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Abstract

Vaccination has proved to be highly effective in reducing global
mortality and eliminating infectious diseases. Building on this
success will depend on the development of new and improved
vaccines, new methods to determine efficacy and optimum dosing
and new or refined adjuvant systems. NK cells are innate lymphoid
cells that respond rapidly during primary infection but also have
adaptive characteristics enabling them to integrate innate and
acquired immune responses. NK cells are activated after
vaccination against pathogens including influenza, yellow fever
and tuberculosis, and their subsequent maturation, proliferation
and effector function is dependent on myeloid accessory cell-
derived cytokines such as IL-12, IL-18 and type I interferons.
Activation of antigen-presenting cells by live attenuated or whole
inactivated vaccines, or by the use of adjuvants, leads to enhanced
and sustained NK cell activity, which in turn contributes to T cell
recruitment and memory cell formation. This review explores the
role of cytokine-activated NK cells as vaccine-induced effector cells
and in recall responses and their potential contribution to vaccine
and adjuvant development.
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INTRODUCTION

Vaccination is a cost-effective way of reducing the
burden of, eliminating and – in exceptional cases –
eradicating infectious diseases. Whilst a number of
effective vaccines are currently licenced, many highly
prevalent and complex diseases remain without
effective prophylactic vaccines. Protective titres of
neutralising antibodies and expanded populations
of effector and memory B and T lymphocytes
are viewed as measures of protection for many
vaccines. Currently, the generation of durable
antigen-specific memory forms the basis of vaccine
development and evaluation of vaccine efficacy.1,2

Developing vaccines to overcome pathogen
polymorphism and complexity demands new
approaches to vaccine design and evaluation; this in
turn requires the identification of novel correlates of
protection and determination of optimal dosing
schedules. The activation of Natural Killer (NK) cells
represents a potential route for further optimisation
of vaccination strategies by harnessing their role as
antipathogen effector cells which integrate innate
and acquired immune responses.

NK cells are large, granular, type 1 lymphoid
cells that express a wide variety of germline-
encoded receptors on their surface. Direct NK cell
activation is controlled by the balance between
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signals transduced by inhibitory and activating
receptors; NK cells are also activated indirectly by
innate cytokines such as type I interferons (IFN),
IL-12, IL-15 and IL-18, released from accessory
cells.3 Because NK cells do not rearrange receptors
to permit antigen-specific recognition, they are
normally classified as cells of the innate immune
system. NK cells are among the first cells to
respond during primary infection and contribute
to the early control of viral infections including
herpesviruses and influenza infections.4–8

However, NK cells can also augment and shape
the subsequent adaptive response by secretion of
cytokines (including IFN-c) and chemokines (such
as IP-10, MIP-1a and MIP-1b), reducing viral loads
by killing infected cells, inhibiting viral entry and
replication by production of chemokines which
compete for human immunodeficiency virus (HIV)
coreceptor CCR59 and by controlling expansion of
the CD4+ T cell compartment.10,11 In turn, the
secondary (adaptive) immune response can
activate NK cells via secretion of cytokines such as
IL-2 from CD4+ T cells and via FccRIIIa (CD16)-
dependent recognition of antigen-antibody
complexes.12–14

Several studies have shown that NK cells can
acquire some features of adaptive lymphocytes,
raising the possibility that the memory-like
properties of these cells could be induced or
enhanced by vaccination. Early examples of NK
cell adaptive features arose from mouse studies of
murine cytomegalovirus (MCMV) and hapten-
induced contact hypersensitivity. The MCMV viral
protein m157 on the surface of infected cells was
shown to recognise NK cell Ly49H receptor and
leads to clonal expansion of effector NK cells and
generation of a pool of self-renewing m157-
responsive NK cells; these cells respond robustly to
subsequent MCMV infection when transferred to
naive mice.15 NK cells from Rag2�/� mice were
shown to transfer hapten-specific memory-like
responses (lasting up to 4 weeks) to naive mice
despite the absence of T and B cell immunity.16

