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ABSTRACT: 
In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D 
point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper 
geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted 
in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric 
covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features 
calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using 
different features configurations. 

Figure 1. 3D classification process based on artificial intelligence: surveyed point cloud (a), automated features extraction (b), 
manual annotation of a small portion to define classes (c), final automated classification results (d).  

1. INTRODUCTION

The ever-growing use in the last years of 3D models in different 
applications has led 3D data classification to become a very 
active research topic. The possibility to automatically group big 
data into multiple homogeneous regions with similar properties 
(segmentation) and attribute labels to them (classification or 
semantic segmentation), have become of primary importance in 
various applications and fields such as robotics (Maturana et al., 
2015), autonomous driving (Wang et al., 2017), urban planning 
(Xu et al., 2014), heritage  (Grilli and Remondino, 2019), 
geospatial (Özdemir and Remondino, 2018), etc. Different 
approaches were proposed in the literature (Grilli et al., 2017), 
but only recently significant progress has come out in automatic 
procedures thanks to the advent of Machine Learning approaches 
(Hackel et al., 2017; Weinmann et al., 2017; Wang et al., 2019). 
Machine Learning (ML) is a method of statistical learning. ML 
classifiers (e.g., Support Vector Machine - SVM or Random 
Forest - RF) are trained by giving them a set of features (Figure 
1b) and training data that contains associated label information 
(i.e. classes - Figure 1c). A feature is a geometric or radiometric 
attribute that is useful or meaningful to the classification task. It 
is an integral part of observation for learning about the structure 
of the problem that is being modelled. Based on the training 
phase, a prediction is given for a semantic segmentation of the 
entire dataset (Figure 1d). So the choice of the features directly 
influences the predictive model and the results you can achieve. 
Although the extraction and selection of such features are 
prerequisites for point cloud classification, they are still 
considered very challenging and discussed operations (Khoury et 
al., 2017; Hearst, 2018; Li et al., 2018). In case of 3D point cloud 

data, 3D features typically result from a specific geometric 
characteristic of the global or local distribution of the points and 
a fair amount of them have been proposed in the literature 
(Weinmann et al., 2014; Georganos et al., 2015; Guo et al., 2016). 
The most common 3D features used to describe the local 
geometric behaviour of the point cloud are derived from the 
covariance matrix of the 3D point coordinates in a given 
neighbourhood.  
The goal of this work is to perform heritage point cloud 
classification employing covariance features (Chehata et al., 
2009; Mallet et al., 2011). The possible and interesting 
applications linked to heritage 3D data classification include:  
• semantic annotation of the models: it can be useful to deepen

the analysis and interpretation of the architecture as much as
producing an aware representation of the models (Poux et al.,
2017; Grilli et al., 2018);

• automatic recognition of similar architectural elements in
vast datasets: the detection of similar geometric properties in
the scene can help the identification of a prevalent
architectural style or constructive technique and could be a
requisite for HBIM applications;

• identification and distinction of structural and decorative
architectural elements, highlighting their spatial distribution
and organization.

But the classification of heritage 3D data is more challenging for 
various reasons: 
• complexity of heritage elements to be classified (e.g.

columns can be divided in base, shaft, and capital; windows
in decorative and structural parts), generally required for
analysis purposes;
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Figure 2. Classification workflow (left) and our extension (right) to evaluate features relevance for the classification process. 

• difficulty in identifying the classes of analysis: while in 
natural or urban scenarios the definition of object classes and 
labels is almost defined (mainly ground, roads, trees, 
buildings), it is much more variegate the delineation of them 
in the architectural/archaeological field: several classes could 
be used to identify and describe the same building 
characteristics, based upon different purposes;  

• problems at referring each class to semantic 
categories/ontologies developed for cultural heritage 
documentation (Doerr, 2009; Messaoudi et al., 2019);  

• difficult replicability/applicability of a specific training set to 
different heritage scenarios: geometric exceptions and 
variations of the elements are frequent in each architectural 
style; 

• lack of benchmark labelled 3D heritage point clouds in the 
current literature on which users can train and test their 
algorithms. 

This paper aims to investigate the effectiveness of covariance 
features for point clouds classification, in particular identifying a 
relationship between the geometric features, the scale of 
extraction of the features, and the architectural elements. The 
analysis investigates the factors that make geometric features 
more or less relevant for the classification task. The experiments 
are conducted on four different case studies, of different epochs 
but with similar architectural elements.  
The paper is organized as follows. The applied methodology, the 
extracted and selected features, and the machine learning 
classifier chosen for the process are described in Section 2. 
Section 3 contains the different experiments and results, whereas 
Section 4 will close the paper. 
 
