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Speech-based web search where no keyboard or screens are available to present search

engine results is becoming ubiquitous, mainly through the use of mobile devices and

intelligent assistants such as Apple’s HomePod, Google Home, or Amazon Alexa. Cur-

rently, these intelligent assistants do not maintain a lengthy information exchange. They

do not track context or present information suitable for an audio-only channel, and do

not interact with the user in a multi-turn conversation. Understanding how users would

interact with such an audio-only interaction system in multi-turn information seeking

dialogues, and what users expect from these new systems, are unexplored in search set-

tings. In particular, the knowledge on how to present search results over an audio-only

channel and which interactions take place in this new search paradigm is crucial to

incorporate while producing usable systems. Thus, constructing insight into the conver-

sational structure of information seeking processes provides researchers and developers

opportunities to build better systems while creating a research agenda and directions

for future advancements in Spoken Conversational Search (SCS). Such insight has been

identified as crucial in the growing SCS area.

At the moment, limited understanding has been acquired for SCS, for example how

the components interact, how information should be presented, or how task complexity

impacts the interactivity or discourse behaviours. We aim to address these knowledge

gaps. This thesis outlines the breadth of SCS and forms a manifesto advancing this

highly interactive search paradigm with new research directions including prescriptive

notions for implementing identified challenges.

We investigate SCS through quantitative and qualitative designs: (i) log and crowd-

sourcing experiments investigating different interaction and results presentation styles,

and (ii) the creation and analysis of the first SCS dataset and annotation schema through
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designing and conducting an observational study of information seeking dialogues. We

propose new research directions and design recommendations based on the triangulation

of three different datasets and methods: the log analysis to identify practical challenges

and limitations of existing systems while informing our future observational study; the

crowdsourcing experiment to validate a new experimental setup for future search engine

results presentation investigations; and the observational study to establish the SCS

dataset (SCSdata), form the first Spoken Conversational Search Annotation Schema

(SCoSAS), and study interaction behaviours for different task complexities.

Our principle contributions are based on our observational study for which we developed

a novel methodology utilising a qualitative design. We show that existing information

seeking models may be insufficient for the new SCS search paradigm because they in-

adequately capture meta-discourse functions and the system’s role as an active agent.

Thus, the results indicate that SCS systems have to support the user through discourse

functions and be actively involved in the users’ search process. This suggests that inter-

activity between the user and system is necessary to overcome the increased complexity

which has been imposed upon the user and system by the constraints of the audio-only

communication channel. We then present the first schematic model for SCS which is de-

rived from the SCoSAS through the qualitative analysis of the SCSdata. In addition, we

demonstrate the applicability of our dataset by investigating the effect of task complexity

on interaction and discourse behaviour. Lastly, we present SCS design recommendations

and outline new research directions for SCS.

The implications of our work are practical, conceptual, and methodological. The practi-

cal implications include the development of the SCSdata, the SCoSAS, and SCS design

recommendations. The conceptual implications include the development of a schematic

SCS model which identifies the need for increased interactivity and pro-activity to over-

come the audio-imposed complexity in SCS. The methodological implications include

the development of the crowdsourcing framework, and techniques for developing and

analysing SCS datasets. In summary, we believe that our findings can guide researchers

and developers to help improve existing interactive systems which are less constrained,

such as mobile search, as well as more constrained systems such as SCS systems.

2
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Chapter 1

Introduction

“The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable

from it.” Weiser [210, p. 94]

Human speech and conversations are the most intuitive form of communication people

use and yet interactions with computer systems, for example search, were historically

primarily based on visual user-input (e.g., typed queries) and visual system-output (e.g.,

list of search results). Over the past decade, speech-based search applications have

become more prominent and are increasingly accepted among the wider population. For

example, Google reported in 2014 that 55% of people aged between 13–18 years old and

41% of adults use voice search more than once a day.1 Research has been conducted

into supporting search by voice user-input, identifying a number of difficulties in the

narrow channel of speech [157]. Few studies, however, have focused on voice system-

output. In addition, the conceptualisation of possible user–system interactions and the

presentation of voice information have not been explored [212]. Given that conversation

is the natural mode for information exchange in daily life, a conversational format for

search input and output is logical and could overcome the difficulties inherent in the

narrow channel of speech.

Searching in a more natural way over voice through conversation is a logical extension of

the visual version, with the potential to transform how we interact with search systems

while making searching more accessible and intuitive. The first step in achieving this is

to narrow down and understand the expected possibilities of conversational moves in this

audio-only communication channel. This thesis explores these conversational actions for

the task of search.

1https://googleblog.blogspot.com/2014/10/omg-mobile-voice-survey-reveals-teens.html
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1.1 Motivation

Speech output is adequately used for single-turn factoid-style queries which only re-

quire one interaction (e.g., “Who is the prime minister of Australia?”) by systems such

as Apple’s HomePod, Google Home, or Amazon Echo. However, when users seek an-

swers to non-factoid or ambiguous style queries, which require an in-depth search results

investigation, the system falls back on displaying the results list on the screen [159]. Nev-

ertheless, there are many scenarios where an audio-only user interface is preferred, such

as when operating machinery [67, 68]; when no screen or keyboard is available [56, 224];

when users are on the move [203]; or when using wearable devices [49]. More importantly,

some user groups such as users with a visual impairment [156], people with dyslexia, or

people with limited literacy skills are disadvantaged in accessing information on screen.

Visually impaired users have been using screen reader software for many years, however,

this software is still often difficult and frustrating to use because the content is mainly

expressed visually [1].

Listening to complex search results over audio is cognitively taxing for users. This is

because audio is a temporal medium and does not leave any traces to which the user

may later refer, making speech a linear medium [117, 222, 223]. Thus, it is difficult to

convey large amounts of information via audio without overloading the user’s short-term

memory [117, 159, 203].

Conversational search has been identified as a critical new research area for Information

Retrieval (IR) [6, 62]. The aim of this thesis is to explore this new interaction paradigm

for effective and efficient Interactive Information Retrieval (IIR) over an audio-only chan-

nel: Spoken Conversational Search (SCS) enabling a conversational approach to defining

user information needs, presenting results, and facilitating search reformulations.

1.2 Challenges for Spoken Conversational Search

This thesis is concerned with the exploration of two overarching challenges for SCS:

• How should search results be presented over an audio-only communication channel

in order to support the user in their search exploration?

• How would people search in an audio-only interaction setting?

With respect to the first challenge, studies have investigated search results presentation

with reference to the visual aspect of a summary or snippet [181], the number of search
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engine results which should be displayed [107], or the effects of entity cards on search be-

haviour and perceived workload [33]. Research has also been undertaken to understand

the optimal snippet presentation in a browser-based setting indicating the scale of the

research problem [102, 103, 129]. Even though a plethora of research has been devoted

to search results presentation in a browser-based setting, few studies have investigated

effective search results presentation via an audio-only channel [68]. Furthermore, the

focus in audio-only search has mainly been on spoken user input and little attention has

been devoted to system output [212].

Presenting a search engine results page (SERP) with “ten blue links” over an audio-only

communication channel presents a number of challenges; in particular, simply speaking

the textual component of a standard browser-based search results list has been shown to

be ineffectual [156]. For example, the structure, layout, and style of the webpage which

is used to decide whether a document is relevant or not is more challenging to convey in

an audio-only setting. The serial nature of the audio-only channel also makes it difficult

for users to “skim” back and forth over a list of results (a standard process in browsing

a visual list).

The length of a spoken search result summary plays a crucial role in the success or

failure of presenting search results over audio. A short summary might not yield enough

information to judge whether the retrieved document is relevant or not; in contrast, a

more descriptive summary might take too long to be played and thereby diminish user

experience. Thus a trade-off is necessary between a short summary and a longer, more

descriptive summary. In particular, we seek a better understanding of how to present

search results over audio while not overwhelming the users with information [203], nor

leaving users uncertain as to whether they have covered the information space [206]. In

this thesis, we hypothesise that interactivity through an audio-only channel may increase

in order to overcome the complexity this narrow and limited bandwidth channel imposes.

Thus, we believe that conveying information through interactions may alleviate some

of the complexities which are associated with searching over an audio-only channel.

Furthermore, investigating SCS may help us understand more effective ways to present

search results than in the traditional search engine results page and thus transform how

we fundamentally interact with search systems.

With respect to the second challenge, extracting SCS interactions is related to the com-

plexity of multi-turn open domain information exchanges between two or more actors.

Well-established conversational systems such as Spoken Dialogue Systems (SDS) are

bound to a domain and are optimised for slot-filling in which possible interactions are

pre-defined [132, 133]. However, since we are dealing with the open web, we need to

study which actions users take to converse their information need while the system



Chapter 1. Introduction 8

supports the user in their document inspection, judgement, and query (re)formulation

process. We capture the user’s behaviour and define these processes. We also explore

whether the complexity of the search process increases when interactions are completed

over an audio-only channel. In order to study all the above, we created the first SCS

dataset, SCSdata, on which further research was conducted to enable us to address these

challenges.

In summary, this dissertation unpacks the breadth and complexity of SCS. We first

explore how people access media with an existing but limited audio-only interaction

system. This investigation helps us focus our research problem and highlights the im-

portance of methodological rigour for SCS. Second, we explore results presentation pref-

erences through manipulating the length of summaries. We propose a novel crowdsourc-

ing methodology which can be used to investigate results presentation manipulations,

including manipulations such as prosody and listenability. Thirdly, we define a method-

ology for creating conversational datasets, propose rigorous transcription and analysis

protocols, and develop the SCSdata. The empirical observations from the SCSdata are

used to understand how people behave in this new search paradigm: we demonstrate

that the system needs to be actively involved to overcome the difficulties posed by the

audio-only channel. We then continue to apply our qualitative methods to identify the

range of atomic actions which take place in this highly interactive search process. We

validate these actions with a different dataset. Furthermore, we use these actions to

create the first annotation schema for SCS: the SCoSAS which allows us to investi-

gate the interactivity in the dataset. Then, we use the SCoSAS-annotated SCSdata

to investigate behavioural patterns in SCS. We study the impact of task complexity

on interactivity and discourse utterances. Along with our findings, we propose new re-

search avenues and design recommendations for SCS which are envisioned to also impact

non-audio-only search interactions.

To study search results presentation, we developed a novel experimental design using a

crowdsourcing framework which allowed us to obtain insight into users’ preferences in

the information exploration stage over an audio-only channel. We then undertook an

observational study which was analysed using qualitative methods (thematic analysis) to

determine the components or actions of an information-seeking process in a SCS setting.

Thus, both quantitative and qualitative methods were used.

1.3 Contributions

This thesis explores and describes which facets or components are key in searching over

an audio-only communication channel. It addressed two research questions: (i) How
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should search results be presented in an audio-only communication channel? and (ii)

How do people search in audio-only communication channel?

Our main contributions in this dissertation are the development of: a novel methodology

using qualitative and quantitative methods which can be replicated in future research;

a crowdsourcing framework to evaluate results presentation user preferences; an anno-

tation schema for SCS; and design recommendations for SCS systems. In particular,

our contributions are focused on three outcomes: (i) practical contributions which can

have a direct impact on the development and research for SCS; (ii) conceptual con-

tributions which extend the wider discussion on IIR by exploring how conversational

assistants can support users; and (iii) methodological contributions to investigate SCS.

These outcomes are the following:

• Practical outcomes:

– Recommendations for logging audio-only interactions: The analysis of an in-

teraction log accentuates the need for extra interaction log guides. We present

our recommendations in Chapter 3.

– Dataset for SCS, SCSdata: We released the SCSdata2, and our publicly avail-

able dataset can be used for further evaluation and exploration by other re-

searchers. The development of the dataset can be found in Chapter 5.

– Annotation schema for SCSdata, SCoSAS : We released an annotation schema

based on the SCSdata, the SCoSAS, together with the annotated SCSdata.

The development of the SCoSAS is explained in Chapter 7.

– SCS design recommendations: We introduce a novel set of design recommen-

dations for SCS in Chapter 9.

• Conceptual outcomes:

– Identification of increased complexity, interactivity, and pro-activity : We es-

tablish that SCS needs to incorporate interactivity and pro-activity to over-

come the complexity that the information seeking process in an audio-only

channel poses in Chapters 6–9.

– Recognition of discourse interactivity in SCS : We formulate the need for dis-

course markers in audio-only search interactions to overcome communication

breakdowns in complex tasks in Chapter 8.

– Schematic SCS model : We propose the first schematic model to abstract a

complicated interaction process of SCS based on the SCoSAS in Chapter 9.

2http://bit.ly/SCSdata_thesis

http://bit.ly/SCSdata_thesis
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• Methodological outcomes:

– Novel crowdsourcing framework to investigate different results presentations:

We present our original crowdsourcing setup to investigate the impact of

different summaries over an audio-only communication channel in Chapter 4.

– Methodology for the development of SCS datasets including data collection

setup, questionnaires, semi-structured interviews, and transcription method-

ology : We developed a full methodological setup to create SCS datasets in-

cluding all necessary tools which are explained in Chapter 5.

– Methodology for analysing SCS data, annotation schema creation, and valida-

tion processes: The process of analysis of a SCS through qualitative methods

is established and presented in Chapter 5.

1.4 Thesis Structure

This thesis is organised in four parts and their corresponding chapters.

Part I – Thesis Overview and Background

Chapter 1 – Introduction: We outline and formalise the SCS problem, the

challenges, and the scope of this research, as well as our practical, conceptual,

and methodological contributions.

Chapter 2 – Background: We discuss prior research related to SCS, contex-

tualising and combining different research fields such as linguistics and SDS

to overcome the research gap in SCS.

Part II – User Preferences in Results Presentation and Access over an

Audio-Only Communication Channel

Chapter 3 – Accessing Media Via an Audio-only Communication Chan-

nel: We conduct a log analysis from an audio-only interaction application.

The analysis provides an initial examination of the communication and in-

teraction behaviours in an audio-only environment. The study amplifies the

challenges of analysing and designing such audio-only interactive systems.

Chapter 4 – Results Presentation for an Audio-only Communication

Channel: We investigate the impact of search results summary length over

an audio-only communication channel. We collect results presentation prefer-

ences for audio and text summaries, and show that users prefer longer, more

informative summaries for text. However, this is not observed for audio-only
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summaries. We also contribute by creating a reusable crowdsourcing frame-

work to test search results presentation.

Part III – Towards a New Model of Spoken Conversational Search

Introduction to Part III: We provide the aims and purposes of our obser-

vational study and exploratory observational analysis. Then we present an

overview of the qualitative method used, thematic analysis, and the valida-

tion steps. We conclude the introduction to Part III with an overview of the

overall approach and setup of the following experiments.

Chapter 5 – Methods: We describe the methodology of our observational

study including the experimental approach of the data collection to create

the first SCS dataset, SCSdata. We specify the transcription methodology

converting the audio and video recordings to text. We then describe data

analysis and annotation methods used to create SCS annotation schemas.

Chapter 6 – Observing Spoken Conversational Search Interaction Be-

haviour: We discuss observational findings from the interactions of the SCS-

data. The empirical evidence is described in relation to search interactions

and non-search interactions which occurred between the participants in their

information seeking conversations.

Chapter 7 – Identifying, Classifying, and Validating the Interaction

Space for Spoken Conversational Search: We present the development

of the annotation schema for SCS; the SCoSAS. This annotation schema

reveals the different atomic actions or utterance functions and interactions

taken by participants in an information seeking process. We then continue to

validate our annotation schema with a similar dataset.

Chapter 8 – Task Complexity and Interactivity fo Spoken Conversa-

tional Search: We investigate the interactivity between the identified atomic

actions in the SCS data in relation to different task complexities. We show

that in more complex tasks a greater number of interaction behaviours are

exhibited including an increase in discourse utterances.

Part IV – Discussion

Chapter 9 – Recommendations for the Design of Spoken Conversa-

tional Search Systems: This chapter triangulates and discusses the find-

ings of the studies and presents schematic models of SCS while emphasising

the increased complexity, interactivity, and pro-activity in this new search

paradigm. We also provide SCS design recommendations.
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Chapter 10 – Conclusion and Future Work: We summarise the main con-

clusions and contributions of the work. Additionally, we outline implications

for both IR, IIR, and the wider research community. We conclude with sug-

gested extensions to our work and recommendations for future research.

Finally, the thesis contains four appendices with complementary information about

ethics approval and participant information statement (Appendix A), questionnaires and

semi-structured interview questions for the observational study (Appendix B), SCSdata

(Appendix C), and SCS interaction themes (Appendix D).



Chapter 2

Background

In this chapter, we provide the background to relevant previous work.1 We first provide

information on Spoken Conversational Systems and its search instance, Spoken Conver-

sational Search (SCS) (Section 2.1). We then introduce the importance of interactivity

in Information Retrieval (Section 2.2). We review interaction and discourse-behaviour

based tasks and task complexity. We continue with a discussion of information seeking

processes and models which are relevant to conversational interactions and conversations

in information seeking (Section 2.3). Next, we outline two fundamental search actions

for interacting with search systems, namely queries and results presentation concerning

speech interactions (Section 2.4). Finally, we present advantages, disadvantages, and

concerns related to speech user interfaces in general, including an introduction to SDS,

dialogue analysis, and the interaction space in conversational search (Section 2.5). We

conclude with a conclusion and summary in (Sections 2.6 and 2.7).

This background chapter illustrates the intersection of SCS with many different areas

including SDS, IIR, and linguistics.

1This chapter consists of the following publications J. R. Trippas. Spoken conversational search:
Information retrieval over a speech-only communication channel. In Proceedings of Conference on Re-
search and Development in Information Retrieval (SIGIR), page 1067, 2015, J. R. Trippas, D. Spina,
M. Sanderson, and L. Cavedon. Results presentation methods for a spoken conversational search system.
In CIKM’15 First International Workshop on Novel Web Search Interfaces and Systems (NWSearch’15),
pages 13–15, 2015, and J. R. Trippas. Spoken conversational search: Speech-only interactive informa-
tion retrieval. In Proceedings of Conference on Information Interaction and Retrieval (CHIIR), pages
373–375, 2016.

13
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2.1 The Rise of the Spoken Conversational System

With a Spoken Conversational System, people may converse with their smart devices

(e.g., smartphones, watches, or speakers) in a natural way to retrieve information, is-

sue commands, or access services in which the system responds in an everyday spoken

fashion. Thus, a Spoken Conversational System is a broad term for any system which

enables users to interact over speech (i.e., voice) in a conversational manner.2

Researchers in areas such as speech technology and artificial intelligence have long antic-

ipated and worked towards Spoken Conversational Systems. Until recently, the expected

ease of using Spoken Conversational Systems was only accomplished in science fiction

movies, such as 2001: A Space Odyssey, Star Wars, or Star Trek. Apple broadcasted

their concept video of the Knowledge Navigator3 in 1987, a software agent who as-

sisted the user in tasks such as search, planning, or communication. This software agent

included advanced text-to-speech (TTS), natural language processing, and speech un-

derstanding. More than ten years later in 2001, Berners-Lee et al. envisioned the future

of the Semantic Web in which agents could take advantage of the hypertext link uni-

versality [29]. However, it was not until the introduction of Siri in 2011 that Spoken

Conversational Systems received extensive attention.

Many technological improvements influenced the progress in Spoken Conversational Sys-

tems. For example, the recent advances in artificial intelligence powered the develop-

ment in language technologies such as spoken dialogue management, natural language

learning, and speech recognition [77, 177, 219]. Furthermore, our smart devices have

increasingly become more capable, and we are connected to even more powerful pro-

cessors through being continuously linked to the internet. Although we have advanced

in many technological aspects for Spoken Conversational Systems, more work has to be

completed before these systems are genuinely conversational.

2.1.1 Spoken Conversational Search

A search system aims to help users find relevant documents or information units for

their expressed information need. Users formulate and express their information need for

which a system will retrieve relevant documents or information units. The system then

presents the retrieved information as representations of the documents or as surrogates.

Users need to make choices and relevance judgements about documents by eliminating

or keeping retrieved documents for further inspection. To have a search system help the

2In this thesis we use audio, speech, and voice interchangeably.
3http://bit.ly/know_nav

http://bit.ly/know_nav
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user, the system needs to determine which documents or information units may be of

interest to the user.

Browser-based search interactions consist of two primary interactions, user-queries and

system-results [212]. The most common approach for users to express an information

need is through a query submitted to a browser-based system in a search box. Then,

the system returns a ranked list with results for the user to inspect. This list is ordered

by the results’ calculated relevance to the query. The concept of “user-query” and

“system-results” interactions dates back to when librarians acted as the intermediary

to the documents and were able to elicit the users’ information need. The idea of this

basic query-results paradigm as primarily atomic actions is still used in many search

applications [212]. Other actions include navigational or recommendation actions such

as query and document suggestions.

In contrast to the browser-based query-results search paradigm, SCS supports spoken

exchange as the mode of interactions. Thus, the users can ask the SCS system to help

them through their search process. The ability of a system to converse with the users

arguably increases the usefulness of the system to help the user with their information

need. For example, an information seeking conversation may look like this if a user is

looking for information on solid beeswax perfume:

User: How do I make a block of beeswax into perfume?

System: Would you like to make solid beeswax perfume or beeswax scented

candles?

User: Uhm, I would like to make beeswax into perfume blocks.

System: OK, solid beeswax perfume blocks are made from beeswax, almond

oil, and essential oil.

User: Can I use them with like, normal perfume?

System: . . .

We illustrate that interactions from the query-results search paradigm, where results are

presented in a ranked list, are unlike the SCS system. Instead, the interactions from a

SCS system can be sequences with questions such as information requests, refinements,

or elicitations. Providing answers to a user’s information request is an alternative inter-

action form to the ranked results list. Through the process of expressing their informa-

tion need (even if it is ill-formed) and receiving possible results, the user may be able
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to clarify their information need. However, the possible atomic actions have not been

mapped based on empirical data [19].

A distinction between conversational search in text and audio has to be made. Re-

searchers have suggested that people express ideas differently when they talk than when

they write [3, 60, 224]. In particular, written and conversational prose have differences in

their lexical diversity [30]. Thus, the mode of information exchange is crucial when dis-

cussing or studying conversational search. We do not consider searchbots (i.e., chatbots

that perform specific types of searches), conversations in forums over a visual domain,

or sequential modelling of user–system interactions in this thesis [17, 145, 207, 228].

SCS is concerned with open domain multi-turn verbal natural language exchanges be-

tween user(s) and the system. Ultimately, the SCS multi-turn exchanges are mixed-

initiative, meaning that systems also can take action or drive the conversation. The

system also keeps track of what has been said avoiding asking the user to repeat pre-

vious statements. Thus the user’s information need can be expressed, formalised, or

elicited through natural language conversational interactions. The system pro-actively

supports the user’s search process, and responds with cognitively processable replies to

the user which are relevant to their context.

Conversational search has been identified as an important new research direction at

several meetings including the last two Strategic Workshops on IR [6, 62]. The new

“Conversational” sub-area in IR and IIR has gained much interest. For example, there

is a growing interest in SCS systems that go beyond “command and control” utterances

from users and keep track of what has been said, in session and over multiple sessions, and

thus, go further than one-turn exchanges in a multi-turn manner. At recent workshops4

it was indicated that there is a lack of understanding of search tasks, search result

description, and evaluation of SCS [172]. More importantly, the IR community lacks a

broader insight into how users will engage with these highly interactive search systems

and which components may be involved.

We define SCS with the properties presented in Table 2.1.

2.2 Interactivity in Information Retrieval

Research which explores developing, evaluating, or indexing information is tradition-

ally categorised as IR. This research mostly does not involve real people. IIR is con-

cerned with the interaction between the system and the user, while IR is more system

4International Workshop on Conversational Approaches to Information Retrieval (CAIR) at SIGIR
2017 and 2018 (https://sites.google.com/view/cair-ws/)

https://sites.google.com/view/cair-ws/
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Table 2.1: Identified SCS requirements.

SCS

1 Analogy Human intelligible dialogue-like, beyond com-
mand and control

2 Language Spoken natural language, conversational
3 System participation Pro-active, mixed-initiative (implies listening)
4 Information request length Longer, more natural
5 Results presentation mechanism Adaptive to users’ need and context (ranked

list is inadequate)
6 Turn-taking Multi-turn
7 History Over (multiple) sessions

focused [32, 106]. Indeed, “Interactive” signifies the involvement of a human in com-

parison to system-oriented approaches in other sub-fields of IR, often referred to as the

Cranfield paradigm [55]. In particular, IIR’s core aim is to study how people use search

systems to satisfy their information need [155] and which tasks play a fundamental role

for evaluation [31].

2.2.1 Task and Task Complexity

When people interact with an IR system, they usually do so within the context of a task,

defined as a piece of work which often needs to be completed in a specified length of

time.5 Tasks, scenarios, simulated work tasks, or backstories are therefore widely used

in different evaluation settings involving people, such as in human-computer interaction,

strategic planning, or IIR [31, 44, 81, 213]. These scenarios provide a context for the

participant to conduct the assigned task. A task or scenario often contains an actor,

some background information on the actor, the goals or purpose of their action, and

occasionally some sequences of actions the actor to perform [81]. Depending on the goal

of the task or scenario, some of the mentioned components may be discarded.

Tasks are often used as a representation of the search goal or purpose and symbolise

what the user wants to achieve with their search. The advantage of providing tasks to

research participants is that tasks can be manipulated as part of the research design [213].

However, many tasks in IIR experiments are created by the researcher and therefore may

not represent the searcher’s internal information need. Thus, creating tasks which can

be widely used, naturalistic, and applicable to the participants is challenging and time-

consuming [108].

5https://www.merriam-webster.com/dictionary/task

https://www.merriam-webster.com/dictionary/task
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Tasks or scenarios enable researchers to observe the current interaction behaviours be-

tween a system and real users [81]. In this thesis, tasks will be used to assist the eval-

uation of SCS interactions. The outcome of an evaluation study, and thus the observed

behaviours, can be affected by the characteristics of the task, such as task complexity.

2.2.1.1 Task Complexity and Search

Much research has been devoted to developing tasks and exploring their impact on

search behaviour [44, 95, 105]. Task complexity is often used to indicate which cognitive

resources are needed to fulfil the task. Jansen et al. used the revised Anderson and

Krathwohl’s taxonomy of the cognitive learning domain to create tasks requiring different

levels of mental effort (i.e., cognitive complexity) [9, 97]. This taxonomy has six levels

of increasing complexity: remember, understand, apply, analyse, evaluate, and create.

Many researchers have used task complexity in research to study search behaviour [11,

16, 46, 108, 218]. For example, Aula et al. investigated the behaviours in participants’

search interactions when they were engaged in tasks in which the answer was hard

to find [16]. They showed that when participants had difficulty finding information,

participants formulated more diverse queries, used Boolean and advanced operators

more, and spent more time on the SERP. Kelly et al. showed that participants engaged

in more interactions such as more queries, clicks, and time on task as task complexity

increased [108]. These studies illustrate the importance and influence a task can have

on the interaction behaviour.

2.2.1.2 Task Complexity and Discourse

Tasks, task difficulty or complexity, and discourse (i.e., the communication of a series

of linked utterances) have been studied extensively in areas such as linguistics and ped-

agogy [59, 79, 151]. For example, Gilabert et al. investigated the impact of increasing

task complexity on interactivity in learner’s communication behaviour [79]. They showed

that different task types affected communication behaviours, with more complex tasks

generating more interactions. Other research has suggested that both lexical behaviour

and the use of confirmation checks increase as tasks become more complex [151].

It has been proposed that the increase in a task’s cognitive demands generates more

communication breakdowns and therefore increases the number of interactions to repair

these breakdowns [152]. The researchers suggested that these breakdowns occur because

of demands placed on the cognitive resources, which are needed to solve the task itself.

As a result, there are fewer cognitive reserves available for maintaining the task discourse
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interactions. Despite the disrupted communication, these breakdowns may also bring a

positive side-effect [79, 143]. It has been suggested that the extra interactions to solve

the communication malfunctions may lead to further negotiations about the meaning

of a message [143]. These negotiation functions can contribute to improved accuracy of

the information exchange [143].

Research in computer-mediated communication has also shown that task complexity in-

fluences discourse behaviour [59]. That is, more complex tasks required more discourse,

particularly, more meta-communication (i.e., the conversation about the communica-

tion). Furthermore, in that study, task complexity impacted on adjacency pairs (i.e.,

discourse routines or bigram interactions) which indicates that discourse interactions

were essential for the conversation and that these discourse routines (i.e., bigrams)

could be exploited to predict interaction pairs [59]. All the above research suggests

that task complexity impacts the communication behaviour on interaction, discourse,

and meta-communication activities in decision-making and learners’ conversations. Fu-

ture research into discourse routines may help predict interaction behaviour in SCS and

change interaction techniques according to task complexity. These are areas addressed

in this thesis.

2.3 Information Seeking Processes and Models

Models are an abstraction of reality and are often used before the development of a

formal theory [48]. Models are regularly displayed in diagrams or flowcharts with the

aim of making them easier to understand and enabling researchers to focus on specific

problems [48]. Information seeking also uses models to explain or abstract what is

observed in the search process, making it easier to recognise if hypotheses are consistent

with real-life observations [148, 212]. As Wilson describes, most models (i.e., mostly

diagrams) in information seeking are explanations describing the information seeking

actions, their motivation and outcomes, or their relationship with other states [215].

Information seeking is well studied in IIR and often adopts a search model process or

cycle which includes the user’s recognition and definition of their information need, the

examination of results, and the reiteration of the process until the user’s information

need is satisfied [127]. Many researchers have studied and formed models of this process

(e.g., Belkin [22], Ellis [72], Kuhlthau [116], Marchionini [126], Saracevic [158], Wilson

[215]). These models were often derived or based on observations of how people worked

through their search process alone, in specific environments, or how they interacted with

intermediaries (i.e., reference librarians) [91, 212].
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One of the general models described by Marchionini and White [127] defines the infor-

mation seeking process as consisting of:

• Recognising a need for information,

• Accepting the challenge to take action to fulfil the need,

• Formulating the problem,

• Expressing the information need in a search system,

• Examining the results,

• Reformulating the problem and its expression, and

• Using the results.

The above stated actions are often said to form the core information seeking actions [91].

It is generally accepted that search engines support the user in their expression of the

information need, examination of the results, and to some extent the reformulation of

their problem [91].

Other models are more focussed on the psychological processes during the search process.

For example, Belkin’s Anomalous States of Knowledge (ASK) hypothesis explains the

user’s information need from a cognitive viewpoint [22]. Thus, ASK states that users

experience a gap or anomaly in what they know and what they would like to know. To

fill that gap, users need to obtain information until the anomaly is resolved. According

to the ASK hypotheses, only once a user has identified a gap, can they start formulating

their information need. Other researchers, such as Taylor observed and proposed a

similar concept [179]. Taylor divided the expression of an information need into four

stages that the user works through to formulate a query which can be submitted to a

search engine [179]. These four stages of expressing an information need are:

1. Visceral: The need for information is formed.

2. Conscious: A mental description of the information need emerges.

3. Formalised: A formulation of the question is formed.

4. Compromised: A formulation of the question is formed in a way it can be pre-

sented to a search engine.

Another kind of model is Saracevic’s stratified model [158]. The elements in the stratified

model are related to the user and system, each with different levels or strata, discoursing
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through an interface. Thus the stratified model includes the interactions between the

user and system as dialogue interactions, with each participant bringing their own layers

of specifications to that dialogue. For example, users bring their levels of cognitive,

affective, and situational influences and the system brings its hardware, data processing,

and structures. Their interaction is the exchange between each’s strata. The critical

point made by the stratified model is that the strata are not independent of each other

and that the weakest point in the user–system relationship can impede achieving the

best outcome for the search process.

2.3.1 Modelling Information Seeking Through Dialogue

Even though little research has been devoted to the new search paradigm of SCS, early

work in the 1970s in man-machine IR through dialogues was introduced by Oddy [139].

