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Abstract: There has been growing interest in applying
the artificial neural network (ANN) approach in structural
system identification and health monitoring. The learning
process of neural network can be more robust when
presented in the Bayesian framework, and rational
architecture of the Bayesian neural network is critical to its
performance. Apart from number of hidden neurons, the
specific forms of the transfer functions in both hidden and
output layers are also crucially important. To our best
knowledge, however, the simultaneous design of proper
number of hidden neurons, and specific forms of hidden-
and output-layer transfer functions has not yet been
reported in terms of the Bayesian neural network. It’s even
more challenging when the transfer functions of both layers
are parameterized instead of using fixed shape forms. This
paper proposes a tailor-made algorithm for efficiently
designing the appropriate architecture of Bayesian neural
network with simultaneously optimized hidden neuron
number and custom transfer functions in both hidden and
output layers. To cooperate with the proposed algorithm,
both the Jacobian of network function and Hessian of the
negative logarithm of weight posterior are derived
analytically by matrix calculus. This is much more accurate
and efficient than the finite difference approximation, and
also vital for properly designing the Bayesian neural
network architecture as well as further quantifying the
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confidence interval of network prediction. The validity and
efficiency of proposed methodology is verified through
probabilistic finite element (FE) model updating of a
pedestrian bridge by using the field measurement data.

1 INTRODUCTION

The FE model updating method has become a prevalent
technique utilized in structural system identification and
health monitoring. The accuracy of FE model is essential
for ensuring its successful implementation. However, due to
assumption and uncertainty arisen from the theoretical
hypothesis, boundary condition, and geometric and material
properties, there is an unavoidable mismatching between
the measured and model-predicted dynamic characteristics.
Thus, the FE model must be adjusted to improve its
matching quality, which is generally an inverse process and
known as the FE model updating. There is a strong interest
in developing the FE model updating methods based on
vibration measurements over the past few decades (Friswell
and Mottershead, 1995), which have been applied to a
variety of structural systems and components, such as
beams (Levin and Lieven, 1998; Teughels et al., 2003;
Simoen et al., 2015), trusses and frames (Adeli and Cheng,
1993; Katafygiotis and Beck, 1998; Law et al., 2001; Adeli
and Jiang, 2006; Yin et al., 2009; Yu and Yin, 2010; Yuen,
2010; Boulkaibet et al., 2015; Yin et al., 2017; Oh et al.,
2017), bridges (Brownjohn, 2003; Jaish and Ren, 2007
Jensen et al., 2014; Shabbir and Omenzetter, 2015; Park, et
al., 2017), highrise and historic buildings (Jiang and Adeli,
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2005; Astroza et al., 2016; Torres et al., 2017), railway
sleepers (Lam et al., 2014), pipelines (Zhu et al., 2008; Yin
et al, 2017; Yin et al.,, 2019), aerospace structures
(Mottershead et al., 2011; Stochino et al., 2017), etc. in
diverse engineering fields.

Most of the methods mentioned above solve the inverse
problem of adjusting model parameters by minimizing the
difference between the model-predicted and measured
dynamic properties. As repeated solution of large scale
eigenvalue problem is generally required in this process, the
computational cost will become unaffordable when dealing
with complex models with large amount of degrees of
freedom. This inverse problem can, however, be efficiently
transformed to a forward one that is significantly easier to
be handled by the ANN approach. Although not specifically
developed for the model updating problem, the excellent
capability of pattern matching makes the ANN approach to
be a very promising tool for this purpose.

For system identification and health monitoring of
structures, the multi-layer neural networks are widely
utilized in the literature (Adeli 2001; Sohn, et al., 2004;
Lam and Ng, 2008; Adeli and Jiang, 2009; Arangio and
Beck, 2012; Sirca & Adeli, 2012; Hakim et al., 2015;
Chang et al., 2018; Yin and Zhu, 2018), and currently, deep
learning neural networks have also begun to be applied in
this area (Abdeljaber et al., 2017, Cha et al., 2017, Lin et al.,
2017, Grande et al., 2017; Gao et al., 2018; Wang et al.,
2018; Yang et al., 2018). In this paper, the commonly used
multi-layer feedforward neural networks are investigated,
and they have been confirmed to be able to approximate
any functional relationship between inputs and outputs with
a single hidden layer (Cybenko, 1989). It’s also well
recognized that, for the complexity of network with single
hidden layer, the number of hidden neurons have a
significant impact on the ANN training process and the
performance of trained ANN, especially for complex
function fittings, such as the FE model updating problem.
Too small a hidden neuron number will result in a poor-
quality network that fails to reveal the essential
characteristics of training data, whereas too large a number
might cause the output of the neural network to fluctuate
within the area between training data points. Thus,
reasonably designing the network architecture with an
appropriate complexity is essential to guarantee the
successful implementation of ANN-based model updating.
However, in practice, the ANN architecture is generally
determined only by rule of thumb or experience, and few
publications addressed the ANN design issue in the area of
structural system identification and health monitoring
(Lam, et al., 2006; Yuen and Lam, 2006; Lam and Ng, 2008;
Arangio and Beck, 2012; Yin and Zhu, 2018).

It is noted that the traditional ANN approach simply
minimizes the sum of squared errors between the network
output and the target variables to estimate the network
weights and biases from the training data. In order to get

better performance, the learning process in a neural network
can be elaborated in the Bayesian statistical framework by
incorporating the prior information about the network
parameters, leading to the concept of Bayesian neural
network that is more robust in both the training and
prediction process than the traditional ANN. Beginning
with the early research activities relevant to the Bayesian
neural network (Buntine and Weigend, 1991; MacKay,
1992), the application of Bayesian inference to the area of
neural network research has received more and more
attention (MacKay, 1994; Neal, 1996; Lampinen and
Vethari, 2001; Barber, 2002; Lee, 2004; Arangio and Beck,
2012; Yin and Zhu, 2018). Due to the importance of neural
network design, attention has been paid to the reasonable
choice of the number of hidden neurons for the Bayesian
neural network (Arangio and Beck, 2012). Apart from the
number of hidden neurons, specific forms of transfer (or
activation) functions and hyperparameters also have a non-
negligible effect on the network performance (Lam and Ng,
2008; Snoek et al. 2012; Yin and Zhu, 2018). To the best of
our knowledge, however, for Bayesian neural network, the
simultaneous design of appropriate hidden neuron number,
together with the specific forms of transfer functions in
both the hidden and output layers has not been reported yet
in previous research works. The goal becomes quite
cumbersome and more challenging when the transfer
functions of both layers are generalized to be a family of
parameterized functions as compared to the fixed shape
forms. In addition, the most of publications related to the
predictive output distribution from Bayesian neural
networks only considered the case of univariate output
(Bishop, 2006; Iruansi, et al., 2012; Kocadagli, 2014), while
the predictive distribution with multivariate output was
rarely involved. But the single-target network is not
applicable for structural model updating as the number of
candidate parameters to be refined should definitely exceed
one. Furthermore, accurate estimation of the posterior
probability of network architecture and the predictive
distribution over trained network outputs is very dependent
on the Hessian of the negative logarithm of the posterior of
weight vectors as well as the Jacobian of network function.
But the commonly used finite difference method does not
meet the requirements of computational accuracy and
efficiency, which is also vital for properly designing the
architecture of the Bayesian neural network and further
quantifying the uncertain of network prediction.