 

2. METHODOLOGY  

The typical learning processing workflow proposed by 
Weinmann et al. (2016) for 3D classification includes five steps: 
(i) neighbourhood selection, (ii) features extraction, (iii) features 
selection, (iv) manual annotation and (v) classification.  
Following this workflow, our work aims at identifying a subset 
of features that performs well with different 3D heritage datasets. 
Our framework can be summarized in Figure 2. At first, we 
extract various geometric features (Section 2.1) at different scales 
(Section 3.2). After running a multi-scale classification with a 
Random Forest classifier (Section 2.2), we iteratively take into 
consideration only the more relevant features, and we re-run the 
classification process. Finally, we compare the different results 
relying on the traditional confusion matrix scores (Section 2.3). 
 
2.1 Feature extraction – covariance features  

The features we tested are based on the covariance matrix 
(Chehata et al., 2009) computed within a local neighbourhood of 
a 3D point. These features are shape descriptors obtained as a 
combination of the eigenvalues (λ1 > λ2 > λ3) extracted from the 
covariance matrix (Blomley et al., 2014). Features values 
highlight the main linear (1D), planar (2D) or volumetric (3D) 
structure of the point cloud in the neighbourhood. In addition to 
these covariance features, we took into consideration the 

Verticality V and the height of the points in the cloud (Z 
coordinate). The definition of these features is presented in Table 
1.  
 

Linearity Lλ =  !"	–	!%	!"                        (1) 

Planarity Pλ =  !%	–	!&	!"  (2) 

Sphericity Sλ =  !&	!"  (3) 

Omnivariance Oλ =  λj&
)*"

+  (4) 

Anisotropy Aλ =  !"	–	!&	!"  (5) 

Eigenentropy Eλ = - λ&
)*" j ln (λj) (6) 

Sum of Eigenvalues Ʃλ  = λ&
)*" j (7) 

Surface Variation Cλ =  !&	,	- 
(8) 

Verticality V= 1 – nz  (9) 

Table 1. Considered local 3D shape features/covariance 
features. 

 
As stated by Weinmann et al. (2013), different strategies may be 
applied to recover local neighbourhoods for points belonging to 
a 3D point cloud. In our case, we opted for a multi-scale approach 
(Niemeyer et al., 2014). Specifically, the features selected were 
calculated on spherical neighbourhoods at various radius sizes, to 
explore different responses in function to different geometric 
property of the heritage monuments.  
 
2.2 Classification - Random Forest 

The classification experiments were carried out using a random 
forest (RF) classifier. RF is an algorithm for supervised 
classification developed by Leo Breiman (2001) that uses an 
ensemble of classification trees, gets a prediction from each tree, 
and selects the best solution by means of voting. Two parameters 
need to be set to produce the forest trees: the number of decision 
trees to be generated (Ntree) and the number of variables to be 
selected and tested for the best split when growing the trees (Mtry) 
(Belgiu et al., 2016).  
We leverage on the RF implementation available in the Scikit-
learn Python library (version 0.21.1). During the training process, 
the Ntree and Mtry are tuned considering the best F1-score 
computed on the test set. The RF classifier was chosen mainly for 
three reasons: 
• RF is considered as a highly accurate and robust method 

because of the number of decision trees participating in the 
process. 

• RF does not suffer from the overfitting problem as it takes the 
average of all the predictions, which cancels out the biases.  

• RF offers a useful feature selection indicator. Specifically, it 
shows the relative importance or contribution of each feature 
in the prediction: it automatically computes the relevance 
score of each feature in the training phase, then it scales the 
relevance down so that the sum of all scores is 1. 
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Figure 3. The case studies of the work: Basilica in Paestum, Italy (a), Temple of Neptune in Paestum, Italy (b), Porticos in 

Bologna, Italy (c), Mausoleum of Cesare Battisti in Trento, Italy (d).  