A reference retrieval program called THOMAS was developed which aimed to help users

select documents without explicitly formulating queries. Instead, THOMAS helped the

user narrow down their search scope by asking questions and presenting suggestions. The

program only displayed the relevant documents at the end of the question–answering

process which can be interpreted as the conversation. Croft and Thompson designed

the Intelligent Intermediary for Information Retrieval (I3R) in the 1980s where the

system is modelled on an expert intermediary [61]. In contrast to a search system

which allows a user to search with a single retrieval strategy (a query), the I3R system

supported the user with domain knowledge acquisition, explanation, browsing, retrieval,

and evaluation. The system could also confirm or request more information from the

user in some kind of dialogue for unspecified information needs.

Other researchers also proposed ways to incorporate searching for information through

dialogue but with the use of Dialogue Acts (DA) [168, 173]. DA are a schema which

represents the generic meaning of an utterance. For example, Sitter and Stein devel-

oped the COnversational Roles (COR) model [168] based on DA as a general model

for information seeking dialogue and combining it with a dialogue plan (a list of pre-

defined intended dialogue actions) [7]. The plan is then used to guide users through

stages of information seeking. The model is shown in Figure 2.1. In this model, the

actors are noted as A (information seeker) and B (information provider). The circles

and squares symbolise the states as part of the dialogue. Arrows represent the progress

between the states. For example, in step 1© the seeker makes the first move with the

possible outcomes outlined in example 2©. This atomic move is annotated with DA as

request(A,B).
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Figure 2.1: COR model by Sitter and Stein [168].

Other features of the COR model include the flexibility in mixed-initiative, meaning

that at any given time one of the actors can decide what happens next or ask questions.

Mixed-initiative dialogues allow for a more natural interaction but are more compli-

cated for the system to handle [132]. The model also allows for meta-communication

by permitting the conversation to go through one of the loops at any point in time.

Nevertheless, only one move in an utterance is possible according to the COR model,

making the model unaccommodating for the flexibility of voice input and output.

A more recent DA-based model for information seeking dialogues is the Query, Request,

Feedback, Answer (QRFA) loops by Vakulenko, Revoredo, Di Ciccio, and de Rijke [205].

These are four User–Agent feedback loops trying to explain the conversational flows

based on real data. Similarly to the COR, the QRFA aims to provide the structure of a

single dialogue contribution or move from the actors in the conversation. Nevertheless,

these aforementioned schemas are based on DA and only provide broad categories of the

action taken in that utterance. These DA-based models can be applied in any common

dialogue and fail to reveal further possible interactions between a user and system in

a SCS process. Furthermore, these simple actions are uncommon in more complex

information seeking situations [25].

Other studies have focused on discourse aspects of conversations without using DA.

For example, Belkin et al. proposed a coding schema to annotate communications be-

tween librarians and users to better understand the design of expert systems [24]. Their

schema showed that one could extract a range of contextual information from dialogues,

including the description, states, modes of problems at hand, user models, search strate-

gies, and search interactions. Later, Belkin et al. introduced a concept of scripts that

described functions of dialogues and applied them to the design of IIR systems [25].
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The authors argued that, depending on the kind of information need, different interac-

tions may be appropriate to provide an (ideal) abstraction of the problem and enable

an understanding of the question, from which responses (scripts) could be created.

Thus the COR [168], QRFA [205] models and scripts [25] enable the prediction of which

kind of interaction will be necessary following from a previous move. These predictions

are a form of discourse routines and can become “predictable” defaults adaptable to

maximise efficiency by demanding minimal encoding of the system. Hence, if we could

predict and simplify the input from the user, we may be able to provide appropriate

responses generated by the system.

A more relevant conceptual framework of User-Agent actions was recently created by Az-

zopardi et al. [19]. This framework combined the action and interaction space discussed

in Radlinski and Craswell [146] and Trippas et al. [199]. The conceptual framework,

therefore, is not restricted to the DAs but provides a broad overview of the potential

actions taken by either actor as shown in Table 2.2. Nevertheless, Azzopardi et al.’s

conceptual framework still needs to be empirically validated [19].

Table 2.2: An overview of the actions and interactions hypothesised in Azzopardi
et al. [19].
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2.4 Fundamental Search Actions Through Audio

The principle way in which people interact with browser-based search systems is by ex-

pressing information requests or queries and investigating ranked results lists. Indeed,

the main interaction mode between user and system is through primary (or atomic) ac-

tions which have been itemised as search queries, selection recommendations (query and

document suggestions), and item selection by White [212]. Many of these interactions

can be logged and these logs assist the training of algorithms such as query suggestions.

In this section, we review the actions of spoken queries (i.e., search queries), and results

presentation and answer organisation (i.e., selection recommendations) through audio.

2.4.1 Spoken Queries

Traditionally, search systems have been receiving browser-based written search queries

from users which represent the user’s information need. These written queries can be

expressed through Boolean statements or operators, but overall are mostly short state-

ments of the user’s intent. The system then uses these queries to retrieve information

units or documents and presents these to the user. While the process of submitting writ-

ten queries is relatively easy6, spoken queries first need to be processed by Automatic

Speech Recognition (ASR) to become text representations.

Research in voice queries has often compared text and voice queries based on log anal-

yses or lab-based experiments [13, 60, 86]. This research has shown inconsistencies in

results [87]. For example, Schalkwyk et al. reported that voice queries were shorter than

typed queries (2.5 versus 2.9 on average, respectively). However, other studies found

voice queries to be longer than the average text queries of 3.2 words [60, 86, 225]. Fur-

thermore, Guy also reported that voice queries have many other unique characteristics

such as: they are closer to natural language, the topics are different, and user behaviour

(time of use and clicks) differs [87].

2.4.2 Results Presentation and Answer Organisation Through Audio

Web search systems most commonly display search results in a vertical list which sum-

marises the top-ten retrieved documents. This list is often referred to as the SERP. One

item on the SERP consists of a document title, a short summary (i.e., snippet), URL,

and often other meta-data such as date or author. Such representation of a document

6Note: This is in contrast to the expression of one’s information need which can be very challenging.
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is also referred to as the document surrogate and aims to help the user understand the

meaning of the underlying document [127].

Studies have shown the importance of how to present the document surrogate and its

usability. For example, it has been suggested by Clarke et al. that all query terms should

appear in the surrogate to reflect their relationship with the underlying document; that

when query terms are present in a title, they do not need to appear again in the summary;

and that the URLs should be displayed in a less complicated manner while showing their

relationship to the query [54].

Other researchers have examined the snippet length to understand the trade-off users are

willing to accept between the length of the snippet versus the snippet’s informativeness.

Cutrell and Guan investigated the effect of different snippet lengths (short [1 text line],

medium [2-3 lines], and long snippets [6-7 lines]) [63]. They found that for information

queries, the performance improved if the length of the snippet increased. However,

the performance degraded for navigational queries. Later work from Kaisser et al. also

suggests that different types of queries benefit from an optimised summary length [102].

More recently Maxwell et al., indicated that users preferred longer, more informative

summaries as they were perceived to be more informative, even if they did not contribute

more to helping users correctly identify relevant documents [129].

2.5 Speech User Interfaces

Human speech is the most widely used form of communication, as well as the most

complex one. Even though, human speech is considered a natural way to interact,

speaking to a computer is still mostly seen as “unnatural” [114, 203]. However, with the

recent developments of spoken interactive systems such as Apple’s HomePod or Google

Home, speaking to a computer is becoming more widely accepted. The use of speech

systems in particular situations, such as when one’s eyes or hands are busy [56], allows for

information to be accessed without requiring a keyboard or typing [132, 224]. In addition,

these speech systems can be used by people who may otherwise be unable to access

information via text, such as visually impaired people or people with dyslexia [156, 203].

It is important to address user needs, including the users’ context, to improve data access

through intelligent information systems [84]. For example, when users are presented

with search results to their query in a visual representation, the search query terms are

highlighted [91]. Ajmera et al. argue that when search results are presented by speech,

audio feedback could be used to display whether a specific query term shows up in the

query results [2]. Other studies have indicated that a notifying sound could be used
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instead of speech feedback [204, 224]. Winterboer et al. [216] tried to implement a

similar approach whereby a beep was used as a discourse marker to help users compare

options. Other concerns which have been identified concerning speech user interfaces

are:

• The user talks before the system is ready.

• The user reads meanings in pauses while the system is still working [117, 224].

• The user might find it easier to produce speech output than consume speech in-

put [71].

• The user might not know what to say [224].

• The information must be presented sequentially [67].

• The fact that speech output is easier to forget than written output [117].

• The trade-off between presenting enough information to the user (confidence for a

good overview of search results) and keeping utterances short and understandable

might be unsatisfying for users [149].

Overall, we recognise that speech user interfaces have many challenges which need to

be overcome to facilitate a good user experience. All these challenges are inherently

present in SCS interactions and impact on the behaviours and limitations of the audio-

only channel.

2.5.1 Spoken Dialogue Systems

A SDS is an instance of a speech user interface. Such systems provide a platform for

people to interact with computer applications such as databases with the use of spoken

natural language. SDS exchanges information on a turn-by-turn basis providing an

interface between the user and the computer [78]. Extensive research has been conducted

into how to best present information and interact over audio [78, 132]. For example,

researchers have investigated the cognitive resources users need to interact with SDS

and have suggested that instead of just reading out results, SDS should help the user

make decisions by providing suggestions [206] or providing an overview of (ir)relevant

options [66]. It has been suggested that this may make the user feel in control of having

heard all possible options.

In recent years, interest in SCS has grown, as speech technology [219] and machine

learning for spoken systems [220] have developed. A range of SDS are available, from
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question answering to semi-conversational systems [132]. Research has been devoted to

task-oriented SDS which has defined search boundaries, such as travel planning or route

planning, and can be developed with slot filling approaches [209].

Task-oriented dialogue systems are created on a particular closed domain. However,

non-task-oriented dialogue systems or open-domain conversations such as search for

SCS systems may not benefit from a rigid plan-based dialogue approach and introduce

many new challenges [92]. These challenges include how to deal with the variety of

user utterances and how answers or replies could be simplified or abstracted to generate

appropriate system responses [178].

2.5.2 Dialogue Analysis

Research interest in SCS has increased the recording of spoken search interactions [185,

205]. Such records are a valuable source of data to understand how users interact

in this unique search paradigm and which tactics are used for driving effective search

performance. Thus, this data is useful to understand the characteristics of a search

conversation to build SCS systems which can act as a dialogue participant [78]. The

spoken data recordings themselves are of limited value and these recordings need to be

appropriately transcribed and “annotated” [120]. Thus, exposing the structure of the

conversations by annotating the actions taken is one of the first steps towards analysing

these spoken interactions [227].

Previously, much research has been devoted to creating annotation schemas and classi-

fying taxonomies for dialogues and SDS [7, 41, 164]. These annotation schemas are often

developed for speech but are also applicable to written conversations such as online dis-

cussion forums. Annotating these dialogues has been based on the understanding that

classifying utterances provides insight into the dialogue behaviour [147]. For example,

annotated conversations can help to identify answers in texts and unanswered questions

which need to be addressed, as well as characterise user intents or model which actor

plays a particular role in a conversation [112, 144].

Many different annotation schemas have been proposed which cover the general speech

interactions. Some schemas emphasised information seeking, such as the Dynamic Inter-

pretation Theory (DIT) by Bunt [40]. The DIT was based on the empirical investigation

of spoken human–human information dialogues. Bunt suggested that these information

dialogues have two motivational sources, namely to proceed in the task and to exchange

communicative functions to drive the conversation [40]. He noticed that an informa-

tion dialogue consisted of the expected greetings, apologies, and acknowledgements but

also included information-exchange utterances such as questions, answers, checks, and
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confirmations. Later, Bunt developed an annotation schema called DIT++ for these

information dialogues [41]. Nevertheless, DIT++ lacks the detailed distinctions made

when a user interacts with a search system while satisfying their information need, for

example the techniques used to represent documents or information units.

2.6 Conclusion

As demonstrated in this chapter, research on conversations is not new in IIR. How-

ever, there is a resurgence of interest in SCS, especially in abstracting and defining

conversational interactions, which we refer to as the conversational search revolution.

We reviewed previous studies in spoken (semi-)conversational models highlighting the

lack of models which combine the unique aspects of SCS. For example, the previous

models do not cover multi-turn, open domain, natural language exchanges in which a

system can take the initiative. Such taking of initiative by the system implies that the

system actively listens and keep track of the interaction history. These abstractions

and definitions enable researchers to gain understanding of characteristics, descriptions,

and structures of the interaction itself, facilitating the specifications of the SCS system

design.

2.7 Chapter Summary

In this chapter, we reviewed prior studies related to conversational search and how this

conversational search differs from spoken or web-based search. We began this chapter

by explaining where conversational systems are located historically, and the vision peo-

ple had for these systems. We then reviewed previous research in IIR, highlighting the

importance of studying task complexity and discourse interactions. With respect to in-

formation seeking processes and models, we outlined previous work in models which are

relevant to audio-only SCS and illustrated that we are now in the conversational search

revolution era. In addition, we examined the atomic actions which take place in search

(i.e., queries and results presentation) with respect to speech input and output. Con-

cerning speech user interfaces, we outlined some differences with visual user interfaces

and presented previous research in defining the interaction space.

Given this overview of prior research related to SCS and the undetermined possible

spoken conversational atomic actions, we present our first contribution to exploring

spoken conversational interactions through log analysis of an existing but limited audio-

only interaction application in the following chapter.
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Chapter 3

Accessing Media Via an

Audio-only Communication

Channel

Studies of interaction log analysis are a common tool to investigate behavioural data

and can contribute to insights of the interaction patterns of users with a system [167,

212]. We present the results of a log analysis from RealSAM1, an audio-only interaction

application. RealSAM is an accessible media assistant in which users can navigate and

interact with media content through natural language. The assistant is designed for

people with a vision impairment or other disability that prevents a person accessing

printed material, and developed by Real Thing2. The RealSAM log analysis is part of a

Linkage project between RMIT University and Real Thing Entertainment Pty Ltd.

The exploratory analysis was conducted to provide an initial insight into the commu-

nication and interaction behaviours between users and this audio-only application. We

focus on understanding how users utilise the application. The study reveals the chal-

lenges of analysing and designing these audio-only interactive systems, with implications

for the design of future voice-enabled tools.

RealSAM allows users to interact through multi-turn audio-only interactions in their

natural environment. Even though these interactions may be specific and limited to this

particular application, we believe it also provides a starting-point for further analysis of

SCS.

1http://www.realsam.com.au
2http://www.realthing.com.au/
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The insights gained from working with the logs influenced our experimental setup and

analysis in Part III while complementing the discussions presented in Part IV. Thus, we

combine the results of a real-life application from this chapter and lab-study from later

chapters to provide a more holistic discussion of SCS.

This chapter is structured as follows. Section 3.1 provides an introduction to the Real-

SAM application and its target audience including an overview of the interaction meth-

ods and the content which can be accessed. We then describe the available dataset.

Section 3.2 presents the results of the log analysis including the general and session de-

scriptives of the interaction dataset. We show how RealSAM is used over time including

the interaction frequencies based on pre- and self-defined interaction categories. We

describe sessions which consist of a single interaction and introduce search interaction

behaviours. We conclude the results section with displaying the TTS output settings

of RealSAM users. Section 3.3 discusses the results and limitations of the study. Sec-

tion 3.4 sums up the lessons learned during the analysis process which influenced our

observational study’s data-capture process presented in Part III. Finally, we conclude

this chapter with a summary in Section 3.5.

3.1 Introduction

RealSAM is an application with which users can interact and search for audio material,

such as podcasts, news articles, and audiobooks, exclusively via an audio-only interaction

channel. The application is tailored to provide accessible media for people who are

visually impaired. We use the RealSAM logs to understand the interaction behaviour

between users and the application.

Displaying search results for people with a visual impairment is problematic. Systems

such as Siri allow users with a visual impairment to pose queries, but they will not

receive answers to their query via audio unless it is a factoid question. For non-factoid

or ambiguous questions, this user group relies on additional assistive software (e.g.,

screen reader, VoiceOver3, or TalkBack4) to translate the written SERP into speech.

Thus, a user with a visual impairment who uses Siri to search must switch to using

assistive software to read out the search results. The volume of information read out

also presents the user with cognitive challenges which may lead to unsatisfactory search

interactions.

3http://www.apple.com/au/accessibility/osx/voiceover
4https://support.google.com/accessibility/android/answer/6007100?hl=en

http://www.apple.com/au/accessibility/osx/voiceover
https://support.google.com/accessibility/android/answer/6007100?hl=en
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Thus, much work remains to be done to allow equal information accessibility [156]. As

the first step, we need to understand how users behave in an audio-only interaction

setting which we do by investigating the interaction logs.

3.1.1 RealSAM Application

RealSAM consists of a Samsung Galaxy Pocket with a single-app Android ROM installed

on it (see Figure 3.1). This device has a main button on the bottom front of the device

which is the talk button. When users press this button, they can either start their spoken

interaction or interrupt (i.e., barge-in) the device. The volume buttons on the device

work, however, the other buttons and touch functionality of the screen are disabled

for accessibility reasons. Users can also turn on a hands-free mode which allows them

to interact with the device without having to press the talk button. However, in this

mode, RealSAM will only start listening again after it has finished speaking and thus

users cannot interrupt.

Figure 3.1: RealSAM device.

RealSAM provides the following five categories of content:

• Podcasts: Listen to podcasts from sources such as the Australian Broadcasting

Corporation (ABC) or the British Broadcasting Corporation (BBC).

• Newspapers: RealSAM currently indexes news from ABC News, The Conversa-

tion, The New Daily, and a wide range of papers provided by the Vision Australia

Library, including The Age, The Sydney Morning Herald, and The Australian.

• Books: RealSAM provides access to the books offered by The Gutenberg Project5

and Bookshare6.

5https://www.gutenberg.org
6https://www.bookshare.org

https://www.gutenberg.org
https://www.bookshare.org
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• Service: RealSAM allows users to check the current time, weather conditions,

and geographical location.

• Device: RealSAM provides commands to configure the device, check the battery

level, or listen to announcements from RealThing.

RealSAM uses sound cues (i.e., ear-cons or discourse markers) to guide the user through

the system. For example, a falling tone and a tick tock sound means that RealSAM is

considering the user’s request and will respond soon. When a user submits a command,

the device RealSAM presents the first five results to the user with an option to hear

more results. Thus, one “result page” consists of five results. An example interaction is

shown below.

User: Which newspapers do you have?

RealSAM: I have the following newspapers:

1. ABC News

2. Adelaide Advertiser

3. The Age

4. The Australian

5. Australian Financial Review.

Please select one or say continue.

User: Number 3

RealSAM: OK, selecting The Age. The first page of 29 unread headlines from

the News Section:

1. Faulty fire system puts lives at risk

2. Mum’s the word in Melbourne

3. Greens go for. . .

User: Read me the Finance section from the Australian.

[barge-in]

Interactions with RealSAM are classified based on system-defined rules which are trig-

gered by pre-mapped voice inputs. For example, RealSAM starts reading news headlines

when a user inputs “read me the news headlines”. As such, this interaction is classified

by the system as “* headlines *”. This is an illustration of the inherent linguistic and

functional limitations of this restricted system.
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3.1.2 Dataset

The log set includes interactions between 17 February 2014 and 17 May 2016.7 Input

interactions can be seen as a voice command to the system. This voice command is then

translated into a text command using ASR and from this point onwards it is treated as

a text command. The output text is translated with TTS for the user to listen to. The

audio output is in contrast to many multi-modal systems where the input is by voice

but returns results using the standard mobile or desktop interface (i.e., the screen).

Each interaction or voice input has a timestamp (beginning of interaction), anonymised

user ID, output interaction from the system, voice type and speed, and the system rule

triggered by the input received. However, no information is recorded as to whether the

user barged-in to the application and there are no end timestamps.

3.2 RealSAM Log Analysis

We first present the general descriptive statistics about the logged RealSAM interactions

and examine the pre-identified RealSAM Interaction Categories. We then continue to

group these Interaction Categories in Super Interaction Categories allowing us to inves-

tigate how people use RealSAM through communication, one-interaction sessions, and

search sessions. The final part of this section discusses the user settings of the TTS

output.

3.2.1 General and Session Descriptives

The RealSAM interaction log consists of 411,201 interactions from 236 unique users. An

interaction comprises of an action from the user and a reaction from the system.

Interactions are grouped in sessions where a session lasts until there are at least 15

minutes of inactivity [96, 183]. The interaction log contains 46,859 sessions.

On average, users spent 19.74 minutes per session. The average sessions per user was

199 (median is 23). There were 8.77 interactions per session. A total of 24,507 sessions

(52.29%) consisted of only one interaction.

When we examine the RealSAM session patterns over a 24-hour time frame, we observe

that more sessions take place in the mornings throughout the 7-day week. However,

when comparing weekdays and weekend days we notice a trend that users interact more

7The interaction logs cannot be made publicly available.
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frequently with RealSAM during weekday morning hours than weekend mornings as

seen in Figure 3.2. After 2pm on weekdays the number of sessions declines while on the

weekends the number increases.

Figure 3.2: Normalised session frequency in 24 hours on weekday and weekend days.

3.2.2 How People use RealSAM

We removed all the stopwords including unrecognised voice input and create a frequency

list of the most highly used terms.8 We found the most frequent term from the users

was “next”, corresponding to 21.72% of the total input terms as seen in Table 3.1.

Table 3.1: Top-five frequent input terms.

Input Term Count (%)

Next 143,399 (21.72%)
Number 38,569 (5.84%)
Read 22,980 (3.48%)
Headlines 18,681 (2.83%)
Back 16,653 (2.52%)

A total of 43,918 distinct pre-mapped rules were recorded in the log. We sorted these

rules in 87 interaction categories including the categories “Null”, defined by the appli-

cation, and “Other”, which we were not able to classify. The Null and Other categories

accounted for 12.8% and 5.8% respectively of the total logs.

We sorted the remaining 85 interaction categories by investigating the voice input tran-

scripts. For example, if the pre-mapped voice input recorded “* headlines *” we exam-

ined all rows within the log containing this particular input to conclude that this rule is

indeed related to asking for news headlines. We then classified this pre-mapped input

accordingly.

Thus, a total of 85 interaction categories were created with the most frequently used

categories presented in Table 3.2. The table shows that several interactions are similar

8We used the SMART stopword list.
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and could be categorised in a super category. For example, the category next article and

next response are both navigational interactions indicating reading out the next response

and therefore belong to the newly defined super category Interaction Management. The

classifying processes were conducted iteratively by myself and reviewed by supervisors.

Table 3.2: Most frequently used RealSAM interaction categories.

Interaction Category Count (%)

Next article 93,309 (27.88%)
Select response 52,365 (15.65%)
Next response 24,302 (7.26%)
News headlines 16,893 (5.05%)
ASR error recovery 16,819 (5.03%)

We grouped the 85 interaction categories through examination into super categories.

These super categories create a further abstraction while reducing the number of cate-

gories for a more meaningful analysis. The interactions categories are divided into the

next five super categories:

1. Search (S): a user searches for a specific document,

2. Browsing (B): a user wants to hear the news headlines,

3. Interaction Management (IM): how a user interacts with the device, such as

“next”, “stop”, or “resume spoken document”,

4. Device and Service (D/S): interactions related to operating RealSAM, such as

changing the voice or checking the battery and weather9, and

5. Error Handling (EH): the device attempts to recover from errors.

Figure 3.3 shows that Interaction Management is the most commonly used. The second

most commonly used is Error Handling followed by Device and Service. The high Inter-

action Management would be expected given that this category includes the commands

to use the device such as resuming a spoken document, navigating to the next section,

or repeating an article.

3.2.2.1 One-Interaction Sessions

As mentioned, 52.29% of the sessions consisted of one interaction. The 15 most fre-

quent interaction categories cover 79.55% of the one-interaction sessions as presented in

Table 3.3. The Search super category did not contain any one-interaction sessions.

9Weather information is stored on the server and classified as a service.
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Figure 3.3: Interaction frequency of super categories.

Table 3.3: Most frequent one-interaction session categories.

Interaction Category Super Category Interaction Category Count (%)

Access source IM 3,873 (17.43%)
Check the battery level D/S 1,805 (8.13%)
Next article IM 1,790 (8.06%)
No match found EH 1,768 (7.96%)
Select response IM 1,588 (7.15%)
Check the weather D/S 1,426 (6.42%)
ASR error recovery EH 1,120 (5.04%)
News headlines B 780 (3.51%)
User guide D/S 748 (3.37%)
List books B 681 (3.07%)
Next response IM 500 (2.25%)
Time D/S 496 (2.23%)
Part of command missing EH 478 (2.15%)
Response to “hello” input D/S 332 (1.49%)
Go back IM 287 (1.29%)

NOTE: Browsing (B), Device and Service (D/S), Error Handling (EH),
Interaction Management (IM), Search (S)

3.2.2.2 Search Sessions

The Search super category consisted of 3,399 (7.25%) sessions where users posed one

or more queries. The total number of queries in the Search super category was 6,888,

consisting of 2,238 news article searches (32.49%), 2,106 podcast searches (30.57%), 629

book searches (9.13%), and 1,915 (27.80%) unclassified searches. These unclassified

searches were due to users posing an unspecified query which the system could not

classify in any of the specified interaction categories.

The average query length for the voice queries was 3.29 words (SD=1.49, max=24)

which were obtained after lowercase conversion, tokenisation, and stopword removal and

4.87 words (SD=1.88, max=31) without the removal. Query characteristics presented

in Table 3.4 show that 56% of the queries were unique.
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Table 3.4: Query characteristics.

Count

Total number of queries 6,888
Unique queries 3,872

Most frequent queries:
Read articles about rugby 406
Read articles about wallabies 214
Play me the health report 69
Play me the science show 63

Table 3.5 shows the most frequent terms in search queries. Popular terms suggest that

search was used as a mechanism to access specific sources (e.g., ABC, report, show) or

to find content related to a given topic (e.g., rugby, wallabies).

Table 3.5: Most frequent query terms.

Query Term Count Query Term Count

Rugby 622 ABC 214
Wallabies 288 Australia 199
Report 265 Science 179
Show 236 Health 172
Vision 232 Margaret 139

3.2.3 Text-to-Speech Output

This section investigates the voice and speed of the TTS output per interaction. A

female Australian voice and 1.0x speech reading rate were the default settings but six

different voices and other speeds are available. Interactions were performed 51.78% of

the time in these default settings, where 60.12% had the default speed, and 71.82% used

the default female Australian voice. Thus 39.54% of the interactions were performed

either with a slower (18.26%) or faster (21.28%) voice speed (see Figure 3.4).

Figure 3.4: Speed of the output in the interactions.
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3.3 Discussion

We now discuss the results of the log analysis, the use of navigational interactions, one-

interaction sessions, search sessions, and speech output configurations. We conclude this

section by discussing the limitations of this exploratory study.

The results show that navigational “next” interactions such as “next article” or “next

response” were frequently used commands. We propose to add an “infinite-reading”

mode to RealSAM allowing users to listen to document titles in a more efficient manner.

This mode resembles a search engine’s infinite scroll mode which automatically loads

and displays next search results when the user reaches the end of the page. Thus, the

infinite-reading mode would continue reading the document titles until a user interrupts

the system.

Two thirds (66.37%) of the one-interaction sessions shown in Table 3.3 can be inter-

preted as good abandonment. This is where a user accesses the device with a clear goal,

retrieves the information, and then leaves the device [94]. System defined interaction

categories, such as Access source, where a user inputs “read me ABC news”, are also

considered good abandonment, as are classifications such as checking the battery level

or the weather, and accessing the news headlines. In contrast, 19.05% of one-interaction

sessions can be seen as bad abandonment, which is where a user leaves without being

able to achieve their goal [94]. Bad abandonment classifications often happened when an

error occurred such as no match found, ASR errors, or part of the command is missing.

The remaining 14.58% corresponded to noise in the logs (errors splitting the sessions or

null interactions).

With regard to the Search super category, the average spoken RealSAM query length

(4.87 words) is similar to that reported in a recent study of spoken queries from a

commercial search engine (4.2 words), but is longer than the length of typed queries (3.2

words) [87]. Guy [87] also reported in this study that one-word queries were rarer in voice

(12%). In our dataset, one-word queries were uncommon and only accounted for 1% of

the queries. Other researchers have reported that voice queries are on average one word

longer than typed mobile queries [225] while Schaller et al. [160] suggested that it may be

easier to create long queries with a voice interface than with a keyboard. Although users

cannot type queries into RealSAM, and we cannot make a direct comparison between

typed or spoken queries in RealSAM, the longer average voice query and the lack of

one-word queries may indicate that users find it more natural to create longer queries.

With the third and fourth most frequent queries “play me the health report” and “play

me the science report” the user is presented with a search result list. This list consists of

the podcasts containing the corresponding query terms (i.e., “health report” or “science
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report” anywhere within the document). However, RealSAM only reads out the titles

for these podcasts, and as these may not contain the query term, the podcasts’ relevance

may be unclear to the user. Therefore it may be helpful for the users to hear their query

words in the context of the found document. For podcasts, this may mean that users

listen to a snippet extracted from the podcast audio in order to understand the context

of their query word [171].

Almost half of the interactions were conducted in the original speed and with a female

Australian voice, while 48.23% of the interactions were in a different speed or voice. In

order to give users more freedom in their interactions with the content, we have eval-

uated the effect of audio transformations (i.e., prosodic modifications) and our initial

results suggest that some of the proposed prosodic modifications lead to better compre-

hension and identification of the answers in a snippet at the expense of slightly degraded

naturalness of the audio signal [51]. Future research could investigate whether skimming

or time-compression techniques, such as pause-based skimming, would be useful [14, 15].

3.3.1 Limitations

The quality of the logging process as well as the system’s linguistic and functional

limitations hindered the analysis of the interaction logs. For example, RealSAM was

updated several times during the data capture process and therefore had different pre-

defined rules in place. Simultaneously, each input from the user was logged through

text, but no audio file was present to check whether the ASR had correctly recognised

the input from the user. ASR input errors may have resulted in 12.8% of the logs with a

Null input from the system; however, we were not able to check this. Furthermore, the

RealSAM logs did not indicate if a user had barged-in during the output of the text. For

example, it was not possible to establish whether the user listened to all results before

making a decision of which results they would like to select. Lastly, we were unable to

utilise the timestamps series fully due to the different speeds in voices and the lack of

end timestamps.

3.4 Conclusion

The aim of this log analysis was to explore interaction and communication behaviours be-

tween users and RealSAM, an audio-only application for accessing media. The strength

of this analysis is that we were able to investigate people’s in-context interactions with

the application. The log analysis provided insight into users’ behaviours and media ac-

cessed, and how users satisfied their information needs. The discussed findings suggest
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that a truly conversational system needs further research and development to establish

how people want to interact with content over voice without pre-conceived constraints

placed on them by the system.

3.5 Chapter Summary

In this chapter, we presented a log analysis of RealSAM, an audio-only application

to access books, news articles, and podcasts for people with a visual impairment. We

examined how users utilise the application including session descriptives, one-interaction

sessions, search sessions, and the personalisation of the TTS output.

The implications of this chapter are for both researchers working and creating similar

logs and system developers who are logging audio-only interactions. Recommendations

from this chapter include:

1. Log the start and end time for each utterance.

2. Log each interaction of the user and system separately.

3. Log where and when the user interrupted the system output or indicate whether

the user listened to the full output.

4. Where possible, retain the audio to check ASR errors or add ASR term confidence

values in the output transcription [12].

Our analyses suggest that audio-only interactions systems are still in the early stages of

their development, as reflected in the need for improvement in navigational commands,

query intent recognition, and skimming techniques over audio. From this chapter, we

conclude that audio-only interactions are not straightforward to log and need to be

designed carefully.