More recently, virus antigen-specific NK cell killing
has been reported in rhesus macaques,17 and
there are suggestions of pathogen-specific
responses among human NK cells. These include
influenza hemagglutinin (HA) antigen recognition
by NK cell NKp46 and HLA-E stabilisation by
HCMV peptides for recognition by NK cell CD94/
NKG2C heterodimers.18–20

An increasing number of studies in humans
demonstrate activation of NK cells during recall

responses to pathogens in vaccinated subjects. In
vitro NK cell responses to components of the DTP
vaccine (diphtheria toxoid, tetanus toxoid and
whole cell inactivated pertussis), Bacille Calmette–
Gu�erin (BCG) and influenza vaccine are enhanced
after vaccination14,21–23 and heightened NK cell
IFN-c and degranulation responses have been
detected after vaccination against rabies.24 In
contrast to the memory responses described above,
these postvaccination responses are dependent on
vaccine-specific CD4+ memory T cells and, in
particular, their rapid secretion of IL-2.23,24

Although the ‘antigen-specificity’ of these
postvaccination NK cell responses resides in the
CD4+ T cell pool, the NK cells are also modified as a
result of vaccination. Innate cytokines, which can
be induced by live or killed whole pathogen
vaccines or by adjuvants, are potent NK cell
activators and can induce their differentiation into
cytokine-induced memory-like (CIML) NK cells. First
described as being generated by cytokine coculture
in vitro, CIML NK cells have an enhanced ability to
secrete IFN-c and become cytotoxic in response to
cytokine and MHC-devoid K562 cell restimulation
for up to 21 days after the initial stimulation.13,25–27

In vitro cytokine activation with IL-18 and IL-12 and/
or IL-15 induces expression of CD25, thereby
generating CIML NK cells with enhanced
responsiveness (demonstrated by IFN-c production
and cytotoxicity) to picomolar concentrations of
IL-2.28 More importantly perhaps, CIML NK cells can
be induced by vaccination in response to CD4+ T
cell-derived IL-2 and myeloid cell-derived IL-12 and
type I interferons, and have been implicated in the
enhancement of NK cell function ex vivo.13,24,29–33

Vaccination-induced CIML NK cells can be detected
for up to 12 weeks postvaccination in European
subjects13 and up to 6 months in west African
vaccines.33 Table 1 summarises the evidence for
vaccination-induced CIML NK cells.

Immature CD56bright and CD56dimCD57� NK cells
are more responsive to exogenous cytokines and
produce more IFN-c than do the more mature,
predominantly cytotoxic, CD56dimCD57+ NK cell
subset.34 Accordingly, vaccination-induced CIML
NK cells are restricted to the less differentiated
subsets of NK cells and their induction is accompanied
by proliferative expansion of the least mature
CD56bright NK cells and CD56dimCD57�NKG2C�/+

subsets.13,33 Enrichment of less differentiated NK
cells in lymph nodes and effector tissues could
influence the impact of CIML NK cells induced by
vaccination. The highest proportion of human
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immature CD56bright (CD16�) NK cells are found in
the lymph nodes12,35 and produce IFN-c in
response to CD4+ T cell-derived IL-2, thereby
potentially influencing subsequent adaptive
responses.12 A higher percentage of adoptively
transferred pre-activated CIML NK cells were
found in the lymph nodes of mice compared to
control NK cells25 and localised in the bone
marrow, spleen and blood of mice and in the
bone marrow of patients with acute myeloid
leukaemia.27 The tissue localisation of NK cells
amenable to cytokine-mediated pre-activation
may also be crucial to functional outcomes.
Human liver, in contrast to secondary lymphoid
tissues, is enriched for resident CD56bright NK
cells with high natural cytotoxicity receptor and
NKG2D expression, strong target cell-mediated
degranulation but poor IFN-c production.36