2.3 Evaluation test – confusion matrix  

For all the case studies, we took into consideration a small portion 
of the entire dataset that we call test set. On this test set, we 
compare the label predicted by the classifier with the same 
previously manually annotated label. The number of correct and 
incorrect predictions are summarized with count values and 
broken down by each class inside a confusion matrix, a specific 
table layout that allows the visualization of the performance of 
the algorithm. Each row of the matrix represents the instances in 
a predicted class, while each column represents the instances in 
an actual class. Starting from the confusion matrix, for each class, 
we rely on (i) precision which represents a measure of exactness 
or quality, (ii) recall which represents a measure of completeness 
or quality, and F1-score which combines the previous ones: 
                                             

./0123245 = 	 78
78 + 	:8 9  

 

<01=>> = 	 78
78 + 	:5 10  

:1	314/0 = 2 ∗ 	 <01=>> ∗ ./0123245<01=>> + 	./0123245 11  

Where Tp = true positive, 75 = true negative, :8 = false positive, 
:5 = false negative.  
 
 

3. EXPERIMENTS AND RESULTS 

3.1 Case studies 

To evaluate the aforementioned method and the effectiveness of 
covariance features for point clouds classification, four different 
case studies (Figure 3) were selected, featuring recurrent 
architectural elements such as columns, architrave, frieze, etc.:  
• The Basilica in Paestum (Italy): it spans ca 24,5 x 54 m and 

includes 18 columns on the long side and 9 on the short one, 
while the interior part has two lines of 3 and 4 columns. It 
was surveyed with TOF laser scanners (Fiorillo et al., 2013). 

• The Temple of Neptune in Paestum (Italy): it measures ca 
24,5 x 60 m and consists of 6 frontal and 14 lateral columns 
while in the interior area it has two rows of double ordered 
columns. The point cloud is the result of a combined UAV 
and terrestrial photogrammetric survey (Fiorillo et al., 2013).  

• Part of a renaissance building with porticos in Bologna 
(Italy): they were surveyed with photogrammetric techniques 
(Remondino et al., 2016); we consider a portion of ca 85x6m. 

• The Mausoleum of Cesare Battisti in Trento (Italy): it is a 
circular funeral monument, surveyed with GeoSlam handheld 
laser scanner. For the study, we consider just the upper part 
of the entire structure, which includes 16 columns connected 
by an annular trabeation.  

For each case study, the classification is aimed at a semantic 
annotation of the different architectural and decorative elements. 
Object classification is a fundamental task in archaeology and 
heritage architecture, although it is essential to have a clearly 

defined purpose when developing and applying a classification 
procedure. 
 
3.2 Feature relevance assessment - Basilica in Paestum 

For the classification aim, we first need to annotate a small 
portion of the dataset, knowing which classes we want to identify 
in the dataset. To assess the feature relevance, we consider a 
subsample portion of the Basilica point cloud (Figure 4).  
 

 
Figure 4. A portion of the Basilica point cloud manually 

labelled with 8 classes. 
 
Then, we extracted the previously described features on the point 
cloud using different search radii r, which we denote as a 
subscript to the name of the feature set, as shown in Table 2. 
For example, Planarity (0.2) means that the feature Planarity Pλ 
was calculated for a search radius of 0.2m. The dimensionality 
features are computed for increasing radius values between rmin 
= 0.2 m and rmax = 3 m. 
Considering the influence of the radius r in the feature response, 
we aimed to identify the optimal r able to better discriminate our 
classes.  
By observing the ranking of the features, we can say that:  
• the Verticality V is highly relevant, even when considering 

different neighbourhood radii; 
• the features Eigenentropy Eλ and Sum of eigenvalues Σλ, 

are always among the least relevant features; 
• among the covariance features the most relevant are 

Surface Variation Cλ, Planarity Pλ, and Sphericity Sλ;  
• there is an apparent relationship between the radii of the 

columns and the most relevant radii of extraction of the 
features: i.e. the diameter of the columns is 1.4m, and we 
can notice that there are peaks for Planarity and Surface 
Variation at r = 1.4m as for Surface Variation (0.6) and 
Sphericity (0.8). This correlation could be related to strict 
proportional rules and dimensions used in the construction 
of this kind of structures.  

In order to investigate the features importance and how the 
various combinations of features can affect classification results, 
we start from 135 features and iteratively discarded the least 
important ones, down to 7 features.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019 | © Authors 2019. CC BY 4.0 License.

 
543



 

 
Table 2. Features importance ranking for a multi-scale classification of the Basilica dataset. 