Chapter 4

Results Presentation for

Audio-only Communication

In this chapter, we study search results summary length over an audio-only communica-

tion channel.1 We focus on understanding user preferences for results presentation of an

audio-only communication channel with a novel experimental design setup using crowd-

sourcing. Previous studies in browser-based search results presentation have shown the

importance of a document surrogate and its usability [54, 63, 129]. Presenting search

results over an audio-only communication channel, however, involves many challenges

for users due to the serial nature of speech [15, 224]. Limited studies have been con-

ducted investigating results presentation over an audio-only communication channel. To

study search results presentation, we developed a novel experimental design allowing us

to obtain insight into users’ preferences in the information exploration stage over an

audio-only channel. Thus, the aims of this study are twofold (i) we want to understand

the presentation of results over an audio-only channel, and (ii) we want to create a new

and re-usable crowdsourcing framework to test search results presentation.

We investigate the impact of search results summary length in audio-only web search

and compare our results to a text baseline. The study was designed to collect quanti-

tative data for results presentation preference through CrowdFlower.2 A novel aspect

of this study is the inclusion of multiple steps in the search task which was designed

to reflect multiple turns in the search interaction. To the best of our knowledge, at

1This chapter has been published as J. R. Trippas, D. Spina, M. Sanderson, and L. Cavedon. Towards
understanding the impact of length in web search result summaries over a speech-only communication
channel. In Proceedings of Conference on Research and Development in Information Retrieval (SIGIR),
pages 991–994, 2015.

2CrowdFlower has since rebranded to Figure Eight (https://www.figure-eight.com/). In this thesis
we will keep the reference to CrowdFlower.
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the time of the experiment, no previous studies had investigated interactive results pre-

sentation for audio-only systems in IR.3 Based on our crowdsourcing experiments, we

found that users preferred longer, more informative summaries for text presentation.

However, this trend was not observed for audio summaries. Instead, the results indi-

cated that user preferences depended on the query style; for example, shortened audio

summaries were preferred for single-facet queries. However, for multi-facet queries (i.e.,

ambiguous queries), user preferences were not as clear, suggesting that more sophisti-

cated techniques (i.e., conversations) are required to handle such queries.

The broader outcome included the transferability of our crowdsourcing setup to other

results presentation studies (for example Chuklin et al. [51] and Spina et al. [171]). We

therefore suggest that our experimental setup is robust.

This chapter answers the research questions of the crowdsourcing experiment as well

as informing our task choices for our observational study (see Part III). Specifically, we

found that different types of queries benefited from a different kind of summary. For

example, short audio summaries may be appropriate for single-facet queries with one

query intent, while more advanced techniques and conversational approaches may be

suitable for multi-facet queries. We included different task complexities in our obser-

vational study. Furthermore, by executing this crowdsourcing experiment, we gained

insight into future research directions which could be conducted in this framework and

these are discussed in Part IV.

This study confirms that translating a text summary into audio may not be sufficient

and more sophisticated techniques and conversational procedures may be required to

create summaries suitable for an audio-only setting. Moreover, techniques which allow

users to interact directly with the document’s content rather than with a surrogate may

be suitable for an audio-only channel. Additionally, this study supports that further

research is required into interactions and search result presentation techniques which

alleviate the cognitive load placed on users in an audio-only communication channel.

The chapter is organised as follows. In Section 4.1 we introduce the importance of

studying the summary length and state our aims and purposes of our crowdsourcing

experiment. Section 4.2, presents the methodology of our experiment, including the

crowdsourcing method, experimental design, and participants. We then present the

results in Section 4.3, followed by the discussion in Section 4.4, and conclusion in Sec-

tion 4.5. We end this chapter with the summary in Section 4.6.

3Ethics approval for the experiments was obtained from RMIT University (reference: BSEHAPP
10-14). See Appendix A.1.
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4.1 Introduction

Few studies have investigated techniques for effective presentation of web search results

via an audio-only communication channel [51, 68]. This chapter seeks to address this. In

particular, we examine how to present search results over an audio-only communication

channel while not overwhelming the users with information [203], nor leaving users

uncertain as to whether what they heard covered the information space [206].

The length of a spoken search result summary plays a crucial role in the success or failure

of presenting search results over audio. Successful presentation of search results occurs

when the users’ information need is satisfied. A short summary might not yield enough

information to judge whether the retrieved document is relevant or not; in contrast,

a more descriptive summary might take too long to be played and thereby diminish

the user experience [19]. Thus a trade-off is necessary between a short summary and a

longer, more descriptive summary.

4.1.1 Aims and Purpose

This crowdsourcing study investigated these trade-offs via a crowdsource-based interac-

tive experimental design. The study aimed to develop a baseline of the result summary

length users prefer in audio. In particular, this study answers the following research

questions:

• What is the impact of search result summary length in a spoken retrieval scenario?

• Do users prefer a longer or shorter summary?

4.2 Methodology: Results Presentation

We conducted a within-subjects crowdsourcing experiment with people from English

speaking countries to investigate different summary lengths. Our participants had to

indicate the relevance of query summaries, which were of different presentation lengths,

and indicate their preferred query summary. We analysed the results with statistical

tests to understand the significant differences for these presentation lengths. In this

section, we start by describing the crowdsourcing method and experimental design. The

remainder of this section explains the participant selection criteria.
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4.2.1 Crowdsourcing Method

Our experiments used a crowdsourcing platform to present queries and search results to

users. Result summaries of various length were presented in text or audio form. Sum-

mary length was either a full Google-length summary or a truncated version extracted

from the original summary. Users were asked to select a result that best addressed the

query. The CrowdFlower crowdsourcing tool was employed [100, 101].

4.2.2 Experimental Design

We first describe the task participants undertook, followed by the queries, search engine

results summaries, post-task and exit questionnaires, and the use of text as a baseline for

audio. The crowdsourcing setup for presenting result lists to participants and collecting

judgements is also described.

4.2.2.1 Tasks

Participants were presented with a task which consisted of three queries, corresponding

lists of result summaries (i.e., full length summary, truncated summary, and a control

question), a post-task questionnaire, and an exit questionnaire. Users were asked to

read the three query descriptions and read/listen to the summaries, before stating their

preferred result description in the questionnaires.

4.2.2.2 Queries

We designed the tasks to reflect everyday search tasks on the Web. We used query topics

from the Text REtrieval Conference (TREC) 2013 Web Track [58] which are based on

commercial search engine logs. Since this was a preliminary study, a subset of twenty

queries from the TREC 2013 Web Track dataset was used. An assessment of the queries

indicated two categories, single-facet queries (queries with clear intent) and multi-facet

queries (typically broader in intent and represented with subtopics). We decided to

investigate whether these categories impacted on result summary preference.

The study included seven single-facet and thirteen multi-facet queries. Table 4.1 shows

two examples for each type of query, the query itself, and the task description. Only

informational subtopics were selected for this study because they have a primary inter-

pretation which is reflected in the description field and often have a large amount of

relevant documents in contrast to navigational queries [53].
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Table 4.1: Examples of queries and query descriptions for single-facet and multi-facet
queries.

Type Query Description
Single-facet eggs shelf life What is the shelf life of a chicken

egg—that is, how old can it be and
still be safe to eat?

what was the name of

elvis presley’s home

What was the name of Elvis Pres-
ley’s home?

Multi-facet old town scottsdale Find restaurants in Old Town
Scottsdale, AZ.

occupational therapist What is an occupational therapist?

4.2.2.3 Search Engine Results Summaries

Each query was sent to the Google search engine and the text summaries were extracted

for the top-five search results, which formed a summary set.4 The summaries were

converted into a spoken synthetic voice (audio) with the system voice Alex from OSX

10.9. The following instructions were presented with each summary set: These are

summaries of the top results. Select the summary that leads to the information you are

looking for. A list-rank number was added to the front of each summary to allow easy

identification of the users’ selection. Table 4.2 shows a sample summary before and after

the conversion for the task.

Truncated versions of the original Google-generated summaries were created manually.

Here, a contiguous subset of nine words was selected from each full summary. Nine were

found to be a little less than half the length of a standard Google-generated summary.

For this initial work, manual summaries were created to avoid bias introduced by poor

automatic truncation, which may negatively impact user perception. Human judgement

was assumed to be the best way to preserve the meaning of the summary. Thus truncated

summaries contained mostly the same information though they were shorter than the

original full summary.

The presentation of the twenty search queries was randomised with the use of a Latin

square design. Each user saw three queries per task. The order in which the users were

presented with the result description (original summary versus truncated summary) was

rotated. These steps were implemented to avoid learning effects such as usage order and

participants becoming accustomed to a synthetic voice [4, 106].

A problem reported with crowdsourcing is that users try to receive payment without

completing the task properly [45]. To overcome this problem, we populated every task

with a Gold Question to help with data integrity and to detect if the participant was

paying attention to the task [39]. The Gold Questions in this study used queries with

4Only the top-five were presented to keep the audio task manageable.
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Table 4.2: Examples of full and truncated summaries for occupational therapist

query.

Full summary Truncated summary
1 In its simplest terms, occupational thera-

pists and occupational therapy assistants
help people across the lifespan participate
in the things they want and need to ...

help people across the lifespan partici-
pate in the things

2 Occupational therapists treat injured, ill,
or disabled patients through the therapeu-
tic use of everyday activities. They help
these patients develop, recover, and ...

Occupational therapists treat injured,
ill, or disabled patients through

3 Occupational therapy (OT) is the use of
assessment and treatment to develop, re-
cover, or maintain the daily living and
work skills of people with a physical, ...

Occupational therapy (OT) is the use
of assessment and

4 U.S. News’s occupational therapist job
overview with comprehensive information
on necessary job training, expected salary
and job satisfaction, plus tips on job ...

occupational therapist job overview
with comprehensive information on
necessary

5 Occupational therapy can help improve
kids’ cognitive, physical, and motor skills
and enhance their self-esteem and sense of
accomplishment.

help improve kids’ cognitive, physical,
and motor skills and

clear pre-determined answers. Participants were presented with three query descriptions

and corresponding summaries. However, one of these summaries was populated with

unrelated summary results. A participant that was unable to identify that the summaries

were not related to the query had their judgements discarded.

4.2.2.4 Post-task and Exit Questionnaires

Post-task questionnaires are frequently implemented to assess the system–task interac-

tion and gather user feedback on their experiences with using a particular system to

complete a specific task [106]. Since no validated questionnaire has been published for

studying user reaction to audio-only summaries, we used questionnaires adapted from

previous studies, in particular from SDS [66, 216].

Participants completed the post-task questionnaire three times for each of the queries

given. The post-task questionnaire, as seen in see Table 4.3, consisted of five questions

on a five-point Likert scale (1–5); one question on query judgement with multiple choice

answers (6); one question on how the participant listened to the audio with tick boxes (7);

and a text box for further comments (8). An example task with a post-task questionnaire

is presented in Figure 4.1.

Kelly suggests conducting a questionnaire at the end of the completed task to capture

comparisons for within-subjects studies [106]. Thus, participants were also presented
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Table 4.3: Post-task questionnaire questions.

Post-task Questionnaire

1. The search results I heard are informative.
2. The search results give me a good overview of the available options.
3. The search results give me enough information to select the most relevant result.
4. The search results are presented in a way that is easy to understand.
5. I am confident I can recall the search results that I heard.
6. Which search result would you select to hear further information for?
7. Which statement describes how you listened to the audio?
8. Further comments.

with an exit questionnaire. By using a dynamic panel, the exit questionnaire was avail-

able only to participants who were successful in answering a Gold Question. The exit

questionnaire was used to measure participants’ preferences for information exploration

using different result description configurations. The exit questionnaire is presented in

Table 4.4 and was analysed based on the post-task questionnaire responses.

Table 4.4: Exit questionnaire questions.

Exit Questionnaire

1. Which audio would you recommend to a friend?
2. Which audio did you find easier to get to the most relevant results?
3. Which audio do you think gave you the best result?
4. Which audio do you think was more efficient to use?
5. Why would you recommend the first/second search results to a friend?
6. Why did you find it easier with the first/second search results to get the most
relevant result?

4.2.2.5 Using Text as Baseline for Audio

Tasks were paired for analysis, whereby one task’s summaries were audio and the others

were text. The text output was used to create a baseline measure of the system, facili-

tating analysis of the difference in preference between audio and text [106], and enabling

us to compare audio against the text baseline. The text baseline and audio summary

were identical other than particular wording which indicates the output method, for

example, heard became read.

4.2.3 Participants

CrowdFlower allows contributors (e.g., researchers who submit tasks to CrowdFlower)

to place constraints on the users or crowd workers assigned to a task. The following

constraints were put in place for the present study:
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Figure 4.1: Example CrowdFlower task.

• Only users with an IP address from Australia, Ireland, New Zealand, the UK, and

the USA were allowed to participate to maximise the likelihood that users were

native English speakers or had a high level of English proficiency.

• Users were able to participate only once in a particular task to maximise the worker

pool.

• Users who took less than sixty seconds to complete the whole task were discarded

on the basis that it would take longer than sixty seconds to listen to/read the

summaries. This may have mitigated the impact of response bias resulting from

the lack of counter phrasing in survey questions 1–5.
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Although users were not permitted to participate more than once in a task which had

the same set of queries, they were allowed to participate in tasks with different queries.

A minimum of 36 participants were recruited for each given task [115]. It was found

that 11.8% of all participants did not answer the Gold Questions successfully, and their

submissions were discarded. These participants were also not allowed to participate in

later tasks.

4.3 Results

In this section, we discuss the data gathered through our crowdsourcing setup. We

describe the query judgement distribution based on the post-task questionnaire in Sec-

tion 4.3.1. We then present the exit questionnaire results in which users compared the

two results styles in Sections 4.3.2 and 4.3.3. We show results of the length preference

for text and audio summaries (Section 4.3.3).

4.3.1 Query Judgement Distribution

Participants were asked in the post-task questionnaire which summary made them want

to know more about the underlying document.5 These judgements were analysed with

the two-sample Kolmogorov-Smirnov test (KS test) to determine whether two given sam-

ples follow the same distribution [128]. If no difference is expected, these distributions

should be similar. We extracted the “click” distribution from this post-task question-

naire (i.e., the document users wanted to know more about) to compare the “click” con-

centration with the other results as a proxy for analysing click-through behaviour [122].

We compared the query judgement “click” distributions where the length of the sum-

mary was manipulated. The tasks were conducted in pairs: audio and text [106].

The results show that participants made very similar query judgements despite the dif-

ferent presentation styles (audio versus text). That is, 35 out of 40 query judgement

distributions followed the same distribution. The KS test showed that for full-length

summaries two out of 20 queries had different distributions for audio versus text-based

summaries. When investigating these two queries, the KS test revealed that one out

of seven single-facet query judgements was statistically significantly different (p < .05)

when comparing full-length audio to the full-length text baseline. The KS test showed

that one out of the 13 multi-facet query judgements was statistically significantly differ-

ent (p < .05) when comparing full-length audio to the full-length text baseline.

5This is equivalent to asking which result they would click in a traditional SERP.
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The KS test showed that for truncated summaries three out of 20 queries had different

distributions for audio versus text-based summaries. When investigating these three

queries, the KS test revealed that two out of seven single-facet query judgements was

statistically significantly different (p < .05) when comparing truncated audio to the

truncated text baseline. The KS test showed that one out of the 13 multi-facet query

judgements was statistically significantly different (p < .05) when comparing truncated

audio to the truncated text baseline.

4.3.2 Preferred Length of Text Summaries

The exit questionnaire was analysed using the χ2 goodness-of-fit test to compare the

distribution of scores across two levels. The χ2 goodness-of-fit test was used to assess

whether changing the result summary presentation length affected user preference [106].

Table 4.5 indicates that participants tended to prefer full summaries when presented as

text. For instance, 57% of participants would recommend complete text summaries to

a friend and 57% indicated that full summaries gave better results. The χ2 goodness-

of-fit tests were statistically significant (p < .01) for three exit questions concerning the

use of the original summary for presenting text results, indicating that this information

exploration style was preferred.

Table 4.5: Exit questionnaire results for preferences in the search engine result sum-
maries.

Exit Question
Text Summary Audio Summary

Full Truncated Full Truncated

Recommend to a friend 572N(57%) 434 (43%) 529 (51%) 512 (49%)
Easier to find relevant result 548N(54%) 458 (46%) 514 (49%) 527 (51%)
Gave better result 576N(57%) 430 (43%) 539 (52%) 502 (48%)
More efficient to use 529 (53%) 477 (47%) 499 (48%) 542 (52%)

Np < .01

4.3.3 Preferred Length of Audio Summaries

In contrast to the summaries presented via text, summaries presented via audio do not

indicate a clear preference between full and truncated (preferences differ at most by only

2%). The χ2 goodness-of-fit tests were not statistically significant (p > .05) for any of

the exit questions about audio results presentation. No statistically significant difference

was found for multi-facet queries. However, for single-facet queries using audio, there

was a statistically significant (p < .05) preference for truncated summaries.
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Participants reported that overall it was easier to recall truncated audio summaries

(54.4%) than full audio summaries (49.9%). Moreover, fewer participants stated that

they had to listen to the audio more than once (16.8%) for truncated summaries than

for full-length audio summaries (23.7%). Only three participants reported that they

stopped the audio for truncated summaries, possibly indicating that both the informa-

tion presented and the length of the information were short enough to avoid cognitive

overload.

4.4 Discussion

The aim of this study was to investigate whether summaries of shorter length would be

preferred for audio presentation as they could avoid cognitively overloading users [224].

The results showed that summaries which are optimised for a visual space may not

translate into audio without consequences [117].

In general, the same “click” distribution was found in the KS test for query judgements

between the text baseline and audio. This indicates that participants made very similar

query judgements regardless of whether the presentation style was audio or text (both

for full-length and truncated summaries). The exit questionnaire responses suggested

that for text summaries (single- and multi-facet) full-length summaries were preferred.

However, for audio, no length preference was found.

Nonetheless, truncated summaries were preferred in audio for single-facet queries. Thus

for more straightforward, less ambiguous queries, shorter audio summaries were both

effective and preferred. Furthermore, for multi-facet queries, participants may have

benefited from a more informative audio response even at the cost of listening time.

Participants reported that it was easier to recall truncated audio summaries and they

were less likely to listen to these audio summaries more than once. This suggests that

the information presented and the length of the information did not cognitively overload

the user.

The single-facet query judgement distribution for both audio and text followed the distri-

bution reported in past work, where query results ranked first and second received most

user attention [99]. However, this expected “click” distribution was not reflected in the

multi-facet query judgements; instead, audio summaries ranked first and last obtained

the most attention. This is also of interest: the serial nature of audio seems to lead to a

bias towards most-recently-heard results, a behaviour not found in visual presentation.
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Participants left comments in questionnaires. For summaries of multi-facet queries, they

indicated that the summaries were missing critical information. This suggests that the

way of presenting summaries may differ depending on query intent: short audio sum-

maries may be appropriate for explicit intent queries (single-facet), whereas broader

intent queries (multi-facet) may need more complex techniques (e.g., interactive/con-

versational approaches).

4.5 Conclusions

The chapter described an investigation into results presentation for audio-only based

search. This study aimed to address the following research questions:

• What is the impact of search result summary length in a spoken retrieval scenario?

• Do users prefer a full or truncated summary?

Differences were observed when result summary lengths were presented in the spoken

retrieval scenario. In general, there was no preference for fuller descriptive summaries or

truncated summaries. However, results revealed that different kinds of queries (single-

facet versus multi-facet) benefited from an optimised summary (full versus truncated)

depending on the type of query. This suggests that SCS systems will need to identify

the users’ needs and their context, and adapt the result presentation style accordingly.

The SCS system will also need to adapt to the users’ query style inside a search session.

That is, users may pose single- and multi-facet queries within one session, particularly

as they refine their search.

4.6 Chapter Summary

In this chapter, we presented an experiment on user preferences in results presentation

over an audio-only communication channel. This study can be viewed as the first step

towards informing the design of SCS. We answered the research questions related to

the investigation and showed that our experimental design of the study provides new

insights into how crowdsourcing can be used interactively.

A limitation of the study is the use of TREC queries to generate the snippets. These

queries are highly relevant in a written domain; nevertheless, it is possible that tasks

based on spoken information needs would be more suitable. Nonetheless, this initial ex-

periment has provided insight into the different extensions possible to this crowdsourcing
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study in results presentation which we present in Part IV of this thesis. Simultaneously,

our crowdsourcing methodology has been re-used in further investigations for results

presentation by Chuklin et al. [51] and Spina et al. [171].

As a result of this work, different kinds of queries need to be investigated to understand

the optimal results presentation which we attempt to address in our observational study

in Part III.

In this chapter, we presented a novel experimental setup to investigate user preferences

in results presentation over an audio-only communication channel. Our contribution

of this part is twofold, we provide (i) further evidence that one cannot translate text

into audio without consequences for user preference in an IIR setting, and (ii) a novel

crowdsourcing framework for user preference evaluation in results presentation.

From this study, we conclude that additional research is needed to understand precisely

which factors impact the results presentation preference and their usability. We expect

that other aspects, such as interaction frequencies, in addition to results presentation

and queries, are also different for SCS than in a traditional search engine setting.

In Part III, we overcome the limitations from initial audio-only interaction systems as

identified in Chapter 3 and the results presentation in Chapter 4 by studying interactivity

through an observational study.
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Towards a New Model of Spoken
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Introduction to Part III

In this introduction to Part III we present the approach of our qualitative research. We

provide the overall aims and purposes of our observational study including the methods,

analysis, and approach.

The aim of this qualitative part in the thesis is to explore SCS as a new search paradigm

and seeks to understand the exhibited behaviours demonstrated in an ideal scenario

for SCS. Thus, we aim to gain a deeper understanding and overview of the interaction

behaviours of a group of participants through qualitative analysis. We first create a rich

and detailed dataset through a Natural Dialogue Study (NDS) [221], which we refer to

as our observational study, to explore SCS interaction behaviours and to seek patterns

within this data through an inductive method. In particular, we use our observational

study dataset to better understand the communication behaviours at first-hand instead

of relying on questionnaires or self-report. This qualitative approach often takes longer

to complete than quantitative research because no pre-defined process is present [37].

Nevertheless, the strengths of our qualitative analysis are that it provides an in-depth

and detailed analysis to explain complex interactions during the information seeking

process.

This observational study, analysis, and results contribute to the broader SCS research

in several ways:

• We create the first SCS dataset (SCSdata) and we outline the method of capturing

and creating this dataset including details of the transcription process in Chapter 5;

• We summarise the observed information seeking conversational and behavioural

differences between browser-based and SCS interactions in Chapter 6;

• We identify, classify, and validate the interaction space for SCS which forms the

basis of our annotation schema, SCoSAS, in Chapter 7; and

• We conclude Part III by analysing the interactivity in the SCoSAS utterances on

task complexity, interactivity, and discourse in Chapter 8.
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Below, we set out the aims and purposes of our qualitative work while providing a

methodological overview of NDS, the exploratory observational analysis, thematic anal-

ysis, and validation of our investigations. Finally, we conclude by specifying the overall

approach and setup used for this qualitative component of the thesis.

Aims and Purpose

Many steps are involved in the analysis of spoken interactions between human partic-

ipants in order to understand tactics and strategies while performing a task such as

collaborative search. These steps include identification and classification of operations

designed to interpret search results or to progress the interaction to a successful outcome.

This section presents the overall setup of our observational study with the aim of creating

a dataset which is precise with repeatable protocols to provide a high-quality dataset.

To our knowledge, no publicly available guidelines are available for SCS data capture

and analysis, and we therefore adapted methods from Social Sciences [36] and SDS

research [133].

Natural Dialogue Study

Our first step is to explore how people interact or speak in the task they are trying

to accomplish [118]. In the case of a SCS system, one could investigate the reference

interview techniques or record elicitation processes librarians undertake with information

seekers [24, 69]. However, a more direct approach is to record a situation where people are

acting as close as possible to the task of interest [118]. A natural setting will encourage

participants to converse more intuitively and thus provide insights into the language or

vocabulary people use, their turn-taking behaviours, and the information flow [40, 221].

NDS supports an understanding of the accepted conversational patterns in human di-

alogue. More natural and usable conversational systems can be created by studying

human dialogue [221]. Furthermore, NDS provides insight into the grammar usage

while conversing in a particular task and gives examples of feedback or prompts. In

other words, NDS helps to explore the behavioural patterns and provides insights to

improve the design of the system while creating a conceptual understanding of human

dialogue behaviour [40].

NDS is not a Wizard of Oz (WOZ) technique. In a WOZ setting, a human acts as a sys-

tem while the user thinks they are interacting with a live system [76, 83]. Furthermore,



Part III. 61

a WOZ experiment can only be conducted if certain pre-conditions are met such as how

a system will respond in a particular setting. The WOZ methodology can be used once

preconditions, such as knowing how a system should respond, are met since the system

is simulated by a human. Thus, WOZ is suitable for hypotheses testing in contrast to

the NDS hypotheses forming approach [76].

Exploratory Observational Analysis

A number of disciplines such as communication studies [57], epidemiology [176], and

psychology [27] use observational analysis to investigate what people do or say rather

than what they say they do. Observational analysis provides a rich understanding which

leads to an in-depth explanation of the meaning and the context of phenomena [150].

However, conducting an observational analysis is time consuming and the communication

behaviour may be impacted by the lab-based setting [8].

We analyse the NDS by observing and examining the search and interaction behaviours

related to the audio-only interaction channel. Our exploratory observational analysis

is needed since SCS research is still in its preliminary stage. Moreover, due to limited

real-life multi-turn audio-only interaction systems, it is challenging to collect this specific

interaction data to infer behaviours. Thus, our exploratory observational analysis of the

NDS is a flexible method to provide insight into this new paradigm [150].

Thematic Analysis

Thematic analysis is widely-used for analysing qualitative data [37]. It involves identify-

ing, analysing, and reporting patterns (themes) within the qualitative data [36, 37]. The

purpose is to help researchers to organise and interpret data in a meaningful way through

an inductive process with possible outputs of themes, categories, or concepts [28]. Fur-

thermore, thematic analysis allows for analysing qualitative data in an accessible and

theoretically flexible manner [36]. We adopted the six-step process as outlined by Braun

and Clarke [37]:

Step 1: Familiarising self with data;

Step 2: Generating initial codes (codes are concepts or labels which describe important

elements of the data and can be seen as the most basic segment [34]);

Step 3: Searching for themes (themes represent a pattern or overarching construct in

the data which are typically derived from the codes while increasing the level of

abstraction; themes mostly have more explanatory power than codes [75]);
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Step 4: Iteratively reviewing each theme with reference to initial codes and the other

themes. This ensures themes reflect unique elements of the data;

Step 5: Defining and naming themes; and

Step 6: Producing the report.

I conducted steps 1–3. Steps 4–6 were conducted with the supervisory team.

Thematic analysis in SCS can be used for creating new information seeking models or

identifying issues in particular search stages. For example, mapping identified search

stages formed by the six-step process can provide insight into a precise information

seeking model by instantiating the different steps. Simultaneously, one stage of the in-

formation seeking process (e.g., examining results) could be investigated for particular

purposes (e.g., sense-making). Thus, thematic analysis allows for systematic investi-

gations of a non-functional system. To our knowledge, this is the first application of

thematic analysis in the examination of SCS.

Validating Thematic Analysis

Qualitative research uses different validity criteria than quantitative research [37]. There

are several criteria which can be calculated to guard the quality of the analysis. For

example, two researchers can code the dataset independently in which case the inter-

rater reliability in the form of Cohen’s Kappa can be calculated [119]. Further, the

generalisability and transferability of the results can be tested by applying the results

to a different dataset and thus strengthening its broader relevance.

Overall Approach and Setup

The development of spoken language datasets is a work-intensive and time-consuming

process. Nevertheless, these datasets are invaluable for conversational modelling, as a

resource for system development, or defining of vocabulary coverage [78]. The devel-

opment and evaluation of SDS is a well-studied problem and has shown that iterative

analysis and assessment is needed.

To enhance our understanding of SCS, we adopt NDS as a well-established technique

used in SDS to develop a spoken language dataset and utilise qualitative analysis to iden-

tify meaningful patterns in our dataset [36, 78]. The purpose of our experimental setup

is to specify the interaction possibilities in SCS. By outlining these different interactions,

we provide the first step towards uncovering the details of the SCS process [78].
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Methods

In this chapter, we present the methodology for our observational study, the data col-

lection setup, the transcription methodology, and the methodology for the data analysis

and annotation schema.1 To our knowledge, we created the first SCS dataset that cap-

tures the patterns in complex search tasks, the SCSdata, and provide the resources to

recreate similar datasets. We generated the SCSdata especially to investigate the in-

teraction behaviour between the two actors who are involved in an information seeking

dialogue. The work helps us answer the following:

• How are information-dense documents communicated in an audio-only setting?

• What are the components or actions of an information-seeking process via audio?

• What is the impact of task complexity on the interactions and interactivity in

SCS?

The SCSdata has been used in research published by us [198, 199] and has also recently

been used in a study within the broader IR community [205].

Additionally, we describe the qualitative methodology based on thematic analysis for

the creation of our SCS annotation schema, SCoSAS. Further analysis in this thesis is

built on the SCSdata which provides a rich understanding of how users communicate

over an audio-only communication channel.

1This chapter consists of the following publications J. R. Trippas, D. Spina, L. Cavedon, and
M. Sanderson. Crowdsourcing user preferences and query judgements for speech-only search. In SI-
GIR 1st International Workshop on Conversational Approaches to Information Retrieval (CAIR’17),
2017. 3 pages and J. R. Trippas, D. Spina, L. Cavedon, and M. Sanderson. A conversational search
transcription protocol and analysis. In SIGIR 1st International Workshop on Conversational Approaches
to Information Retrieval (CAIR’17), 2017. 5 pages.
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This chapter is structured as follows. Section 5.1 provides the general approach of the

observational study, including the framework to collecting our data, the development

of the annotation schema, the validation of the schema, and the development of design

recommendations. Section 5.2 provides key definitions used in this chapter. We then pro-

vide the observational study design (Section 5.3). Section 5.4 covers the recruitment and

sampling approach for our observational study. Details for the data collection setup, in-

cluding the task design, experiment procedure, questionnaires and scale, semi-structured

interview, and apparatus are presented in Section 5.5. Participants demographics are

described in Section 5.6. The transcription methodology together with the principles,

protocols, and quality assurance measures are presented in Section 5.7. In Section 5.8,

we provide details of the data analysis and annotation schema creation including the

methodology to code the transcriptions and validate these codes. This chapter concludes

with a summary in Section 5.9.

5.1 Approach

We conducted a laboratory study to collect utterances and search interactions to de-

velop the SCSdata. This dataset captures the utterances of two participants or actors

communicating to fulfil an information need. In particular, the purpose of the proposed

dataset is to understand how users communicate in an audio-only search setting where

no screens are available and focuses on the issues one could encounter when using such

a search system. Thus, observing how people search in this setting may provide initial

insight into the interactions taken [199].

In this chapter, we describe the qualitative approach of the SCoSAS development which

is an annotation schema created for SCS. The schema is analysed and then validated

with inter-rater reliability. Further validation is done against an alternative dataset

to the SCSdata. Our analysis provides insight into the interaction space, design rec-

ommendations, and a first SCS schematic model on which new hypotheses for further

research into SCS can be created. These new SCS models can lead to further perfor-

mance measures and evaluation of different features or interactions which can help with

the development of advanced SCS systems.

Iterative processes for design and testing have been used for many decades to develop

natural dialogue systems [65]. For example, Gorin et al. [82] first collected and analysed

human-to-human dialogues for a call-routing task in order to design a system based on

this data which they then analysed via a WOZ setting [35]. Our approach is similar,

we design the NDS which we refer to as the observational study and conduct this study

with participants. We process the collected data, and we create the SCoSAS, which is
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an annotation schema for this data. We analyse the annotation schema, validate it, and

derive descriptive statistics from the schema. Then, we extract design recommendations

and provide a schematic overview of the SCoSAS based on the previous steps as seen in

Figure 5.1.

Figure 5.1: Schematic overview of methodology.

