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Abstract
Wildfires have demonstrated their destructive powers in several parts of the world in recent
years. In an effort to mitigate the hazard of large catastrophic wildfires a common practice
is to reduce fuel loads in the landscape. This can be achieved through prescribed burning or
mechanically. Prioritising areas to treat is a challenge for landscape managers. To help deal with
this problem we present a spatially explicit, multi-period mixed integer programming model. The
model is solved to yield a plan to generate a dynamic landscape mosaic that optimally fragments
the hazardous fuel continuum while meeting ecosystem considerations. We demonstrate that
such a multi-period plan for fuel management is superior to a myopic strategy. We also show
that a range of habitat quality values can be achieved without compromising the optimal fuel
reduction objective. This suggests that fuel management plans should also strive to optimise
habitat quality. We illustrate how our model can be used to achieve this even in the special case
where a faunal species requires mature habitat that is also hazardous from a wildfire perspective.
The challenging computational effort required to solve the model can be overcome with either a
rolling horizon approach or lexicographically. Typical Australian heathland landscapes are used
to illustrate the model but the approach can be implemented to prioritize treatments in any
fire-prone landscape where preserving habitat connectivity is a critical constraint.

Keywords
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mixed integer programming

1 Introduction
Although some negative effects have been noted, positive effects of bush fires on the habitat
for native flora and fauna have been recorded [40]. Reports indicate that areas subject to pre-
scribed burning have more live trees, greater survival, and reduced fire intensity during wildfires
compared to untreated areas [38]. Thinning and burning has also been employed for restoration
purposes [2]. Prescribed burning leads to fuel reduction [1] and areas with old vegetation (or
areas with excess fuel build-up) are often targeted for treatment [17]. Treatments may restrict
the spread and intensity of large wildfires and so help mitigate wildfire hazards [36, 5, 8], and
the risk to human life and economic assets [29]. Thus it has been argued that fuel management
is both necessary and important [7].
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The spatial configuration of fuel in the landscape has been explored to assess its effect on
fire spread [21, 35]. Patterns include disconnected fuel treatment patches that overlap in the
direction of fire spread [14], and taking into account the surrounding natural landscape [15]. An
analysis involving extensive simulations looked at the effectiveness of fuel-break networks [28].
Also preparing explicitly for possible future fires when choosing where to apply treatment [41]
taking into account fire occurrence, major fire-flow paths and burn probabilities [43]. Stochastic
programming with sample fires has produced some spatial and temporal relationships for where
to burn [27].

The occurrence of catastrophic wildfires decreases with extent treated [23, 22] but with an
optimal landscape mosaic [16] hazard reduction can be achieved without excessive costs [24].
Nevertheless the vegetation regenerates, senesces and eventually becomes high fuel load again
and treatment extent is always subject to a budget constraint. In Mediterranean climate systems
the wet winters and the dry and dangerous conditions in summer further restrict prescribed
burning to a narrow time-window. These constraints on treatment extent can lead to desired
management plans becoming infeasible in some years. Thus long-term planning is necessary to
minimise high-fuel load connections over time [42, 26, 31].

Reducing the total fuel load has ecological consequences. Some species rely on vegetation
that is classified as high-fuel load. A native Australian bird, the Mallee Emu-wren, is an example
[6] and the Southern Brown Bandicoot requires heathland that was last burnt between five and
fifteen years ago [37]. Treatment plans should take into account the habitat needs of species
such as these. This might require sufficient areas of high fuel-load to remain after treatment.
Prioritising areas for prescribed burning would then involve trying to disrupt fire-spread paths
while, for example, maintaining migration paths of fauna [33]. Little research has been done
combining multiple concerns that arise with fuel treatment in an optimisation framework [10].