Next, to verify the previous test, we extracted 8 ad hoc features 
directly related to the dimension of the columns (radius and 
diameter): Verticality_(0.4)(1), Surface Variation_(0.7)(1.4), 
Sphericity_(0.7)(1.4), Planarity_(1.4), and Anisotropy_(1.4). 
Then, we ran the same classification also considering the Z 
coordinates (height) of the points as extra feature. Finally, we 
compare all the different classification results with respect to F1-
score and time for training (Table 3). As we can see, by iteratively 
discarding the least relevant features the F1-score increases at the 
first step then slowly decreases. In contrast, the performance of 
the classifier is considerably improved by selecting only a small 
subset of useful features. Besides, it saves processing time 
concerning feature extraction, training time and classification. 
Confusion matrixes and classification results obtained using 
respectively 8 features extracted ad hoc and the same 8 features 
with the Z coordinate of the points are reported in Table 4 and 5. 

 

 
Table 3. Comparison of different features combination for the 
Basilica’s classification, wrt F1-score and time of training. 
 
 

CLASS Ster. Stylob Pav. Shaft Echin. Abac. Archit. Frieze Precision Recall F1 

 

Ster. 3314 443 8 0 0 0 0 0 88.02% 95.26% 91.50% 

Stylob. 165 6281 462 385 501 375 174 0 75.28% 74.05% 74.66% 

Pav. 0 1253 11832 0 0 0 0 0 90.42% 96.18% 93.21% 

Shaft 0 15 0 48092 28 213 84 58 99.18% 92.72% 95.84% 

Echin. 0 175 0 310 7344 31 539 0 87.44% 75.95% 81.29% 

Abacus 0 72 0 1220 1191 3415 1338 52 46.86% 73.57% 57.25% 

Archit. 0 197 0 1796 606 278 14912 1591 76.95% 73.96% 75.42% 

Frieze 0 46 0 64 0 330 3116 7857 68.84% 82.20% 74.93% 

 Average 79.12% 82.99% 80.51% 

Table 4. Confusion matrix and results for the Basilica dataset, using 8 geometric features ad hoc. 
 

CLASS Ster. Stylob Pav. Shaft Echin. Abac. Archit. Frieze Precision Recall F1 

 

Ster. 3325 427 13 0 0 0 0 0 88.31% 98.52% 93.14% 

Stylob. 50 7974 312 7 0 0 0 0 95.58% 83.99% 89.41% 

Pav. 0 1093 11992 0 0 0 0 0 91.65% 97.36% 94.42% 

Shaft 0 0 0 48490 0 0 0 0 100.00% 99.88% 99.94% 

Echin. 0 0 0 1 8390 1 7 0 99.89% 99.88% 99.89% 

Abacus 0 0 0 50 10 6249 979 0 85.74% 99.98% 92.32% 

Archit. 0 0 0 0 0 0 19380 0 100.00% 95.13% 97.50% 

Frieze 0 0 0 0 0 0 7 11406 99.94% 100.00% 99.97% 

 Average 95.14% 96.84% 95.82% 

Table 5. Confusion matrix for the Basilica dataset and results, using 8 geometric ad hoc features plus the height information (Z 
coordinate). 
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Table 6. Visual comparison of some geometric features extracted ad hoc on the different case studies. 

 
3.3 Feature selection 

The aim of features selection is to identify a small subset of 
features that can perform good prediction in a shorter time with 
respect to using many features extracted in a multi-scale 
approach. Considering the classification results for the Basilica 
datasets after the extraction of ad hoc features, we wanted to 
verify if the hypothesis of the radius correlated with the columns 

dimension was valid on different datasets with similar properties 
(Table 6). We can see that the feature Planarity extracted with r 
= Ø columns results being useful to identify as the planar 
elements (e.g. facades, pavements) as the cylindrical ones (e.g. 
columns). The Surface Variation is able to emphasise the same 
architectural elements of the Planarity with r = r columns, while 
the Anisotropy is useful to identify the capitals. 
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3.4 Classification results 

3.4.1 Basilica in Paestum, Italy  

After the manual annotation (5 min), the features extraction and 
selection, we could extend the classification to the entire datasets 
(500 mil points) in ca half a minute (Figure 5). Results in terms 
of Precision, Recall, and F1-score are summarised in Table 7. 

 
Figure 5. Classification result of the Basilica point cloud. 

 

3.4.2 Temple of Neptune in Paestum, Italy 

The data of the Temple consist of some 2.8 million points (Figure 
6a). Starting from the previous experiences, we analysed the 
structure and decided to extract the features as a function of the 
three different order of columns of the temple (diameters 2 m, 1.4 
m, 0.8m). Combining the use of 20 different features chosen ad 
hoc and annotating 10 classes on well distributed parts of the 
dataset (15 min - Figure 6b), we were able to classify the entire 
temple in about 1 hour (Figure 6c). Table 7 summarize 
classification results in terms of Precision, Recall, and F1-score.  
The rendering of the classification results of the Temple is 
available at https://youtu.be/8-muH633ud8. 
 

