

Conv1 

32×3×3 

Conv1 

16×3×3 

Conv1 

16×3×3 

Conv1 

32×3×3 

Conv1 

32×3×3 

Conv1 

32×3×3 

Conv1 

32×3×3 

MP1 

2×2 

MP1 

2×2 

MP1 

2×2 

MP1 

2×2 

MP1 

2×2 

MP1 

2×2 

MP1 

2×2 

FC1 

512 

Conv2 

16×3×3 

Conv2 

32×3×3 

Conv2 

16×3×3 

Conv2 

16×3×3 

Conv2 

16×3×3 

Conv2 

16×3×3 

 MP2 

2×2 

MP2 

2×2 

MP2 

2×2 

MP2 

2×2 

MP2 

2×2 

MP2 

2×2 

 FC1 

512 

FC1 

512 

FC1 

256 

FC1 

512 

FC1 

256 

Conv3 

16×3×3 

     FC2 

128 

MP3 

2×2 

      FC1 

512 

 

7.4.2 Experimental Setup 

Data Preparation 

The dataset was randomly split into training (70%), validation (15%) and test (15%) sets. 

The gender ratio between male and female was considered when splitting the data in the 

three sets. 
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All data was recorded with sampling rate of 8 KHz and they were normalized to get zero 

mean and unit variance. The variance and mean were computed and used to normalize the 

data. The spectrogram was obtained using 25 𝑚𝑠 hamming window and 15 𝑚𝑠 overlaps 

between the windows.  

The silent periods in each audio were removed by considering each recording individually, 

obtaining the mean of each window of the spectrogram and identifying the threshold (𝑇𝑠) 

as the centroid between maximum and minimum. The windows corresponding to mean less 

than 𝑇𝑠 were removed, and the new spectrogram generated by concatenating the remaining 

windows. 

To assess the suitable frame size for analysis, the input frame to the DCNN was varied such 

that it consisted of multiple spectrogram windows. We investigated five different frame 

sizes of 20, 40, 60, 80 and 100 windows; (e.g. the frame size of 20 corresponding to 215ms). 

For the training set, overlaps between the frames were considered by the stride of two 

windows. Data augmentation technique was applied on frames to increase the number of 

training sets. Data augmentation consisted of flipping (vertical and horizontal) and rotation 

of the frames (Roth, Lee et al. 2015). For the validation and test sets, the frames did not 

have any overlap and data augmentation was not applied on these sets to have reliable 

results. Statistics of frames using different window seizes in training, validation and test sets 

is shown in Table 5.8. 

Table 5.8. Statistics of frames using different window seizes in training, validation and test sets. 

Frame Size 

(Number of 

windows) 

Training Validation Test 

PD H PD H PD H 

20 6,471 9,317 1,318 1,810 1,121 1,184 

40 3,211 4,312 884 1,013 792 980 

60 1,890 2,647 405 573 439 560 

80 1,454 1,963 292 417 229 405 

100 1,060 1,532 222 323 222 335 
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DCNN setup and Training  

In training phase of DCNN, the parameters were empirically set as follow: the momentum 

and learning rate were set to 0.9 and 0.01, respectively. Gaussian filter’s weights for all 

convolutional layers were set to 0.01. The Gamma value was 0.1 in each iteration and step-

down policy by step size of 33 was used for SGD implementation. The batch size for 

training, validation and test were set to 128, 32 and 32, respectively. The maximum number 

of epochs was 100.  

The training for the seven proposed networks were performed individually. The weights 

were fixed for each training and then used in the testing phase. In this study, GeForce GTX 

1070 and café platform (Jia, Shelhamer et al. 2014) were used.  

7.5 Results and Discussion  

To distinguish between the spectrogram frame of the PD and Healthy individual, the test set 

was used for evaluating the performance of the seven networks using five different frame 

sizes. For this purpose, four evaluation parameters including accuracy, sensitivity, 

specificity and positive predictive value (PPV) were used (Dice 1945). To obtain reliable 

and repeatable results, the experiment was repeated 10 times by random selection of 

training, validation and test sets and the mean of the evaluation parameters were considered 

and shown in Figure 5.16. It can be seen that Net 5 with frame size of 80 achieved the best 

accuracy and sensitivity of 75.7 % and 0.66, respectively. The frame size of 80 which is 

equal to 815 ms (25+79×10) of audio was found as the suitable size for distinguishing 

between PD and Healthy. With the frame size of 100, net 5 obtained PPV and Specificity 

of 86.36% and 0.82, respectively.  

By changing topologies of the fully connected layers from 512 neurons in one fully 

connected layer (Net 5) to 256 (Net 4) and two fully connected layers (Net 6), sensitivity 

decreased to 0.60 and 0.39. This decrease could be caused by turning the Net 5 to an over 

fitted and under fitted network as in Net 6 and Net 4, respectively.  

Net 7 was developed with one more convolutional layer compared to Net 5 to allow for 

assessing the effect of increasing the depth. However, the results show that almost all 
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evaluation parameters significantly declined, particularly the accuracy and sensitivity to 

49.0 % and 0.38, respectively. Similarly, in Net 1, which was designed by only one 

convolution layer, the performance was poor.  Thus, changes to the number of convolution 

layers of the Net 5 did not provide better results. The results also show that changing the 

number of feature maps did not improve the performance compared with Net 5.   