Tissue-resident innate lymphoid cells (ILC) which
are phenotypically distinct from NK cells may,
however, also be sensitive to pre-activation by
vaccine-induced cytokines. Murine liver ILC-1, for
example, is highly sensitive to IL-12 stimulation
and produces more IFN-c at the sites of MCMV
infection.37 When taken together with the
emerging literature on the impact of persistent
viral infections (such as human cytomegalovirus
infection (HCMV); see below) on NK cell func-
tion,14 it is possible that differences between or
within human populations in proportions of
CIML NK cells (due to differences in recent infec-
tion and vaccination history) may contribute
to differences in vaccine immunogenicity and
effectiveness.33,38,39

Expanded populations of highly differentiated
NK cells in individuals chronically infected with
HCMV were first described more than a decade
ago.40 Many of these highly differentiated cells
were subsequently shown to have undergone key

intrinsic changes such as the loss of the signalling
molecules FceRc, SYK and EAT-2, associated with
stable epigenetic changes in the promotor regions
of genes involved in NK cell function, including
IFN-c.41–43 These ‘adaptive’ NK cells display
enhanced antibody-dependent cellular cytotoxicity
(ADCC) activity towards HCMV-infected target
cells suggesting they are specialised for
controlling virus reinfection or reactivation and
antigen-specific.44,45 However, despite the likely
dominance of such adaptive cells in populations
with endemic HCMV infection, the generation of
CIML from less differentiated NK cells persists
after vaccination33 (reviewed in ref. 46). It
appears, therefore, that there is a balance of CIML
and highly differentiated NK cell effectors which
may be altered by vaccination. Less differentiated
NK cells are shorter-lived, possess higher levels of
cytokine receptors and higher intrinsic
proliferative capacity; vaccination may simply
contribute to the homoeostatic maintenance of
these cells. The benefits of preferentially
expanding and generating CIML NK cells from
these subsets are unknown but could be more
functionally significant in young infants where
highly differentiated cytotoxic effectors are
lacking.47 On the other hand, loss of IL-12
responsiveness and independence of this cytokine
for IFN-c production is a well-known feature of
more differentiated NK cell effectors; more
focused antibody-driven responses may be
advantageous in restricting the potential for
inflammation associated damage in older
individuals.

In the remainder of this review, we explore in
more detail the potential role of NK cells,
activated by myeloid cell-derived cytokines or by
components of adaptive immunity (CD4+ T cell
IL-2 or pathogen-specific antibodies), as effectors

Table 1. Evidence of induction of human cytokine-induced memory-like (CIML) NK cells by vaccination

Pathogen Host species Vaccination

Increased

responsiveness

in vitro Duration of response References

Influenza Human TIV IL-12, IL-15, IL-18 3 months (UK) or

6 months (Gambia)

Goodier et al.60 and

Darboe et al.33

YFV Human YF-17D IL-12 15 days Marquardt et al.30

SIV Macaque Ad26 HIV-1,

DNA-Ad26

IL-12, IL-15 38 weeks Vargas-Inchaustegui et al.77

TB Human BCG IL-12, IL-18 ND Suliman et al.29

ND, not determined.
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of vaccination against a number of globally
important infectious diseases.

INFLUENZA

Seasonal influenza epidemics result in 3–5 million
cases of influenza globally and up to half a
million deaths every year as well as putting
intolerable pressure on health systems and
causing major economic losses.48 Annual variation
in the predominant circulating strains of influenza
viruses mitigates vaccine-induced or naturally
acquired cross-protective immunity, necessitating
annual revaccination of high-risk groups
(pregnant women, children of 6 months to
5 years and the elderly).48 A cross-protective
‘universal’ influenza vaccine is a major priority for
influenza vaccine development.