 
Figure 6: Temple of Neptune point cloud (a), annotated (b) 

and classified (c). 

3.4.3 Porticoes in Bologna, Italy 

The Bologna dataset (Figure 7a) consist of about 1.2 million 
points. This structure combines various geometric shapes, 
different materials and many architectural details such as 
mouldings and ornaments. For the classification aim, 13 different 
classes are identified and annotated (Figure 7b). Considering the 
complexity of the task, in addition to 11 geometric features 
extracted ad hoc, we also considered the RGB values as 
fundamental elements for a successful classification of the point 
cloud (Figure 7c). The accuracy results are reported in Table 7.   

 
Figure 7. Porticoes point cloud (a), annotated (b) and 

classified (c). 
 

3.4.4 Mausoleum of Cesare Battisti in Trento, Italy  

The Mausoleum of Cesare Battisti (1935 A.D.) represents a 
modern re-interpretation of the classical architecture. As for the 
Basilica and the Temple case studies, we extracted the covariance 
features on spherical neighbourhoods at a few radii sizes as 
function of the diameter size of the columns (1.7m). The dataset 
(Figure 8a) (about 750.000 points) was then annotated on a small 
portion with 6 different classes (Figure 8b) and classified (Figure 
8c). The numerical results are stated in Table 7.   
 

 
Figure 8. Mausoleum point cloud (a), annotated (b) and 

classified in 6 classes (c).  
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Table 7. Summary of the classification results after the extraction of a few features ad hoc. All the classification processes were 
run with and without the use of the height information (Z coordinate). 

4. CONCLUSIONS 

The paper provided a general and straightforward method to 
classify heritage point clouds composed of repetitive 
architectural elements. The choice of the optimal neighbourhood 
radius for covariance features extraction is based on the 
knowledge of a few essential measures. Radii values are derived 
from simple proportional and dimensional rules, typically used 
for the construction of classical architectures and in the different 
heritage building of the following centuries.  
Achieved results indicate that to obtain correct classifications, 
it’s not necessary to use a lot of features extracted at many 
different scales. Indeed, the adaptive size strategy allows the 
retrieval of better results in a shorter time.  
The inclusion of the height information (Z coordinates) of the 
points as extra feature proved to deliver a general improvement 
of the accuracy for the considered case studies (Table 7).  
Further tests are planned to verify the replicability of the 
developed methodology with more complex and not repetitive 
structures, as well as to identify and test more geometric rules for 
the classification of buildings with different architectural styles. 
 
 

REFERENCES 

Belgiu, M. and Drăguţ, L., 2016. Random forest in remote 
sensing: A review of applications and future directions. ISPRS 
Journal of Photogrammetry and Remote Sensing, 114, pp.24-31. 
Blomley, R., Weinmann, M., Leitloff, J. and Jutzi, B., 2014. 
Shape distribution features for point cloud analysis-a geometric 
histogram approach on multiple scales. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 2(3), p.9. 

Breiman, L., 2001. Random forests. Machine learning, 45(1), pp. 
5-32. 

Chehata, N., Guo, L. and Mallet, C., 2009. Airborne lidar feature 
selection for urban classification using random 
forests. International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, 38(Part 3). 

Doerr M., 2009. Ontologies for Cultural Heritage. Handbook on 
Ontologies, pp 463-486. 

Fiorillo, F., Fernández-Palacios, B. J., Remondino, F., & Barba, 
S., 2013. 3D Surveying and modelling of the Archaeological 

Area of Paestum, Italy. Virtual Archaeology Review, Vol. 4(8), 
pp. 55-60. 

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, 
M., Kalogirou, S. and Wolff, E., 2018. Less is more: Optimizing 
classification performance through feature selection in a very-
high-resolution remote sensing object-based urban application. 
GIScience & Remote Sensing, 55(2), pp. 221-242. 

Grilli, E., Menna, F. and Remondino, F., 2017. A review of point 
clouds segmentation and classification algorithms.  International 
Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 42(3/W3), pp. 339-344. 

Grilli, E., Dininno, D., Petrucci, G. and Remondino, F., 2018. 
From 2D to 3D supervised segmentation and classification for 
cultural heritage applications. International Archives of the 
Photogrammetry, Remote Sensing & Spatial Information 
Sciences, 42(2), pp. 399-406. 