In this paper, an efficient and tailor-made algorithm is
developed for Bayesian neural network with multiple target
variables in terms of designing suitable class of network
architectures for FE model updating. By treating the
network design procedure as a combinatorial optimization
problem, the proposed algorithm 1is intended to
simultaneously determine the proper hidden neuron number
and the suitable forms of parameterized hidden- and output-
layer transfer functions. The analytically derived the
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Jacobian and Hessian matrices guarantee the accuracy and
efficiency of evaluating the posterior probability of network
architectures and predictive distribution over trained
network outputs. The validity and effectiveness of the
developed methodology is fully demonstrated by
probabilistic FE model updating of a 39-m-long pedestrian
steel bridge in Wuhan, China, with fielding testing data.

2 THEORETICAL DEVELOPEMENT

ANN is powerful computational models inspired by
biological neural network system to approximate functions
which are generally unknown. The neural networks take the
advantage of learning procedure with parallel and
distributed processing for performance improvement. In the
neural network learning process, transfer functions play a
very important role, and properly choosing transfer
functions in neural networks is of vital importance to their
performance (Duch and Jankowski, 1997).
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Fig. 1. Two custom transfer functions defined: (a) tansig-
type for hidden layer; (b) purelin-type for output layer.

In this study, instead of utilizing the fixed shape transfer
functions, i.e., the hyperbolic tangent sigmoid (tansig) and
linear transfer functions (purelin) (Hagan et al., 1996),
integrated in Matlab, as shown in Figure 1, the transfer
functions employed in hidden and output layers are both
generalized as a family of parameterized functions as

1 — exp(—2c,u)
1+ exp(—2c )

T®W,¢;) = cpv 2

where 7O, 73 are transfer functions in hidden and output
layers, and u, v denote arbitrary elements of the vector-
valued inputs to the two layers. The two scaling parameters
c; and ¢, control the slopes of transfer functions in both
layers. In particular, c; = 1 and ¢, = 1 correspond to the
build-in tansig and purelin in Matlab, respectively. Thus,
the selection of hidden- and output-layer transfer functions
in this paper is equivalent to determine suitable values of
the two scaling parameters ¢; and c,, where the flexibility
and capability of network performance is expected to be
improved as compared to the fixed shape functions.

In this study, the proposed algorithm emphasizes on
designing the architecture of a feedforward Bayesian neural
network with a single hidden layer, which specifically
includes the simultaneous determination of suitable number
of hidden neurons as well as appropriate values of scaling
parameters corresponding to hidden- and output-layer
transfer functions. Thus, instead of using the usual single
index number, the class of network architectures is more
conveniently defined to be a combination of these three
design parameters by Ay, ¢, ¢,» and Ny denotes the number
of hidden neurons. In this note, the overall network function
with a single hidden layer can be given as:

V(X W; Appere,) = T@V(X), ¢;)
= TOWRTD (u(x),c;) +b®,c,)

T, c) = (1)

3)

where
u(x) = Wix + bM® g RVax1

“4)
v(x) = WATDO(x),c,) + b® € RVox1

and x € RN | y(x,W; Ay, ¢, ¢,) € RV are vector-
valued input and output of the meural network. N; and N,
denote the number of neurons in both layers. The weight
matrices W € RN#XN1 W@ g RNo*NH and bias vectors
b® € RV&x1 b2 € RNo*1 together form the adaptive
network parameters. The numbers 1 and 2 in parenthesis
appearing in the superscripts denote the hidden and output
layers, respectively. For convenience, all weights and biases
can be stacked into a weight vector or network parameter
vector w € RVw*1 a5

= W) (60 W) )] 5

where vec(-) represents the matrix vectorization by
stacking the columns of a given matrix into a single column
vector. Ny, = Ny(N; + Ny + 1) + N, represents the total
number of elements contained in network parameters w.
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By utilizing the neural network method, the FE model
updating problem investigated in the study is equivalent to
predict multiple target variables t representing the model-
updating parameters from a vector X of inputs representing
the modal characteristics by adjusting the adaptive network
parameters w . The network input x, i.e., the modal
properties, is obtained through eigenvalue analysis based on
the structural FE model as follows

x=G(t) +1n (6)

where G: RVo — RN denotes the FE model that accepts the
model parameters t extracted from the model parameter
space generated with uniform-distribution assumption to
predict the modal parameters Xx. 1 € RV*1 is the sample
noise vector, coming from a zero-mean Gaussian with
varying levels of standard deviations {0, a, -, aNS}, added
into the calculated modal parameters X for ensuring a robust
network after training. Ny is the total number of noise levels
considered. Let D,S) ) = {{xgo),tl}, ~--,{X$),tM}} denote M
sets of input-output training samples obtained by FE
analysis without noise, the full set of training data is the
gathering of training data generated by imposing various
levels of noise on the noise-free training input samples, i.e.,

Dy = {D{, D, -, D'} %)
where Dﬁfi) = {{Xgai),tl},“',{Xl(;i),tM}} fori=1,-,Ng,
and N = M(Ng + 1). In this study, the design of Bayesian
neural network aims to identify the most probable
architecture class by utilizing the expanded training data
Dy from N, prescribed classes of network architectures.

To begin with, the target vector t are approximated as
independent Gaussian distribution, which is conditional on
the input vector X and network weights w, with an x-
dependent mean provided by the network function in Eq. (3)
and shared Gaussian noise parameter § (Bishop, 2006). In
this note, the conditional distribution of the target vector in
terms of the architecture class Ay, ¢, ¢, is defined as

p(th, w, 5, CANHrCLCz) = N(tly(x' w; ‘ANH‘CLCz)’ IB_IINO)
(®)
where Iy, € RVo*N0 is an identity matrix. In addition, the

prior distribution for the uncertain network parameters w is
chosen as a Gaussian:

p(wla, Ay,) = N(w|0,a"y,,) 9)

where Iy, € RYW*NW s also an identity matrix. Ny,
denotes the dimension of the weight vector for this class of
network architectures. Based on the conditional distribution
of the target vector provided by Eq. (8), the likelihood
function is conveniently constructed by utilizing the full set
of input-output training data Dy as

p(Dn|W, B, Anyere,)
N

| | _ (10)
= N(tn ly (X, W; CANH,cl,cz)' B 1INO)
n=1

By employing the Bayes’ theorem, the posterior
distribution of the uncertain weight vector w with the
network architecture Ay, ., , is given by

p(w|DN, a, B, c/qNH,cl,Cz)
_ p(Dle;B;CANH,Cl,Cz)p(wla'CANH) (11)
p(DNla’ ﬁt CANH,CLCZ)

It is seen from Eq. (11) that the Bayesian neural network
in this paper is related to the concept of automatic relevance
determination (ARD) (Yuen and Mu, 2015; Mu and Yuen,
2016). For the investigated problem, there is only one
hyperparameter utilized as a regularization factor, instead of
associating each model parameter with an individual
hyperparameter. It is noted that the posterior distribution in
Eq. (11) is not Gaussian since the network function given in
Eq. (3) is nonlinearly dependent on weight parameters w.
However, one can achieve a local Gaussian approximation
by employing the Laplace approximation as

p(wlDN' a, B'CANH,CrCz)
= N (W|W, A_l(wl al ﬁr c/CZNH,Cl,Cz))