Influenza virus induces secretion of innate
cytokines (including IFN-a, IL-12 and IL-18) from
accessory cells such as macrophages and
dendritic cells (DCs); in turn, these cytokines
support the very rapid activation of NK cells
(within hours of infection).49,50 These activated NK
cells are cytotoxic, secrete IFN-c and upregulate
cytokine receptors such as CD25 (IL-2Ra)51 and
can reciprocally activate DCs, thereby promoting
T cell recruitment to sites of infection and
to lymph nodes.52 In vitro restimulation of
peripheral blood mononuclear cells (PBMC) from
trivalent influenza vaccine (TIV)-vaccinated
volunteers with inactivated influenza virus induces
much higher frequencies of IFN-c producing
and degranulating NK cells compared to restimu-
lation of prevaccination PBMC from the same
people.13,18,23,53 The heightened NK cell response
becomes evident as early as 2 weeks postvaccina-
tion but is normally lost by 12 weeks. Postvacci-
nation enhancement of NK cell IFN-c production
was dependent on IL-2 produced from CD4+ T
cells, whilst degranulation responses were
dependent on IL-2 and on the presence of anti-
influenza antibody.13,23 A costimulatory role for
innate myeloid cell-derived cytokines was also
demonstrated by partial inhibition of TIV restim-
ulation responses with IL-12, IL-18 and IFN-abR2
blockade.13

Indeed, consistent with the generation of CIML
NK cells, antigen-independent in vitro responses
to exogenous IL-12 and IL-18 were also elevated
for up to 3 months after influenza vaccination in
a UK study,13 but this response was detected for
up to 6 months in African subjects.33

Enhancement of NK cell responses after influenza
vaccination is therefore mediated by indirect
mechanisms involving antigen-specific cellular
CD4+ and humoral responses combined with a
shorter-lived CIML component. Such enhanced NK
cell function after seasonal influenza vaccination
may contribute to protective immunity to
influenza, but, given the dependence on antigen-
specific T cells and antibodies, does not in itself
overcome the need for regular revaccination.
However, the search for a ‘universal influenza
vaccine’ has identified the conserved ‘stalk’ of the
polymorphic HA molecule54 and other nonvaccine
antigens55 as possible targets of broadly
neutralising antibodies which mediate ADCC.56,57

Stalk-specific antibodies that mediate NK cell
ADCC are present after natural infection and after
vaccination with TIV or monovalent adjuvanted
H1N158 and nucleoprotein (NP)-specific ADCC-
mediating antibodies induced by seasonal
influenza vaccination demonstrate cross-reactivity
with H7N9 avian influenza NP.59 As mature
CD56dimCD57+ NK cells and HCMV-induced
‘adaptive’ NK cells are both potent mediators of
ADCC and preferentially respond to influenza
antigens after vaccination,60 NK cells may be of
particular importance as effectors of the next
generation of universal influenza vaccines.

YELLOW FEVER

The live attenuated yellow fever virus (YFV)
vaccine 17D is one of the most effective vaccines
developed to date; 99% of recipients are
protected for more than 10 years after a single
vaccination.61 For this reason, YF-17D has been
used as a tool to identify highly effective early
(innate) immune responses to acute viral infection
in humans.30,62 YFV infects and induces TLR-
mediated signalling in hepatocytes and cells of
the innate immune system such as monocytes and
DCs. In mouse models of YFV infection or YF-17D
vaccination, NK cells accumulate in the spleen and
are major producers of IFN-c.63,64 Induction of
innate cytokines such as IL-1a and chemokine
IP-10 (CXCL10), and upregulation of the early
activation and proliferation markers CD69 and
Ki-67 on NK cells are detected as early as 3 days
postvaccination in humans.30,62,65 NK cell
activation peaks at the same time as viral load,
6 days postvaccination and correlates directly with
a rise in plasma type I and type III interferons.
Thereafter, viral load and NK cell responses
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decline rapidly returning to baseline by day 10
and 15 postvaccination, respectively.30,65