5.2 Definitions

We now provide definitions used in the observational study.

Turn: Where a participant talks for an amount of time without being disrupted. If a

speaker interrupts another speaker, then the first speaker’s turn is finished. The second

speaker now takes the initiative.

Move: A move is an atomic interaction in a dialogue with a communication goal. Thus,

a dialogue consists of an array of moves. In a traditional visual-textual interface, a mouse

click or key press are single moves in the dialogue. Every action(s) a system needs to

take is linked to an atomic move from the participant. One turn can consist of multiple

moves.

Seeker: The Seeker is an observational study participant or actor who receives an

information need (backstory) but does not have access to the search engine to fulfil that

information need. The Seeker has to communicate with the Intermediary to receive

information from the search engine which is verbalised by the Intermediary.

Intermediary: An Intermediary is an observational study participant or actor who

does not have access to the information need. However, the Intermediary has access to

a search engine and has full control over it. The Intermediary has to co-operate with

the Seeker to resolve the Seeker’s information need.

Backstory: A short information need statement which motivates and contextualises a

search need.
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5.3 Study Design

Our observational study consisted of one session with two participants, where one par-

ticipant acted as the Seeker and the other participant as the Intermediary as illustrated

in Figure 5.2.

Spoken Conversational Channel

Seeker

Information
Need Search Engine

Intermediary

Figure 5.2: Experimental setup.

The Seeker received a short information need as backstory. The Seeker had to read

the backstory and verbalise the information need without reading out the backstory

to the Intermediary. Instead, the Seeker had to personally formulate their information

need problem to convey it to the Intermediary. The Intermediary had access to a search

engine through a desktop computer. In other words, the Seeker acted as the searcher and

the Intermediary simulated the audio-only interface. Participants could not access each

others’ tasks or search engine, were not able to see each others’ facial expressions, and

could only verbally communicate. All backstories were randomised and the participant

roles were randomly assigned.

The participants had to collaborate to satisfy the information need. Both participants

completed a pre-test questionnaire at the beginning of the study. The participants an-

swered a short questionnaire (pre- and post-task questionnaire) before and after each

scenario, at the end of the study (exit questionnaire), and a semi-structured interview

was conducted to conclude the study. The overview is presented in Figure 5.3 where

the blue line represents the Seeker, and the yellow line represents the Intermediary.

Participants could leave at any time, and there were no adverse consequences from par-

ticipating. All interactions were audio and video recorded and transcribed for analysis.2

Figure 5.3: Visual overview of experiment procedure.

2Transcripts are publicly released and can be accessed on http://bit.ly/SCSdata_thesis. Labelling
and a codebook information are on the webpage. More information can be found in Appendix C–D.

http://bit.ly/SCSdata_thesis
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The participants did not receive an example of how a search task could be solved to

avoid biasing the results.

5.4 Recruitment and Sampling

The study consisted of 15 observational study sessions of participant pairs (i.e., 30 par-

ticipants in total) completing pre-defined information seeking tasks.3 These studies took

place in a computer lab at RMIT University in Melbourne, in June 2016. Two partici-

pant pairs were used as pilots and are not included in the analysis. We distributed a call

for participation through the RMIT University Behavioural Business Lab mailing list.4

Participants with a high self-reported level of English were contacted for participation.

Convenience sampling of participants was used for this study.

5.5 Data Collection Setup

5.5.1 Task Design

Search tasks are an important element in IIR studies. It has been shown that different

information seeking tasks can have different search behaviours or characteristics [44,

97, 125, 218]. For example, Arguello et al. indicated that aggregated search in more

complex tasks received greater user interaction such as longer queries, a greater number

of queries, more SERP clicks, and more visited pages [11].

To examine the behavioural differences among our observational study participants, we

used backstories created by Bailey et al. [20]. These are based on three levels of cogni-

tive complexity suggested by Wu et al. [218] adopted from the Taxonomy of Learning

updated and redefined from Bloom’s taxonomy of educational objectives [9]. This tax-

onomy provides six dimensions to reflect the cognitive process and knowledge. These

cognitive process dimensions include: remember, understand, apply, analyse, evaluate,

and create, and their definitions are presented in Table 5.1. Each level increases the

degree of cognitive effort required. Although the taxonomy was established for edu-

cational purposes, it has also been used extensively to present cognitive complexity in

search tasks [11, 20, 46, 108, 218].

We describe an evaluation of nine search tasks based on the cognitive complexity frame-

work of the Taxonomy of Learning [9]. The following three cognitive dimensions were

3The setup was reviewed and approved by RMIT University’s Ethics Board (ASEHAPP 08-16). See
Appendix A.2.

4https://orsee.bf.rmit.edu.au

https://orsee.bf.rmit. edu.au
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Table 5.1: Anderson and Krathwohl’s Taxonomy of Learning objectives (cognitive
process dimension) [9].

Dimension Definition

Remember Retrieving, recognising, and recalling relevant knowledge
from long-term memory.

Understand Constructing meaning from oral, written, and graphic mes-
sages through interpreting, exemplifying, classifying, sum-
marising, inferring, comparing, and explaining.

Apply Carrying out or using a procedure through executing or
implementing.

Analyse Breaking material into constituent parts, determining how
the parts relate to one another and to an overall structure or
purpose through differentiating, organising, and attribut-
ing.

Evaluate Making judgements based on criteria and standards
through checking and critiquing.

Create Putting elements together to form a coherent or functional
whole; re-organising elements into a new pattern or struc-
ture through generating, planning, or producing.

used: Remember, Understand, and Analyse. We chose these different cognitive complex-

ities to observe different techniques and search behaviours used in an audio-only search

setting.

Table 5.2 presents the nine queries and backstories with relation to their cognitive di-

mension used in this study [134].

5.5.2 Procedure

Each session took 90 minutes per participating pair. Participants were rewarded with

20 AUD for their time. The procedure of the user study was as follows:

1. Welcome the participants to the lab and give them a brief introduction of what

will happen in this session. Ask the participants to read the information state-

ment. (The Participant Information Statement was a file on the webpage where

the participants signed up for the study. They were also sent the Participant In-

formation Statement by email with the confirmation of the time and date of their

appointment.)

2. Ask the participants to sign the consent form.5

5See Appendix A.3 for Participant Information Statement and consent form.
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Table 5.2: Example search tasks taken from Bailey et al. [20].

Dimension Query and Example Backstory

Remember What river runs through Rome, Italy?

Many great cities have rivers running through them, as rivers facilitated trade
and commerce as well as supplying fresh water to drink. You remember that
Paris has the Seine, London has the Thames, but what does Rome have?
What language do they speak in New Caledonia?

You and your partner are thinking of places to go on holiday. New Caledonia
is an option, but you realize you don’t know what language is spoken there
and you decide to find out.
Where does cinnamon come from?

The other day you were eating some spiced biscuits from Europe, when it
occurred to you that cinnamon probably isn’t native to that part of the world.
You would like to know where it comes from.

Understand Recycle, automobile tires

You need to buy new tires for your car, and the local dealer has offered to
take the old ones for recycling. You didn’t know tires could be recycled and
you wonder what new uses they are being put to.
Outsource job India

A recent report on the radio quoted a politician as saying that one of the causes
of rising unemployment in the U.S. was the outsourcing of jobs to India. This
has made you interested in finding out what jobs that used to be in the U.S.
have been outsourced to India.
Marine vegetation

You recently heard a commercial about the health benefits of eating algae,
seaweed and kelp. This made you interested in finding out about the positive
uses of marine vegetation, both as a source of food, and as a potentially useful
drug.

Analyse Turkey Iraq water

Looking at a map, you realize that there are several rivers that commence in
Turkey and then flow over the border into Iraq. You wonder if Turkish river
control projects, including dams and irrigation schemes, have affected Iraqi
water resources.
Airport security

Every time you go through the security screening at an airport, you wonder
whether it is making any difference. Find out how effective the many new
measures (beyond just standard screening) at airports actually are, both for
scrutinizing of passengers and their checked and carry-on baggage.
Per capita alcohol consumption

You recently attended a big party and woke up with a hangover, and have
decided to learn more about the average consumption of alcohol. You are
particularly interested in any information that reports per capita consumption,
and want to compare across groups, for example at the country, state, or
province level.

3. Provide details about the different roles as Seeker and Intermediary including the

protocol to stop and start the search between the tasks.

4. Ask one of the participants to act as the Intermediary and ask them to move to

the computer which is set up for the study.

5. Ask both participants to complete the Pre-test Questionnaire (See section 5.5.3.1).

6. Ask the Seeker to read the task for themselves (See section 5.5.1) and request the

Seeker to complete the Pre-task Questionnaire (See section 5.5.3.2). Then prompt
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the Seeker to start the search by saying “Start search” when ready. Reiterate to

the Seeker that they can stop the search when they believe enough information

has been collected to satisfy the information need by saying “Stop search”. A time

limit of 10 minutes was also put in place, and the researcher stopped the search

when this limit was reached to continue with the next task.

7. Ask the participants to complete separate Post-task Questionnaires (See Sec-

tion 5.5.3.3).

8. Ask the participants to repeat steps 6–8 with two different search tasks.

9. Ask the participants to complete separate Exit Questionnaires (See Section 5.5.3.4)

to capture overall feedback on their experience of the search and study.

10. Ask the participants to join the researcher for a semi-structured interview.

A total of 15 pairs (13 pairs excluding the pilot participants) completed three tasks each.

5.5.3 Questionnaires

After each task, both participants completed questionnaires adapted to their role. These

differences are reflected in the example questionnaires in the following sections and are

presented as a high-level overview in Figure 5.4. In general, the questionnaires’ objective

was to gather information about the participants’ familiarity to online searching and the

participants’ search success during the study.

All items are evaluated with a five-point scale, where 1=Not at all, 2=Slightly, 3=Mod-

erately, 4=Very, and 5=Extremely, unless otherwise stated. Questions or statements

in the questionnaire annotated with an asterisk (*) indicate that they are adapted

from Kelly et al. [108]. All questionnaires and semi-structured interview questions are

in Appendix B.

The questionnaires were administered on paper forms. The paper forms were because

the Seeker had no access to a computer.

5.5.3.1 Pre-test Questionnaire

Both participants completed a pre-test questionnaire before they started the full ex-

periment. This pre-test questionnaire gathered demographic data such as age, gender,

the highest level of education, employment, and computer and search engine usage.
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Figure 5.4: Overview of questionnaires and their measures.

Participants completed the Search Self-Efficacy scale [38] and rate their overall search

skills.

Participants were asked if they had experience with intelligent personal assistants such

as Google Now, Siri, Amazon Echo, or Cortana.

5.5.3.2 Pre-task Questionnaire

The Seeker completed a pre-task questionnaire after reading the backstory and before

initiating each search task. This questionnaire measured interest and knowledge in the
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backstory, task complexity, and expected task difficulty. The questions for the Seeker

are given in Table B.1.

5.5.3.3 Post-task Questionnaire

Both the Seeker and Intermediary completed a different post-task questionnaire tailored

to their role at the end of each search task. The post-task questionnaire assessed the

system–task interaction.

The questions for the Seeker are provided in Table B.2. The questions for the Interme-

diary are provided in Table B.3.

5.5.3.4 Exit Questionnaire

Participants completed the exit questionnaire after they finished all the search tasks and

before the semi-structured interview was conducted. Both participants received different

questionnaires which were tailored to their role.

The questions for the Seeker are provided in Table B.4. The questions for the Interme-

diary are provided in Table B.5.

5.5.4 Semi-structured Interview

At the completion of all search tasks and questionnaires, the participants were invited to

participate in a semi-structured interview. The interview investigated the following top-

ics from the questionnaires in more details: task complexity, expected and experienced

task difficulty, interest and knowledge, experienced conversational difficulty, experienced

collaboration difficulty, experienced search presentation difficulty, and overall difficulty

(for the semi-structured interview questions, see Appendix B.6).

5.5.5 Apparatus

Intermediaries completed the search tasks on a 21.5inch screen iMac with 8GB ram. In-

termediaries received a mouse and keyboard to interact with the search results. Chrome

version 51 was used as a browser, together with Silverback6 version 2.7 to record the

screen, audio, and face of the participants.

6https://silverbackapp.com/

https://silverbackapp.com/
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Google was used as the default search engine although participants were allowed to

switch to different search engines. The browser history and cache were reset after each

data collection session.

5.6 Participants

The observational study involved 26 participants (13 participant pairs) recruited through

a mailing list7. Fifteen participants were female and 11 were male with a mean age of

30 years (SD=11, median=26, range 18–54).

Twenty-two participants reported being a native English speaker, and four participants

said they had a high level of English proficiency. The highest level of degree held was

a Master’s degree. Eighteen participants reported that they were awarded a Bachelor’s

degree or higher and eight participants said their highest level of degree awarded was

High School graduation. The majority of participants were students (73%), 19% was

employed, and 7% were unemployed. The most common fields of education were Science

and Engineering (both 19% respectively) and Law (11%). Participants reported that

they had been using a computer for more than ten years (85%) and 15% reported using

a computer for 5–10 years. All participants said that they used search engines daily

with the majority of participants reporting that they used a search engine more than

eight times per day (54%) as seen in Figure 5.5.

Figure 5.5: Participants’ search engine usage per day (N = 26).

Participants rated their search skills on a 5-point scale, where 1=novice and 5=expert.

Participants’ mean search skills were 3.9 (SD=0.5), with a minimum score of 3 and a

maximum of 5.

7The mailing list is created and maintained by the Behavioural Business Lab at RMIT University,
https://orsee.bf.rmit.edu.au/

https://orsee.bf.rmit.edu.au/
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Participants’ search self-efficacy was measured with the Search Self-Efficacy scale [38],

which contains 14 items describing different search activities. Participants indicated

their confidence in completing each activity using a 10-point scale, where 1=totally

unconfident and 10=totally confident. Participants’ average Search Self-Efficacy was

7.3 (SD=1.51 and Cronbach’s alpha=0.93).

Participants reported their usage of intelligent personal assistants, such as Google Now,

Apple’s Siri, Amazon Alexa or Microsoft Cortana. Four participants reported never

having used an intelligent assistant and eight had used one a couple of times but no

longer did so as seen in Figure 5.6. The majority (54%) of the participants said they

used an assistant, consisting of five participants using one at least once a month and

nine participants using one at least weekly.

Figure 5.6: Frequency usage of intelligent personal assistants (N = 26).

5.7 Transcription Methodology

We captured a total of 6.5 hours of information seeking conversations in our labora-

tory study. To create a dataset which is reusable by other researchers we transcribed

the audio recordings. However, limited information for transcribing information seek-

ing conversations is available. Thus, we created a protocol to transcribe SCS which

included the quality assurance processes and information on the importance of choosing

transcription tools.

We first present general transcription principles followed by more detailed examples of

how these principles are translated for our transcription protocol. We then suggest tools

for transcription and introduce quality assurance processes.
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Other fields have established guidelines for both transcriptions and analysis (e.g., Social

Sciences [37] or ASR [184]); however, to our knowledge, there are no publicly available

guidelines for SCS. Given the importance of consistent research techniques to establish

a body of comparable work, we propose a protocol for information seeking conversa-

tions which includes data preparation, quality assurance, and analysis to assist future

researchers in the field.

5.7.1 Transcription Principles

We followed the principles presented below allowing for high-quality transcriptions. In

the transcription process, we wrote what was said; thus we did not include non-linguistic

observations such as facial expressions, body language, or intonations. Our transcription

is therefore verbatim and often referred to as orthographic transcription.

For our transcriptions, we aimed to capture how people expressed themselves in a search

situation and therefore we transcribed all recorded utterances with the following tran-

scription principles from McLellan, MacQueen, and Neidig [131]:

1. Preserve the morphological naturalness of transcription. Keep word forms, the

form of commentaries, and the use of punctuation as close as possible to speech

presentation and consistent with what is typically acceptable in written text.

2. Preserve the naturalness of the transcript structure. Keep text structured by speech

markers (i.e., like printed versions of plays or movie scripts).

3. The transcript should be an exact reproduction. Generate a verbatim account. Do

not prematurely reduce text.

4. The transcription rules should be universal. Make transcripts suitable for both

human/researcher and computer use.

5. The transcription rules should be complete. Transcribers should require only these

rules to prepare transcripts. Everyday language competence rather than specific

knowledge (e.g., linguistic theories) should be required.

6. The transcription rules should be independent. Transcription standards should be

independent of transcribers as well as understandable and applicable by researchers

or third parties.

7. The transcription rules should be intellectually elegant. Keep rules limited in num-

ber, simple, and easy to learn.
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We used ELAN (EUDICO [European Distributed Corpora Project] Linguistic Annota-

tor)8 [121] because ELAN accommodates both the use of the above principles and our

precise transcription protocol which is explained in the next section. These principles

and rules allowed us to create high-quality transcripts with an iterative manner which

was systematic and consistent.

5.7.2 Transcription Protocol

Transcription protocols have two main goals: minimising the probability that the tran-

scripts produced are inconsistent and reducing the likelihood that the data analysis

will be weakened or delayed [131]. We developed the following transcription protocol

adapted from Braun and Clarke [37] and McLellan et al. [131] based on the transcription

principles described previously.

• Turns were identified and every first word of each new turn was capitalised.

• Audio recordings were transcribed verbatim (i.e., recorded word for word, exactly

as said), and non-complete words or sentences were transcribed to the best of

the transcriber’s ability. Nonverbal or background sounds were not included (e.g.,

laughter, sighs, or coughs).

• If participants mispronounced words, these words were transcribed as the individ-

ual said them. The transcript was not “cleaned up” by removing slang, grammat-

ical errors, or misuse of words.

• While “aha”, “hmm” or “uhm” were included, linguistic- or phonetic-type tran-

scripts were not produced.

• Abbreviations were written as said, such as “TV” for “television”.

• Numbers were all spelled out (e.g., “90” is written as “ninety”).

• Spelled out words were capitalised (e.g., participant spells the country “New Cale-

donia” which is transcribed as “NEW CALEDONIA”).

• URLs were written as pronounced (e.g., “drive dot com dot AU”).

• Place names and brand names were written with an initial capital.

• Portions of the audiotape that were inaudible or difficult to decipher was tran-

scribed as [inaudible segment].

8http://tla.mpi.nl/tools/tla-tools/elan/

http://tla.mpi.nl/tools/tla-tools/elan/
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• Pauses in the speech were indicated with an ellipsis. A brief pause was defined

as a two- to five- second break in speech. Pauses longer than five seconds were

transcribed as [long pause].

• A style guide with vocabulary was kept throughout the project.

We did not focus on overlapping speech since this was not in the scope of our analy-

sis [131].

5.7.3 Transcription Quality Assurances

We developed a rigorous process for reading and reviewing the text. In particular, we

checked the audio a minimum of three times against the transcript before the transcript

was submitted.9 This technique is also referred to as the three-pass-per-tape policy [131].

All transcripts were audited for accuracy by a professional editor.

5.8 Data Analysis and Annotation Schema Creation

In this section, we provide all the necessary steps to create an annotation schema for SCS

by using thematic analysis. The purpose of our annotation schema, the SCoSAS, is to

understand all components and interaction paths of this new paradigm while providing

researchers with a labelled dataset for further research such as machine learning [221].

We not only describe the steps required to code transcriptions, but also provide infor-

mation on the analysis of the codes or annotation schema, and discuss the validation of

the schema.

5.8.1 Coding Transcriptions With Thematic Analysis to Develop SCoSAS

We coded (i.e., labelled) our transcriptions using thematic analysis as described previ-

ously in Part III Introduction. The labels of the SCSdata form the annotation schema,

SCoSAS. The Seekers and Intermediaries did not have access to each others’ search

task or search engine interface, could not see each other, and could only communicate

verbally. This setup can be seen in Figure 5.7 ((a) Seeker, (b) Intermediary).

The Seeker, Intermediary, and the Intermediary’s screen were filmed during the session.

The recordings were synchronised and merged for transcription. Recordings were tran-

scribed and coded in order of their historical occurrence. The codes were created from

the video and transcriptions in ELAN. We adopted the following steps:

9I created the transcriptions.
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Figure 5.7: Sample screenshot of ELAN transcription and analysis tool (anonymised).
Annotations indicate (a) Seeker, (b) Intermediary, (1) Controlled vocabulary Seeker,

(2) Transcription, (3) Query.

Step 1: Identifying when each participant spoke, i.e., identifying turns.

Step 2: Transcribing the turn.

Step 3: Designing and assigning codes to each turn with ELAN. Observational notes

were added. The full dataset was coded with each utterance receiving equal at-

tention. We classified concepts from the recordings and devised a coding scheme

according to the similarities across different actors. The codes were designed to

identify the single action occurring in that turn, describing features of the data

and defining the function of the turn. Thus, turns were annotated with the actions

taking place. Consequently, meaningful labels were developed from the original

annotations. Controlled Vocabulary was added to a dictionary which was created

during coding. This dictionary was then developed into a full codebook.

Step 4: Combining codes into themes for further analysis.

Step 5: Checking quality assurance. Transcriptions and codes were exported from

ELAN to a text file. Spelling and codes were checked.
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Step 6: Importing files into R and aggregating codes to check whether codes within a

theme conceptually belonged to that theme.

Note: Steps 3–6 were conducted iteratively. This process reduced the initial 100 codes

to 84 through the identification of overlapping codes. To preserve the nuanced

action described in the codes for future information seeking research, distinctions

between closely defined codes were retained. For example, the codes “Information

request” or “Information request within document” were retained to identify in

which section of the interaction particular information was requested.

5.8.2 Analysis of Coding

The ELAN transcriptions with codes and observational notes were transferred to R for

further analysis. The transcriptions were modified to lower case, and punctuation and

extra spacing were removed. We deliberately did not eliminate any errors, false starts,

or confirmations since these occur in real case voice search scenarios.

In the context of mixed-initiative information retrieval dialogues, the terms control and

initiative are used interchangeably. However, we used the approach of taking the initia-

tive equals taking the turn, as described by Hagen [88]. Adopting this approach means

that one turn can consist of multiple moves or communication goals [187]. We coded the

complete dataset identifying aspects of relevance to our research aim. Thus, codes were

applied to each turn taken by either the Seeker or Intermediary and these codes were

collated and given themes. Themes may consist of sub-themes which capture specific

concepts of that theme as illustrated in Figure 5.8.

5.8.3 Validation of Annotation Schema SCoSAS

To reduce the possibility of missing important data points, we validate our coding schema

in two ways. We computed (1) inter-rater reliability and code overlap, and (2) overlap

and coverage based on the coding of a different dataset, The Microsoft Information-

Seeking Conversation data (MISC)10, with our predefined codes [185].

A second independent annotator, who is familiar with information seeking and informa-

tion retrieval research, recoded all utterances in the SCSdata to obtain the inter-rater

reliability with Cohen’s Kappa and code overlap [119]. The second annotator used the

codebook for closed coding (i.e., the categories were already determined).

10The MISC data was accessed at http://aka.ms/MISCv1.

http://aka.ms/MISCv1
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Figure 5.8: Example of coding utterances for Seeker and Intermediary.

Identifying useful actions for SCS which have not been covered in the SCoSAS provides

an understanding of the scope of our coding schema. Therefore we apply the SCoSAS

to a second and similar dataset, the MISC to calculate the overlap and coverage [185].

We took a random sample from the MISC and coded the utterances according to our

dataset. Nevertheless, it may not be possible to achieve complete coverage with our

annotations given the complexity and unexplored interactivity of a SCS information

seeking dialogue [174]. In addition, achieving full coverage is difficult and often not

possible to achieve [175]. Hence, declarations which were not covered in SCSdata received

new codes according to the steps mentioned earlier in Part III Introduction.

5.9 Chapter Summary

This chapter aimed to outline the methodology for creating the dataset SCSdata. Fur-

thermore, the chapter discussed the analysis of the dataset to create the first annotation

schema for SCS, the SCoSAS, including validating the dataset.

The detailed methodological setup contributes to (i) the experimental setup to re-create

and develop more SCS datasets, (ii) a novel annotation schema creation methodology

through the coding of transcriptions for SCS, and (iii) a method to evaluate the anno-

tated SCSdata.



Chapter 6

Observing Spoken Conversational

Search Interaction Behaviour

In the previous chapter we described the creation of the SCSdata. In this chapter, we

use the data and we present the results from the observational study by inspecting the

conversational interactions.1 By examining the conversations from our study, we identify

commonly used interactions which apply to SCS. Thus, we observe the characteristics of

spoken exchanges in an information seeking environment. We describe and analyse these

interactions and provide examples where possible.2 The results are further discussed in

Part IV.

The key finding of this chapter is that interactions can be divided into search communi-

cations (e.g., how people express their information needs or how found results are com-

municated) or non-search communications (e.g., utterances to repair the conversation).

We illustrate with our observations and examples that complexity and interactivity are

intrinsic components of SCS. We highlight that sophisticated systems will be needed

to overcome the difficulties these inherent components pose. Furthermore, our results

suggest that we may need to review the existing information seeking models to include

this increased complexity and interactivity of SCS. This chapter provides a basis for

illustrating that necessary re-examination.

The observational results are divided into two sections outlining high-level observation

interactions. First, Section 6.1 describes observations which are related to search inter-

actions. We frame these observations in the different stages of an information seeking

process as specified by Sahib et al. [157], enabling us to introduce our observations

1This chapter consists of the following publication J. R. Trippas, D. Spina, L. Cavedon, H. Joho, and
M. Sanderson. Informing the design of spoken conversational search. In Proceedings of Conference on
Information Interaction and Retrieval (CHIIR), pages 32–41, 2018.

2Examples have been edited for readability and are marked accordingly.
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in a structured manner. Second, Section 6.2 presents non-search interactions, which

are not explicitly constrained to search but cover the integral features of SCS, such as

communication and cognitive user models.

6.1 Search Interactions

We present observations at four stages of the information seeking process: Query Formu-

lation, Search Result Exploration, Query Reformulation, and Search Results Management

as defined by Sahib et al. [157]. These stages are analogous to Marchionini’s Express,

Examine, Reformulate, and Extract Information stages in Information Seeking Process

(ISP) [126]. Furthermore, Sahib et al.’s stages of information seeking provide broad

phases for the collected observations while still offering a structure which is embedded

in search interactions [157].

For each of the four information seeking process stages, we describe the observations,

present an analysis of the observations, and provide examples. In the query formulation

stage, we discuss the naturalness of information requests. We then continue with the

search results exploration stage where we illustrate the difficulty Seekers had to distin-

guish whether information came from a SERP or a document. We also outline how

relevance feedback can be captured in this audio-only environment, and how Interme-

diaries had to assist the Seekers with more visual information, such as the awareness

of novel or previously seen information including the interpretation of graphical con-

tent. We progress to strategies addressing the query reformulation stage and examine

how Seekers presented repetitive search tasks and provided information requests within

documents. Finally, we investigate the search results management stage and how the

extracted information was stored.

6.1.1 Query Formulation

For the observational study, we provided the Seekers with a backstory for each informa-

tion seeking task, allowing them to verbalise their own “information request”3. In this

section, we provide examples of these information requests and how they are formed

when they are articulated instead of typed.

3We use the notion of information request because these expressions were often not precise queries
but more an explanation of what the Seekers were looking for.
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Naturalness of Information Request

Seekers varied the way they verbalised their information request: from uttering a query-

like expression to describing a detailed and carefully crafted information request. The

examples in Table 6.1 illustrate the wide range of information requests posed.

Table 6.1: Example information request utterances.

Example utterance Characteristic

1 “Turkish river control” (P7) Query-like

2 “So uhm what jobs that used to be in the US are no longer
have been outsourced to India?” (P13)

Natural language type query

3 “So I’m trying to find the count part in uhm a biscuits that
you are get from Europe uhm it contains cinnamon and I
want to know where the cinnamon is coming from are there
is this uhm is this coming from Europe uhm so how to uhm
search for uhm cinnamon Europe biscuits” (P23)

Query babbling [138]

4 “Maybe start off with uhm type in the origins of cinnamon”
(P5)

Instructions plus query-like

5 “Can you please search car tyre recycling [long pause] and
then in the results I am looking for examples of what uhm
recycled car tyres are used for” (P15)

Step-wise information request re-
vealment (Instructions plus query-
like and additional information on
what to look for in the results)

“Have Turkish river control projects affected Iraqi water re-
sources [long pause] so we’re looking for if dams or irrigation
schemes have affected uhm any of the Iraqi people” (P17)

Step-wise information request re-
vealment (Natural language type
query plus additional information
on what to look for in the results)

6 “Uses for old car then the query or, passenger vehicle tyres
TYRES (Seeker spells tyres) or in caps tires TIRES (Seeker
spells tires) ... and I wanna uhm do a date range so the
data is from the most recent twelve months, so uses for old
car caps or passenger vehicle or tyres TYRES (Seeker spells
tyres) caps or tires TIRES (Seeker spells tires) and data in
the last twelve months that’s the query” (P3)

Detailed and carefully crafted infor-
mation request (teleporting [180])
plus utilising extra features such as
date range from the system

Many different expressions of information requests were observed that did not conform

to the conventional length of browser-based search query (of 3.2 words) [87]. Instead,

these information requests included natural language requests, instructions, or additional

information to the original information request. Other observations include Seekers

wanting to spell keywords in their queries or use advanced search mechanisms such as

Boolean syntax. Note that in an audio-only setting, allowing spelling may be a primary

feature, given that typing or copying/pasting keywords is not readily available.

It could be argued that some of these information requests are observed because Seekers

are not restricted to a typical web-based search box and do not have to translate their

thoughts into queries. More precisely, by not conforming to the average query format

used in a browser-based search setting, we now see an increase in the range of ways

in which information requests can be expressed. Besides this increase, we also notice
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that the scope of this range is so diverse, from query-like to query-babbling information

requests, that we experience an increase in information request complexities.

6.1.2 Search Results Exploration

In this section, we investigate the interactions between the Seeker and the Intermediary

after the initial information request (i.e., any interactions after the first turn).

First, we investigate the concept of the boundaries between the SERP and the docu-

ments. We then cover how both Seeker and Intermediary are actively involved in rel-

evance judgements, and outline what happens when previously encountered results are

seen. Finally, we investigate how graphical information can be useful in an audio-only

setting.

SERP and Document Boundaries

In traditional IR, the SERP and the documents linked to the SERP can be thought of as

different entities. Nevertheless, in our study, where a human simulated the SCS system,

these differences were not present for several Seekers during their search. There were

instances where a Seeker asked an Intermediary to access a particular document from a

SERP assuming the Intermediary was located on the SERP. However, the Intermediary

was already positioned within the document without the Seeker realising this. An ex-

ample of the Intermediary not communicating that they navigated from the SERP to a

document, resulting in ambiguity for the Seeker as to whether a navigational interaction

has taken place, is seen below:

P6 -Intermediary: I have an article on marine natural products and their potential

applications as anti-infective agents

[Scanning document without modification]

P5 -Seeker: Yeah maybe have a look into that [...]

[Access source]

Seekers believed that information items were accessible (i.e., clickable) even though they

were not (i.e., non-hyperlink click [212]). It suggests that Seekers misunderstood cues

of which information was accessible.

P3 -Seeker: Uhm... could I open the recyclers recycle uhm in a new tab [...]

[Access link within document]
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P4 -Intermediary: It doesn’t seem to have... a... tab for that

[Feedback on what is happening]

In the above example, the lack of visual feedback played a crucial role in the navigational

interactions. Providing such information in audio would improve usability for the Seeker

by informing them when an item is hyperlinked or not (i.e., clickable).

We also observed Intermediaries providing summaries covering aspects of multiple doc-

uments without the Intermediary indicating this to the Seeker, and thus not giving

information about the boundaries between different documents. This may suggest that

incorporating multi-document summarisation [21] may be beneficial in transmitting in-

formation in an audio-only search setting.

The idea of a SERP (the tool4) and the document (the goal) is not distinctively pre-

sented in an audio-only communication setting. The lack of location-aware information

throughout the search experience increases the need for further clarification communi-

cation.