(12)

where W is the local maximum obtained through the usual
nonlinear optimization algorithm by maximizing the
logarithm of the posterior distribution in Eq. (11), i.e.,

W = arg m‘gx{ln[p (w|‘DN, a, B, ”qNH.C1.Cz)]}

o arg m‘gx{—ﬁJ(W; CANHrCLCZ) - a||W||2}

(13)

and J ( W Ay e 1‘02) denotes the sum-of-squares error
function between the neural network output and target, i.e.,

N
(W Anyer) = D e Aueye )P (19
n=1

where en(w; C/ZNH,CLCZ) = y(xn,w; CANHrcerZ) —t,, and
[I-]| represents the usual Euclidean norm. The matrix
A(W; a, B, Ay cic,) € RVWXNW represents the Hessian of
the negative logarithm of the posterior evaluated at the
maximum of the posterior W for the given class of network
architectures Ay, ¢, ¢, 1.€.,

A(W; a,p, CANHrCLCz)
= —VVIn[p(W|Dy, & B, Anpye.e,)1l (15)
= 1/2(BH(W; Ay ¢, c,) + @ly,,)
where H(W; Ay, ¢, ¢,) € RVW*NW is the Hessian matrix of
J( w; ‘ANH,%Cz) evaluated at W, i.c.,
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Hll l-112 l-113 H14

=N Hy, H23 Hy,
H(W; cﬂNH.cl.cZ) = H3; Hs, (16
sym Hyd,_g

where Hy; € H,, € RVIVe*Nu  H . €
RNINHXNHNO , H14 € ]RNINHXNO , H22 € ]RNHXNH , H23 €
RNHXNHNO , H24 € ]RNHXNO , H33 € RNHNOXNHNO , H34_ €
RNe#No*No and H,, € RNo*No are the submatrices of the
symmetric Hessian and derived analytically in the
Appendix by using Kronecker products and matrix calculus.
It’s much more accurate and efficient than using the finite
difference method to approximated the Hessian, which is
vital important for network architecture selection.

In the evidence framework, following the similar
procedure as Bishop (2006), the point estimates for
hyperparameters @ and 8 can be obtained with the Laplace
approximation by maximizing the log evidence

1n[p (DNW' B, ‘ANH.CLCZ)]
= NNOIH,B - ,8(7 (W’ ‘ANH.CLCZ)
— NNyIn(27) + Wina — a||W||?
— ln|A(W, a, ,81 <:/lNH,Cl.Cz) |

at W with respect to a and 8, and one can obtain

d = W/(”W”Z + tr[A_l(W, &l Bl "ANH,Cl,Cz)])
B = (NNo — &lIWI2) /T (W; A e )
Instead of marginalizing over all possible values of
hyperparameters, the evidence p(DN|c/lNH_C1‘CZ) can be

conveniently approximated by substituting their point
estimates into the evidence p(DN|a, B, CANH,CLCZ) as

p (DN |‘ANH.C1£2) =

p(Dy|W, B, Anyyc,.c, ) P(W|&, Ay, (18)
(27T) w2 |A(W; &I ‘BA’ cANH,Cl,Cz) | e

N{NgXNIN
RNINEXNINY

(17)

Following the Bayes’ theorem, the probability of network
architecture class Ay, ¢, ¢, conditional on the training data
Dy can be calculated to determine the most plausible
architecture class for Bayesian neural network within the
full set of potential architecture classes, and this yields:

p(quHrcvaZ |DN' ‘U)
__ POl Anpercp WP (Anperer|[ W) (19)
2?21 p(DN |CANH,C1‘CZ’ U) p(ﬂNH‘CIJCZ |'U)

where U denotes the judgment on the initial plausibility of
the network architecture class, and j is the index of one of
the N, candidate network architecture classes. As there is
generally no idea about the suitable network architecture for
a given problem at the beginning, it’s just assumed that
each class of architectures has an equal prior possibility
1/N, . In this study, the optimal class of network

architectures is achieved by maximizing the posterior
p(CANHvCLCZ |DN,‘U), which is equivalent to maximizing the
evidence p(DN|c/lNH,C LCZ,‘U) with respect to the number of
hidden neurons Ny, and scaling parameters c¢; and c, of
hidden- and output-layer transfer functions simultaneously.
By assuming further that the probability distribution is
solely specified by the class of network architectures
AnNy.c1,c,» the user’s preference U can thus be dropped from
the notation hereafter for brevity. Instead of directly
utilizing the evidence in Eq. (18), it’s more convenient to
maximize the following log-evidence form

ln[p(DNL/lNH_Cl_CZ)] =~ NN, [lnﬁ —In(2m) — 1]

A 20)
+Wlna@ — 1n|A(v’V, &: ,8, CANH,Cl,Cz)|

which depends solely on the hyperparameter estimates and
the corresponding Hessian matrix. In this study, for the
given training data Dy, the class of network architectures to
be selected from the entire prescribed set is the one having
the highest value of log-evidence given in Eq. (20).

It is noted that the evidence of network architecture class
given in Eq. (18) is conceptually equivalent to that given in
Beck and Yuen (2004) with respect to a set of
parameterized FE models, and both includes two terms. The
first term named as likelihood factor favors more complex
model parameterization scheme, whereas the second term,
i.e., the Ockham factor, ensures a resultant model that fits
the data with a suitable complexity by imposing a penalty
against such parameterization complexity. In this note,
however, it seems to be some counterintuitive that why the
present study intends to select the proper values for scaling
parameters c¢;,c, of hidden- and output-layer transfer
functions besides of the number of hidden neurons Ny, as
the complexity of network architecture solely depends on
Ny but not on c¢; and ¢, . This is understandable that,
although ¢; and ¢, do not affect the network complexity,
they do have a direct impact on the maximum a posteriori
estimation of network parameters W as seen from Eq. (13),
the Hessian in Eq. (16), and the point estimation of the
hyperparameters @ and §. As a result, the values of so-
called likelihood factor, Ockham factor as well as the log
evidence are obviously dependent on both ¢; and c, as well.
Thus, instead of the penalty on model complexity, the
Ockham factor should be more generally understood as a
penalty against the wuncertainty of identified model
parameters, which will be explained later. This also clearly
interprets the importance and significance of this study to
simultaneously select the hidden neuron number and proper
scaling parameters of transfer functions in both layers.

Algorithm 1 Proposed architecture design algorithm for
Bayesian neural network

1. Input: Initialize the temporary maximum number of hidden
neurons to be Ny, , the hidden- and output-layer scaling
parameters ¢; o = 1 and ¢, = 1.
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13.
14.

15.
16.

17.

18

20.
21.

22.

23.

24.
25.

26.

Generate two sequences of scaling parameters {c; 1+, ¢y; =
€105 C1N,, } € RV and {cp1,+, ¢z = Co0, “,CoN,, } €
RNe2X1

Set the index of the main loop k = 1.