 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.16. Performance of the proposed networks corresponding to different frame sizes: (a) Accuracy (b) PPV (c) 

Sensitivity (d) Specificity. 
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7.6 Conclusion  

In this chapter, we have presented a DCNN-based framework to distinguish between PD 

and Healthy speech signal using sustained phoneme /a/. By assessing multivariate deep 

features, the network with two convolutional layers, 512 neurons and one fully connected 

layer achieved the best results when tested on two secs of voice data. The future work 

includes increasing the number of samples and considering other phonemes such as 

sustained /u/ and /o/ as pronounced in the words “cool” and “go” respectively. 
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Chapter 8 

8 Conclusion and Future Work  

8.1 Conclusion  

DL and machine learning methods have been used for addressing the problems in the 

biomedical applications, such as DR assessment and PD diagnosis. Although some reported 

outcomes have shown good results in using these methods, they still suffer from the poor 

sensitivity and specificity as well as the limitations such as dataset size and heuristic 

selection of the network parameters.   

This thesis has comprehensively studied various DL methods for detection of DR signs and 

diagnosis of PD. The finding of this thesis corresponding to the objectives can be 

summarised as follow: 

i. The study of color space analysis of fundus images for automatic exudate detection 

shows the importance in the choice of color space for better representation of the 

fundus images. The results confirm that HSI and PCA-RGB spaces outperform 

other spaces. This also introduces the new color space “PHS” and the results show 

that this space achieves the most reliable and repeatable results compared to the 

conventional spaces (objective i and ii).  

ii. Investigation of different DL methods for exudate detection confirms that “Resnet-

50 + SVM” obtains better performance compared to the other pre-trained, CNN 

and DRBM models. This also shows using the pre-trained model not only achieves 

better results compared to other models, but also it does not require large dataset 

and choice of the network’s parameters (objective iii). 

iii. The study of novel pre-processing layer in CNN architecture shows the importance 

of using a suitable pre-processing method for improving the performance of system 

for detection of DR signs. It can be concluded that image enhancement has a 
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significant impact on the performance of the CNN-based systems. This also shows 

that CE technique is the most suitable image enhancement method for DR signs 

detection (objective iv).   

iv. Using deep probabilistic features for detection of DR signs shows the significant 

impact of post-processing algorithms for improving the sensitivity and specificity 

of the CNN-based models. The results confirm that using the score values of the 

softmax layers (probability map) followed by a suitable post-processing method 

can increase the performance of the system by reducing the error rate in the size of 

the segmented areas (objective v and vi).   

v. The study of Parkinson’s disease analysis tests the efficiency of the CNN model 

for distinguishing between Parkinson’s and healthy voices using spectral features. 

It can be concluded that 814 ms of voice is the most suitable frame size carrying 

enough information for Parkinson’s disease diagnosis. The results also show that 

the network with two convolutional layers, 512 neurons and one fully connected 

layer achieves the best results compared to other topologies (objective vii and viii). 

8.2 Novelty  

The novelties of this work can be briefly summarised as follow: 

i. Propose the “PHS” space as the new color space of fundus images for improving the 

performance of the CNN-based models (Chapter 3). 

ii. Compare the performance of the different deep learning methods for the first time 

for detection of exudates in the fundus images (Chapter 4). 

iii. Introduce the application of the pre-processing layer in the CNN architecture for the 

first time for detection of the DR signs (Chapter 5). 

iv. Develop the CNN-based framework using probability maps for detection of DR 

signs (Chapter 6). 

v. Propose the DL-based model for distinguishing between Parkinson’s and healthy 

voices using spectral features (Chapter 7). 

 



 

 

116 

 

 

8.3 Future work 

This thesis has investigated DL methods for automatic DR assessment and PD diagnosis. 

The findings have assured current methodologies but demonstrated the limitations and the 

need for further improvement. Based on the findings of this thesis, the future work is 

suggested as follow: 

i) The proposed space (“PHS”) has achieved promising results for increasing the 

performance of the system for detection of DR signs. However, the success of this 

space needs to be tested for the other applications.  

ii) Compared to pre-trained CNN models, the DRBM model has achieved poor 

performance due to lack of suitable data presentation and use of shallow network. It 

is expected to improve the performance of such models by using deeper and more 

complex models such as Deep Belief Networks and Deep Boltzmann Machines. 

iii) It has been shown that the CE method is able to increase the performance of the 

system for automatic DR signs detection although it has been tested on only 80 

retinal images. In future, this method will be tested on a larger number of images 

from different datasets to assure the reliability and repeatability of the method.  

iv) The proposed framework has achieved good results in detection and distinguishing 

between all DR signs. However, that it is not able to differentiate between 

hemorrhages and microaneurysms if there is an overlap between them due to 

improper labelling of such cases in the ground truth dataset. In future, the overlapped 

areas need to be labelled and classified as a new group (i.e. overlapped hemorrhages 

and microaneurysms) 

v)   The CNN-based model has shown the capability of such models for PD diagnosis 

using sustained phoneme /a/. To improve the performance of system, future work 

includes increasing the number of samples and considering other phonemes such as 

sustained /u/ and /o/ as pronounced in the words “cool” and “go” respectively.  
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