For management purposes states are often divided into large planning areas such as a catch-
ment or national park. Each of these planning areas is then divided into treatment units or
potential operational delineations (PODs)[39]. These areas are often determined by boundaries
such as roads or rivers which facilitates the control of prescribed fire or some other management
activities. Formulating a multiperiod schedule of treatments for a landscape comprising such
treatment units is a complex spatio-temporal problem [19, 34] and the resulting landscape mo-
saic is critical for hazard reduction [13, 23] and habitats. An early model addressing the fuel
hazard problem only was formulated and illustrated on a regular grid [26]. The approach was
then extended to include multiple vegetation classes in a real landscape [32]. The computational
effort in this work limited the analysis to some extent. More recently a study involving much
greater emphasis on the probability of fire occurrence, fire behaviour and assets at risk was pub-
lished [3]. This work is aimed at prioritising treatment in preparation for the next fire season and
does not deal with the multiperiod problem. In another recent work [30] a multiperiod model
for fuel management was constructed. that comprised ecological constraints. These included
the vegetations’ "tolerable fire intervals" [9] as well as the quantity and spatial configuration of
habitat for a faunal species. In this paper we advance the previous model [30] in the following
way:

• the rectangular grid structure is replaced by more realistic polygons

• the concept of connectedness is broadened to recognise the length of a common boundary

• the concept of neighbourhood is changed to reflect the direction of fire spread or migration
paths

• fuel accumulation curves are used to categorise hazardous polygons [20]
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• fire response curves are used to generate a measure of habitat quality of a polygon [25]

• limitations imposed by computational effort are overcome to some extent by either a rolling
horizon or a lexicographic approach to the solution method

The model we formulate is a mixed integer programming model with the aim of finding an
optimal multiperiod, spatial schedule for prescribed burning that will:

• reduce the connectivity of high fuel load polygons in order to lessen the likelihood of large
wildfires

• ensure the sustainability of the vegetation by constraining the timing of prescribed burns
within tolerable fire intervals

• ensure adequate levels of habitat quality for fauna are maintained

2 Materials and Method
Model Description and formulation
Consider a landscape (i.e. a management area) comprising a mosaic of polygons. In the context
of fuel management these polygons are often referred to as ‘treatment units’ or ‘burn units’. The
time since the vegetation in each polygon was last burnt determines its fuel load. For convenience
for the rest of this paper we will refer to the time elapsed since the vegetation in each polygon
was last burnt as its “age”. Vegetation age also characterises the habitat suitability for particular
fauna of each polygon [6, 37]. In this model we consider a single vegetation type (heathland) and
without specifying a species we consider invertebrates that prefer some predefined vegetation
age [11]. We formulate a model that each year selects the polygons to undergo fuel reduction
through controlled burning or mechanical clearing. The sequence of selections is made so as to
minimise a metric for wildfire hazard. This is achieved by ensuring that after treatment the
polygons remaining with high fuel load are as fragmented as possible.

On the other hand we also want to take into account the species that live in the landscape. As
species have preferences for vegetation of a certain age [11], we assign a quality to each polygon
according to its area and the relative abundance of species supported by vegetation of that age.
We can then only select a polygon for treatment if the habitat quality of at least one of its
neighbours is at least as good as the habitat quality of the polygon itself. This way, we take
into account the habitat needs of the species, although we realize that individuals might have to
migrate from time to time.

Further constraints included in the model relate to the vegetation. To sustain vegetation
and the associated ecosystem, fire should not occur more frequently than its ‘minimum tolerable
fire interval’. On the other hand, for fire-dependent species the ‘maximum tolerable fire interval’
is also important [9]. An explanation of all constraints is described after the mathematical
representation of the model that follows.
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Sets:
I is the set of all burn units in the landscape
Φi ⊂ I is the set of burn units connected to burn unit i

Parameters:
ai initial fuel age of burn unit i

bt fuel treatment budget at time t

ci area of burn unit i

wij relative weighting of the connectivity of burn units i and j

hthr high-fuel load threshold
htarg global habitat quality target
maxTFI maximum tolerable fire interval (TFI)
minTFI minimum tolerable fire interval (TFI)
T number of time periods in the planning horizon
N number of breakpoints for the piecewise linear function of the fire response curve
rn breakpoint of the piecewise linear function or the fire response curve
vn value of breakpoint rn according to the fire response curve
pij proportion of boundary of unit i that is shared with unit j