While convergence criterion is not satisfied (main loop)

For i =1 to Ny (inner loop 1)

Calculate the log evidence ln[p(DN|Jli,CLk,czlk)] with i hidden
neurons and scaling parameters ¢ y, Cp k-

Update i to i + 1, and calculate ln[p(DN|a‘li+1,cllk,52’k)], which
is compared with ln[p (DN |CAir51,k'CZ,k)]'

If ln[p('DNl‘;’qi"'LCLk'Cz,k)] < ln[p(DNlﬂi-C1,k»Cz,k)] , output
nyo = i for the given ¢y g, €3 &, and end this inner loop.
Otherwise, if i < Ny, increase i by 1 and go to Step 5.

If i = Ny, set nyy = Ny and end this inner loop.

. End for
12.

Set hidden neuron number and output-layer scaling parameter
to be nyy and ¢, recorded in the previous inner loop, and
initialize the hidden-layer scaling parameter as ¢y ;.

For i =1 to N, (inner loop 2)

Define an integer number N, > 1, and calculate N,, consecutive
log-evidence values for nyg, -+, ngo + N, — 1 hidden neurons,
respectively,

In [P (DN |dan0vC1,ifC2,k)] ;e In [p (DN |C/lnH0+Np_1fC1,ivCZ,k):|
End for
Find both the optimized ny; and c;; with respect to the
maximum log-evidence value:

(MH1best C1pest):
=arg max {ln[p(DN [Anycrneni) ] fOT Tt
(MH1,€1,0) e

=Ny, Mo + Ny —land ¢y ; = ¢q,9,¢12, ""Cl,Ncl}

Set hidden neuron number and hidden-layer scaling parameter
to be 1y1 pest and €; pest recorded in the previous inner loop,
and initialize the output-layer scaling parameter as ¢ ;.

.Fori=1to N, (inner loop 3)
19.

Calculate N, (N, > 1) consecutive log-evidence values for
Nyt bests " » MH1pest T Np — 1 hidden neurons, respectively,

ln[p('DN|</l

nHl,bestrcl,beStvCZ,i)] P
In [p (DN |C’anl,best"'Np_1-51,bestv52,i)]
End for
Find both the optimized ny, and c,; wth respect to the
maximum log-evidence value:
(MH2,best C2,best):

=arg max {I[p(Dy| A,y )] PO M

=Ny, Mgy + Ny — 1 andcy; = C2,1vC2,2r""CZ,NCZ}
If k> 1, test if the condition ¢ pest = C101d> aNd Czpest =
C201d 1s met; If yes, stop the while loop and go to Step 28.
Otherwise, save the optimized scaling parameters in the current
main loop, i.e., C1 g1 = C1pest> aNd C2 014 = Copest-
Set the main loop index k = k + 1.
Update the temporary maximum hidden neuron number to be
Nyo = maX{NHO'nHZ,best}-
Update the scaling parameters to be ¢; x11 = C1pests Cok+1 =

C2pest> and go to Step 5.

27. End while

28. Output: simultaneously optimized hidden neuron number
Migzpest » and hidden- and output-layer scaling parameters

C1pest a0d €3 pest-

It should be pointed out that if the ‘best’ class of network
architectures is identified by directly comparing log-
evidence for all classes with Eq. (20), the computational
burden for such an exhaustive way would be unaffordable.
Thus, instead of directly picking up the ‘best’ one, this
paper formulates the selection process as an optimization
problem, which is solved very efficiently by a properly
designed algorithm tailor-made for handling this issue,
where the number of hidden neurons together with the
scaling parameters of transfer functions in both layers is
simultaneously identified. Considering a sequence of
discrete sample values with a total number of N, and N,
assigned to the scaling parameters c; and c,, respectively,
the proposed algorithm consists of one main loop and three
inner loops. The main loop controls the convergence of the
whole algorithm, and the three inner loops correspond to
sequential estimation for Ny, and the combinations {Ny, ¢}
and {Ny, c,}, respectively. One can refer to Algorithm 1 for
more detailed information. It is also illustrated in a
flowchart as shown in Figure 2, providing a more intuitive
representation of the entire flow of the proposed algorithm.
In this figure, the main steps of Algorithm 1 are identified,
and the inner loops are referred by different colors for
clarity. It is also noted that the order of last two inner loops
can be exchanged, leading to two different search strategies
I and II, i.e.,{Ny, c;} = {Ny,c,} and {Ny,c,} = {Ny, c,},
which are also indicated in the flowchart.

Denote Ay, c,c, to be the class of Bayesian neural
network architectures with the simultaneously optimized
hidden neuron number, transfer-function scaling parameters
for both hidden and output layers obtained through the
proposed design algorithm. By substituting the point
estimate of hyperparameters @* and B* achieved at the
maximum a posteriori estimation W* corresponding to the
optimized class of network architectures into Eq. (13), the
posterior probability distribution of network parameters can
be approximated as Gaussian:

(W |y, @, B, Ay 0,) =
N (w*|W*,A_1(W*; &*;ﬁ*:ﬂ;VH,ClnCZ)) (21)

where the superscript = denotes the quantities corresponding
to the optimized Bayesian neural network architecture.

The predictive distribution of network output can be
further achieved by marginalizing over the posterior
distribution of network weights provided in Eq. (21) as

PR Dy Aiyere) = [ PR B Ay,
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p(W* Dy, @, B, Ay ey 0, )AW” (22)

It is worth noting that the integration form in Eq. (22) is
analytically difficult to handle because of the nonlinear
dependence of network model y(x, w; Ay, ,) on the
high-dimensional network weights w. To make progress, an
approximation approach is generally employed to
approximate the integral with a finite sum as

L
1 N
p(tlx; DN! c/q;(\/H,Cl,Cz) = ZZ p(t|x’ wl ’ ﬂ*’ c/qNH,Cl,Cz)
i=1
(23)

where {w;} denotes a sample of network parameters drawn
from the posterior distribution p(w*|DN, a*, p Y ANye 1162).
It is noted that drawing such sample of parameter vectors
representative of the posterior distribution is generally not
easy. To fulfill this purpose, a Markov chain Monte Carlo
technique is generally employed. However, the main
shortcoming of this method is the considerable amount of
computational cost especially for the situation of high-
dimensional network parameter space.

In this paper, the predictive distribution given in Eq. (22)
is achieved in a significantly more efficient way as
compared to the Monte Carlo method. Assuming that the
covariance of posterior distribution of uncertain network
weights to be small (Bishop, 2006), the linear
approximation of the nonlinear network function is
achieved through taking a Taylor series expansion around
the maximum a posteriori estimation W* and solely keeping
the linear terms, i.e.,

p(the w", B, Ay cy.c,)
= N (tly(x, W Anpeic,) ) (24)
+ G(X, W Ay ee, ) AW, By )

where Aw* = w* —W*, and the x-dependent Jacobian
matrix G(x, W*; ANpyc 1@) of network function analytically
evaluated at W* is expressed as following:

G(X, W ANy ee,) = (61 G2 Gz Gyllyrogr  (25)

G, € RNo*NiNE | G, € RNo*Nu | G5 € RNo*NuNo | and
G, € RVNo*No are the submatrices of the x-dependent
Jacobian matrix and given analytically in Appendix.