Explicit Relevance Feedback

In our spoken search environment, we observed Seekers providing explicit relevance

feedback without being prompted. For example, a Seeker provided positive feedback

by saying: “Yeah I think yeah that actually sounds pretty good that could potentially

be relevant is there anything else or is that it?” (P5). We also observed utterances

which may be interpreted as negative relevance feedback: “OK alright that’s probably

not relevant then so yeah we wanna just find something actually where does the spice

cannanon cinnamon come from” (P5).

Novel versus Previously Seen Information

A change in link colour is typically used to indicate whether a particular link on a SERP

has been previously clicked.5 These changes provide feedback to users as to whether they

have visited the underlying document. We observed several groups indicating that the

same search results were displayed: for example, Intermediaries would state “I keep on

getting the same [ed. search result]” (P6) or “we’re back to that [ed. search result] again”

(P2).

4We note that search engines now provide cards on the SERP and these have often become the goal.
5Cache and browser history was reset after each observational experiment.
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Interpretation of Graphical Information

For the majority of browser-based search engine users, graphical information, such as im-

ages, tables, charts, or videos is accessible, but this is more challenging in an audio-only

setting. In our observational study, Intermediaries interpreted graphical information to

convey the presented information, and most of the interpretations were made of images

and graphs in a document.

The next example shows a detailed conversation about a graph and table including the

Seeker querying inside this information:

P4 -Intermediary: OK so it looks like it’s covering World Health Organisation

data from 2010 uhm and the report was published in 2014

uhm it has calculations used by people aged fifteen years and

older uhm... [...]

P3 -Seeker: Does the data uhm illustrate per capita consumption... by

country?

P4 -Intermediary: Uhm... I believe that that would be... the first column... OK

this is the list of countries by alcohol consumption measured

in equivalent litres of pure ethanol consumed per capita per

year

P3 -Seeker: Fantastic uhm please read out the top ten

P4 -Intermediary: Uhm Belarus, Moldova, Lithuania, Russia, Romania, Ukraine,

Andorra, Hungary, Czech Republic

P3 -Seeker: Where is Australia in the list?

We also observed another interpretation of images whereby the Intermediary navigated

to the image tab on the SERP to quickly gather insight into an object which she then

described to the Seeker. Thus, this way of accessing images provides an overview of

the information space (i.e., a set of knowledge or information units and their relation-

ship) [135].

6.1.3 Query Reformulation

In the query reformulation stage of the information seeking process, we examine how

Seekers express conditional information request statements (i.e., if a search result is

true to a particular condition then use that result for further searches) and information

requests within documents (i.e., the “find” (Control+F) function in a browser).
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Automated Repetitive Search or Conditional Information Request

To save time and effort, people try to find ways to automate repetitive tasks into batches

instead of performing each task individually. We observed instances of this notion of

“automation” or adding conditional statements during the conversational search setup.

For example, one participant pair wanted to find more information about the health

benefits of eating seaweed. The Seeker (P23) had different types of seaweed in mind

that she wanted to look up and in collaboration over multiple turns the pair created a

short query loop. This can be summarised as illustrated in Algorithm 1.

Algorithm 1: Automated Repetitive Search (Seaweed)

Result: Which are the health benefits of different seaweeds

1 foreach Seaweed do find health benefits;

2 else

3 Seaweed not relevant to search

4 end

Another participant pair created a conditional search task with multiple conditions. This

time the Seeker (P25) wanted to investigate rivers in Turkey and Iraq before searching

for dams among those rivers. For each river that had a dam, the Seeker wished to

know the construction date and water volume. The example is given in Algorithm 2 to

illustrate this kind of behaviour.

Algorithm 2: Automated Repetitive Search (Rivers Turkey)

Result: Did Turkish river control projects affect Iraqi water resources
1 foreach River in Turkey and Iraq do
2 if They have a dam in Turkey then
3 if Building date of dam and volume is stated then
4 Compare river’s volume in Iraq before and after building of the dam
5 end

6 end

7 end

It appears that these Seekers had already planned their search path before starting the

search or had formed a model of the Intermediaries’ capabilities. These two examples

could be seen as one way of “taking control” over the search interactions by planning

ahead and commanding this particular search flow. In other words, the Seeker has set

out a clear path of how they want to search without handing over decision making

responsibilities to the Intermediary.
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Information Requests Within a Document

We observed Seekers providing an explicit information request only once they navi-

gated to a particular SERP/document. Here, Seekers requested information about the

document that was being inspected by referencing to the given backstory or pieces of

information within the document. Furthermore, in some cases Seekers requested in-

formation within the navigated SERP/document concerning the given backstory, thus,

revealing their information need in step-wise fashion.

P7 -Seeker: Health benefits of marine vegetation

[Initial information request]

...

P8 -Intermediary: It just says a lot of comparing and uhm like there are some

articles that start to talk about like uhm sort of plants and

stuff

P7 -Seeker: Uhm do some articles mention the use of marine vegetation as

a drug like in medicine

[Information request within SERP]

In other cases, Intermediaries presented some information from the given document and

Seekers wanted to know more about a specific entity provided in that document and

thus explicitly queried in the document.

P5 -Seeker: Yeah maybe click on it and see what it says so we can get a

bit more information

...

P6 -Intermediary: It mainly describes about marine uhm marine cellular organ-

isms of the sea

P5 -Seeker: Does it say anything about it them being food?

[Information request within document]

6.1.4 Search Results Management

This last stage of the information seeking process, as defined by Sahib et al., is con-

cerned with the search results management after the information extraction [156] and in

particular which techniques users use to store the found information (e.g., note-taking,

bookmarking, or favouriting).
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We had not asked our participants to take notes throughout the search interactions, and

we explicitly said we would not quiz them on their found information. However, five out

of 13 Seekers took notes throughout the search process on the paper document with the

search tasks printed.

6.2 Non-Search Interactions

This section introduces observations made which are not explicitly related to search

interactions but cover broader considerations. We demonstrate how SCS introduces

new aspects to the well-known one-action search paradigm observed in a conventional

browser-based search setting. We continue by outlining differences among user and

system models and memory, and highlight that these can be created over multiple turns

in one search session or over multiple sessions. We then analyse how a SCS system can

become actively involved in a search session beyond “taking initiative” and investigate

the impact of the audio-only communication channel. To conclude this section, we link

these four non-search interaction observations.

6.2.1 One Utterance Consists of Multiple Moves

Complexity appeared to be added in a search process by allowing users to verbally convey

their query. In a browser-based search, a mouse click or key press are single moves. Each

action a system needs to take is linked to an atomic move from the user. It could be

said that we have a one-action search paradigm (action–response) in a browser-based

search setting: if a user provides input (query), the system will respond (results). Search

interactions in such a context can be seen as a linear process.6

However, we observed that this one-action search paradigm does not hold in our observa-

tional setting where information is conveyed via audio through spoken interactions with

another person. Instead, we saw Seekers describing multiple moves in one utterance.

An example of multiple moves in one utterance is shown in Figure 6.1. The codes below

each utterance describe the actions of the turn. In this example, the Seeker first defines

a navigation action and with the second part of the utterance asks the Intermediary for

feedback. Intuitively, this full utterance now consists of two actions or codes.

We also observed utterances with more than two moves; however, this was rather unusual

(0.47% of total dataset). These two or more moves in a single utterance increase the

complexity of Seekers’ and Intermediaries’ interactions.

6Note, this one-action search paradigm could be manipulated by Seekers, for example by opening
several tabs from the SERP.
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Figure 6.1: Example of multiple moves in one utterance.

6.2.2 User and System Models and Memory

“The overall approach is based on the idea of cognitive models or

images that the components of the system have of one another and

of themselves” Belkin [23, p. 111]

We observed participants building mental models (i.e., a representation or mechanism

for explaining one’s understanding of an application or system) of their partner during

the experiment:

Seeker Built Model of Intermediary

Some examples include Seekers creating concepts or representations of which actions

Intermediaries could perform. In one instance, the Intermediary offered a function to

the Seeker by asking if they would like to open a link in a new tab. The Seeker now knows

that this is an option of the “system” and later in that session, the Seeker requested

several links to be opened in different tabs. Later in that same session the Seeker

examined the extent of the function by asking “Could I open the recyclers recycle uhm

in a new tab... if it allows that” (P3) and thus challenged their built Intermediary

model.

Intermediary Built Model of Seeker

Other instances were recognised where Intermediaries started creating an understanding

of what Seekers preferred to hear as output. From the Intermediaries, we noticed two

distinct differences in their utterances. Firstly, Intermediaries assumed how the infor-

mation should be presented to the Seeker. For example, through the interaction between

the participants, one of the Intermediaries was able to form a model of how the Seeker

preferred to pose information requests (this particular Seeker represented her informa-

tion requests distinctively with Boolean syntax). As such, the interactions allowed the

Intermediary to establish a model of how the Seeker would form or structure her in-

formation and was able to mimic and present this information request formulation to

satisfy her need.
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Secondly, the Intermediary formed a cognitive model about which information should

be presented to the Seeker. In this instance, the Intermediary reported the names of

objects. When the Seeker posed another information request, the Intermediary checked

whether the Seeker wanted object names again, even though it was not specified in the

Seeker’s information request. As such, a SCS should make the distinction between how

the information should be presented (form) and which information should be presented

(content).

Creating Memory over Multiple Turns/Sessions

In this example, the Seeker asked for “numbers” (i.e., numerical information) for a

particular backstory. For the next backstory, the Intermediary directly asked whether

the Seeker would like to navigate to the statistics section. This demonstrates an example

of creating memory over multiple turns. In another example, a participant pair had

learned from a previous backstory that they could use Google Scholar which the Seeker

preferred. In the next search task, the Intermediary explicitly mentioned that scholarly

articles were available for their information need. The interactions demonstrate that

memory may be created over multiple sessions as well as multiple turns [146].

6.2.3 Decision Offloading and Taking Control

We observed Intermediaries applying many different techniques to deal with the chal-

lenge of transferring information through an audio-only communication channel. Exam-

ples include reading out search results sequentially, summarising a SERP, or requesting

feedback as to whether more information had to be transferred.

We also noticed that Intermediaries became more involved in assisting to express the

Seeker’s information need, adopting a leading approach. In the following example, the

Intermediary refines or rewrites the Seeker’s utterance into a specific query.

P23 -Seeker: ... cinnamon is from Europe, so I was trying to look uhm is it

from Europe or from other places

[Information request]

P24 -Intermediary: I look up cinnamon suppliers... in Europe

[Query refinement offer]

We observed Intermediaries actively trying to satisfy the Seeker’s information need by

making decisions and thus taking more control over the search process. More specifically,
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these assisting and leading Intermediary utterances suggest that Intermediaries have a

significant role in deciding which information is transferred. The Intermediaries are

making selections as to what information is appropriate to share at a given moment.

This decision making process may also suggest that Intermediaries have to calculate the

cost–benefit, which may influence Seeker-satisfaction, associated with each strategy to

decide which one would be more likely to benefit the Seeker.

These observations corroborate that, given the high cost of delivering information via

a linear channel such as speech, it is not optimal to present all found information.

Instead, the system needs to decide which information it should offer at each interaction

by continuously estimating the cost–benefit to the user.

In contrast to having the Intermediaries decide what information to transfer, we also

observed Seekers explicitly requesting the Intermediary to make decisions for them, e.g.:

“Uhm do you think that’s enough to get an idea of where it actually came from or do you

think we should keep going?” (P5). It could be suggested that this particular decision-

offloading example is an artefact of the Seeker being aware that there is an Intermediary

(i.e., a human). However, this would warrant further exploration in a WOZ setting.

6.2.4 Effective Information Transfer

Sometimes actors misheard each other (i.e., the information transfer was not successful

or was disrupted) and had to repair their conversation [165]. To repair, actors requested

a repetition of a previous utterance: “Sorry what, can you repeat that sentence” (P3)

or “can you repeat that please” (P20). Actors were also observed hesitantly repeating

back what the other had said. In other situations, actors misapprehended a message

and were later corrected by their partner.

6.2.5 Linking Non-search Related Observations

In the above sections, we provided observations which suggest that the audio-only inter-

action channel will greatly impact the interactions between the users and the future SCS

system. Interacting verbally increases the flexibility of what users can provide as input,

which was illustrated with the observation that one utterance could consist of multiple

moves. However, this flexibility also increases the complexity of the belief regarding

what a system or user can do (cognitive user model) as there are no conventional or

pre-set interaction paths. Even though the responsibility for decision making could be

shared between actors or shifted from one to another, all this is only possible when the

information transfer is successful and effective.
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6.3 Chapter Summary

This chapter explored SCS, an emerging interactive search paradigm wherein all interac-

tions are performed through audio. We conducted an observational study to learn about

this new phenomenon in a structured way. We not only presented the observations con-

cerning search but also included non-search interactions (i.e., utterances to help repair

the conversation). We suggest that non-search interactions have become an integral part

of the search process and should be included in future information seeking models. Each

presented observation was described, analysed, and where possible examples were given

to illustrate the workings of that particular observation. We concluded that this new

paradigm is much more complex and interactive than the search scenarios/paradigms

covered by existing models.

The primary inference of this chapter is that even though many audio-only interactions

are similar on the surface to a conventional text search interaction, each interaction

comes with additional complexity due to the uncertainty of the correct information

transfer. We also suggest that future information seeking models may have to include

the multi-level classification of search and non-search interactions. In particular, we

suggest systematically investigating utterances from the observational study to better

understand these nuances which form an intricate part of this audio-only search. We

aim to address this in the next chapter.





Chapter 7

Identifying, Classifying, and

Validating the Interaction Space

for Spoken Conversational Search

In the previous chapter, we identified that a more rigorous investigation is needed to bet-

ter understand the possible user–system actions in SCS. In this chapter, we analyse the

SCSdata through identifying and classifying the transcribed utterances of our empirical

laboratory study.1 Thus we investigate the role of these information seeking communica-

tions [197]. We present the themes and sub-themes which are based on the constructed

codes (or labels) derived from the thematic analysis and present them in the SCS anno-

tation schema, SCoSAS. These themes provide the characteristics of information seeking

dialogues in a conversational setting, the actor’s role, and the actor’s relationship with

the conversation. We also validate the SCoSAS to verify its consistency, correctness,

and usefulness.

Even though annotation schemas for SDS often include some notion of information

seeking/providing functions, currently these functions are very high-level and are created

for general purpose functions only [42]. Therefore, we created this annotation schema

due to the lack of previously defined classification designs for information seeking.

The overview of the methods used in this chapter has been explained in the introduction

of Part III. In summary, the methodology relevant to the experiment reviewed in this

chapter is thematic analysis which is described in Section 5.8.1. Our key outcome is

1This chapter consists of the following publications J. R. Trippas, D. Spina, P. Thomas, H. Joho,
M. Sanderson, and L. Cavedon. Towards a model for spoken conversational search. Information Pro-
cessing & Management, 2019. (Submitted) and J. R. Trippas and P. Thomas. Data sets for spoken
conversational search. In Proceedings of the CHIIR 2019 Workshop on Barriers to Interactive IR Re-
sources Re-use (BIIRRR 2019). CEUR-WS, pages 14–18, 2019.
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a classification formation that establishes the SCoSAS and consists of three themes:

Task Level, Discourse Level, and Other Level. Additionally, we validated the annotation

schema through calculations of inter-rater reliability and code overlap with the SCSdata

and an external annotator. Finally, we calculated the code overlap and coverage between

the SCSdata and MISC for validating our schema.

The significance of this chapter is twofold: we (i) develop a classification schema and

(ii) test and validate this schema. More importantly, we show that our schema is

generalisable and replicable for a SCS setting.

This chapter is a key component in the process of creating meaningful annotated SCS

datasets by extracting and abstracting communication behaviours. Thus, we demon-

strate how to construct accessible datasets by distilling the complexity of spoken infor-

mation seeking conversations. In particular, this chapter allows for the organisation of

our collected data by way of classification.

To summarise, this chapter is divided into the following sections: in Section 7.1, we set

out the aims of the information seeking conversation analysis. In Section 7.2, we describe

all the identified themes and sub-themes, and we then validate the coding consistency

within the SCSdata in Section 7.3. We further validate our coding schema in Section 7.4

by transferring our annotation schema to a different dataset. This chapter concludes

with the summary in Section 7.5.

7.1 Aims

Our observational study was conducted to investigate the possible interaction space of

a SCS system [197]. This study was designed to understand how users communicate

in an audio-only search setting and focusses on the characteristics of this interaction

paradigm. Thus, observing how people search in this setting provides initial insight into

the possible scope of these future systems.

This analysis chapter aims to outline and explain the coding process for thematic analysis

including the production of our coding schema, SCoSAS, and validity checks (general-

isability and replicability of coding schema). Our detailed descriptions strengthen our

analysis and aim to address the lack of documentation transparency on how annotation

schemas are developed.
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7.2 Utterance Classification: Themes for SCS

In this section, we first set out the specifics of the code separation to analyse these codes

independently of each other. We then describe each theme and their corresponding sub-

themes to finalise the deduction of the SCoSAS from those identified classifications (i.e.,

themes and sub-themes).

To understand which actions are taken, we split all codes where more than one code

was attached to an utterance — thus creating atomic actions per utterance for a more

natural grouping of these actions into themes and sub-themes. We present the three

themes and their corresponding sub-themes as follows. The first theme, Task Level, is

related to search interactions and the topical investigation. The second theme, Discourse

Level, is associated with communicative functions between the Intermediary and Seeker

for smooth collaboration. The third theme, Other, consists of utterances that belong

to neither the Task nor the Discourse levels. Example utterances are provided for each

sub-theme throughout the chapter. Tables of all the themes, corresponding sub-themes,

participants (or actors), and codes are included in Appendix D.

The themes, sub-themes, and codes are all based on the SCSdata. All examples given

in this section are from our dataset. We validate our annotation schema to a different

dataset in Section 7.4 to illustrate the validity of the SCoSAS.

7.2.1 Theme 1: The Task Level

The Task Level theme covers search actions such as query expressions and search results

presentation utterances. In other words, this theme is related to the performed task

which, in our case, is a search task. The theme includes four sub-themes: (i) Infor-

mation Request which includes utterances related to (re)forming information needs by

both Seeker and Intermediary, (ii) Results Presentation which includes of search result

transfer utterances from the Intermediary, (iii) Search Assistance includes Seekers ask-

ing for or Intermediaries providing help with the search task, and (iv) Search Progression

includes Seeker’s feedback on the progress of their search task.

Information Request

The Information Request sub-theme covers utterances which are associated with the

topical information requests and is used by both Seeker and Intermediary. Thus, all

utterances which are related to forming, suggesting, refining, confirming, repeating,
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spelling, or embellishing information requests are captured in this sub-theme. The fol-

lowing example is of two information requests.

P13 -Seeker: So which state in Australia consumes the most alcohol per

person?

[Information request]

P14 -Intermediary: Again 2016 or the most recent information?

[Information request]

Information requests from Seekers could be expressed at any time, and Seekers often

asked for information from a document itself, provided clarification related to their search

intent, or requested more meta-information about a document or SERP. Conversely, In-

termediaries were more likely to provide support in (re)forming the information request,

for example by providing information request refinements, suggesting query expansions,

or eliciting extra information.

In other words, this sub-theme is linked to query formulation and reformulation stages

as covered by Sahib et al. [157] and discussed in Chapter 6.

A distinction can be made within the Information Request sub-theme for Seekers where

they interact or manipulate results by requesting further information in the following

two ways:

1. Requesting information about a document or SERP (which could be interpreted

as a meta-information request),

2. Requesting information within a document or SERP.

Results Presentation

The Results Presentation sub-theme is where Intermediaries read out, interpret, or pro-

vide an overview of a SERP or document to the Seeker. These sub-theme utterances

convey the results from the search engine or documents. Moreover, this sub-theme is only

used by Intermediaries and the majority of their actions are linked to this sub-theme.

In the next example, the Intermediary reads out the results exactly as they were dis-

played in a document:

P6 -Intermediary: The history of valuable cinnamon. The first mention of cin-

namon is in Chinese documents dating from 2800 BC. The
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ancient Egyptians logged cinnamon as a spice used in the em-

balming process...

[Results presentation]

Other categories of utterances where Intermediaries conveyed the documents or search

engine results but modified them (i.e., interpreting the results so that they would be

most beneficial for the user) are also categorised in this theme. Intermediaries modified

SERPs or documents in the following ways:

• Synthesised (synthesis is a combination, usually a shortened version, of several

texts made into one) or provided an overview

• Interpreted

• Paraphrased (the ideas of another person in your own words)

• Summarised (a shortened version of the text)

• Clarified

• Compared

Search Assistance

This sub-theme captures interactions where the Intermediary assisted the search process

by providing explicit search suggestions and advised searching for more information or

moving to the next topic. Other examples include relevance judgements as seen below:

P2 -Intermediary: So uhm here it talks about call centres outsourcing uhm... then

it talks about human resources outsourcing uhm... there is a

lot on health benefits conversation uhm [long pause] I don’t

see how some of these are relevant...

[Search assistance]

In contrast to directly providing assistance, Intermediaries sometimes asked for support

to create a better understanding of how to help the Seekers in their search process.

For example, Intermediaries asked about the usefulness of a result, requested spelling,

or indicated that switching to a different search engine would be helpful (e.g., Google

Scholar or library search).

Additionally, this sub-theme captured the Seeker explicitly asking for assistance during

their search session, for example, by asking for recommendations or judgements on

whether they covered enough of the information space as seen in the next example:
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P5 -Seeker: Uhm do you think that’s enough to get an idea of where it

actually came from or do you think we should keep going?

[Search assistance]

Search Progression

This sub-theme is only used by the Seeker to provide feedback on the search progression

to the Intermediary. Examples include specific performance feedback on their search,

rejecting search results, or informing the Intermediary whether they found enough in-

formation for a topic:

P15 -Seeker: OK that’s probably enough information

[Search Progression]

7.2.2 Theme 2: The Discourse Level

The Discourse Level theme includes utterances with a communicative function from

both Seeker and Intermediary. This theme covers traits related to the audio channel.

The Discourse Level theme consists of four sub-themes: Discourse Management which

allows the conversation to take place between the actors; Grounding, also referred to

as “common ground”, which captures the dialogue interactions for the creation of mu-

tual knowledge, beliefs, and assumptions between the two actors [52, 189]; Navigation

which covers the communications of moving around web pages, documents, and browser

tabs; and Visibility of System Status which allows actors to provide insight on what is

happening throughout the interactions.

Discourse Management

This sub-theme includes conversational coherence and cohesion between the actors [163].

In other words, the utterances in this sub-theme are part of the communication between

the actors to check whether the message has been understood (i.e., meta-discourse). In

our dataset, these discourse building utterances are independent of the participant role.

For example, both Seeker and Intermediary confirmed, checked, asked for repetitions,

or repeated utterances as illustrated in the snippet below:

P1 -Seeker: So uhm can you go and change the search question to effec-

tiveness of uhm... passenger and baggage screenings at airport
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P2 -Intermediary: Passenger and

[Discourse management]

P1 -Seeker: Baggage

[Discourse management]

Often an information request was repeated, echoing back the previous speaker’s exact

words, to confirm a command. These discourse actions are crucial to have a meaningful

conversation, for example indicating that one actor has understood the other actor.

Thus, repetition of an utterance such as an information request, without adding extra

information, is part of the discourse management to keep the conversation going.

Grounding

Grounding in communication as described by Clark and Brennan is “sharing and syn-

chronising mutual beliefs and assumptions” and is fundamental for communication be-

tween actors [52]. We observed utterances belonging to this particular sub-theme which

was used by Seekers to coordinate the shared information or common ground [52]. This

function allowed the Seeker to share their meaning of aspects of beliefs and values frame-

work. In other words, the two actors’ mental model of each others’ beliefs may benefit

from adapting continuously to coordinate the build of a mutual understanding. Seekers

summarised or paraphrased the information given to them and created a larger picture

of the search results as a way of synchronisation. Through this dynamic updating pro-

cess of the Seekers’ mental model, Seekers provided insight into what they understood

from the information provided. By receiving this feedback Intermediaries then had an

opportunity to know whether the provided information was correctly conveyed. In this

example, we see the Seeker coordinating their beliefs of alcohol consumption quantities:

P14 -Intermediary: [...] yeah 20 to 29 is the most high risk drinking people in

Australia for alcohol related harm... I don’t know what that

means about consumption

P13 -Seeker: Yeah so they consume a lot

[Grounding]

Grounding differs from Search Progression and Discourse Management. While Ground-

ing involves sharing the beliefs and values of the information, Search Progression is

concerned with the feedback on the search task progress and Discourse Management is

related to effective information transfer.
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The Grounding sub-theme was only seen in Seekers’ utterances. This is because Inter-

mediaries, by having the information to hand, summarised results presented and they

did not need to confirm or share their beliefs or meaning of the content. As such, their

utterances are captured by the theme Results Presentation.

Navigation

Navigational utterances are part of the discourse between the actors to progress the task

allowing them to manoeuvre around the online information space. Seekers navigated

the search results by instructing the Intermediaries. In our case, Seekers asked to access

specific sources, navigated between documents, singled out particular documents, and

read more from a document or the next document. In other words, Seekers provided

information about how and where they wanted to navigate to as seen below:

P9 -Seeker: Uhm maybe uhm can you go into the result [...] that mentions

how uhm outsourcing damages the industry

[Navigation]

Visibility of System Status

“The system should always keep users informed about what is going on,

through appropriate feedback within reasonable time.” Nielsen [136, p. 1]

Seekers asked the Intermediaries to provide information on what was occurring through-

out the interactions. Intermediaries provided feedback on what was happening for exam-

ple if they had seen certain items before, or by orienting where they were positioned. The

example below illustrates the Intermediary indicating that their process is still pending

followed by the Seeker requesting an update.

P25 -Seeker: Oh TIBER sorry Tiber yeah

[Discourse management]

P26 -Intermediary: Yeah uhm just searching just one second

[Visibility of system status]

P25 -Seeker: Any luck?

[Visibility of system status]
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7.2.3 Theme 3: Other

Five utterances from the Seeker were not classified in any of the above (sub-)themes.

Two of these utterances were disfluencies from the Seeker, one utterance was where the

Seeker provided information about the search engine, one utterance was asking if the

Seeker was allowed to embellish a query, and the last unclassified utterance involved

the Seeker offering to spell a word. These five categories were not classified after much

deliberation and given the theme “Other” instead (see Appendix D).

7.2.4 SCoSAS Subtraction

An overview of the themes and sub-themes used by each actor in the SCSdata is pre-

sented in Table 7.1. The development of the utterance classifications in themes, sub-

themes, and codes form the basis of the SCoSAS.

Table 7.1: Themes and sub-themes used by different actors.

Theme Sub-theme Seeker Intermediary

Task Level Information Request X X
Task Level Results Presentation X
Task Level Search Assistance X X
Task Level Search Progression X
Discourse Level Discourse Management X X
Discourse Level Grounding X
Discourse Level Navigation X
Discourse Level Visibility of System Status X X
Other X

7.3 Inter-rater Reliability and Code Overlap

As part of the validation and quality protection of the SCoSAS, we calculate the inter-

rater reliability and code overlap in this section. These measures quantify the agreement

and consensus between different coders. The inter-rater reliability illustrates the consis-

tency between the coders.

Assessor 1 (myself) analysed the data using thematic analysis and created codes and

a codebook which acted as the annotation schema. A second independent researcher

(Assessor 2) used the codebook for closed coding of all utterances in the SCSdata. The

inter-rater reliability on code level was moderate (Cohen’s κ=0.59) [119].
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Both coded datasets were then converted to sub-theme level2 where the inter-rater re-

liability between Assessor 1 and 2 on sub-theme level was calculated. The inter-rater

reliability on sub-theme level was substantial (Cohen’s κ=0.71).

The overlap of codes used between the two independent assessors was high with 90%

of the predefined codes being used by both assessors. Assessor 1 applied 84 different

codes consisting of 41 codes for the Seeker and 43 for the Intermediary. Assessor 2 used

76 codes, 38 codes for the Seeker and 38 for the Intermediary as seen in Table 7.2. In

other words, Assessor 2 used a smaller range of pre-defined codes to label all utterances.

Substantial agreement was met for inter-rater reliability on sub-theme level.

Table 7.2: Independent Assessors’ code overlap.

Assessor 1 Assessor 2

Total number of utterances 1044 1044
Total number of codes used 84 76
Total number of codes for Seeker 41 38
Total number of codes for Intermediary 43 38
Unused codes 0 8 (10%)

The remaining 10% of codes which were used by Assessor 1 but not by Assessor 2

represented eight codes which were used 13 times in the dataset, as seen in Table 7.3.

The differences between the codes of Assessor 1 and 2 were investigated and considered

to be minor discrepancies. Assessor 2 was also consulted about the coding schema and

code definitions were refined for clarity.

Table 7.3: Codes used by Assessor 1 and not by Assessor 2.

Code Actor Number of times used

1 Definition lookup or person Seeker 1
2 Asks to repeat nth search result Seeker 1
3 Automated repetitive search Seeker 3

4 Wayfinding Intermediary 3
5 Interpretation of photos Intermediary 1
6 Image overview on SERP Intermediary 2

7
Within-document search
result entity lookup request

Intermediary 1

8 SERP overview without modification Intermediary 1

7.4 Validation of SCoSAS

In this section, we validate the labelling schema SCoSAS by applying it to a similar

spoken conversational dataset, The Microsoft Information-Seeking Conversation data

(MISC) [185].3 First we outline the MISC dataset which was created by Thomas et al.

2The coding of the utterances was completed on utterance level.
3The MISC data was accessed at http://aka.ms/MISCv1.

http://aka.ms/MISCv1
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to support conversational retrieval interfaces [185]. Then, we provide the validation

process of the SCoSAS with MISC. We describe the similarities and differences between

the SCSdata and MISC. We outline how the two datasets were comparable through

transposing SCoSAS labels and we calculate the overlap and coverage of the SCoSAS

with the MISC. We conclude this section by presenting differences in the labelling and

discussing the results of the SCoSAS validation.

7.4.1 MISC Dataset

The MISC is a set of recordings of spoken conversation between human “Seekers” and

“Intermediaries” [185]. It was designed to support research on questions such as: Do

human Intermediaries show behaviours which correlate with Seeker satisfaction?; Do

Seekers show behaviours which we could use as a baseline for online metrics, appropriate

to conversational agents?; What role does politeness or other conversational norms play?;

What tactics do we see in information seeking conversation, and do particular structures

help or impede progress or satisfaction? The MISC has been used in published work on

conversational style [186] and on multimodal collaboration [130].

MISC Study: The MISC data includes audio and video signals; transcripts; prosodic

and linguistic signals; entry questions on demographics and personality; and post-task

surveys on emotion, engagement, and effort. Screen recordings are also available, as is

data on affective and physiological signals.

The overall setup for both the SCSdata and MISC recordings is similar. In the MISC,

tasks were also assigned to a “Seeker” who was responsible for gathering information

and writing down a final answer. An “Intermediary” substituted the future SCS system.

The Intermediary had unrestricted access to the web, including search engines. Instead

of having the two participants in one room as in the SCSdata, the MISC participants

were connected over an audio link, and both video and audio of both participants were

recorded.

Available MISC Data: The available MISC dataset includes different raw and derived

data. For example, the raw audio is included as well as the transcripts.

The MISC includes five information seeking tasks, one of which was used as practice.

These tasks were selected to reflect a range of complexity and task difficulty. The MISC

also includes tasks which elicited positive and negative emotional responses. As in the

SCSdata, participants solved the tasks by using the open web.



Chapter 7. Identifying, Classifying, and Validating the Interaction Space for SCS 106

7.4.2 Validation of SCoSAS with MISC

The SCSdata is very similar to the MISC and includes recordings of information seeking

conversations between two people as Seeker and Intermediary. The MISC contains audio

and video recordings with ASR transcriptions of these recordings.