M big-M coefficient

Variables:
Xit 1 if burn unit i is treated in time period t, 0 otherwise
Hit 1 if burn unit i is classified as high-fuel load in time period t, 0 otherwise
Qijt 1 if adjacent burn units i and j are both classified as high-fuel load in time period t, 0 otherwise
Ait fuel age of burn unit i in time period t

FRCit habitat quality of burn unit i in time period t by area (fire response curve)
Zitn 1 if the age of burn unit i in time period t is between rn and rn+1, 0 otherwise
Gitn convex multipliers of burn unit i in time period t for the piecewise linear function
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Minimise
T∑

t=2

∑
i∈I

∑
j∈Φi
j>i

wijQijt (1)

Subject to:∑
i∈I

ciXit ≤ bt t = 2 , . . . ,T (2)

Ait = ai t = 1 ∀i ∈ I (3)
Ait ≥ Ai(t−1) + 1−M ·Xit t = 2 , . . . ,T ∀i ∈ I (4)
Ait ≤ Ai(t−1) + 1 t = 2 , . . . ,T ∀i ∈ I (5)
Ait ≤ maxTFI(1−Xit) t = 2 , . . . ,T ∀i ∈ I (6)
minTFI ·Xit ≤ Ai(t−1) t = 2 , . . . ,T ∀i ∈ I (7)
Ait ≤ hthr − 1 + M ·Hit t = 2 , . . . ,T ∀i ∈ I (8)
Hit + Hjt ≤ 1 + Qijt t = 2 , . . . ,T ∀i ∈ I ∀j ∈ Φi, j > i (9)
N−1∑
n=1

Zitn = 1 t = 1 , . . . ,T ∀i ∈ I (10)

Zitn ≤ Gitn + Git(n+1) t = 1 , . . . ,T ∀i ∈ I n = 1 , . . . ,N − 1 (11)
N∑

n=1
rnGitn = Ait t = 1 , . . . ,T ∀i ∈ I (12)

N∑
n=1

Gitn = 1 t = 1 , . . . ,T ∀i ∈ I (13)

FRCit =
N∑

n=1
vnGitn t = 1 , . . . ,T ∀i ∈ I (14)

ciFRCi(t−1) −M(1−Xit) ≤
∑
j∈Φi

pijcjFRCjt t = 2 , . . . ,T ∀i ∈ I (15)

∑
i∈I

ciFRCit ≥ htarg t = 2 , . . . ,T (16)

Xit ∈ {0, 1} t = 2 , . . . ,T ∀i ∈ I (17)
Hit ∈ {0, 1} t = 2 , . . . ,T ∀i ∈ I (18)
Zitn ∈ {0, 1} t = 1 , . . . ,T ∀i ∈ I n = 1 , . . . ,N − 1 (19)
Qijt ≥ 0 t = 2 , . . . ,T ∀i ∈ I ∀j ∈ Φi, j > i (20)
Ait ≥ 0 t = 1 , . . . ,T ∀i ∈ I (21)
FRCit ≥ 0 t = 1 , . . . ,T ∀i ∈ I (22)
Gitn ≥ 0 t = 1 , . . . ,T ∀i ∈ I n = 1 , . . . ,N (23)

The objective function (1) minimises the weighted number of connections between high-fuel load
burn units. This dimensionless quantity will henceforth be referred to as fire hazard. Constraint
(2) limits the amount of land we can burn each year. Constraint (3) initializes the ages of all
burn units and constraints (4) - (6) track the age of all burn units, resetting the age to 0 if we
burn the unit. Constraint (6) forces a unit to be burnt if its age is equal to the maximum TFI
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and constraint (7) only allows a unit to be burnt if its age is over the minimum TFI. Constraint
(8) ensures a burn unit to be classified as high-fuel if the age of burn unit is equal to or larger
than a threshold value hthr. Constraint (9) sets Qijt to 1 if both burn units i and j are classified
as high-fuel load in time period t.