In a study in Uganda, pre-existing IFN-c producing
NK cells in an activated immune microenvironment
were associated with lower viral loads and
subsequently reduced antibody titres after YF-17D
vaccination.38 NK cell IFN-c responses to YFV
correlated with increased in vitro responsiveness of
less differentiated NK cells to innate cytokines such
as IL-12 after vaccination30 suggesting that, as for
influenza vaccines, YF-17D-induced accessory cell-
derived cytokines may also induce development of
CIML NK cells. As in influenza vaccination, this
pre-activation state is short-lived suggesting that
there is no lasting imprint on the NK cell repertoire.
These transient innate responses (including NK
cells) may, however, synergise with antigen-specific
vaccine-induced responses resulting in the
formation of particularly durable and effective T
cell- and B cell-mediated immunity to YFV.30,65 A
more robust mechanistic understanding of the
induction and function of CIML NK cells during
infection or vaccination with YFV and other
flaviviruses will help to define their role.

HUMAN IMMUNODEFICIENCY VIRUS

HIV remains highly prevalent across the world
with 2.1 million new infections estimated in 2015;
lifelong treatment is required to prevent disease
and death, which places a considerable burden on
health systems worldwide.66 A prophylactic HIV
vaccine is of utmost priority. HLA-I and killer cell
immunoglobulin-like receptor (KIR) genotype and
NK cell education influence killing of HIV-1-
infected CD4+ T cells and are associated with the
rate of progression of HIV infection.67,68 In the
partially successful RV144 vaccine trial, IgG against
variable regions 1 and 2 of the HIV-1 envelope
glycoprotein was inversely correlated with the
rate of infection.69 Indeed, RV144 induced
isotypes IgG1 and IgG3 targeting the crown of the
V2 loop demonstrating the potential for NK cell
ADCC induction.70,71 NK cells from KIR3DL1/HLA-
Bw4+ or KIR2DL1/HLA-C2+ donors show higher
cytotoxicity against HIV-infected targets in the
presence of anti-HIV gp120 antibody, highlighting
the influence of NK cell education to HIV vaccine-
induced effector NK cells and potentially
contributing to individual variability in vaccine
outcomes.72,73 CD57+NKG2C+ memory-like NK cells
are expanded in HIV-1/HCMV co-infected
individuals, and these cells make a potential

contribution to control of viremia during primary
HIV infection.74,75 Together with evidence that
individuals with a degree of inherent resistance to
HIV – so-called elite controllers or slow
progressors – mount stronger antibody-mediated
NK cell activation and ADCC responses than more
susceptible individuals, these studies suggest that
NK cells may contribute to HIV protection and
control.76

NK cells have been implicated as antigen-
specific effector cells after vaccination or infection
of nonhuman primates with simian
immunodeficiency virus (SIV); target cells pulsed
with SIV vaccine antigen but not heterologous
antigens can be lysed in vitro by splenic and
hepatic NK cells from infected but not from
uninfected animals.17 These antigen-specific
responses could be detected for at least 5 years
after SIV DNA/adenovirus prime-boost vaccination,
suggesting that this memory-like response is long-
lived.17 By contrast, no significant potentiation of
circulating NK cell function was observed after SIV
infection or vaccination; rather, SIV infection
impaired the cytotoxic response of peripheral
blood NK cells.77 However, a trend towards
increasing in vitro NK cell CD107a expression in
response to IL-15 and IL-12 postvaccination
suggests that memory-like NK cells with enhanced
cytokine responsiveness may have been induced in
this study.77

In HIV patients, therapeutic HIV vaccination or
IL-2 treatment sustains or enhances NK cell
activity.32,78 Immunisation of chronically infected
patients with an adjuvanted HIV-1 Gp120/NefTat
subunit protein vaccine induces IL-2 from T helper
cells and an increase in NK cell IFN-c production
in vitro; NK cell IFN-c production was reduced by
depletion of CD4+ T cells and almost completely
abrogated after blocking both IL-2 and IL-12,
suggesting a role for accessory cells in full NK cell
effector functions after vaccination.32 These, and
other, studies highlight the potential of
therapeutic vaccination to restore NK cell function
during chronic HIV infection.32,79