To understand whether we covered the majority of possible actions for this new SCS

interaction paradigm, we applied our coding schema to the MISC. We coded the MISC

dataset according to our predefined labels to investigate which actions were or were not

covered by our annotation schema. Thus, by using our predefined SCoSAS codes, we

validate the coverage (i.e., is there an action applicable for every situation?) and overlap

(i.e., is there a situation where more than one action could be relevant?). We used these

measures to review whether the saturation of themes reached for the SCoSAS, was an

appropriate validity measure in qualitative analysis [10].

Every utterance in the MISC dataset u ∈ D is part of an information seeking conversa-

tion C which has been transcribed using ASR. Thus, an information seeking conversation

is represented as a sequence of utterances C = {u1, u2, . . . } which receives a tag t from

the pre-defined set of tags t ∈ T . The tags were generated from the SCSdata. We report

on the coverage of the utterances u to the pre-defined set of tags T .

We performed the following steps described in Sections 7.4.3.4–7.4.7:

1. Labelling a subset of utterances from MISC

2. Creating comparable datasets

3. Reporting on the overlap and coverage of SCoSAS on MISC

4. Describing the non-overlapping codes from MISC

5. Discussing the results of the SCoSAS validation

The above steps enabled us to validate our existing annotation schema, the SCoSAS.

7.4.2.1 MISC Data Statistics and Subset

The MISC dataset was created from 22 participant pairs with each pair completing five

information seeking tasks. The participants were randomly assigned a role as Seeker

or Intermediary and had ten minutes to complete each information seeking task. The

participant pairs spent on average 8 minutes 20 seconds on each task. Participants

exchanged on average 857 words per task.

We selected a random set of four participant pairs and labelled four tasks per participant

pair. The following pairs were selected as the MISC subset:
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• Pair A (Participants 1–2)

• Pair D (Participants 7–8)

• Pair J (Participants 19–20)

• Pair N (Participants 27–28)

In the four pairs, we have a total of 701 turns with an average of 175.25 turns per pair

and an average of 43.81 turns per task. However, 4.99% of the total turns which we

labelled in the MISC dataset were inserted due to ASR errors and were not present in

the audio. This is further explained in Section 7.4.3.3. These turns were ignored which

means that a total of 666 turns were labelled on code-level with an average of 166.5

turns per pair and an average of 41.62 turns per task.

The SCSdata consists of 1044 turns with an average of 80.30 turns per pair and 26.76

turns per task.

7.4.3 Differences Between the SCSdata and MISC Datasets

The setup and instructions between the SCSdata and MISC dataset were marginally

different. We provide an overview of the differences in this section.

7.4.3.1 Search Tasks

The MISC search tasks were selected by Thomas et al. for their varied level of difficulty

and complexity, as illustrated in Table 7.4 [185]. These tasks were also designed to elicit

positive and negative emotions.

Table 7.4: MISC search tasks.

Task Difficulty Complexity Emotion

1 Low Low Positive
2 Low High Negative
3 High Low (NA)
4 High High Positive

7.4.3.2 Setup of SCSdata and MISC

MISC Seekers were given a search task and asked to write down an answer for each

provided search task. They did not have access to any information source but received

an information need which they were allowed to read out in order to share it with the

Intermediary. The Intermediary had access to a computer with a search engine. The
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Seeker and Intermediary were located in different rooms, and all communication was

done through an audio connection.

In contrast, SCSdata Seekers were not allowed to read out the search task and had to

share the information seeking task with the Intermediaries by paraphrasing the task.

The SCSdata Seeker did not have to write an answer for each task.

7.4.3.3 Transcription Differences

The MISC data was transcribed with ASR while the SCSdata was manually transcribed

and subjected to the three-pass-per-tape policy [131]. ASR incorrectly transcribed ut-

terances, including inserting “thanks” when speakers did not say this in the audio. Such

utterances were therefore ignored for this analysis.

The following snippet of a conversation is an illustration of the ASR transcribing utter-

ances which were not present in the audio, making speakers appear more polite.

P20 -Intermediary: [...] She wanted them to donate to charity

P19 -Seeker: Thanks

[Utterance not present in audio]

P20 -Intermediary: To provide clean water // and she um

P19 -Seeker: Thank you

[Utterance not present in audio]

We encountered segments where the researcher interfered due to a technical issue (Par-

ticipant Pair D) and sections where the ASR created many unnecessary turns between

the actors because it detected that someone was talking, but there was no evidence of

this in the audio.

7.4.3.4 Utterance Labelling

To ensure good labelling performance, we coded the SCSdata on the video and audio

recordings and on the transcriptions, including the Intermediary’s screen capture. We

also coded the MISC subset with the predefined codes on audio recordings and tran-

scripts. However, we were unable to label Results Presentation utterances at code-level

and coded them at sub-theme level. This was due to the unreleased screen capture

videos at the time of analysis. Thus labelling Results Presentation utterances at code-

level meant that subtleties such as whether an Intermediary was reading from a SERP

or a document could not be distinguished.
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Furthermore, new possible labels were generated if none of the existing labels were

suitable. We discuss these additional labels in Section 7.4.6.

7.4.4 Creating Comparable Datasets

The code level investigation provides insight into the number of actions shared between

the SCSdata and MISC. The SCoSAS, as defined on the SCSdata, consists of 84 unique

codes where Seekers used 41 different codes and Intermediaries used 43. These 43 In-

termediary codes from the SCSdata were reduced to 25 codes to create a comparable

labelled dataset with MISC. Thus, codes in the SCSdata such as “Scanning document

without modification” were coded at code-level but later mapped and transposed to the

Results Presentation sub-theme to create comparable datasets. Transferring the Results

Presentation codes to the sub-theme level reduced the 84 unique codes of the SCSdata

to 66 codes as seen in Table 7.5.

Table 7.5: SCSdata and MISC dataset descriptives.

SCSdata MISC subset

Total number of utterances 1044 666
Total number of unique codes* 66* 49*
Unique codes Seeker 41 31
Unique codes Intermediary 25 18

*NOTE: Due to insufficient details, utterances which were related to presenting results were
aggregated to the Results Presentation sub-theme level. The SCSdata’s unique number of

codes without aggregation of the Results Presentation is 84.

7.4.5 Code Overlap and Coverage Between SCSdata and MISC Data

In this section, we investigate the code overlap and coverage by examining the SCoSAS

between the SCSdata and MISC which provides an understanding of the scope of possible

actions.

Overlap: SCSdata ∩ MISC = {x : x ∈ SCSdata and x ∈ MISC}. The overlap between

SCSdata and MISC datasets is 35 codes (71%).

Coverage: The coverage or union between datasets SCSdata and MISC shows how the

sets relate to each other where SCSdata ∪ MISC = {x : x ∈ SCSdata or x ∈ MISC}.
In total, the transposed SCoSAS consists of 66 different codes4 (41 Seeker codes and 25

Intermediary codes). The MISC dataset consists of 49 different codes (31 Seeker codes

and 18 Intermediary codes). The union of the two datasets’ codes creates a set of 80

4Note: Results Presentation codes have been transferred to sub-theme level for comparison with the
MISC dataset.
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different codes, with the SCoSAS covering 82.5% of these possible codes and 94% of the

MISC utterances could be coded with the SCoSAS.

The set of 14 supplementary codes coded in MISC but not in SCSdata is presented in

Table 7.6.

Table 7.6: Set difference between MISC and SCS datasets.

Code Actor Nr used

1 Chitchat Seeker 1
2 Communication about the task Seeker 2
3 Decision offloading Seeker 1
4 Feedback on writing down the answer for the given task Seeker 3
5 Negotiation Seeker 7
6 Rejects spelling offer Seeker 1
7 Requests spelling Seeker 1
8 Uncertainty expression of what to search Seeker 2

9 Chitchat Intermediary 5
10 Enough information? Intermediary 9
11 Negotiation Intermediary 6
12 Offers to spell Intermediary 1
13 Spells Intermediary 5
14 States “too many results to sum up” Intermediary 1

Total number of instances of code
used by MISC and not by SCS

45 (6%)

7.4.6 Descriptions of Code Set Differences

In this section, we investigate the 14 different codes found in the MISC but not in the

SCSdata.

Chitchat or Negotiation

We encountered new types of utterances in the MISC where the actors were negotiating

or chitchatting. The negotiation utterances were used to bridge differences and reach

agreements [229]. Examples include instances where actors share their own experiences

about particular topics or subjects. However, this is not to be confused with the already

defined Grounding sub-theme which covers utterances from the Seeker expressing their

beliefs and values of information provided by the Intermediary.

Chitchat and negotiation utterances have greater overlap between speakers, meaning

that more than one actor at a time is speaking [161]. For example, the following ut-

terances overlapped while the Seekers and Intermediary negotiated their shared under-

standing of non-traditional medicine:
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P1 -Seeker: I think herb sounds more like // not

[Negotiation]

P2 -Intermediary: More like medicine

[Negotiation]

P1 -Seeker: I think it sounds more like naturopathic but that fits it

[Negotiation]

Participants seemed forthcoming in sharing their own opinions and experiences. The

following example is from an Intermediary who shares her own travel experiences which

are related to the task:

P8 -Intermediary: That’s what I love to do actually when I traveled all the public

transportation and all sorts of continents

[Chitchat]

Communication About the Task

SCSdata participants were instructed not to read out their provided search task to the

Intermediary but instead were asked to rephrase and formulate their information request.

In contrast, MISC participants were allowed to read out their search task. This resulted

in Seekers also talking informally about the search task itself and how they understood

or interpreted the task. For example,

P1 -Seeker: Yeah the task is a bit // um very generalised so um

Agency and Decision Offloading or Taking Control

Due to reading out the search task in the MISC, both the Seeker and the Intermediary

shared a similar objective of their search need. This shared search task created a bal-

anced level of collaboration between the two actors which allowed the Intermediary to

instantiate agency more frequently. By contrast, Intermediaries in the SCSdata acted

more as the interface between the Seeker and the found information.

The notion of agency returned throughout our subset of the MISC in utterances result-

ing in the following codes “Enough information?” (Intermediary), “Too many results to

sum up” (Intermediary), and “Decision offloading” (Seeker). For example, the Interme-

diaries suggested that a search task has been finished “excellent, so we are finished...”

(P8), or they stated that they were not going to sum up all the results because there
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were too many. Simultaneously, the Seekers also handed over the decision making to

Intermediaries by uttering “it’s up to you [ed. if we look at the other site or not]” (P20).

Hence, we cluster these codes into ‘agency and decision offloading or taking control’.

Feedback on Writing Down the Answer for the Given Task

As part of the MISC data collection setup, Seekers were asked to write their answers

for the information seeking tasks. The MISC Seekers communicated how they were

progressing with the writing task as presented in the example below.

P1 -Seeker: Okay so I’ll just have to put this in another category [ed. on

the answer sheet]

Spelling

We encountered instances of spelling actions in the MISC which had not been encoun-

tered in the SCSdata (i.e., offers from the Intermediary to spell out words). These

spelling actions may have been because Seekers were required to write down the infor-

mation they found. Therefore they needed to know the spelling more frequently.

Uncertainty Expression of What to Search

In this utterance, the Seeker is expressing their confusion regarding what the information

need asks them to fulfil. This Seeker is expressing their uncertainty which possibly could

be seen as asking the Intermediary for help to critically investigate the search task which

had been read out.

P19 -Seeker: I am not sure what you’re supposed search

7.4.7 Discussion of SCoSAS Validation

The majority of the codes (71%) which were coded in the MISC overlapped with the

SCoSAS. The remaining codes (29%) were instantiated 6% of the time throughout the

full MISC subset. In other words, the most significant utterances in the MISC subset

are covered by our SCoSAS coding scheme. After investigating the different codes from

the MISC which did not appear in the SCSdata, we believe that some of these newly

encountered codes could be candidate expansion codes to the SCoSAS, such as the
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array of possible spelling requests, suggestions, or rejections. We also believe that some

of these codes were not encountered in the SCSdata due to the difference in study setups,

such as the instantiation of the communication about the task. Nevertheless, 95% of

all the utterances in the MISC were covered by our coding schema developed on the

SCSdata. No new themes were identified suggesting that saturation, which is often used

as a justification for sample size in qualitative work, was reached [70]. Furthermore, our

sample of 13 participant pairs for the SCSdata provided all themes with most codes.

7.5 Chapter Summary

This chapter analysed the SCSdata’s information seeking conversations by interpreting

and classifying the utterances with thematic analysis. The analysis resulted in three

themes, eight sub-themes, and 84 codes. The internal coding consistency was then

validated by calculating the inter-rater reliability and code overlap of a second annota-

tor. The remainder of the chapter was devoted to illustrating the generalisability and

replicability of our SCoSAS by applying our schema to a similar dataset, the MISC.

This transparent annotation process contributes by strengthening the analysis and the

methodological foundations of annotation schema development.

Our analysis is validated through several methods. Firstly, the theme and sub-theme

process was monitored by multiple researchers. Secondly, an external assessor recoded

the full SCSdata with our codebook, and lastly, we coded a different but similar dataset

with our set codes. Despite this validation, we acknowledge the limitation of only having

one researcher develop the leading labels.

The implications of this analysis are many. Firstly, this analysis can support the feature

extraction of particular utterance-types, or assist with the engineering and evaluation

of conversational retrieval. The analysis can also be used for language modelling of

information seeking conversations and the development of results presentation strategies.

Our contributions in this chapter are the following: (i) we establish the interaction

space for SCS which resulted in themes, sub-themes, and codes to extract the SCoSAS,

(ii) we provide a transparent and well-documented analysis of the utterances to define

that interaction space which strengthens the findings, (iii) we illustrate that our coding

schema is generalisable and replicable through validation calculations with our own

SCSdata and a second SCS dataset, the MISC. In the next chapter we use the SCSdata

and SCoSAS to demonstrate the applicability of the dataset and annotation schema.





Chapter 8

Task Complexity and

Interactivity for Spoken

Conversational Search

We utilise the SCoSAS-labelled SCSdata which we developed in Chapter 7 to perform

further analysis to investigate the effect of task complexity on interactivity (search and

discourse).1 Search tasks are an essential component of interactive search studies [26].

These tasks are often used to evaluate a system or to observe people’s behaviour with a

system. In many cases, search tasks are manipulated as part of the research design to

study different interaction behaviours [213].

In Chapter 7, we analysed the interaction behaviour of thirteen participant pairs who

executed search tasks with different levels of cognitive complexity based on the Tax-

onomy of Learning [9]. This chapter aims to understand whether different interaction

behaviours are used depending on the cognitive complexity of the task. Our results show

that users require greater interactivity to satisfy the information need in more cogni-

tively complex tasks. On more complex tasks, participants spent more time on the task,

posed a higher number of information requests, and engaged more in meta-discourse

interactions. These results contribute to the formulation of the SCS complexity, the

information seeking behaviours, and the relationship among the characteristics of the

audio-only communication channel.

1This chapter consists of the following publication J. R. Trippas, D. Spina, L. Cavedon, and M. Sander-
son. How do people interact in conversational speech-only search tasks: A preliminary analysis. In
Proceedings of Conference on Information Interaction and Retrieval (CHIIR), pages 325–328, 2017.
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Our results emphasise the complexity that an audio-only interaction channel imposes

in a search process. We observe this greater complexity through the increase in meta-

discourse interactions in more complex tasks. We suggest that more meta-discourse

utterances such as confirmations are used to overcome disruptions in commutation flow

in more complex tasks. In addition, further research into interaction behaviour may help

us understand how users recover from errors in an audio-only setting, how they navigate

when no visual boundaries are present, and whether particular interaction chains (i.e.,

conversational routines) are a predictor for success or failure of a task [16, 212].

The chapter is structured as follows: Section 8.1 introduces the importance of studying

the cognitive complexity and interactivity in SCS, and we state our research questions.

Section 8.2 presents the methodology of our experiment and the interaction behaviour

measures used for our analysis. We then present the results in Section 8.3, followed by

the discussion in Section 8.4, and conclusion in Section 8.5. We end this chapter with

the summary in Section 8.6.

8.1 Introduction

Many studies have investigated cognitive complexity of search tasks in browser-based

search [11, 16, 108, 125]. Other studies in linguistics or pedagogy have investigated how

discourse is affected by task complexity [59, 79, 151]. However, little is known about the

impact of task complexity in SCS. This chapter seeks to address this. In particular, we

investigate how task complexity in SCS affects the interactivity or interaction behaviours

in both search and non-search interactions. We chose different cognitive complexities

to observe various techniques and interaction behaviours used in an audio-only search

setting.

We use the SCSdata as described in Chapter 5 and the annotated dataset as specified

in Chapter 7. We use categorisations and classifications (themes and sub-themes) as

defined by the SCoSAS to study the interaction behaviours between the participants.

To reiterate, our lab-based study (Chapter 5) had participant pairs where one participant

acted as a Seeker and the other as an Intermediary. The participants performed searches

to satisfy three different information needs that we provided. We filmed the interactions

between the two participants and our analysis is performed on the transcriptions of

the search interactions. In this chapter, we use non-parametric tests to investigate

differences in interaction behaviours such as time on task, total number of interactions,

or total number of information requests.
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8.1.1 Research Questions

We aim to investigate the interaction behaviours of our study participants in the SCS-

data. We focus on search tasks with different levels of cognitive complexity. We study

the effect of these tasks on the participants’ interactions with each other while trying

to satisfy their information need. Previous work has suggested that complex tasks take

longer to complete (time on task), require more queries, and more search results/docu-

ments are inspected [108, 218]. It has also been suggested that task complexity affects

discourse functions [59, 153]. We now examine task complexity in the context of SCS

with our research questions as shown in Table 8.1.

Table 8.1: Research questions and hypotheses.

Research Question Hypothesis

1 How does task complexity affect search
interactions in SCS?

People will interact more with search-
related interactions when conducting
complex tasks.

2 How does task complexity affect the use
of discourse interactions in SCS?

People will use discourse more when
conducting complex tasks.

8.2 Methods

We conducted an observational within-subjects study with 13 participant pairs. We

provided Seekers with a short information need as backstory which was based on the

cognitive complexity adopted from the Taxonomy of Learning [9] (see Section 5.5.1).

Seekers verbalised their information need to the Intermediaries who had access to a

search engine. Intermediaries then helped the Seekers satisfy their information need by

communicating found information as explained in Section 5.3. Our observational study

was conducted to understand the possible interactions in SCS which we identified in

Chapter 7. We now investigate these identified themes and sub-themes in regards to

their interactivity and frequency usage. We analyse the two main themes, the five most

used bigrams, and the three most used sub-themes with statistical tests to understand

the significant differences for different task complexities.

Next we outline the measured interaction behaviours.

8.2.1 Interaction Behaviours

We derive and measure the following interaction behaviours on different levels: General

interaction behaviours by time on task and turns per task which are directly observed

in the SCSdata; Theme interaction behaviours by the two identified themes (Task and
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Discourse Level which cover 89.36% of the full dataset) and bigram interactions between

themes; Sub-theme interaction behaviours with the three-most used sub-themes (Infor-

mation Request, Results Presentation, and Discourse Management which cover 79.88%

of the dataset) as identified in Chapter 7; and in Lexical level we investigate the number

of one-word turns. All measures were computed at a session level.

Table 8.2: Interaction behaviour measures.

Level Measure Definition

Interaction
behaviour

Time on Task The amount of time in seconds participant pairs
spent completing the search task. A maximum of
10 minutes per task was imposed.

Interaction
behaviour

Turns per Task The total number of interactions between the two
participants when completing the search task.

Themes Number of Task Level◦ The total number of Task Level utterances of the
two participants when completing the search task.

Themes Number of Discourse Level◦ The total number of Discourse Level utterances of
the two participants when completing the search
task.

Themes Bigram interactions The total number of bigram interaction chains on
Theme Level between the two participants when
completing the search task.

Sub-themes Number of Information
Requests◦

The total number of Information Requests of the
two participants when completing the search task.

Sub-themes Number of Results
Presentation◦

The total number of Results Presentation of the
Intermediary when completing the search task.

Sub-themes Number of Discourse
Management◦

The total number of Discourse Management ut-
terances of the two participants when completing
the search task.

Lexical Number of one-word turns The total number of one-word utterances of the
two participants when completing the search task.

NOTE: ◦ Only utterances with single actions were used in this analysis.
Multiple actions in one utterance were not included (See Section 5.8.2).

8.3 Results

We first present an overview of SCSdata descriptive statistics, number of words per turn,

and one-word turns. We then answer the research questions relating to task complexity

for search and discourse interactions.

8.3.1 Overall SCSdata Statistics

The SCSdata consists of 1044 turns between the 13 pairs of participants. Seekers took

a total of 528 turns and Intermediaries took 516 turns. The observed discrepancy of

12 turns between the Seeker and Intermediary is because Seekers need to instigate the

search and are the only actor who can conclude the search unless the 10-minute time

limit is reached. An average of 80.30 turns per pairs and 26.76 turns per task were

recorded (minimum turns per pair is two and maximum is 69).
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The fill-word “uhm” was removed for analysis purposes. However, we deliberately did

not remove any errors, false starts, or confirmations since these will likely occur in real

case voice search scenarios.

8.3.1.1 Utterance Length

Participants exchanged 15.82 words per utterance (i.e., length of utterance) on average

with a minimum of one word per turn and a maximum of 359 words per turn. Following

stopword removal, the average length is 9.34 words (minimum length is zero and maxi-

mum is 219).2 The number of words per turn for both actors is presented on log scale

in Figure 8.1.
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Figure 8.1: Number of words per turn for both actors (N = 1044).

8.3.1.2 One-word Turns

The dataset consists of 132 (12.64%) one-word utterances. These are utterances such as

“yeah” or “OK”, for example,

P2 -Intermediary: How many people get caught at airport security checks yeah?

P1 -Seeker: Yeah

[one-word turn]

One-word turns were more frequently produced by Seekers (82) than by Intermediaries

(50).

A total of 127 (12.16%) of all turns in the dataset consisted of one word and were situated

in the Discourse Level theme. All of these one-word Discourse Level utterances were

located under the Discourse Management sub-theme.

2We used the SMART stopword list.
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The five remaining one-word utterances in the dataset (0.47%) were located in the Task

Level theme. Two of these utterances were found in the Results Presentation sub-theme

and three in the Information Request sub-theme.

8.3.2 Data Analyses

A visual inspection of boxplots for all interaction behaviour measures showed that the

data were not normally distributed and therefore one-way chi-square tests were used to

investigate statistical significance (α = .05) [74]. Bonferroni adjusted α-level (.017) was

used for all post-hoc analyses [93].

8.3.2.1 Task Complexity and Search Interactions

Table 8.3 shows interaction behaviours per task complexity (Remember, Understand,

and Analyse). A statistically significant difference for time on task over the three dif-

ferent task complexities was found, χ2 (2, N = 39) = 75.52, p < .01. Post-hoc analyses

revealed a statistically significant difference between the Remember and Understand

task complexities, χ2 (1, N = 26) = 55.35, p < .017 and Remember and Analyse task

complexities, χ2 (1, N = 26) = 68.15, p < .017. No statistically significant difference

between the Understand and Analysis task complexities was found.

Table 8.3: Interaction behaviours per task complexity.

Time on
task∗

Turns per
task∗

No. of
Task Levels∗

No. of Information
Requests∗

No. of Results
Presentations

Remember 237 sec 248 158 85 67
Understand 429 sec 352 202 106 85

Analyse 454 sec 444 237 135 95

NOTE: ∗ Statistically significant difference.

There was a statistically significant difference in the number of turns taken over the

three different task complexities, χ2 (2, N = 1044) = 55.26, p < .01. Post-hoc analyses

revealed a statistically significant difference between all task complexities (Remember

and Understand, χ2 (1, N = 600) = 18.03, p < .017, Remember and Analyse, χ2 (1,

N = 692) = 55.51, p < .017, and Understand and Analyse, χ2 (1, N = 796) = 10.63,

p < .017).

A statistically significant difference in the number of Task Level turns taken over the

three different task complexities was revealed, χ2 (2, N = 597) = 15.75, p < .01.

Post-hoc analyses revealed a statistically significant difference between the Remember

and Analyse task complexities, χ2 (1, N = 395) = 15.8, p < .017. No statistically
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significant difference was found for the task complexities Remember and Understand,

and Understand and Analyse.

A statistically significant difference was found in the number of Information Request

utterances over the three different task complexities, χ2 (2, N = 326) = 11.60, p < .01.

Post-hoc analyses revealed a statistically significant difference between the Remember

and Analyse task complexity, χ2 (1, N = 220) = 11.36, p < .017. No statistically

significant difference was found between Remember and Understand, and Understand

and Analyse task complexities. A total of 31.22% (326) turns in the whole corpus are

classified as Information Requests. The average Information Request length was 12.7

words (SD=9.88, min=1, max=69).

No statistically significant difference was found in the number of utterances as Results

Presentation over the three different task complexities, χ2 (2, N = 247) = 4.89, p = .09.

8.3.2.2 Task Complexity and Discourse Utterances

Table 8.4 shows the discourse behaviours per task complexity. A statistically significant

difference in the number of Discourse Level turns taken over the three different task

complexities was found, χ2 (2, N = 336) = 34.62, p < .01. Post-hoc analyses revealed

a statistically significant difference between all task complexities. With the Remember

and Understand task complexities, χ2 (1, N = 181) = 12.2, p < .017. The Remember

and Analyse task complexities, χ2 (1, N = 222) = 34.88, p < .017, and Understand and

Analyse task complexities, χ2 (1, N = 269) = 6.25, p < .017.

Table 8.4: Discourse behaviours per task complexity.

No. of Discourse
Level turns∗

No. of Discourse
Management turns∗

No. of
one-word turns∗

Remember 67 58 29
Understand 114 86 35

Analyse 155 119 68

NOTE: ∗ Statistically significant difference.

A statistically significant difference was found in the number of turns taken in the

Discourse Management sub-theme over the three different task complexities, χ2 (2, N =

261) = 22.83, p < .01. Post-hoc analyses revealed a statistically significant difference

between the Remember and Understand task complexities, χ2 (1, N = 142) = 6.34,

p < .017 and Remember and Analyse task complexities, χ2 (1, N = 175) = 22.68, p <

.017. The remaining task complexity pair Understand and Analyse was not statistically

significant different.

A statistically significant difference was revealed in the number of turns taken over the

three different task complexities, χ2 (2, N = 132) = 20.04, p < .01. Post-hoc analyses
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revealed a statistically significant difference between the Remember and Analyse task

complexities, χ2 (1, N = 97) = 15.68, p < .017, and Understand and Analyse task

complexities, χ2 (1, N = 103) = 10.57, p < .017. No statistically significant difference

was found between the Remember and Understand task complexities.

8.3.2.3 Bigram Interactions

We now investigate interaction bigrams at Theme Level (i.e., Task and Discourse Level)

by task complexity. We take the top-five interaction bigrams which cover 842 turns

(80.65%) in the SCSdata. Thus we look at the frequency of two interactions appearing

in sequence. For example, the utterance below is an utterance classified as Task→Task,

since utterance 1 and 2 belong to Task Level.

(1) P13 -Seeker: So which state in Australia consumes the most alcohol

per person?

[Task Level]

(2) P14 -Intermediary: Again 2016 or the most recent information?

[Task Level]

As shown in Table 8.5, no statistically significant difference was found in the number of

chains of Task Level→Task Level turns taken over task complexity, χ2 (2, N = 317) =

2.83, p = .24.

Table 8.5: Interaction bigrams for task complexity.

Task
→Task

Task
→Discourse∗

Discourse
→Task∗

Discourse
→Discourse∗

Task
→Task+Task

Remember 95 (29.97%) 40 (21.28%) 34 (17.78%) 24 (21.43%) 8 (17.78%)
Understand 103 (32.49%) 65 (34.57%) 67 (37.22%) 36 (32.14%) 19 (42.22%)

Analyse 119 (37.54%) 83 (42.02%) 79 (43.89%) 52 (46.43%) 18 (40%)

NOTE: ∗ Statistically significant difference.

A statistically significant difference was revealed in the frequencies of Task Level→
Discourse Level chains over the three different task complexities, χ2 (2, N = 188) =

14.88, p < .01. Post-hoc analyses revealed a statistically significant difference between

the Remember and Understand task complexities, χ2 (1, N = 105) = 5.95, p < .017

and Remember and Analyse task complexities, χ2 (1, N = 123) = 15.03, p < .017.

No statistically significant difference was found for the Understand and Analyse task

complexities.

A statistically significant difference was revealed in the frequencies of Discourse Level→
Task Level chains over the three different task complexities, χ2 (2, N = 180) = 18.1,
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p < .01. Post-hoc analyses revealed a statistically significant difference between the

Remember and Understand task complexities, χ2 (1, N = 101) = 10.78, p < .017

and Remember and Analyse task complexities, χ2 (1, N = 113) = 17.92, p < .017.

No statistically significant difference was found for the Understand and Analyse task

complexities.

A statistically significant difference was revealed in the frequencies of Discourse Level→
Discourse Level over the three different task complexities, χ2 (2, N = 112) = 10.57,

p < .01. Post-hoc analyses revealed a statistically significant difference between the

Remember and Analyse task complexities, χ2 (1, N = 76) = 10.31, p < .017. No statis-

tically significant difference was found for Remember and Understand, and Understand

and Analyse task complexities.

No statistically significant difference was revealed in the number of chains of Task

Level→Task Level+Task Level turns taken and task complexity, χ2 (2, N = 45) =

4.93, p = .08.

8.4 Discussion

This analysis aimed to examine interaction behaviour over tasks with different task com-

plexities in SCS. We investigated the interaction patterns and frequencies of participants

throughout their search process including search and discourse frequencies.

The first hypothesis was supported, and participants of our study interacted more when

they engaged in complex search tasks. Results showed when completing tasks of differ-

ent levels of cognitive complexity, participants had a significantly different number of

interactions (overall and at Task Level), they spent more time on task, and they posed a

higher number of information requests. Even though there was not always a significant

difference detected in search behaviours between the mid-level cognitive complexity (i.e.,

from Remember versus Understand or Understand versus Analyse), we did show signif-

icant differences between the more extreme cognitive complex tasks (Remember versus

Analyse). Our results are consistent with findings from Arguello et al. [11], Jansen et al.

[97], Kelly et al. [108], and Liu et al. [125] where in general the number of interactions

increased with greater cognitive complexity.

Concerning the task complexity and discourse utterances, the data support our second

hypothesis, and more discourse interactions were observed in complex tasks. We showed

that participants interacted more on Discourse Level when the cognitive complexity in-

creased. When we investigated these discourse interactions, we found that Discourse

Management utterances and one-word turns are more frequently used with the increase
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of task complexity. In addition, an inspection of one-word turns revealed that these

utterances are often used as confirmation actions, such as “yeah” or “OK”. We again

found significant differences in interaction behaviours between the more extreme cogni-

tive levels (Remember versus Analyse). Thus, our results support the suggestion that

task complexity affects discourse interaction behaviour [59, 79]. Furthermore, our re-

sults also support that more discourse functions, in particular, meta-communication and

confirm utterances, are used when the task complexity increases [59, 151, 153].

Finally, we investigated the differences in bigram interaction behaviour and task com-

plexity. When we investigated the most frequent bigram interactions, we found no

difference in the number of interactions between Task Level→Task Level interactions.

However, a difference was found when bigram interactions involved Discourse Level ut-

terances. We see that Discourse bigrams are used more frequently for more complex

tasks. We speculate that when the task complexity increases, the cognitive resources

of the Seeker are stretched and therefore communication failure is more frequent [79].

Furthermore, these discourse actions are crucial to overcome the imposed difficulty of

the audio-only channel, not to mention the disruptions imposed by the task complex-

ity in the communication flow between Seeker and Intermediary. Further investigation

is needed to understand how this observed behaviour is related to users experiencing

difficulties throughout their search process (i.e., search struggle) [16, 89, 140].