Thus, the predictive distribution over the Bayesian neural
network output with optimized architecture given in Eq. (22)
can be further approximated as a multivariate Gaussian:

(e Dy, Ay ) =

N(tly(x’ W*; CA;VH'CLCZ)’ ﬁ* _1IN0 + G(X' W*; CA;VH'Cl'Cz)
A_l(w*; &*’ B\*' c’q;FVH:CLCz)GT (X' W*; cfl?VH,CLCz)) (26)

whose mean is given by the network function

y(X, W*; Ay, cc,) for the optimized Bayesian neural
network architecture with the most probable network

weights W*. It should be noted that the covariance matrix in
Eq. (26) is the combination of the uncertainty arisen from
intrinsic noise on target variable and uncertainty of network
parameters.

Within the framework of the proposed methodology, the
procedure for performing the probabilistic FE model
updating is straightforward. When the measured modal
parameters X, are available, the distribution of updated
model parameters can be conveniently achieved with the
predictive distribution over the trained network output
provided in Eq. (26). Then, one can further obtain the
mathematical expectation of modal parameters predicted
from the updated model by an integral with respect to the
predictive distribution of updated model parameters as

E[G(6); Dy, Ay orc,] = f GOP(tixe, Dy, Ay, c,0,)dE
()
@7)

where G (t) represents the modal properties calculated from
the structural model by accepting model parameters t
through modal analysis procedure. X, denotes the measured
modal properties employed for the model updating, and ©
is the model parameter space of the updated model.

It is apparent that Eq. (27) depending on the predictive
distribution in Eq. (26) is generally difficult to handle
analytically. To make progress, the Monte Carlo simulation
technique is adopted herein to predict the distribution of
modal properties. The integral in Eq. (27) is approximated
with the Monte Carlo sampling technique by generating a
sequence of vectors {t,}, -+, {tx} which forms a stationary
Markov chain. Thus, the expected value in Eq. (27) and
corresponding  variance-covariance  matrix can be
approximated as, respectively,

K
1
E[G (0 D Ay ey] * 7 )G (28)
i=1
and
K
1
2(G(03 D Aiyere,) = ) GEIGEDT
i=1

_E[g(t); DN’ CA;VH,cl,cz]E[g(t); DN' CAXIH,CLCZ]T

where {t;} represents a model parameter sample drawn
from the predictive distribution over the trained network
output p(t|xtrDN:Cﬂ7\lH,c1,cz) with optimized Bayesian
neural network architecture based on the updated FE model.
From Egs. (28) and (29), the statistical properties of
predicted modal parameters from updateé9 model is
achieved, which can be utilized for assessing the l/alidity of
updated model.
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Fig. 2. Flowchart of the proposed architecture design algorithm for the Bayesian neural network.
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3 MODEL UPDATING OF A PEDESTRIAN BRIDGE

Fig. 3. Xima Road pedestrian steel bridge: (a) Baidu Map©
view shows the pedestrian bridge and its vicinity; (b)
elevation view; (¢) connection detail between strut, top
chord and diagonal chord; (d) longitudinal view.

In this section, the proposed methodology is verified
through model updating of a 39-m-long pedestrian steel
bridge, located at Xima Road, Jiang'an District, Wuhan,
China, as shown in Figure 3. Except for the cross-section of
the strut being the circular tube, other non-bridge-deck
members, including the upper chords, bottom chords, and
diagonal chords, are all in the form of hollow rectangles in
cross section. Table 1 lists the geometrical and material
properties of the pedestrian bridge, most of which are
obtained from the design drawings. By utilizing these
physical parameters provided in this table, the initial FE
model of the pedestrian bridge is established. Figure 4
shows the structural FE model with a total number of 68
elements and 30 nodes. Each chord and strut is discretized
into one single beam element while the bridge deck is
modeled as plate elements. The bridge deck is composed of
two layers of steel panels with a thickness of 12 mm located
at both the top and bottom, respectively. For the established
FE model, it is much more convenient to treat the bridge
deck as plate elements with uniform thickness regardless of
its hollowness in the middle layer, and thus the material
properties of the bridge deck is involved in the updating
parameters later for compensating the influence of this
approximation.

Table 1
Geometrical and material properties employed for
modeling the pedestrian bridge.

Parameter descriptions Initial values

Bridge span 39m
Bridge width 43 m
Bridge height 34m

Young’s modulus of steel members 2.06x10"" N/m?

Mass density of steel members 7.85x10” kg/m’
Poisson’s ratio of steel members 0.3

Outer dimension of top chord section 0.4x0.3m
(Rectangular hollow)

Thickness of top chord section 0.012 m

Outer dimension of bottom chord section 0.4x0.3m
(Rectangular hollow)

Thickness of bottom chord section 0.012m

Outer dimension of diagonal chord 0.25%0.3m
(Rectangular hollow)

Thickness of diagonal chord 0.012 m

Outer radius of strut section (Circular tube) 0.09m
Thickness of strut section 0.012m
Thickness of bridge deck 02m

Young’s modulus of bridge deck 2.06x10" N/m?
Mass density of bridge deck 7.85x10° kg/m’
Poisson's ratio of bridge deck 0.3

Based on the initial FE model shown in Figure 4, the first
four natural frequencies and mode shapes of the pedestrian
bridge model are obtained from the modal analysis process,
including the 1% and 2™ vertical modes and the 1% and 2™
torsional modes as shown in Figure 5. It should be noted
that the lateral modes is not involved in the model updating
procedure, which is intended to match the sensor layout
(see yellow arrows in Figure 4) in the field testing.

Fig. 4. FE model of the pedestrian steel bridge (yellow
arrows: sensor layout in the field testing).

As shown in Figure 4, there are a total of ten sensors
involved in the field testing, which are placed at the
intersections of the diagonal and lower chords along the
both sides of the pedestrian bridge except for the supporting
points at both end of the bridge. These uniaxial sensors are
oriented to measure the vertical vibration of the bridge
structure, which is consistent with the fact that only vertical
and torsional modes obtained from the FE model are
employed for comparison purpose.
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Fig. 5. Calculated mode shapes from the initial FE model of
the pedestrian bridge: (a) mode 1 (2.90 Hz); (b) mode 2
(5.53 Hz); (c¢) mode 3 (8.77 Hz); (d) mode 4 (10.61 Hz).

Fig. 6. Experiment configuration: (a) signal conditioning
box and laptop implemented with data acquisition software;
(b) sensor layout on the bridge deck; (c) sensor connected
with shielded cable; (d) sensor fixed close to bottom chord
joint through magnetic base.

The experiment equipment and associated configuration
for the field testing of the pedestrian bridge are shown in
Figure 6, where the measurement is performed in the
ambient environment. The 16-channeled (Type: KT6016-
IEPE) signal conditioning box and laptop implemented with
data acquisition software (Type: YE7600) are shown in
Figure 6(a), and the layout of sensors configured on the
bridge deck is provided in Figure 6(b). The ambient
vibration response are acquired synchronously through ten
piezoelectric accelerometers (Type: KTI11000L) with

sensitivity around 10V/g attached close to the intersection
of diagonal and bottom chords through magnetic base, and
the responses are then transferred to the conditioning box
through shielded cables (referring to Figures 6(c) and (d)).
The sampling frequency is set to 100 Hz, and the dynamic
responses are measured with duration about 30 minutes.
The modal parameters including natural frequencies and
mode shapes are identified by the frequency domain
decomposition (FDD) method.

19
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Fig. 7. Singular value plot of the pedestrian bridge.