EBOLA

Several vaccines are in development for the
prevention of Ebola virus disease (EVD). Two
vectored vaccines that express the glycoprotein
(GP) from the Zaire strain of Ebola (ZEBOV) and
use the recombinant vesicular stomatitis virus and
Chimp Adenovirus type 3 (rVSV-ZEBOV and
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ChAd3-ZEBOV, respectively) are the most
advanced of these.80 Ebola virus has a wide range
of host cell targets including macrophages and
DCs, infection of which aids viral dissemination
and crucially leads to immune dysregulation.81

Little is known about the role of NK cells in Ebola
virus infection but in vitro studies show IFN-
inhibiting domains (IIDs) within Ebola viral
proteins VP24 and VP35 interrupt DC maturation
and type I IFN signalling leading to somewhat
impaired NK cell activation and cytotoxicity.82

Disrupting either of these IIDs restores DC
maturation and NK cell activation as measured by
NKp46 and CD38 expression.82 Another study
showed that Ebola virus-like particles (VLPs)
lacking IIDs activated NK cells and led to lysis of
filovirus-infected autologous human DCs in
culture and pro-inflammatory cytokine release.83

Activation of the early inflammatory response
and release of cytokines such as IP-10, IL-1b, IL-6
and TNFa, correlated with survival from EVD in
humans81,84 and mice can be protected against
Ebola by adoptive transfer of NK cells from VP40
containing VLP-treated mice.85 Increased survival
of mice after postexposure vaccination with the
candidate vaccine rVSVΔG-EBOV is reversed by NK
cell depletion;86 postexposure vaccination
stimulated a burst of IFN-c release and type I IFN
secretion from accessory cells, potentially kick-
starting the antiviral response and overcoming the
blockade caused by IIDs.86 Postexposure antibody
therapy has also been shown to give effective
protection in animal models via ADCC activity.87,88

These studies implicate NK cells as important
effectors in protection against Ebola virus
infection and in vaccine-induced immunity and
raise the potential of indirect cytokine activation
of NK cells to restrict virus dissemination after
therapeutic vaccination.

MALARIA

The role of NK cells in natural immunity or
vaccine-induced protection against malaria
infection remains to be established.89 NK cell
activation has been described to varying degrees
in different experimental murine models90,91 and
NK cells have been shown to contribute directly
to the elimination of Plasmodium falciparum-
infected red blood cells (RBC) in a humanised
mouse model.92 In vitro studies of human PBMC
show NK cells are readily activated by
P. falciparum-infected RBC; the resulting NK cell

proliferation, IFN-c production, CD25 and CD69
expression were further demonstrated to be
dependent on IL-2 and accessory cell IL-12 and IL-
18 production and on cell–cell contact.93–96 In
humans, long-lasting NK cell activation has been
reported in controlled human malaria infection
(CHMI) studies; a decrease in peripheral blood NK
cell frequency early after infection suggests
migration of NK cells into the tissues, possibly the
liver.97–99

RTS,S/AS01 is the most promising vaccine tested
to date for human P. falciparum malaria. RTS,S
consists of recombinant circumsporozoite surface
protein (CSP) of P. falciparum fused to the
hepatitis B virus surface antigen (HBs) and
adjuvant delivery system (AS)01 formed into VLPs.
PBMC collected from a RTS,S randomised
controlled trial revealed postvaccination IL-2
secretion with IFN-c and CD69 upregulation on
NK cells in response to in vitro restimulation with
HBs or CSP. All responses were significantly higher
in RTS,S vaccines compared to control rabies
vaccinated subjects.31 A weak association has been
reported between IL-2 secreting CD4+ T cells and
time to parasitaemia, accompanied by an increase
in the proportion of CD56bright NK cells, higher
IFN-c and perforin expression, and protection
against malaria challenge in vaccine recipients has
also been reported.100 Interestingly, peripheral
blood NK cell gene expression signatures were
negatively correlated with RTS,S-induced malaria
protection, consistent with migration of activated
blood NK cells to the tissues,101 which implies that
peripheral NK cell responses to malaria play a
minimal role in vaccine responses.