Constraints (10) - (13) model the piecewise linear function of the fire response curve, which
is dependent on the age Ait. We break the original curve at breakpoints rn which have value vn.
Constraint (10) is used so that the age can only be at one linear function at a time. Constraint
(11) forces the model to only use the convex multipliers of the corresponding linear function.
Constraint (12) and (13) makes sure the age is a convex combination of the breakpoints. Then
constraint (14) ensures FRCit is given the correct value according to the piecewise linear function.

Constraint (15) ensures unit i can be burnt at time t only if the habitat quality in the
neighbourhood of unit i is at least as good as the quality that unit i had at time t−1. To enforce
this constraint at t = 2 values of FRCit are required at t = 1, hence the summations in equations
(10-14) commence at t = 1. The quality of the neighbourhood, henceforth referred to as local
quality takes into account both the areas of neighbouring units as well as the proportion of
common boundary. Constraint (16) ensures that global habitat quality is maintained above
some target level. We use the term ‘global habitat quality’ to mean the area-weighted sum of
habitat quality over the whole landscape.

Constraints (17) - (19) ensure the decision variables are binaries and constraints (20) - (23)
restrict the age and quality of a unit to only positive values, as well as the breakpoint values.

By definition Qijt = Qjit, and since the weighting of a connection between two cells is
determined by the relative length of their common boundary wij = wji, and hence wijQijt =
wjiQjit. Thus the number of binary variables can be reduced by excluding all Qijt such that
i ≤ j. This saves computational effort and will have no impact on the optimal strategy as it
effectively involves dividing the objective function by a constant.

Also note that the initial conditions are set at t = 1. The first decision on where to burn is
based on these initial conditions but the consequences of that decision is only realised at t = 2.
Thus fire hazard is tracked and accounted for in the objective function from year 2.

3 Model Implementation
3.1 Implementation
The model is implemented for a heathy woodland vegetation type with 23 randomly generated
landscapes (one instance is shown in Figure 1). Each of the landscapes has 45 burn units. The
average size of a burn unit in this implementation is taken to be 100 ha but within certain limits
the representation is scale-free. Experiments are performed with a treatment level of 7 percent
of the total area of the landscape each year. The simulations are solved for a planning period of
20 years, with a rolling horizon of 12 years. The problems are solved on a PC using Gurobi 7.5
[18] with the JuMP modeller [12] and the Julia programming language [4].
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Figure 1: Randomly generated landscape with 45 polygons representing a planning area of 45
km2. On average polygons are 100 ha in extent.

3.2 Input data
Based on [9] the appropriate parameters for heathland are as follows: hthr = 10, minTFI = 10,
and maxTFI = 35. The maxTFI parameter suggested [9] is 45 rather than 35 years. However,
as seen in Figure 2 any unit with a fuel age over 35 years has no habitat value and also represents
high fuel hazard. Thus, to improve computation time we have set the parameter maxTFI to be
equal to 35.

Habitat considerations are illustrated by the needs of invertebrates in the vegetation. The
habitat quality of burn unit i at time t is given by the product of its area and its age-related
quality. Based on [11] the latter is given by the piecewise linear function shown in Figure 2.
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Figure 2: Habitat quality as a function of fuel age. Values fitted with data from [11] for the
optimal age distribution for invertebrates on a heathy woodland landscape.

7



The initial value of global habitat quality is chosen as the target value htarg in constraint
(16) of the model. This ensures that there is no decline in global habitat quality throughout the
simulation period.

3.3 Experiments
Rolling horizon

Solutions are obtained over 20 years using a rolling horizon of 12 years for the following cases:

rh1: The model presented above is solved to give the nomimal solution.

rh2: The local habitat constraints are relaxed and compared with the nominal solution to de-
termine what effect they have on fire hazard.

rh3: The model is solve with a short-term planning period (two-year rolling horizon) and com-
pared with the nominal solution to determine the importance of a longer-term planning.
Habitat constraints are dropped to enable a clearer comparison of fire hazard with the two
planning period approaches.