The singular-value spectrum calculated using the
measured time-domain responses from all the ten channels
is shown in Figure 7. The labeled spectral peaks in this
figure indicate the four interested modes. The labels ‘V1°,
‘V2°, ‘T1’ and ‘T2’ indicated in this figure stand for the 1*
and 2™ vertical and the 1°* and 2™ torsional modes of the
pedestrian bridge, respectively.

ﬁ%<%
(%%

Fig. 8. Identified mode shapes from the field testing: (a)
mode 1 (‘VI’, 4.86 Hz); (b) mode 2 (‘T1’, 9.69 Hz); (c)
mode 3 (‘V2’, 13.53 Hz); (d) mode 4 (‘T2’, 15.54 Hz).

Figure 8 shows the idemtified four mode shapes by the
FDD approach related to the FE mode shapes provided in
Figure 5. It is clear that the degree of agreement between
the measured mode shapes and their calculated counterparts
is quite good, and the values of Modal Assurance Criterion
(MAC) for each mode are 0.9962, 0.9915, 0.9526 and
0.8543, respectively, which are all close to 1. However, by
comparing the values of natural frequencies provided in
Figures 5 and 8, the differences between the measured and
FE calculated natural frequencies are more obvious. This
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implies that it is necessary to refine the initial structural
model to ensure a good match between the calculated
natural frequencies and the measured values.

Table 2
Definition of FE model parameters to be updated.

Parameter names & descriptions Initial values

Ep (Young’s modulus of bridge deck) 2.06x10" N/m’

mp (Mass density of bridge deck) 7.85x10° kg/m®
us (Poisson's ratio of steel members) 0.3
up (Poisson's ratio of bridge deck) 0.3
mg (Mass density of steel members) 7.85x10° kg/m®

E¢ (Young’s modulus of steel members) 2.06x10" N/m?

It is noted that the geometric parameters of the pedestrian
steel bridge are taken from the design drawings and are
therefore relatively reliable. The updating parameters for
this pedestrian bridge are thus taken from the material
parameters, which are believed to be more uncertainty than
the geometric parameters. It is mentioned previously that
the material of bridge deck is assumed to be homogeneous
along the thickness direction in the initial FE model
regardless of the fact that middle layer of bridge deck is
hollow. Thus, the Young’s modulus and mass density of the
bridge deck material are more uncertain and are firstly
considered as the model parameters for updating. In
addition, by noting the fact that the Poisson’s ratio also
have a non-negligible effect on the structural dynamics,
thus the Poisson’s ratio of steel members and bridge deck
material are also involved for updating. Table 2 shows the
list of candidate model parameters selected to be updated
for the pedestrian bridge by the proposed methodology.

Table 3

FE model updating results for the pedestrian bridge.

Scaling factors Initial Updated Standard
values values deviations

6, (scaling for Ep) 1 0.7175 0.0693
6, (scaling for mp) 1 0.3128 0.0519
03 (scaling for ug) 1 0.9203 0.0258
6, (scaling for up) 1 1.1049 0.0595
05 (scaling for mg) 1 0.9851 0.0191
O¢ (scaling for E) 1 1.0242 0.0139

Instead of directly refining the physical parameter values
as listed in Table 2, dimensionless scaling factors
corresponding to these parameters as defined in Table 3 are
more convenient to be updated since different orders of
parameter magnitude will usually lead to numerical
difficulties. 8, to 8 listed in Table 3 represent the six non-
dimensional scaling factors to be actually updated. In
addition, for structural model updating, one should be
aware that not all candidate parameters for updating possess
the same degree of modeling error. This implies that some
parameters should be updated more intensely than others,
which is conveniently done by setting the range of values
for each individual parameter. For the pedestrian bridge

investigated in this study, as stated before, parameters
related to material properties, i.e., the Young’s modulus,
Poisson’s ratio, and mass density of the bridge deck should
be updated more intensely than others, and thus assigned
with a relatively larger parameter range. In contrast,
material parameters of the steel members are believed to be
relatively more certain, and are specified to be in a smaller
range of values. Following this thought, for updating the
pedestrian bridge model, the lower and upper bounds of the
scaling factors shown in Table 3 are defined to be [0.1 0.1
0.80.50.909]and[1.2 1.2 1.2 1.5 1.1 1.1], respectively.
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Fig. 9. Noise-free training samples generated: (a) training
input samples and (b) training output samples.

In this study, the four natural frequencies as shown in
Figures 5 and 8 are utilized as input variables feed to the
neural network. Since one generally has no idea about
specific values of scaling factors to be adjusted before
updating the model, the uniform distribution should be
more reasonably assumed. Figure 9 shows the generated
input-output training data DIE,? ) with a sample size of
M=300 in the absence of sample noise and within the
prescribed range of parameter space. It is clear that the
higher-order frequency samples have greater variability

than the lower-order ones. Based on DIS)), the full set of
training data Dy is obtained with Eq. (7) by combining the
training data generated with three levels of noise (1%, 3%
and 5%) imposed on the noise-free training input samples
(see Figure 9(a)) respectively. The overall size of training
data Dy is thus four times that of DIS) ),

Providing the training data D, the most probable class
of architectures Ay, . ., for the Bayesian neural network
can be determined by maximizing the log-evidence in Eq.
(20) before applying the trained network to the FE model
updating process. Prior to utilize the proposed network
design algorithm, some control parameters should be
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determined. In this study, the value of maximum number of
hidden neurons Ny .y is set to be 15. In addition, the
function tan(mry/180) with angle value y ranging from 5 to
85 with a step length of 5 is utilized to generate the
sequence of discrete values assigned to the scaling
parameters ¢; and c, as shown in Figure 1. Although this
choice is not unique, it can ensure the slope of the resulting
transfer-function curves change more evenly and is thus
expected to be more representative in the defined parameter
space spanned by c¢; and c¢,. Thus, the total number of
sample points for the two scaling parameters is N, =
N, = 17. Although other ranges for these three design
parameters can be taken, the proposed algorithm does not
aim to find a unique global maximum by searching the
entire parameter space, but rather to obtain the ‘best” result
within a prescribed parameter range efficiently.

x10°

3.084~

3.08
3.075~

3.07+

Logarithm of evidence

3.065 |

3.06~

20"~ e o ‘ ” 20
15 0 c 10 15

Index of c, Index of ¢ 4

Fig. 10. Scatter plot of exhaustive search history (blue point
maker: exhaustive search points; green square marker:
maximum value; red point marker: exhaustive search points
corresponding to the optimal number of hidden neurons).

Prior to apply the proposed design algorithm, for
verification purpose, the exhaustive search method is first
employed over the above-defined parameter space to find
the optimal solution. The exhaustive search history is
shown in Figure 10, and each discrete point corresponds to
a parameter combination {Ny, ¢;, ¢,}. The total number of
log-evidence evaluations of Eq. (20), i.e., the number of
discrete points, is Ny maxNe, Ne, =15x17x17=4335. The
optimal point (the maximum log-evidence value is
30825.9286) found by the exhaustive search is marked by a
green square to indicate the most probable class of
architectures Ay, ., ., in the present study. The identified
optimal hidden neuron number Nppest is 12, and the
simultaneously optimized scaling parameters c¢;pese and
Capest are tan(80m/180)=5.6713 and tan(57/180)=0.0875,

respectively. In addition, the red points indicate the
exhaustive results corresponding to the optimal hidden
neuron number 12, where the importance and necessity of
optimizing both transfer-function parameters is clearly
interpreted from wide distribution of these discrete points in
the scaling parameter space.