Grilli, E. and Remondino, F., 2019. Classification of 3D Digital 
Heritage. MDPI Remote Sensing, Vol. 11(7), 847 

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J. and Kwok, 
N.M., 2016. A comprehensive performance evaluation of 3D 
local feature descriptors. International Journal of Computer 
Vision, 116(1), pp.66-89. 

Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K. 
and Pollefeys, M., 2017. Semantic3d. net: A new large-scale 
point cloud classification benchmark. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Vol. 4(1/W1). 

Hearst, E., 2018. Stimulus relationships and feature selection in 
learning and behavior. In Cognitive processes in animal behavior 
(pp. 51-88), Routledge. 

Khoury, M., Zhou, Q.Y. and Koltun, V., 2017. Learning compact 
geometric features. In Proceedings of the IEEE International 
Conference on Computer Vision (pp. 153-161). 

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, 
J. and Liu, H., 2018. Feature selection: A data perspective. ACM 
Computing Surveys (CSUR), 50(6), p.94. 

Mallet C., Bretar F., Roux M., Soergel U., Heipke C., 2011. 
Relevance assessment of full-waveform LiDAR data for urban 
area classification. ISPRS Journal of Photogrammetry and 
Remote Sensing, 66, pp. 71-84. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019 | © Authors 2019. CC BY 4.0 License.

 
547



Maturana, D. and Scherer, S., 2015. Voxnet: A 3D convolutional 
neural network for real-time object recognition. In Intelligent 
Robots a nd Systems (IROS), 2015 IEEE/RSJ International 
Conference on (pp. 922-928). IEEE. 

Messaoudi T., Vèron P., Halin G., De Luca L., 2019. An 
ontological model for the reality-based 3D annotation of heritage 
building conservation state. Journal of Cultural Heritage, 29, 
pp.100-112. 

Niemeyer, J., Rottensteiner, F. and Soergel, U., 2014. Contextual 
classification of LiDAR data and building object detection in 
urban areas. ISPRS Journal of Photogrammetry and Remote 
Sensing, Vol. 87, pp. 152-165. 

Özdemir, E. and Remondino, F., 2018. Segmentation of 3D 
photogrammetric point cloud for 3D building modeling. 
International Archives of the Photogrammetry, Remote Sensing 
& Spatial Information Sciences, Vol. XLII-4/W10, pp. 135-142. 

Poux, F., Neuville, R., Hallot, P., & Billen, R., 2017. Point cloud 
classification of tesserae from terrestrial laser data combined with 
dense image matching for archaeological information extraction. 
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, Vol. 4, 203-211. 

Remondino, F., Gaiani, M., Apollonio, F., Ballabeni, A., 
Ballabeni, M. and Morabito, D., 2016. 3D documentation of 40 
kilometers of historical porticoes-the challenge. International 
Archives of the Photogrammetry, Remote Sensing & Spatial 
Information Sciences, 41(B5), pp. 711-718. 

Wang, L., Zhang, Y. and Wang, J., 2017. Map-Based 
Localization Method for Autonomous Vehicles Using 3D-
LIDAR. IFAC-PapersOnLine, 50(1), pp.276-281. 

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and 
Solomon, J.M., 2019. Dynamic graph CNN for learning on point 
clouds. ACM Transactions on Graphics. 

Weinmann, M., Jutzi, B. and Mallet, C., 2013. Feature relevance 
assessment for the semantic interpretation of 3D point cloud data. 
ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, II(5/W2), pp. 313-318. 

Weinmann, M., Jutzi, B. and Mallet, C., 2014. Semantic 3D 
scene interpretation: A framework combining optimal 
neighborhood size selection with relevant features. ISPRS Annals 
of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 2(3), p.181. 

Weinmann, M., 2016. Reconstruction and Analysis of 3D 
Scenes: From Irregularly Distributed 3D Points to Object 
Classes. Springer. 

Weinmann, M., Jutzi, B. and Mallet, C., 2017. Geometric 
features and their relevance for 3D point cloud 
classification. ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, 4, p.157. 

Xu, S., Vosselman, G. and Oude Elberink, S., 2014. Multiple-
entity based classification of airborne laser scanning data in 
urban areas. ISPRS Journal of Photogrammetry and Remote 
Sensing, Vol. 88, pp. 1-15. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W15, 2019 
27th CIPA International Symposium “Documenting the past for a better future”, 1–5 September 2019, Ávila, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019 | © Authors 2019. CC BY 4.0 License. 548