Lexicographic approach

The following solutions were obtained for a planning period of 20 years using a lexicographic
approach. Using this approach solutions over the full 20-year planning period can be obtained
without requiring a rolling horizon. Further changes made include the following:

• The habitat quality curve shown in Figure 2 is changed to create greater tension between
reducing fuel load and maintaining habitat quality. The new habitat quality curve is shown
in Figure 3.

• In previous experiments fire hazard was defined to be the sum of fire hazard over the full
planning period. In this experiment we consider an alternative metric, which might be
considered more appropriate by fire managers. We redefine the total fire hazard to be the
highest fire hazard in any year. Hence we minimize over the planning period the maximum
fire hazard that can occur in any given year (minimax approach). As fire hazard in the
first few years is more a reflection of random initial values than any plan, we only consider
the second half of the planning horizon.

• As with fire hazard, total habitat value was defined to be a sum throughout the planning
horizon. We also redefine total habitat value to be the minimum habitat value in any year,
starting in the middle of the planning horizon (maximin approach). This new approach
is easily justified when we consider that an animal living on the landscape would hardly
benefit from a solution in which some years have very high habitat value but other years
have a habitat value close to zero.
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Figure 3: Fire response curve: habitat quality of a unit given its age (by hectare)

L1: To understand what range of global habitat values might result when minimising fuel
hazard the following sequence was undertaken:

• Relax habitat constraints and then minimise the fuel hazard to yield an optimal fuel
objective value fm.

• Without compromising fm, maximise the habitat value to yield an optimal habitat
value hM

• Still maintaining the fuel hazard at fm, minimise the habitat value to yield hm.

If fuel hazard reduction is a priority for landscape managers, the interval {hm, hM} will
show the extent of habitat outcomes possible without compromising fuel hazard objectives.

L2: In the case where a key faunal species requires habitat with a high fuel load it might
be important to ascertain differences between fire paths and possible directions of local
migration of fauna. To represent these paths the neighbourhood data must be amended
accordingly. Our model can easily reflect different neighbourhood definitions. For example
a landscape could be located in some place where wind primarily blows in one direction,
and hence fire propagation would occur mainly in that direction. If that were the case our
model can reflect that information by just changing a neighbourhood matrix. In the model
formulation the neighbourhood information is given by the set Φi). An example of this
alternative way of defining neighbours is shown in Figure 4. Another example where fire
propagation might occur mainly in one direction (and thus neighbourhoods defined in a
similar way) is if the landscape has a high slope and fires are primarily topographical.
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Figure 4: If the landscape has prevailing winds in the west-east direction, and fires are
wind-driven, the neighbourhood matrix can reflect this. For this case lines in the figure
show which units are defined as neighbours.

With the neighbours defined as given by Figure 4 we solve the model lexicographically.

4 Results and Discussion
For experiment(rh1) the mean fire hazard and global habitat value are shown in Figure 5.
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Figure 5: Mean fire hazard and mean global habitat value for the 23 scenarios by year

Our objective was to get an overall minimum in the weighted connections between high-hazard
burn units. We see that the initial hazard is quickly brought close to 0, while maintaining
habitat of good quality (both local and global). (Figures 6, 7 and 8) show the initial conditions
(random ages) and the solution after 3 and 19 years. It is clear that the model is achieving its
aim.
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Figure 6: Ages of cells on random initial conditions for a given landscape

Figure 7: Ages of cells after 3 years
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Figure 8: Ages of cells after 19 years

For experiment (rh2) habitat constraints were relaxed and solutions compared with the nominal
results. Figure 9 shows that fire hazard is not further reduced significantly. In other words the
local habitat constraint has not diminished significantly the fuel reduction objective. Not shown
is that collectively for the 23 scenarios, the local habitat connectivity constraint is not satisfied
in nearly 50% of cases.
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Figure 9: Mean fire hazard when local connectivity is not a requirement. Hazard does not change
significantly but local connectivity is violated many times (210 times on 437 runs of the model).