It should be noted that Lam and Ng (2008) proposed an
algorithm for selecting the hidden-layer transfer functions
(tansig and satlins) and the: hidden neuron number, which is
recently employed by Yin and Zhu (2018) to the Bayesian
neural network. This algorithm simply traverses tansig and
satlins in outer loop and each hidden neuron number in
inner loop. This would be very time consuming since for
each transfer function specified by the outer loop, each
inner loop is required to be executed until the optimal Ny is
found. Applying this algorithm to the present study, it takes
about Ny maxNe, Nc, log-evidence evaluations, and the
performance is very similar to the exhaustive method as
shown in Figure 10. In contrast, the reported algorithm in
this paper requires only about Ni[Ny + N,(N¢, + N¢,)]
log-evidence evaluations, where the number of consecutive
log-evidence values Ny, is set to be 2 in this study, and the
number of main-loop iterations N, required for achieving
convergence is also generally a very small number.
Obviously, the proposed tailor-made algorithm is expected
to be significantly more efficient by comparing with that
used in Lam and Ng (2008) and Yin and Zhu (2018)
especially for large numbers of Ny yay, N¢, and N,
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Fig. 11. Scatter plot of the iteration history by applying the
proposed design algorithm (blue point and red square maker:
history and maximum of search strategy I; green point and
green marker: history and maximum of search strategy II).

By adopting the proposed design algorithm, the
optimized number of hidden neurons together with the two
scaling parameters of hidden- and output-layer transfer
functions is simultaneously identified, where the initial
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estimation of the temporary maximum hidden neuron
number Ny, is 10. Figure 11 shows the search history of the
proposed algorithm with search strategies I and II in terms
of a scatter plot, where the corresponding optimal points
found are marked by red and green squares, respectively.
It’s apparent that two ‘best’ points found by the two
strategies are actually very close to each other, while the
latter is a bit better. More importantly, the ‘best’ point
marked by green square completely coincides with the
previous optimal point found by the exhaustive search
method in Figure 10. It is apparent that the developed
algorithm efficiently locates the optimal value within the
pre-defined parameter space by evaluating the objective
function with only a small number of times (about 240 with
N, = 3) without searching the entire parameter space with
4335 times. This clearly indicates the significant
effectiveness of the proposed algorithm on optimizing the
architecture of the Bayesian neural network.
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To further interpret the optimization process of the
proposed algorithm, the iteration history of search strategy
IT in terms of two transfer-function scaling parameters and
the number of hidden neurons are shown in Figures 12 and
13, respectively, where the three main loops are provided
separately in both two figures for the sake of clarity.
Specifically, in Figure 12, the blue points represent the
iteration history for optimizing the scaling parameter c, of
the output-layer transfer function, while the red points stand
for the subsequent iteration process for optimizing the
hidden-layer scaling parameter c¢;. It is found from the
results of first main loop as presented in Figure 12(a) that,
in the process of optimizing the parameter c,, the log-

evidence value gradually increases with the decrease of c,,
whereas the observation is opposite when optimizing c;. In
addition, the maximum log evidence obtained by the
optimization of c; is better than that of c,. This implies that,
through the optimization of ¢, and ¢, in turn, the current
optimal value of the objective function is improved.
Furthermore, by comparing the optimization history for
each main loop, it is obvious that the maximum log-
evidence value achieved by each round of main loop is
improved relative to its previous round, which reflects the
validity of the proposed algorithm. Also, as shown in
Figure 12(c), the ‘best’ point obtained in the last round of
main loop (see the green square marker) is exactly the same
to the optimal value found by the exhaustive search
approach as illustrated in Figure 10.
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Fig. 13. Iteration history of the proposed algorithm for the
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triangle: c,; green square marker: maximum point).

Figure 13 shows the iteration history in terms of number
of hidden neurons Ny with respect to each main loop for
demonstration purpose, and it attempts to reflect the
optimization process of the proposed algorithm from
another perspective. It is clearly seen that, in the first inner
loop within each main loop for optimizing Ny (as labeled
by pink color triangle), the log-evidence value either
increases first, then decreases or gradually increases with
the increase of iterative step, indicating the importance of
the number of hidden neurons to be optimized. The ‘best’
Ny value achieved in this inner loop is then involved in
optimization process of subsequent inner loops for
sequentially optimizing the combinations {Ny,c,} and
{Nu,c;} with N, consecutive log-evidence values. In
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addition, it is also very clear that the alternate optimization
of scaling parameters c, and c¢; leads to a significant
improvement of the log-evidence value, which fully
demonstrates the necessity of simultaneously optimizing the
hidden- and output-layer transfer functions. Moreover, it
should be pointed out that, although the upper limit of Ny
(Ni max) 18 set to 15 for the exhaustive method in Figure 10,
the maximum N actually handled by proposed design
algorithm is only 13 as seen from Figure 13(c), indicating
the efficiency of the proposed search strategy.

Based on the trained Bayesian neural network with
optimized architecture and the four natural frequencies
obtained from field testing (see Figure 8), the initial FE
model of the pedestrian bridge is updated by adjusting the
six scaling factors in Table 3. In the framework of proposed
probabilistic model updating procedure, the distribution of
these scaling factors is conveniently achieved from the

bridge deck is obviously greater than others. This is
consistent with actual situation since the inhomogeneous
property of bridge deck along the thickness direction is not
considered in initial FE model, and the corresponding
material properties are believed to be more uncertain.
Moreover, the most probable values and associated standard
deviations of model updating results are also calculated and
given in Table 3 for clarity purpose. It is clear from this
table that the amount of adjustment for the Young’s
modulus and mass density of bridge deck is much larger
than other modeling parameters, and the significant
reduction of mass density actually reflects the large hollow
space existing inside the bridge deck. Also, since the
material properties of steel members are believed to be
more reliable in the initial FE model as above mentioned,
they thus get less adjustment with relatively low uncertainty.
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Fig. 14. Comparison of marginal distributions of updated 1 4.86 2.90 448 0.24
model parameters obtained by Monte Carlo method and 2 9.69 5.53 8.34 0.46
proposed method with Gaussian approximation. 3 13.53 8.77 13.56 0.75
4 15.54 10.61 16.02 0.89

The marginal predictive distribution of the six uncertain
model parameters are obtained by the proposed method and
shown in Figure 14 as red solid lines, while the histogram
plot by employing the Monte Carlo technique in Eq. (23) is
also provided herein for comparison. It is clear that, for all
scaling factors, matching between the proposed Gaussian
approximation of the marginal predictive distribution and
corresponding Monte Carlo results is reasonably good. It
implies that the marginal predictive distribution of each
updating parameter can indeed be approximated by
Gaussian. In addition, one can easily see from this figure
that the uncertainty for the identified material parameters of

Figure 15 shows the samples of predicted natural
frequencies through the updated FE model by utilizing the
Monte Carlo technique to sample the predictive distribution
in Eq. (27), where results measured from the field testing
and those predicted from the initial FE model are also
presented for comparison. It is clear that, by employing the
proposed model updating procedure, the improvement of
frequency prediction accuracy for the refined FE model is
very obvious. It is also intuitively seen that the higher the
order of mode, the greater the uncertainty of the natural
frequency prediction results. In addition, the statistical
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properties of predicted natural frequencies from the updated
FE model are obtained by utilizing Egs. (28) and (29) based
on the samples in Figure 15. The quantitative results are
shown in Table 4 together with the measured and predicted
natural frequencies from the initial FE model. It is clear
from this table that the refined FE model is apparently more
precise than its original form. Furthermore, it is also
verified from this table that the standard deviation increases
with the increase of mode order, indicating that the higher
order modes are more uncertain than the lower ones, which
coincides with the general knowledge. More importantly,
the standard deviation values shown in Table 4 can be
further utilized for constructing error bars to estimate
confidence intervals of refined FE models, which is crucial
for evaluating the quality of updated model in practice.
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Fig. 16. Log evidence with the increase of Ny for the

Bayesian neural networks with optimized and original ¢;,c,.