A limitation of our study is the small sample size which meant we were unable to perform

data transformations (i.e., to normalise the data) [74]. Future work could expand our

study to a larger pool of participants which may allow for more powerful analyses such

as ANOVAs.

8.5 Conclusion

To the best of our knowledge, we are the first to examine task complexity in an audio-only

search environment. We explored the relationship between different task complexities

and interaction behaviours in SCS. Following previous research, we show that more

complex queries relate to higher interaction counts (e.g., a higher number of turns,

longer sessions, more information requests, and more results presentations) [11, 108, 218].

We also found that more complex tasks exhibited greater support utterances through

meta-communication, such as Discourse Management (i.e., confirmations). Discourse

interactions in bigrams were also further frequently found in more complex tasks.
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Thus it appears that task complexity has an effect on interaction and discourse behaviour

in SCS. One could speculate that the audio channel poses information transfer restric-

tions. Due to these restrictions, more complex tasks show further discussion to repair or

confirm the information chain. We suggest that this increase in discourse interactions

signifies the complexity increase that the audio-only channel imposes.

8.6 Chapter Summary

In this chapter, we investigated the interaction behaviours of participants in our obser-

vational study concerning task complexity, search interaction, and discourse utterances.

We studied the interaction patterns of variables such as time on task, turns per task,

number of Task and Discourse Level interactions, bigram interactions, amount of In-

formation Requests, Results Presentations, or Discourse Management, and frequency

of one-word turns. Our results showed that interactivity and discourse utterances, in

particular meta-discourse, increased as tasks became more complex.

Overall, these results contribute to our suggestion that SCS likely involves greater com-

plexity than the current browser-based search (see Chapter 6). The results in this chap-

ter emphasise the need for further research in the usage and nature of meta-discourse

functions in SCS and their role in search tasks and information seeking.
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Chapter 9

Recommendations for the Design

of Spoken Conversational Search

Systems

In this chapter we bring together and discuss the results from Chapters 3–8 by triangu-

lation.1 That is, we combine the analyses and results from our multiple methods and

datasets in this thesis to explore the new interaction paradigm of SCS. Each data source

and method examines the SCS paradigm from a different angle to reduce deficiencies

caused by only using one dataset or investigation method [154]. Thus, we aim to aggre-

gate our analyses and results while reviewing these with more in-depth argumentation.

Firstly, we present practical outcomes. We introduce ten SCS design recommendations

and discuss these design recommendations using insights from the SCoSAS annotation

schema and SCSdata, RealSAM, and MISC datasets. Secondly, we suggest a schematic

SCS model, based on the SCoSAS and SCSdata, enabling the evaluation of SCS pro-

cesses against existing information seeking models. This examination demonstrates that

most existing models insufficiently capture the system’s role as an active and responsi-

ble participant in the information seeking conversation. It also demonstrates the lack of

discourse functions (i.e., meta-communication), particularly to overcome discourse er-

rors or communication breakdowns in systems at present. Furthermore, our conceptual

contributions suggest that SCS systems are complex, and need to be interactive and

1This chapter consists of the following publications J. R. Trippas, D. Spina, L. Cavedon, H. Joho,
and M. Sanderson. Informing the design of spoken conversational search. In Proceedings of Conference
on Information Interaction and Retrieval (CHIIR), pages 32–41, 2018 and J. R. Trippas, D. Spina,
P. Thomas, H. Joho, M. Sanderson, and L. Cavedon. Towards a model for spoken conversational search.
Information Processing & Management, 2019. (Submitted).

129



Chapter 9. Recommendations for the Design of SCS Systems 130

pro-active. Finally, we revisit and expand the SCS requirements presented in Chap-

ter 2. The research and development of genuinely communicative SCS systems are still

in the early stages and our practical, conceptual, and methodological contributions offer

insights for future research.

This chapter is structured as follows. In Section 9.1, we discuss our design recommen-

dations in relation to results in Chapters 3–8 and provide practical suggestions. Sec-

tion 9.2 covers conceptual outcomes: the first schematic model of SCS in Section 9.2.1;

theoretical implications on the interaction style in Section 9.2.2; and the evaluation of

our schematic model against existing models in Section 9.2.3. We then redefine SCS

requirements in Section 9.3. Finally, we present the chapter summary in Section 9.4.

9.1 SCS Design Recommendations

In this section, we present ten design recommendations for SCS systems to support

natural user interactions. The recommendations follow the overall SCoSAS structure

of Task and Discourse level including two other recommendations promoting effortless

information-engagement beyond controlled user-system interactions (see Table 9.1). An

explanation of each recommendation and a summary of how to address that recom-

mendation are given. We suggest the design criteria with reference to the results from

Chapters 3–8.

Table 9.1: SCS Design Recommendations (DR).

DR Level SCS Design Recommendations

1 Task Be adaptive to accept information requests
2 Present relevant information and support flexible results exploration
3 Pro-actively provide search assistance
4 Accept search progression insights from users for personalisation and contex-

tualisation
5 Discourse Use discourse markers to improve communication
6 Exploit grounding and other dialogue dynamics
7 Support multi-dimensional navigation
8 Be able to communicate the system’s state to the user

9 Advance beyond one-action paradigms
10 Support processes of information use outside the system

9.1.1 Task Level Design Recommendations

Be adaptive to accept information requests. (DR1)

The analysis of the SCSdata suggests that information requests were formed in many

different ways (Section 6.1.1), from natural language expressions to detailed and carefully
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crafted requests. Furthermore, how and when these requests were expressed varied. For

example, Seekers were able to pose conditional information requests (i.e., if the search

results are valid to a specific condition, then they used that result for further searches)

as specified in Section 6.1.3. Other examples include gradual revealing of information

needs over multiple turns (Section 6.1.3), searches being conducted within or about a

document (Sections 6.1.3 and 7.2.1), and expressions of Seekers’ uncertainty of how to

go about a search (Section 7.4.6). The Intermediaries are also involved in eliciting or

refining the information requests. This includes posing information request suggestions

and fully developing the requests after extracting/obtaining the user’s information need

(Section 7.2.1).

We suggest that formulations of information needs may not always conform to the

browser-based query since users can express their information need more naturally

through speech (i.e., without formulating it as they would submit it to a browser-based

search box). In a voice environment, users can use natural language to describe their

search, which may contribute to the longer and more verbose information requests [85].

Furthermore, we observed Seekers disclosing that they had identified a knowledge gap

with a need to specify it, but the information need was not yet formalised similar to

the ASK hypotheses (Section 7.4.6) [22]. Thus, the information request may not always

go through Taylor’s four stages of information need (i.e., visceral, conscious, formalised,

and compromised) before it is expressed [179]. The verbosity and ill-formed information

requests together with the lack of one-word information requests strongly suggest that

users find it more intuitive to express their information need in longer queries. We sug-

gest that a SCS system needs to anticipate a range of information need expressions and

be adaptive to support the users’ different and changeable information requests within

one session.

Ellis suggested that information requests may poorly express the users’ underlying

knowledge gap [73]. We extend this to the audio-sphere, by suggesting that users can

first formulate vague information requests to the system, then navigate to a document

and pose more specific information requests within documents (Section 6.1.3). Further

investigation is needed to understand how to respond to the variety of these information

requests and best support the elicitation of the user’s need.

To summarise:

DR1.1: Support a range of different (ill-formed) information need expressions;

DR1.2: Anticipate for information need expressions to be given at any time;

DR1.3: Allow for gradual discovery of the user’s information need (over multiple turns

or sessions);

DR1.4: Allow for searching within content.



Chapter 9. Recommendations for the Design of SCS Systems 132

Present relevant information and support flexible results exploration. (DR2)

We observed a variety of results presentation techniques from Intermediaries in the SCS-

data, such as summarising, comparing, or synthesising documents and SERPs into “in-

formation units” (Section 7.2.1). The category Reveal reported by Azzopardi et al. [19]

has similar functions (i.e., summarise, compare). Besides conveying text information,

Intermediaries also interpreted visual information for Seekers such as graphs, photos, or

changes in link colour (i.e., already clicked), as discussed in Section 6.1.2. Such visual

material will benefit from better descriptive information, enabling the full potential of

audio-only interaction systems [1] which could be achieved through image description

generation [104].

We suggested that different kinds of queries may benefit from an optimised summary

(single-facet versus multi-facet queries) in Chapter 4. We indicated that query words

should be put in the context of the found document, thus reflecting their relationship

with the underlying document, which is in line with recommendations by Clarke et al.

[54] (Section 3.3). For audio recordings, such as music, lecture recordings, or pod-

casts, this may mean that users listen to a snippet extracted from the podcast audio to

understand the context of their query word [171]. Further investigation is needed to un-

derstand which kind of presentation (i.e., multi-document summarisation or comparing

results against each other) and which interaction techniques (i.e., combination of results

presentations) are suitable for different types of information need and query, or different

contexts.

The SCSdata suggests that the boundaries between the kind of documents (e.g., news

articles, blogs, or general web pages) is becoming undistinguishable (Section 6.1.2).

This indicates that boundaries between SERPs and documents are not detectable in

audio without creating modifications [51]. Furthermore, the credibility of documents

or information units can be assessed quickly in a visual setting; however, this multi-

dimensional credibility assessment is not easily accessible in an audio-only environment

(Section 7.2.1). Thus, transparency is needed to indicate from where the information

was extracted.

To summarise:

DR2.1: Create adaptable results presentation styles in different contexts and infor-

mation needs;

DR2.2: Support non-text information interpretation (e.g., graphs and photos);

DR2.3: Present information in the context of the document to reiterate the relation-

ship;

DR2.4: Be transparent as to which sources the information comes from if necessary.
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Pro-actively provide search assistance. (DR3)

Intermediaries assisted Seekers throughout their search process, from providing specific

search suggestions to requesting spelling (Sections 7.2.1 and 7.4.6). Seekers also explicitly

asked for search assistance throughout the search session (Section 7.2.1). We suggested

none of these search assistance techniques to participants. However, we believe that they

were intuitively applied to overcome the challenge of transferring information through

an audio-only communication channel. It is suggested that these techniques may be

suitable for future SCS systems to adopt.

Many different techniques exist to unobtrusively integrate search assistance in browser-

based search systems, for example, query suggestion during the query formulation stage

or spelling suggestion after the query formulation. In our results, we extend these

search assistance functions by including that the system: (1) provide and ask document

relevance feedback or usefulness judgements to/from the user, and (2) suggest continuing

from an information space (e.g., progressing to a new topic).

To summarise:

DR3.1: Pro-actively provide assistance to the searcher;

DR3.2: Accept and utilise relevance feedback from the user;

DR3.3: Elicit relevance feedback from the user reasonably;

DR3.4: Suggest to “move on” to a different information space when the topic has

been exhausted or does not contribute to satisfying the information need.

Accept search progression insights from users for personalisation and con-

textualisation. (DR4)

The results indicate that Seekers actively shared their progression of the search task

(Section 7.2.1). They provided this progress insight by specifying performance feedback

(i.e., how the search is progressing), rejecting search results, or notifying the Intermedi-

ary if they had gathered enough information.

Seekers were not forced in any way to produce relevance feedback in our study (i.e., indi-

cating the positive or negative relevance of a document or proposed query-reformulation);

however, they offered it nonetheless. We suggest that SCS systems incorporate such feed-

back which can help with the personalisation of the system for the user and may lead

to better system performance. The relevance feedback can also be used by the system

to further contextualise the users’ information requests [62, 95, 182].

To summarise:

DR4.1: Include user performance feedback into the search model;

DR4.2: Allow for negative/positive relevance feedback as rejected or accepted results.
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9.1.2 Discourse Level Design Recommendations

Use discourse markers to improve communication. (DR5)

Our results suggest that discourse markers (e.g., utterances which are concerned with

the conversational coherence and cohesion between participants while dealing with con-

versational repairs) are a crucial component of SCS (Sections 7.2.2 and 8.3.2.2). Indeed,

miscommunication, repairs of the miscommunication, or solving speech disambiguation

(e.g., by confirmations) are frequent occurrences in speech [111, 132, 224]. These dis-

course utterances invariably help overcome difficulties imposed by the audio-only inter-

action channel [79]. The discourse markers and meta-communication may occur more

frequently in a spoken setting versus a web-based search due to the temporal nature

of speech, and are not part of the primary information seeking web-based actions (i.e.,

query, document recommendations, or item selection). However, the particular discourse

utterances may become the fundamental support-actions for these primary information

seeking steps.

Handling errors or miscommunications through dialogue directly may cultivate a more

user-friendly or human-like conversation. Much research has been conducted in infor-

mation transfer [165], conversational repair [162], or miscommunication [169] in verbal

communication. This includes investigations of how conversational repair is organised,

which possibilities of repair exist, and how to deal with miscommunications which are

only realised later in the conversation. All the differences in these discourse manage-

ment functions and comprehension of conversational repair need to be addressed for

implementation in SCS.

Furthermore, we observed an increase in discourse interactions and meta-communication

in more complex tasks, suggesting that task complexity affects SCS interaction behaviour

(Sections 8.3.2.2 and 8.3.2.3). This is in line with previous research [59, 151]. We

believe that such discourse interactions are vital in dealing with disruptions imposed by

complex tasks which also interrupt the communication flow. Additionally, we suggest

using discourse together with a measure of effective information transfer [165] to be

included in the prospective evaluation of a SCS system.

To summarise:

DR5.1: Express discourse markers to indicate problems such as miscommunication,

uncertainty, or vagueness;

DR5.2: Include the users’ (meta-)discourse markers and uncertainty of effective in-

formation transfer expressions as an evaluation measure.



Chapter 9. Recommendations for the Design of SCS Systems 135

Exploit grounding and other dialogue dynamics. (DR6)

Grounding (i.e., discourse for the creation of mutual knowledge and beliefs) is when

participants in a conversation engage in a specific discourse activity to share their mu-

tually understood utterances [52]. We observed grounding actions in the SCSdata (Sec-

tion 7.2.2). For example, Seekers provided indirect feedback by reciting their interpre-

tation of the found results. This grounding process could enable a future SCS system

to better understand a user’s awareness of the results or information space, includ-

ing helping the SCS system to disambiguate a users’ information need. In particular,

users’ grounding utterances can be incorporated as a SCS feedback feature as investi-

gated in SDS with research in Information State Update (ISU) [188]. ISU researchers

attempted to identify these grounding utterances by characterising the dynamics of a

dialogue [80, 190]. The ISU symbolises what is known at a given moment in a dialogue

and can consists of two parts, the (1) mental (or internal) states of the user and (2)

information about the dialogue. The user’s mental state component includes the user’s

beliefs, obligations, intentions, commitments, or desires. The dialogue information com-

ponent collects which utterances have been said, which dialogue moves were generated,

and if the information was shared. The information about the dialogue component has

recently been described by Radlinski and Craswell’s memory model for conversational

search [146]. They proposed that memory of the system has two specific roles; firstly,

by recalling what has been said earlier in the conversation (this includes the information

need) and secondly, by referencing explicitly to what has been said such as clarifications

“What I meant with that...”. Hence, Radlinski and Craswell’s memory function can keep

track of the conversation’s context [146].

We suggest the implementation of a combined ISU and conversational search memory

model and add two more components to form the SCS grounding model or UMII : (3) in-

teraction preferences and (4) information space coverage (see Table 9.2) as described in

Sections 4.4 and 6.1.2. Indeed, a system should adapt to the conversational style and

preferences (e.g., search assistance preferences) of the user in their context and their

given task. Imagine a user is read out confidential information in a public space. The

system should have presented the results in the preferred mode in the context of the

user. We also recommend including the information space coverage, keeping track of the

materials already covered and the users’ mental model of the information space (i.e.,

what the users believe or understand is part of the existing information) as discussed in

Section 6.2.2. Finally, not all users provide grounding utterances; thus, a system cannot

rely entirely on this measure and it needs to be dynamically updated throughout the

search interactions.
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Table 9.2: SCS grounding model components (or UMII).

SCS ISU [190] Conversational Search [146]

1 User’s mental states User’s mental states
2 Memory Information about dialogue Memory
3 Interaction preference
4 Information space coverage

To summarise:

DR6.1: Use UMII to continuously update mental states, what has been said, infor-

mation space coverage, and interaction preferences;

DR6.2: Do not rely exclusively on all aspects of UMII.

Support multi-dimensional navigation. (DR7)

The SCSdata suggests that users may navigate through non-linear navigational inter-

actions (Section 7.2.2). That is, SCS users can express a “back-button click” in many

different ways, do not need to navigate physically through documents or search system

in a linear fashion, and can skip navigational steps altogether by simply referencing an

item or document. This non-linear SCS navigational behaviour is in contrast to web-

based information seeking patterns where the results page returned by the search engine

is often seen as the central hub from which users explore documents (i.e., hub-and-spoke

user interface design pattern) [98]. Furthermore, instead of interacting with lists in

a spoken environment, as often done in a SDS or in the case of RealSAM, users can

freely navigate in a multi-dimensional information space in SCS. This unlimited SCS

navigational experience is due to the liberation of rigid web-based navigation. Never-

theless, lists can still be a (back-up) results presentation strategy. In the event that lists

are needed, we suggest that techniques such as “infinite-reading” mode (i.e., seamlessly

navigating) are implemented to mitigate interruptions in the output and the need for

the user to repeat commands (Section 3.3). Other navigational support could be in-

cluded through sonification of clustered search results to indicate proximity or similarity

through sound-features (i.e., changing the pitch as the information space and orientation

develop).

In future SCS systems, with the flexibility of navigation, we believe keeping navigational

steps accessible and traceable to refer back to will be helpful for users [19]. Being able to

present a traceable history also provides further transparency for the user and supports

the explainability of the system. One could investigate the use of “breadcrumbs” to

contribute to the users’ location awareness, the current document or information space,
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and their interaction path. For example, breadcrumbs could refer to previous infor-

mation spaces or provide summaries of information the user visited instead of titles of

documents as in a browser-based back-button action.

To summarise:

DR7.1: Keep navigational steps at hand for traceback and explainability;

DR7.2: Avoid reading out lists, but when necessary implement techniques such as

“infinite-reading” or sonification of the information space.

Be able to communicate the system’s state to the user. (DR8)

The SCSdata suggests that a system should be able to indicate which processes are

happening inside the system through visibility of system status [136] so the user under-

stands what is happening (Section 7.2.2), for example, when the system is listening or

processing information. Visibility of system status also enables greater control, explain-

ability, and transparency of the system processes and outputs [62]. At any point in time,

the SCS system should be able to disclose its state to the user. For example, it should

disclose how the system retrieved or computed specific information which contributes

to the interaction process, or respond when a user wants to understand why particular

results have been presented. This information may be stored in the system’s memory

from past preferences (as discussed in DR6) or communication with the user, and it

should be able to demonstrate where it was extracted from.

However, providing constant feedback on what is happening in a system may not be

convenient in a spoken environment and could overload the user with too much (un-

necessary) information. Instead, understanding which aspects should be given and in

which mode (i.e., audio or screen based) to the user may be essential in the usability

assessment of a SCS system.

To summarise:

DR8.1: Be ready to disclose and explain the steps or processes the system took.

Advance beyond one-action paradigms. (DR9)

On another practical note, we argue that progressing beyond the one-action search

paradigm (action-response) is necessary for a user-friendly system (Section 6.2.1). We

suggested that the naturalness of the interaction with a SCS can be an evaluation fea-

ture as in SDS [124, 208]. We recommend that one of the aspects of this measure could

be users uttering multiple moves in one turn (i.e., one user-move can consist of a naviga-

tional command and feedback request). In a human–human interaction, this behaviour
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is observed and expected, and the other actor can handle it. Therefore, allowing users

to utter multiple moves in one turn which the system can process is likely to lead to

positive interactions with the system. Recently naturalness was also proposed as an

evaluation measure in TREC Conversational Assistance Track (CAsT) [64].

Support process of information use outside the system. (DR10)

Finally, we also advocate that the SCS system actively supports the user to process the

found information and usage beyond the system (Section 6.1.4). We suggest aiding the

user in manipulating, integrating, or utilising the found information in their (physical)

world [19, 126]. For example, by note-taking or summarising all the found information

and present it on a desktop device.

9.2 Towards Models and Detectable Components of SCS

In this section, we present a visual overview of our annotation schema and all its com-

ponents (i.e., themes and sub-themes). We then provide possible avenues for further

research on how to extend the annotation schema. We finish this section by discussing

existing search models considering our annotation schema.

9.2.1 Schematic SCS Themes Model

We present a nested schematic overview of our observed SCS interactions which is de-

rived from the SCoSAS annotation schema built on the SCSdata (Figure 9.1). This

schema presents the Task Level as the centre of the conversations with the utterances

regarding the topical search task. The Discourse Level is positioned around the Task

Level representing the statements which are about the mechanism (i.e., the function,

not the task). Thus the Discourse Level would still exist if the search task is changed

to a different task other than search. The figure also demonstrates which sub-theme is

accessed by each actor.

Previous research in communication goal studies suggested a similar two-tiered model as

our proposed schema [187]. Furthermore, the goal studies community argues that ordi-

nary discourse is segmented in different types of goals such as communicative functions

or interaction outcomes which is similar to our two themes of Task and Discourse. Bunt

provided a two-tiered model where general information dialogues consist of two moti-

vations, that is, one tier was concerned about the task communication and the second
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Figure 9.1: Schematic model of SCoSAS themes and sub-themes.

with driving the conversation [40]. Both two-tiered models strengthen our findings and

our multi-level schema classification.

This is the first attempt to create an interaction model of two actors in a SCS setting.

Further refinements of the model are not excluded. For example, possible extensions

to the schematic model could include System Level functions such as user help func-

tions, device functions, or personalisation functions. All interactions related to user

guides, settings (i.e., WiFi, battery, or personalisation, Section 3.2.2), and discovering

which device functions are available could potentially be covered in this System Level.

The inclusion of this theme would not interfere with the existing themes as shown in

Figure 9.2.

Figure 9.2: Possible schematic inclusion of System Level function.
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9.2.2 Increased Complexity, Interactivity, and Pro-activity

SCS as a new interaction paradigm introduces opportunities. We have shown that

changing the communication channel inherently introduces constraints to the search

process. However, these difficulties can be alleviated with the use of conversations,

interactivity, and pro-activity. Thus, our remaining conceptual implications for SCS

research are the following: (i) increased system and interaction complexity, (ii) increased

interactivity, and (iii) increased pro-activity (or agency) against existing browser-based

systems. We have illustrated throughout our work that these components are intrinsic

to SCS.

Increased system and interaction complexity. We illustrated the limitations of

the restricted audio-only channel in this thesis: for example, by the range of different

information requests, kinds of possible feedback loops, or different results presentation

strategies (Chapter 7). These described complexities are based on observational in-

teractions and do not include the conversational strategy management systems which

need to be implemented [133]. Furthermore, our results suggest that systems should

have more autonomy through SCS decision making (Section 6.2.3). Enabling decision

making by the system increases the system–action possibilities and thus promotes the

complexity. However, increasing system–actions leads to more complicated user- and

system-models and expectations, including the users’ cognitive models [23], resulting in

greater complexity.

Increased interactivity (collaboration). Our results show that interactivity and

collaboration through dialogue are important for mitigating communication breakdowns

in more complex tasks, as discussed in Section 8.4, and supports previous research [59,

151]. Furthermore, we illustrated the necessity of extra non-search interactions to up-

date each other’s mental state via grounding (Section 7.2.2). Thus the development of

SCS has to include all these possible interaction action-pairs. Future investigation of

limitations, negative use-cases, contexts in which this system will be used, and asking

the users for their needs of this system, will be invaluable.

Increased pro-activity or agency. The SCS system needs to be actively involved in

the search process with the user to fulfil all SCS design recommendations as presented

in Table 9.1. Furthermore, the audio-only interaction channel imposes limitations on

the amount of information which can be transferred in one utterance (or turn) without

cognitively overloading the user. This is in contrast to browser-based search, where all
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information can be presented at once and where the user can determine which infor-

mation is relevant to them at that moment. In SCS, the system must decide whether

presenting information or providing assistance is worth the bandwidth cost, with a pos-

sibility of cognitively overloading the user (Section 7.2.1). The SCS system needs to

take responsibility for assessing this cost–benefit determination.

Some examples of agency are: the system’s obligation to make decisions or cost–benefit

analyses on how to best present search results for the user in their context at a given

time (Section 6.2.3); suggesting relevant search assistance for a particular problem (Sec-

tion 7.2.1). Thus, the system has to adapt, accommodate, and support the user so

that the user has to expend as little effort as possible. This illustrates the pro-activity

required and the system’s capacity to act independently. For example, future research

can investigate how comfortable users are with offloading their decisions for particular

tasks and in which contexts.

9.2.3 Evaluating Existing Search Behaviour Models with SCoSAS

One objective of our observational study was to explore whether any existing informa-

tion seeking models fit SCS. However, to our knowledge many well-known models such

as Belkin’s ASK [22] or Marchionini’s ISP [126] do not include the system’s “responsi-

bility” of interacting with the user and thus do not capture all SCS behaviours.

Other models, such as Sitter and Stein’s COR model [168], Belkin et al.’s scripts [25],

or the recently proposed QRFA model by Vakulenko et al. [205] encompass the interac-

tion between two actors. However, these models either lack the flexibility of the speech

aspect, such as multiple moves in one turn, or are based on broad DA categorisations.

Furthermore, meta-discourse utterances are also lacking in those existing models, and

these utterances appear to be a substantial aspect of SCS. It is important to include these

discourse markers because incorporating them inherently creates a system which inter-

acts in a mixed-initiative information seeking communication (the system can ask for

clarification and thus takes initiative). Such mixed-initiative dialogue is a requirement

of what makes a SCS system truly conversational. Additionally, the broad DA cate-

gorisation only provides a high level insight of the actions users take while the SCoSAS

discloses more refined details of the users’ and systems’ state in each turn.

Finally, Saracevic’s stratified model includes the system as an active participant in the

information seeking process [158]. Furthermore, Saracevic specifies that the process

consists of a dialogue between the two actors. He also mentions that the dialogue can

be used for not only “searching” utterances but also for a number of “other engage-

ments” beyond the searching, for example, obtaining and providing different types of
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feedback, judgements, or states. In the SCS model, we also identify the system as an

active participant throughout the search process, which is in itself a conversation. In

addition, the “other engagements” Saracevic mentions could be interpreted as our Dis-

course Level interactions, such as our identified grounding utterances. Furthermore, the

stratified model could be used to illustrate the effect of the audio-only interaction chan-

nel limitation. That is, Saracevic says that a weak point in the system could hamper the

desirable outcome for the search process [158]. The stratified model and the schematic

SCS themes model may be complementary for the abstraction of a SCS process.

9.3 Expanding SCS Requirements

We outlined the requirements of a SCS system in Chapter 2. A SCS is concerned with

dialogue-like information seeking exchanges through spoken language between users and

system. The system is pro-actively involved with eliciting, displaying, and helping the

user to satisfying their information need through multi-turn transactions which can be

over multiple sessions (see Table 9.3).

Table 9.3: Predefined SCS requirements.

SCS

1 Analogy Human intelligible dialogue-like, beyond com-
mand and control

2 Language Spoken natural language, conversational
3 System participation Pro-active, mixed-initiative (implies listening)
4 Information request length Longer, more natural
5 Results presentation mechanism Adaptive to users’ need and context (ranked

list is inadequate)
6 Turn-taking Multi-turn
7 History Over (multiple) sessions

During our research we identified further suggested requirements. We add five new re-

quirements: multi-moves (Section 6.2.1), errors (Section 7.2.2), turn-time (Section 8.3.2.1),

semantics (Section 6.1.1), and navigation (Section 7.2.2) as presented in Table 9.4. We

refine the requirements of SCS systems by: A SCS system supports the users’ input

which can include multiple actions in one utterance, is more semantically complex, and

thus turn-time is less predictable. Moreover, the SCS system helps users navigate a

non-linear information space and can overcome standstill-conversations due to errors or

communication breakdown by including meta-communication as part of the interactions.

The methodologies in this thesis, namely the use of thematic analysis and crowdsourcing,

have been described in detail [196, 198]. As such, they are readily replicable by future

researchers. Indeed, the crowdsourcing framework has already been used for additional
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Table 9.4: Redefined SCS requirements.

SCS

1 Multi-moves From user and system
2 Errors Intelligent problem solving and anticipation of

errors (through meta-communication)
3 Turn-time Less predictable
4 Semantics Complex, more discourse
5 Navigation Multi-dimensional

purposes by others [51, 171]. The SCSdata created as a result of our methodology has

also been utilised [205].

9.4 Chapter Summary

We discussed the analyses and results of Chapters 3–8. We combined the outcomes from

those chapters and formed an in-depth discussion.

We provided practical contributions as design recommendations for SCS which were

derived from the triangulation of results. These design recommendations were also

discussed in more detail with further references for possible future investigation avenues.

Our conceptual contributions are the first step towards a SCS model, including features

of SCS, and a discussion of how SCS varies from existing search behaviour models.

Finally, we proposed extensions to SCS requirements.





Chapter 10

Conclusion and Future Work

Voice search is increasingly used with the rise in popularity of a number of speech-based

search applications. Within this area, voice-input has been previously researched but

limited work has explored voice-output. That work has suggested that a number of

difficulties may be found because of the limitations inherent in the narrow channel of

speech. We believe that conversational interactions can alleviate some of these speech-

imposed difficulties. Thus, the aim of this thesis was to explore SCS, and in particular,

to examine (i) the interaction behaviours and (ii) the results presentation in SCS.

To explore the interaction behaviours, we started with a log analysis of an audio-only

communication channel system, RealSAM, which is used for accessing media by people

with a visual impairment. The RealSAM logs enabled us to conduct an initial explo-

ration of interaction behaviours (Chapter 3). This interaction log analysis informed

methodological decisions for the second step in our SCS exploration, the development

of SCSdata in Chapter 5. SCSdata is a unique dataset with extensive documentation

for reproducibility. We also developed the data analysis methodology for the SCSdata,

including the annotation and validation processes. During the formalisation of the SCS-

data, we started accumulating and assembling observations unique to the experiment

and these are outlined in Chapter 6. We then identified and classified the atomic inter-

actions observed in the SCSdata in Chapter 7. We derived the first annotation schema

for SCS from these classifications which we called the SCoSAS. The SCoSAS was then

thoroughly validated and shown to be generalisable and replicable for a SCS setting.

Finally, we demonstrated the extensive use of the SCSdata and SCoSAS by further

investigating task complexity, interaction, and discourse behaviour in Chapter 8.

To explore results presentation for SCS, we first created a crowdsourcing framework to

investigate different results presentation strategies in an interactive environment (Chap-

ter 4). The framework has been used by several other results presentation studies which

145
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confirm the transferability of our setup.

Our results suggested that allowing users to express their information need verbally

increases the complexity of SCS. We found that two major processes are involved in SCS,

namely utterances which are either related to the task or related to the meta-discourse.

Thus, it appears that different interaction behaviours occur in SCS which are not found

in a browser-based search, such as asking for repetition (meta-discourse utterances) to

resolve a communication breakdown. Our results also suggested that translating text

to audio is insufficient to support users’ needs. To address some of these challenges,

design recommendations have been outlined in Chapter 9. This chapter also outlines

conceptual and methodological suggestions to support future research.

The remainder of this chapter is divided into the following sections: in Section 10.1 we

provide the summary of our contributions, and in Section 10.2 we state some extensions

to our observational study and SCoSAS creation. Finally, in Section 10.3 we specify

possible future experiments.

10.1 Summary of Contributions

We now provide a summary of the thesis contributions by chapter.

Part I – Thesis Overview and Background

Chapter 1 – Introduction: We outlined our motivations for this thesis and

the research scope, as well as providing an overview of the challenges in SCS

and our contributions.