In experiment (rh3), out of the 23 scenarios three were infeasible when solved with the myopic
approach. As habitat constraints are not included, the source of infeasibility is a result of
constraint (6) requiring vegetation exceeding the fuel age of the parameter maxTFI to be burnt.
In some scenarios situations arise in which the amount to be burnt in one year is greater than
that allowed by the budget (constraint (2)).
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Year Long term Myopic
16 0.936 2.258
17 0.920 2.076
18 0.991 1.899
19 0.815 2.036
20 0.828 2.045

Table 1: Mean fire hazard in the last years of simulation, long term rolling horizon window versus
myopic approach.

Table 1 reports the results obtained for the last years of the planning horizon, when the effect
of initial values have diminished. Even removing the scenarios in which the myopic approach
was infeasible, the short-term plans yielded results much worse than that obtained with a longer
planning horizon.

In experiment (L1) all three solutions have fire hazard going to zero. Habitat values are shown
in Table 2.

Year Solution 1 Solution 2 Solution 3
10 6.502 7.804 5.675
11 5.539 7.538 5.122
12 4.987 6.449 4.401
13 4.912 6.456 4.311
14 4.699 6.312 4.122
15 4.64 6.399 5.033
16 4.604 6.3 4.953
17 4.822 6.327 4.865
18 5.109 6.287 4.785
19 5.174 6.316 4.844
20 5.091 6.284 5.025

Table 2: Yearly habitat values for three different solutions, all with the same fire hazard. In
boldface the minimum habitat value for solutions 2 and 3.

Without compromising the reduction in fuel hazard, a comparison of Solution 2 and Solution 1
reveals that the model can yield significant improvements (more than a third) in habitat quality.
In fact, it is possible that a fuel reduction plan such as solution 3 could yield habitat quality
more than 50% below its optimal value. There is thus a large interval of habitat values that can
result with the same fuel hazard value. This opportunity for optimising habitat should not be
neglected.

The state of the landscape for experiment (L2) is shown in Figure 10 for the last year of the
planning period. It can be seen that the model makes use of the new definition of neighbours,
as fuel load is accumulated in burn units that are geographically adjacent in the north-south
direction but were only defined as neighbours in the eat-west direction, and thus do not pose a
high fire hazard.
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Figure 10: Solution in the last year of simulation with dark units reflecting burn units that have
old fuel (their age is older than 10).

5 Conclusion
We presented a mixed integer programming model for a landscape divided into polygons rep-
resenting realistic treatement units. The model aims to reduce the adjacency of high fuel load
areas. We show that adopting a medium-term approach to fuel reduction using our model is
much more effective than adopting a myopic approach. In this latter case it frequently arises
that fuel reduction targets cannot be met within budget constraints.
There are ecological consequences from prescribed burning. We considered habitat quality for
invertebrates on a heathland landscape and also a hypothetical species that had a preference for
hazardous vegetation. We showed that a significant range of habitat quality outcomes can be
obtained without compromising the optimal fuel load goal. It is sensible therefore for habitat
considerations to be included in fuel reduction plans. We showed that this can be achieved for
invertebrates by requiring the habitat quality in the neighbourhood of a planned burn be at least
as good as the habitat quality of the area to be burnt. Such a constraint is applicable for any
species with a small home range. For species with large home ranges it might be enough only
take into account landscape-level habitat quality we included. This consideration of local and
global habitat differs from previous work. We also imposed some ecological requirements in the
form of minimum and maximum tolerable fire intervals for the vegetation used in previous work.
For any particular landscape, factors such as topology and prevailing winds will determine con-
nectnedness between high fuel load areas. We have illustrated that this can be handled with a
redefinition of the neighbourhood of each treatment unit. In fact, where fire spread is predom-
inantly in certain directions geographically, adjacent treatment units might not be in the same
neighbourhood from a fuel connectedness perspective. This creates opportunities for maintaining
habitat quality for species requiring older vegetation without compromising fuel reduction plans.
Computational effort in solving our mixed integer programming model can be considerable and
limiting. Both the rolling horizon and the lexicographic approach offer possibilities of achieving
solutions in times suitable for using in a workshop situation. Whichever method is the most
appropriate for a given problem the model should be solved again each year to take into account
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unplanned fires or unexpected rates of vegetation senescence that might have occurred over the
previous year.
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