To investigate the performance of Bayesian neural
network with optimized architectures obtained through the
proposed design algorithm, Figure 16 shows the log-
evidence values of network architecture with optimized
(€1 = C1pest> C2 = Capest) and original (¢; =1,¢, =1)
scaling parameters c;, ¢, from the perspective of the change
of hidden neuron number Ny. It is clear that, for any of the
two network architectures, the log-evidence value increases
first and then decreases with the increase of Ny, and this
phenomenon is consistent with Lam and Ng (2008). The
peak points of both curves indicate the optimal value of Ny
with respect to these two network architectures. Here are
three networks compared, denoted by NET-12, NETO0-6,
and NETO-12, respectively. As labeled in this figure, NET-
12 represents the optimal network architecture with
€1 = Cipest> C2 = Czpest> aNd Ny pest = 12. While NET0-6
and NETO-12 stand for the original network architecture
(¢ =1,¢c; =1) with optimized hidden neuron number
Ny = 6 and specified number Ny = 12, respectively. The
first two networks are intended to compare the neural
network possessing simultaneously optimized ¢, ¢, and Ny
with the original network by only optimizing Ny. The last

one is employed to compare the effects of optimizing both
¢; and ¢, in terms of same number of hidden neurons Ny.

It is noted here that the neural metwork training process is
susceptible to initialization values assigned to the weight
parameters. The performance of trained networks with
different initial weights may not be completely identical, so
the results presented above are obtained by averaging
multiple repetitions to reduce the impact of different initial
weights on the difference in trained networks. In order to
facilitate the comparison of the three networks as shown in
Figure 16, the results obtained from these specific networks
with corresponding architectures under various initial
weights are provided in Figures 17 and 18 from a statistical
point of view.

250
[EENET-12
[CZINETO-12
200 — — [INETO0-6
3 150
c
3]
3
o
2 100

0
1 1.5 2 2.5 3 35 4

Euclidean norm of prediction error
Fig. 17. Histogram of Euclidean norm of prediction error
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Fig. 18. Histogram of mean value of standard deviations of
all identified model parameters for networks with optimized
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Figure 17 shows the histogram plot of Euclidean norm of
difference between the measured and predicted natural
frequency vector from the updated FE model. It’s clear that
the matching of NET-12 as well as NET0-12 are obviously
better than NETO0-6. This is because the network
complexity of the former two is relatively larger, which
allows them to better fit the data relative to the simple one.



16 Yin & Zhu.

On the other hand, to investigate the effect of optimizing
the two transfer-function scaling parameters, Figure 18
shows the histogram plot of mean value of standard
deviations of all identified model updating parameters for
NET-12 and NETO0-12, which possess the same complexity
in terms of same hidden neuron number. It is very obvious
that the standard deviation values of NET-12 with
optimized ¢, and c, are less than those of NETO0-12 without
optimization, implying that the uncertainty of updated
model parameters for NET-12 is reduced. It is mainly due
to the contribution of simultaneously optimized c¢; and c, to
the uncertainty reduction of network weight parameters
according to Eq. (26). This also reinforces the statement
made above that the Ockham factor actually imposes
penalty on the uncertainty of identified model parameters.
Although not shown here, it is also found that the
uncertainty of updated parameters of NETO0-12 is larger
than NETO0-6. This is expected, as the increase of Ny or
network architecture complexity leads to an increase in the
Ockham factor, which is reflected in the amplified
uncertainty of the updated model parameters. Thus, by
optimizing the hidden neuron number Ny together with the
hidden- and output-layer scaling parameters c; and c,, the
accuracy and uncertainty of the updated structural model
can be improved, respectively.

4 CONCLUSIONS

For probabilistic FE model updating based on dynamic
measurements, this paper develops an efficient and tailor-
made algorithm utilized for designing the architecture of
Bayesian  neural network  through  simultaneous
determination of the proper hidden neuron number and the
specific forms of parameterized hidden- and output-layer
transfer functions. The wvalidity and efficiency of the
proposed methodology is fully demonstrated through the
FE model updating conducted for a pedestrian bridge with
the field testing data.

The obtained results clearly reveal that the proposed
design algorithm allows one to achieve the optimized
architecture of Bayesian neural network with appropriate
hidden neuron number and suitable forms of transfer
functions in both hidden and output layers simultaneously,
through a very effective and mathematically rigorous way.
It is emphasized herein that this algorithm is far more
effective than that used in the authors’ recent publication
(Yin and Zhu, 2018), which essentially follows an
exhaustive search strategy. It is also noted that the proposed
method is not intended to find a unique global maximum by
searching the entire parameter space, but rather to locate the
‘optimal’ result within a specified parameter range
efficiently. By applying the optimized network achieved
through the proposed algorithm to the structural model
updating, the accuracy as well as uncertainty of the updated
structural model is found to be both improved. In addition,

it is clear from the results of predicted natural frequencies
based on the updated model that the refined FE model is
more precise than its initial form. One can further find out
that the higher the mode order, the larger the associated
uncertainty. This coincides with the common knowledge
that the high-order modes are generally more uncertain than
the low-order ones, indicating the rationality of the model
updating results obtained by the proposed methodology.
Furthermore, it is shown that the obtained standard
deviations of predicted modal parameters can be further
utilized to predict error bars that quantify the confidence
intervals for the updated structural models, which provides
a key reference point for evaluating the quality of the
refined FE model. Also, the uncertainty of the predicted
modal parameters is especially critical for structural health
monitoring and damage detection based on FE model
updating. This is because excessive prediction uncertainty
would overwhelm the changes of modal parameters induced
by the actual damage and significantly reduce the reliability
of damage detection results. Moreover, it should be pointed
out that although this paper mainly concentrates on the
neural network with a single hidden layer, in principle, the
proposed design algorithm should be extended to the neural
networks with multiple hidden layers, such as the deep
neural networks. This is deserved to be further investigated
in the future.
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APPENDIX

The submatrices of the Hessian in Eq. (16) is derived
analytically by
Hy, = V1V1Fc7( w; ‘ANH,cl,cz)
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where V4, V,, V5 and V, denote the derivative with respect
to weight vectors vec(W®), b®, vec(W®), and b®,
respectively. The derivatives of transfer functions can be
obtained analytically from Egs. (1) and (2). @ denotes the
Kronecker products.

The submatrices of the Jacobian in Eq. (25) are given
analytically as
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