Chapter 2 – Background: We provided background to this thesis including

reviewing the development of Spoken Conversational Systems and SCS in

particular. We outlined interactivity in IIR and the impact of task complex-

ity and discourse. We reviewed information seeking processes and models

including information seeking through dialogue. We discussed search actions

through audio and review speech user interfaces. Finally, we provided back-

ground information on SDS.
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Part II – User Preferences in Results Presentation and Access over an

Audio-Only Communication Channel

Chapter 3 – Accessing Media Via an Audio-only Communication Chan-

nel:

• We illustrated the importance of thorough experiment setup and analysis

protocol for future audio-only studies.

• We highlighted the need to meticulously log audio-only interactions, in-

cluding where possible the preservation of the audio input and output for

closer examination.

• We outlined the influence of pre-defined system categories on interaction

behaviour in audio-only interactions.

Chapter 4 – Results Presentation for Audio-only Communication:

• We designed a novel crowdsourcing framework to investigate results pre-

sentation in an interactive audio-only communication setting.

• We provided further confirmation that text snippets cannot simply be

translated into audio without consequences for user preference in an

audio-only environment.

• We showed that different kinds of queries benefit from a different opti-

mised summary.

Part III – Towards a New Model of Spoken Conversational Search

Chapter 5 – Methods:

• We proposed a methodology for creating a SCS dataset, including the

data collection setup, questionnaires, semi-structured interviews, and

transcription methodology.

• We introduced the data analysis methodology, annotation schema con-

ception, and validation process.

• We created SCSdata.

Chapter 6 – Observing Spoken Conversational Search Interaction Be-

haviour:

• We illustrated with empirical evidence that interactions with SCS can be

divided into search or non-search communication.

• We indicated that many different interaction behaviours can be observed

in SCS which are not found in a browser-based search environment.

• We demonstrated that complexity and interactivity are fundamental com-

ponents of SCS.
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• We highlighted the importance that existing information seeking models

are not sufficient to cover foundational communicative functions.

Chapter 7 – Identifying, Classifying, and Validating the Interaction

Space for Spoken Conversational Search:

• We identified the possible actions taken in SCSdata and divide them

into two themes and eight sub-themes which provide insight into the

characteristics of SCS.

• We established a multi-tiered classification or annotation schema based

on these identified actions, the SCoSAS, including both actors in the

seeking process (the Seeker and the Intermediary) as equals, leveraging

multi-turn activities and multi-move utterances. The SCoSAS facilitates

further research in the conceptual understanding of human search dia-

logue behaviour, by enabling the researcher to select particular points of

interest to investigate.

• We produced evidence that our SCoSAS is generalisable and replicable

for a SCS setting by validating the SCoSAS with inter-rater reliability

and code overlap with the SCSdata including coverage and code overlap

with the MISC.

Chapter 8 – Task Complexity and Interactivity for Spoken Conversa-

tional Search:

• We contributed that task complexity has an effect on interaction and meta-

discourse behaviour in SCS.

– We showed that more complex queries relate to higher interaction counts.

– We demonstrated that more complex tasks exhibited greater support

utterances such as Discourse Management (i.e., confirmations).

Part IV – Discussion

Chapter 9 – Recommendations for the Design of Spoken Conversa-

tional Search Systems:

• We produced ten practical SCS design recommendations from triangu-

lation of multiple data sources and methods, and discuss these recom-

mendations concerning the SCoSAS action space. An objective of these

recommendations is to help focus the SCS research.

• We created the first schematic model of SCS based on the SCoSAS which

highlights that existing models do not sufficiently include discourse ac-

tions and the system as an active agent with its responsibilities.

• We included further conceptual avenues for SCS.
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• We illustrated the importance of multi-disciplinary teamwork to advance

in SCS while contributing new research avenues for SCS research.

10.2 Extensions

This thesis presents exploratory work and it is an initial investigation of SCS. As such,

there are several limitations which could be addressed with the following extensions:

Human to human interaction: We are aware that human to human interaction may

differ from the intended human–machine interactions [71]. However, since this is an

exploratory study to understand the interactions which may lead to hypotheses forma-

tion, it was not a significant drawback and focus in our study. Nevertheless, we plan to

conduct further studies to test our hypotheses in a human–machine interaction setting.

Lab setting: Participating in a lab setting influences the participants’ behaviours [106].

Nevertheless, we believe that, even though this study was conducted in this setting, the

overall findings will apply to a general day-to-day environment. In addition, the tasks

tested in this study were created from TREC tasks and have traditionally been devel-

oped with the usage of a graphical interface in mind. Intuitively, we could investigate

whether task design (i.e., whether it was developed to be completed in a browser-based

or audio-only setting) impacted on search behaviour. Thus, investigating the informa-

tion needs for SCS which arise in a natural setting will be necessary to develop natural

systems. This will include understanding the different information needs and creating

new taxonomies for these needs.

Taking initiative equals one turn: Our coding schema allows for coding per turn since

we segmented the users’ utterances with the idea that taking the initiative equals one

turn. This means that slight subtleties inside a turn such as long pauses may be lost.

However, we believe this was necessary to understand the broader context of SCS.

10.3 Informing Future Experiments

Our exploratory research into SCS allowed us to think broadly to expand knowledge

in this new search interaction paradigm. We now present future research directions for

SCS.

Interaction model and Wizard of Oz to test hypotheses: As seen in Figure 10.1,

this thesis covers the data collection, creation of the first SCS annotation schema, anal-

ysis and validation of this schema, and design recommendations for SCS. Future work
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includes creating detailed interaction models for this search paradigm which will inform

the design of these systems, for example by the evaluation of particular features. The

evaluation and hypotheses testing can be done in a WOZ setting.

Figure 10.1: Future work includes creating models and systems.

Automatic utterance categorisation: Spoken utterance classification is a unique

form of spoken language understanding and involves determining the function of the

utterance in a dialogue [202]. These classification techniques can range from simple

keyword detection to more sophisticated semantic classifications. Recent advances such

as understanding the characteristic of particular utterances will be useful in this cate-

gorisation process [144]. However, Bunt et al. showed that dialogue utterances are often

multi-functional or have a communicative function in more than one dimension, which

makes utterance recognition and labelling still a complicated task [43]. Nevertheless,

to scale the classification process of SCS’s user input, automatic categorisation of these

utterances will be necessary.

Cognitive level detection from user’s speech: Tools are available to measure the

cognitive levels from a person’s speech unobtrusively [211]. For example, if a SCS

system presents information to the user and the user responds, the SCS system could

examine the cognitive load implied by that utterance. This utterance analysis could

then form a basis of whether the system needs to adjust those responses depending on

the cognitive load from the user or even suggest switching to a different device when a

user is cognitively overloaded [50, 109, 212]. Other more suitable lab-based techniques

such as fNIRS could also be used [214].

Suggesting device switching and adaptive conversational systems: It is desir-

able to overcome the cognitive overload of information while leveraging the interactions

and conversations between the system and the user. Nevertheless, each user has differ-

ent cognitive limitations at different times due to numerous external or internal factors.



Chapter 10. Conclusion and Future Work 151

Thus, conversational systems need to adapt continuously to the users’ cognitive inter-

action abilities. For example, if the system detects from the user’s voice that they are

struggling or cognitively overloaded, the system should adapt the interaction strategies.

This may require that the system should suggest searching at another time or on other

device and assist the user in this change. Thus, device or search strategy switching allows

for a dynamic user–system interaction which will be experienced as more natural [62].

Refinding and revisitation of search results: Understanding how users refind or re-

visit their results in an audio setting may provide us with another opportunity to under-

stand the user’s cognition or search process while searching. Studying this phenomenon

through dialogue offers a unique opportunity to investigate particular utterances, for

example, grounding, and their role in the refinding process [47].

Understanding conversational search turn-taking: Turn-taking is an essential

phenomenon in dialogue [110]. The system incrementally releases information, and the

user can process these data without having to handle all information in one go and is

referred to as turn-taking phenomena [110] or user revealment [137]. Analysing this

turn-taking and revealment behaviour while incorporating these results in the dialogue

can increase dialogue efficiency.

Results presentation, response generation strategies, and results organisa-

tion: One major usability factor of these spoken systems is how it presents results and

information units, including how to structure the output of these results (i.e., the or-

ganisation such as clustering). It is well understood that just reading out a results list

or text is not sufficient and that one cannot translate a graphical user interface into

an audio one [51, 224]. However, it is still unclear which search results should be pre-

sented and how this should be done over an audio-only communication channel. Our

observational study provided an initial natural approach to learn how people express,

structure, or summarise found information units. Next, we can test these approaches

in a crowdsourcing framework as specified in Chapter 4. Furthermore, investigating

comprehensive readability aspects for audio such as the listenability of a document are

new avenues of multi-disciplinary research [217] including understanding if readability

can help as a measure of the quality of a spoken summary [226].

Identifying interaction cost: Much research has been devoted to understanding the

costs associated with interactions throughout a search process [141, 142]. These costs

have been identified in many different ways, including temporal, physical, or mental

demands. For example, the interaction costs could be viewed as an economic problem in

which different costs are assigned to different conversational interaction behaviours [18].

More precisely, by investigating the interaction cost as an economics problem, we can
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use labelled datasets such as the SCSdata to understand which conversational strategies

are effective in terms of user effort and gain.

Evaluation: The extensive list of possible future experiments listed above demonstrates

the complexity of SCS as an end-to-end problem. Thus, the definition of evaluation

frameworks for SCS and, more generally, conversational IR, is also challenging [62, 172].

Recent evaluation initiatives such as the TREC 2019 Conversational Assistance Track

(CAsT) [64] aim to create reusable test collections for text-based information-centric con-

versational dialogues. We believe that novel evaluation methodologies and frameworks

are needed for SCS to leverage the knowledge of SDS evaluation [90]. The creation of

resources such as SCoSAS, MISC, and other testbeds is arguably the first step to inform

the evaluation of SCS.

Concerning our future extensions, we will examine the collected questionnaire data from

the observational study and the semi-structured interviews. We are also investigating

ideal paths as a dialogue schema and completing the sequence mining of SCSdata.

10.3.1 Informing Wider Research Agendas

We believe our research implications extend to other research areas. For example, ex-

isting systems and models have difficulties with multi-turn actions, utterances which

consist of multiple moves, or intent extraction. In this thesis, we attempted to better

understand these unique features of SCS by creating a labelling schema and schematic

model of these labels. Our model and annotation schema provide a novel extension of

prior preliminary SCS models [197] and the conceptual framework Azzopardi et al. [19].

While the labelling schema developed in this thesis provides insight into the interaction

space of SCS and possible actions taken by both actors we also instigated a new un-

derstanding of non-search related or discourse actions. These non-search related actions

provide much-needed information for future SCS systems and are likely to transform

search interactions.
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Professor Mark Sanderson 
School of Science 
RMIT University 
 
 
 
 
Dear Professor Sanderson  
 
RE: BSEHAPP 10-14 An investigation into browsing web search results over a speech-only 
communication channel 
 
Thank you for submitting the above amendment to your approved ethics application for consideration by the  
Science Engineering & Health College Human Ethics Advisory Network (CHEAN). 
 
The application was considered and reviewed by the CHEAN in January 2019. Your ethics approval has now 
been extended to 31 January 2020. 
 
Status: Approved  
 
The CHEAN reviewed the above amendment application and agreed that it meets the requirements of the 
National Statement on Ethical conduct in Human Research, NHMRC, 2007 (NS) guidelines and approves the 
requested amendment.  
 
If there is anything in this letter that you are unclear about or require further clarification upon then please 
contact the CHEAN secretary, Ms Mary Duffy. 
 
Yours sincerely 
 

 
Associate Professor Barbara Polus 
Chair, Science Engineering & Health 
College Human Ethics Advisory Network  
 
Cc:  Student Investigator/s:   Joanne Trippas s3301860 School of Computer Science & IT RMIT University 
 Other Investigator/s:     Lawrence Cavedon School of Computer Science & IT RMIT University 
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ASEHAPP 08-16 Investigating Search Behaviour over Audio 
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Search Behaviour over Audio, which was originally approved by Science Engineering and Health 
CHEAN in 2016 for a period of 2 years.  
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request. 
 
The CHEAN notes and thanks you for providing all documentation that incorporates these 
amendments. This documentation will be appended to your file for future reference and your 
research may now continue.  
 
The committee would like to remind you that: 
 
All data should be stored on University Network systems.  These systems provide high levels of 
manageable security and data integrity, can provide secure remote access, are backed up on a 
regular basis and can provide Disaster Recover processes should a large scale incident occur.  The use 
of portable devices such as CDs and memory sticks is valid for archiving; data transport where 
necessary and for some works in progress; The authoritative copy of all current data should reside on 
appropriate network systems; and the Principal Investigator is responsible for the retention and 
storage of the original data pertaining to the project for a minimum period of five years.  
 
Please Note: Annual reports are due on the anniversary of the commencement date for all research 
projects that have been approved by the CHEAN. Ongoing approval is conditional upon the 
submission of annual reports failure to provide an annual report may result in Ethics approval being 
withdrawn.  
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www.rmit.edu.au/staff/research/human-research-ethics  

 
Yours faithfully, 

 
Associate Professor Barbara Polus 
Chair, Science Engineering & Health  
College Human Ethics Advisory Network  
 
Cc   Other Investigator/s:    Johanne Trippas s3301860 School of Science  
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Appendix A. Participant Information Statement 157



Appendix A. Participant Information Statement 158
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INVITATION TO PARTICIPATE IN A RESEARCH PROJECT 

 

PARTICIPANT INFORMATION  

Project Title: Investigating Search Behaviour over Audio 

Dear participant, 

You are invited to participate in a research project being conducted by RMIT University. Please read this 
sheet carefully and be confident that you understand its contents before deciding whether to participate. 
If you have any questions about the project, please ask one of the investigators.  

Who is involved in this research project?  
Researchers at RMIT are conducting the project. This research is performed by Johanne Trippas as part 
of her PhD in Computer Science. She is under the supervision of Prof. Mark Sanderson, Assoc. Prof. 
Lawrence Cavedon and Dr. Damiano Spina of RMIT. RMIT Human Research Ethics Committee has 
approved this research project. 
If you have any questions, please contact Johanne Trippas on Johanne.trippas@rmit.edu.au. 

What is the project about?  
We are conducting this project to gain better insight into how people communicate with a search engine 
(such as Google or Bing) by using speech, when no keyboard or screen is available. We seek a better 
understanding of how to present search results over audio while not overwhelming the users with 
information, nor leaving users uncertain as to whether what they covered the information space. We 
expect to form new hypotheses and research questions from this study. 

If I agree to participate, what will I be required to do?  
You will be shown a scenario with an underlying information need. You will then have to communicate 
this information need to the other participant who has access to a search engine. The other participant 
can use the search engine to help you with finding the information you need from the scenario. The only 
way to communicate this information need is through talking with each other. The roles of the person 
with the access to the scenario and the search engine will be reversed. We will put something between 
you and the other participant so you cannot see each other and really need to focus on what the other 
participant says without picking up on facial expressions. 

Short post-task questionnaires will be provided after each scenario. At the end of the experiment, we will 
conduct a short interview where you can provide any feedback. 

If you have questions or comments during the experiment, please ask the investigators, we are here to 
help you. You may leave at any time. 

What are the possible risks or disadvantages?  
There are no perceived risks outside your normal day-to-day activities. 

Reading scenarios and trying to complete the task is not the most exciting work. The scenarios have 
been screened and do not tackle culturally sensitive issues. If, however, you prefer not to judge a 
particular query for any reason, just skip the query and move to the next one. You can stop the 
participation any time. 

What are the benefits associated with participation?  
There are no direct benefits to you for participating in this study. However, the data collected in the study 
may help to contribute to public knowledge of how search engines can be made more user friendly for a 
wide audience. 
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To thank you for your time, you will receive a $20 Coles Group & Myer gift card for your participation in 
the study. 

What will happen to the information I provide?  
The recordings from the conversations between you and the other participant and the interviews will be 
transcribed for analysis. This allows us to de-identify the recordings and conduct analysis from the 
transcriptions instead of the recordings.  

The data from the questionnaires will be analysed. The data will be stored on a password-protected 
computer at RMIT for five (5) years and will not be shared with others. The research conducted using 
this data will be published in a PhD thesis and refereed journal or conference. We hope the publication 
will happen sometime between 2016 and 2018.  

We will keep the data safely locked away, however, there might be a possibility that we want to revisit 
the data later on. This means that the data might be used in a future project either by us or by another 
researcher. 

What will happen to the video recordings? 
The video recordings will be transcribed in text format which allows us to analyse the results. Once the 
recordings are transcribed, they will be stored on a password-protected computer at RMIT for five (5) 
years. No personal identifiers will be stored as we will de-identify all the recordings and transcriptions 
with IDs. No images from these recordings will be altered, copied or used for publication. 

What are my rights as a participant?  

• You have the right to withdraw from participation at any time. 
• You have the right to have any unprocessed data withdrawn and destroyed.  
• You have the right to request that any recording cease. 
• You have the right to be de-identified in any photographs intended for public publication, before 

the point of publication. 
• You have the right to ask questions (via email or in person) at any time. 

 
Whom should I contact if I have any questions?  
Please contact Johanne Trippas (Johanne.trippas@rmit.edu.au).  

What other issues should I be aware of before deciding whether to participate?  
You will be working with another participant in this study. If you don’t feel comfortable conducting a 
search with the other participant, please feel free to leave at any time. 

Yours sincerely, 

Prof. Mark Sanderson (Mark.sanderson@rmit.edu.au) 
Assoc. Prof. Lawrence Cavedon (Lawrence.cavedon@rmit.edu.au) 
Dr. Damiano Spina (Damian.spina@rmit.edu.au) 
Johanne Trippas (Johanne.trippas@rmit.edu.au) 

 

 

 

If you have any concerns about your participation in this project, which you do not wish to discuss with 
the researchers, then you can contact the Ethics Officer, Research Integrity, Governance and Systems, 
RMIT University, GPO Box 2476V  VIC  3001. Tel: (03) 9925 2251 or email human.ethics@rmit.edu.au 
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CONSENT FORM 

1. I have had the project explained to me, and I have read the information sheet  
 
2. I agree to participate in the research project as described 
 
3. I agree: 

§ to undertake the tests or procedures outlined  
§ to be interviewed and/or complete a questionnaire 
§ that my voice will be audio recorded 
§ that my image will be taken and no images from these recordings will be altered, 

copied or used for publication. 
 
4. I acknowledge that: 
 

(a) I understand that my participation is voluntary and that I am free to withdraw from the 
project at any time and to withdraw any unprocessed data previously supplied (unless 
follow-up is needed for safety). 

(b) The project is for the purpose of research. It may not be of direct benefit to me. 
(c) The privacy of the personal information I provide will be safeguarded and only disclosed 

where I have consented to the disclosure or as required by law.  
(d) The security of the research data will be protected during and after completion of the study.  

The data collected during the study may be published. Any information which will identify 
me will not be used. 

 
Participant’s Consent 
 
Participant:  Date:  

(Signature) 
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Appendix B

Questionnaires and

Semi-structured Observational

Study Interview Questions

Unless otherwise indicated all items are evaluated with a five-point scale, where 1=Not

at all, 2=Slightly, 3=Moderately, 4=Very, and 5=Extremely.
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B.1 Pre-task questionnaire for the Seeker

Table B.1: Pre-task questionnaire for the Seeker.

Measure Question

Interest and Knowl-

edge

How many times have you searched for information about this task?* [1=7

times or more, 2=5-6 times, 3=3-4 times, 4=1-2 times, 5=Never]

I am interested to learn more about the topic of the task.*

How knowledgeable are you about the topic of the task?*

Task Complexity How defined is this task in terms of the types of information needed to complete

it?*

How defined is this task in terms of the steps required to complete it?*

How defined is this task in terms of its expected solution?*

Expected Task Diffi-

culty

In this simulated search environment, how easy do you think it will be to

search for information for this task?*

In this simulated search environment, how easy do you think it will be to

understand the information found?*

In this simulated search environment, how easy do you think it will be to

decide if the information found is useful for completing the task?*

In this simulated search environment, how easy do you think it will be to

determine when you have enough information to finish the task?*

NOTE: * Adapted from Kelly et al. [108].



Appendix B. Questionnaires and Semi-structured Observational Study Interview
Questions 164

B.2 Post-task questionnaire for the Seeker

Table B.2: Post-task questionnaire for the Seeker.

Measure Question

Interest and

Knowledge

I am interested to learn more about the topic of the task.*

In this simulated environment, how much did your knowledge of the task

increase as you searched?*

Experienced Task

Difficulty

In this simulated search environment, how easy was it to search for information

for this task?

In this simulated search environment, how easy was it to understand the in-

formation found?

In this simulated search environment, how easy was it to decide if the infor-

mation found was useful for completing the task?

How easy was it to determine when you had enough information to finish the

task?

Experienced Conver-

sational Difficulty

Thinking about the content of the information, how understandable was the

information given by your partner?

Thinking about the content of the information, how logical was the information

given by your partner?

How easy did you find verbalising the information need compared to typing

it?

Experienced Collab-

oration Difficulty

How would you rate the collaboration between you and your partner? [Where

1=Very poor and 5=Very good]

I gave clear instructions as to what my partner had to search for.

My partner gave me clear directions to help him/her with the search task.

Experienced Search

Presentation Difficulty

My partner presented a good overview of the search results.

My partner presented the search results in a way that was easy to understand.

My partner gave me enough information to select the most relevant result.

My partner provided enough information to help me solve the search task.

Overall Difficulty Overall, how easy was this task?*

Overall Satisfaction Overall, how satisfied are you with your solution to this task?*

Overall, how satisfied are you with the search strategy you took to solve this

task?*

Open question What would you have done differently to accomplish this search task?

To what extent did you achieve your search goal?

NOTE: * Adapted from Kelly et al. [108].
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B.3 Post-task questionnaire for the Intermediary

Table B.3: Post-task questionnaire for the Intermediary.

Measure Question

Experienced Conver-

sational Difficulty

Thinking about the content of the information, how understandable was the

information given by your partner?

Thinking about the content of the information, how logical was the information

given by your partner?

How well was the search query formulated by your partner?

How well did you understand what your partner was searching for?

How easy did you find completing the search task with the the information

your partner gave you?

Experienced Collab-

oration Difficulty

How would you rate the collaboration between you and your partner? [Where

1=Very poor and 5=Very good]

My partner gave me clear search directions.

I gave clear instructions to my partner in order to conduct the search with the

search engine.

Experienced Search

Presentation Difficulty

How easy did you find verbalising the information that you read on the screen?

How well do you think your partner understood what you verbalised from the

screen?

I presented a good overview of the available options.

I presented the search results in a way that was easy to understand.

I presented the search results in a way that gave my partner enough informa-

tion to select the most relevant result.

Overall Difficulty Overall, how easy was this task?*

Overall Satisfaction Overall, how satisfied are you with your solution to this task?*

Overall, how satisfied are you with the search strategy you took to solve this

task?*

Open question What would you have done differently to accomplish this search task?

To what extent did you achieve your search goal?

NOTE: * Adapted from Kelly et al. [108].
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B.4 Exit questionnaire for the Seeker

Table B.4: Exit questionnaire for the Seeker.

Measure Question

Experienced Conver-

sational Difficulty

The length of my partner’s statements was appropriate to complete the task.

I found the general conversation flow with my partner comfortable.

I felt overloaded with information from my partner.

My partner spoke too quickly.

I gave clear instructions about what my partner had to do.

My partner gave me clear instructions as to what I had to do.

The information spoken by my partner was too complicated to understand

what had actually been said.

My partner understood the meaning of what I said.

Experienced Collab-

oration Difficulty

My partner worked together with me in the search task.

My partner encouraged me to give clear search directions.

My partner was disruptive in the search task.

My search would have been faster if I had used the search engine by myself.

My search would have been more efficient if I had used the search engine by

myself.

Experienced Search

Presentation Difficulty

Hearing an overview of all possible options is important to me.

I found not having visual information from the search engine difficult.

Open Questions What did you like about this study?

What did you dislike about this study?

How could we improve this study?
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B.5 Exit questionnaire for the Intermediary

Table B.5: Exit questionnaire for the Intermediary.

Measure Question

Experienced Conver-

sational Difficulty

The length of my partner’s statements was appropriate to complete the task.

I found the general conversation flow with my partner comfortable.

I felt overloaded with information from my partner.

My partner spoke too quickly.

I gave clear instructions about what my partner had to do.

My partner gave me clear instructions as to what I had to do.

The information spoken by my partner was too complicated to understand

what had actually been said.

My partner understood the meaning of what I said.

Experienced Collab-

oration Difficulty

My partner worked together with me in the search task.

My partner encouraged me to give clear information about what I found on

the search engine.

My partner was disruptive in the search task.

My search would have been faster if I had known the search tasks and used

the search engine by myself.

My search would have been more efficient if I had known the search task and

used the search engine by myself.

I found searching without knowing the scenario difficult.

Open Questions What did you like about this study?

What did you dislike about this study?

How could we improve this study?
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B.6 Semi-structured Observational Study Interview Ques-

tions

Task Complexity:

• Before you started your search, did you have any expectations of how your partner

would react on your query (results)?

– What were the expectations?

Expected and experienced task difficulty:

• Can you recall a time when you felt engaged in a search task in this simulated

search environment?

– What topic were you searching?

– Which website were you looking at?

• Can you recall a time when you felt frustrated in a search task in this simulated

search environment?

– What topic were you searching?

– Which website were you looking at?

– Was there something specific that made you felt frustrated?

Interest and Knowledge:

• What were the key points or moments that triggered your interest in the search

task?

Experienced conversational difficulty:

• How did you find the general conversation flow between you and your partner?

– Which were moments you understood each other and you had a common

understanding of what you were searching for (“aha moment”)?

– Which were moments you did not understand each other?

– What were the strategies to make sure you understood your partner correctly?

• Thinking of the conversation, if you had to refind a result, how would you do this?
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– If you need to refind something when you are searching on your own computer

on a search engine, how do you do this? What would be different in this

setting where you do not see the screen and you cannot type the search

query?

• How did you find verbalising your search or search results?

– What would you have done differently if you were in control of the search

engine by yourself via a keyboard and screen?

Experienced collaboration difficulty:

• How did you find the conversation about the search task went between you and

your partner?

– Did you find any useful sentences or probes to receive more information from

your partner?

– What were the probes your partner did not respond on the way you antici-

pated?

– Imagine if you did non understand your partner, there was noise or you were

not paying attention to what he/she was saying. In what way would you try

to understand what your partner had said?

Experienced search presentation difficulty:

• What were the techniques your partner used to present you with the search results

in a way that was easy to understand?

– Can you think of a moment that you clearly understood what your partner

was saying in the aspect of what he/she found on the search engine results

page?

– Which techniques would you have used to present the search results to your

partner if you were using the search engine?

Overall difficulty:

• What would you do differently to make this search process easier?

• How do you see this kind of search work in the future?

• Thinking about a technique of presenting the search results how do you think

clustering would impact your way of searching?
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SCSdata

Released data can be found on http://bit.ly/SCSdata_thesis and has received an

ACM SIGIR badge for having the dataset publicly available.

Artefact type: Dataset

ACM SIGIR badge: Artefacts Available1

C.1 Provided Files

We provide all the releasable data in different files:

• Transcripts (ConversationalSearchDataSet.csv) and (SCSdataset.csv)

• Backstories (backstories ConversationalSearchDataSet.csv)

• Code book (CodeBook CHIIR.pdf)

C.2 Acknowledgments

This research is partially supported by Australian Research Council Project LP130100563

and Real Thing Entertainment Pty Ltd. The data collection and release was reviewed

and approved by RMIT University’s Ethics Board (ASEHAPP 08-16).

The authors were employed by RMIT University when these transcripts were created.

1https://openreview.net/forum?id=rJgGxq1_z4
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Appendix D

Spoken Conversational Search

Interaction Themes

D.1 Theme 1: Task Level

Table D.1: Information Request (Seeker).

Theme Sub-theme Actor Code Frequency

Task Level Information Request Seeker Automated repetitive search 3
Seeker Definition explanation 1
Seeker Definition lookup or person 1
Seeker Information about document 6
Seeker Information about SERP overview 2
Seeker Information request 67
Seeker Information request within document 80
Seeker Information request within SERP 15
Seeker Initial information request 39
Seeker Intent clarification 52
Seeker Query embellishment 20
Seeker Spells (query or query word) 2
Intermediary Definition clarification 1
Intermediary Enquiry for further information 11
Intermediary Google query expansion suggestion 3
Intermediary Query refinement offer 57
Intermediary Query rephrase 12
Intermediary Requests more details about information request 5
Intermediary Query formulation for information found in document 1
Intermediary Asking what they are looking for 2
Intermediary Within-Document search result entity lookup request 1

171
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Table D.2: Results Presentation (Intermediary).

Theme Sub-theme Actor Code Frequency

Task Level Results Presentation Intermediary Source information 8
Intermediary Image overview on SERP 2
Intermediary Interpretation of photos 1
Intermediary Multi-document summary 3

Intermediary
Paraphrasing from document which is
not in front of them

1

Intermediary Scanning document with modification 51
Intermediary Scanning document without modification 79

Intermediary
Scanning document without modification
but with interpretation of photos

1

Intermediary SERP Card 16
Intermediary SERP overview without modification 1
Intermediary SERP with modification 19
Intermediary SERP without modification 72
Intermediary Within SERP search result 4
Intermediary Within-Document command response 1
Intermediary Within-Document search result 60

Intermediary
Interpretation biased towards information
request or clarification given by the User

1

Intermediary Comparing results against each other 1
Intermediary Interpretation 22

Table D.3: Search Assistance (Seeker and Intermediary).

Theme Sub-theme Actor Code Frequency

Task Level Search Assistance Seeker Recommendations 1
Seeker Requests “enough information” judgement 1
Intermediary Asking about usefulness 4
Intermediary Requests spelling 2
Intermediary Suggestion to move on 2
Intermediary Relevance judgement 6
Intermediary Suggestion to search more 1
Intermediary Requests to access search engine 1
Intermediary Search suggestion based on info encountered in document 1

Table D.4: Search Progression (Seeker).

Theme Sub-theme Actor Code Frequency

Task Level Search Progression Seeker Enough information 6
Seeker Performance feedback 18
Seeker Rejects 9
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D.2 Theme 2: Discourse Level

Table D.5: Discourse Management (Seeker and Intermediary).

Theme Sub-theme Actor Code Frequency

Discourse Level Discourse Management Seeker Asks to repeat 31
Seeker Asks to repeat first search result 6
Seeker Asks to repeat Nth search result 1
Seeker Confirms 114
Seeker Query repeat 14
Intermediary Asks to repeat 38
Intermediary Checks navigational command 13
Intermediary Confirms 46
Intermediary Repeats 12
Intermediary Repeats the query back 9

Table D.6: Grounding (Seeker).

Theme Sub-theme Actor Code Frequency

Discourse Level Grounding Seeker Creating bigger picture 1
Seeker Interpretation 12

Table D.7: Navigation (Seeker).

Theme Sub-theme Actor Code Frequency

Discourse Level Navigation Seeker Access link within document 1
Seeker Access search engine 2
Seeker Access source 29
Seeker Access source (implicit) 2
Seeker Between-document navigation 1
Seeker Is there more information 6
Seeker Leave document 1
Seeker Next 3
Seeker Read more from the document 1
Seeker Within-document command 3

Table D.8: Visibility of System Status (Seeker and Intermediary).

Theme Sub-theme Actor Code Frequency

Discourse Level Visibility of system status Seeker Access source feedback-request 3
Seeker Feedback on what is happening 1
Seeker Results? 10
Intermediary Feedback on what is happening 13
Intermediary Misheard 1
Intermediary Previously seen results 2
Intermediary Wayfinding 3
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D.3 Theme 4: Other Level

Table D.9: Other Level (Seeker).

Theme Sub-theme Actor Code Frequency

Other Level Seeker Utter (“So I’m” and “Well so they are saying”) 2
Seeker Provides information about the Search Engine (“So it’s [a] search engine”) 1
Seeker Asks if allowed to query embellish (“Actually can I add something else to that?”) 1
Seeker Offers to spell (“[...] would you like me to spell it?”) 1
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