TUBERCULOSIS

The live attenuated BCG vaccine is the only
vaccine currently licenced for the prevention of
tuberculosis disease (TB) caused by Mycobacterium
tuberculosis (M.tb) and is administered to over
120 million infants each year.102 NK cells are an
important component of the cellular immune
response to BCG, producing more than half of the
total IFN-c after vaccination in newborns and 2-
month-old infants.102

BCG, and other live vaccines such as measles
vaccine, have been shown to induce nonspecific
effects that are beneficial to the recipient and
reduce overall mortality in a community.103,104

Potential underlying mechanisms include T cell-
mediated cross-reactivity and/or ‘training’ or
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‘priming’ of innate immune cells, including
monocytes and NK cells. Increased expression of
pattern recognition receptors (PRR) in monocytes,
and higher levels of IFN-c, TNFa and IL-1b
secretion have been observed when PBMC from
BCG-vaccinated individuals are restimulated with
mycobacterial or unrelated antigens, compared to
prevaccination PBMCs.22 These effects persisted
for up to 12 months after BCG vaccination and
were partly attributed to epigenetic remodelling
of key cytokine gene loci and have been termed
‘trained immunity’. Similarly, increased NK cell
CD69 expression in response to Pam3Cys has been
reported in post-BCG vaccination samples from
infants and correlated with higher concentrations
of IL-12 secretion.105 Interestingly, no changes in
NK cell phenotype, maturation or IFN-c
production were reported in BCG-trained NK
cells,106 suggesting that they are not equivalent to
CIML NK cells.

Enhancement of NK cell IFN-c responses to BCG
has been reported after BCG vaccination of
patients with latent TB29 and in 5-week-old
infants who were BCG-vaccinated at birth
compared to unvaccinated controls;29 NK cell
responses were completely abrogated by
neutralisation of IL-12 and IL-18.29 Consistent with
studies of other whole organism vaccines, as
described above, these studies indicate that
enhanced responsiveness to cytokines is a key
feature of vaccine-mediated effects on NK cells.

THE ROLE OF VACCINE ADJUVANTS IN
PROMOTING NK CELL RESPONSES

Killed whole organism or live attenuated vaccines
are both highly immunogenic and particularly
effective at potentiating NK cell responses; both
of these traits likely reflect the presence of potent
pathogen-associated molecular patterns (PAMPs)

Figure 1. Accessory cell-dependent NK cell activation after vaccination. (a) Activation of APCs by live attenuated or inactivated whole organism

vaccines induces the release of costimulatory cytokines which in turn leads to NK cell activation including IFN-c release, degranulation and CD25

upregulation. (b) Adjuvants promote accessory cell function for subunit or vectored vaccines in the absence of vaccine-derived PAMPs. (c) Upon

secondary exposure, IL-2 from memory CD4+ T cells, antibody and the presence of CIML NK cells enable an enhanced response.
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for PRR-mediated accessory cell activation. PAMP-
containing adjuvants are typically required to
improve the immunogenicity of subunit or
vectored vaccines, which lack these ligands.
Several studies have documented enhancement of
NK cell activation by adjuvants.32,107,108 IL-15-
matured DCs exposed in vitro to the TLR-4 agonist
AS04-adjuvanted human papilloma virus (HPV)
VLP vaccine can potentiate NK cell activation and
killing of HPV-infected cells compared to either IL-
4-matured DCs or VLP alone; this effect was
attributed to the superior cytokine-producing
ability of the DCs.109 Similarly, vaccination in the
presence of exogenous IL-15 enhances DC
maturation and protection against lethal
staphylococcal enterotoxin B challenge in mice
compared to vaccine alone.110

AS03, a squalene-based adjuvant, promotes
recruitment of antigen-presenting cells (APCs) and
antigen processing. A system-wide analysis of the
response to AS03-adjuvanted inactivated H5N1
influenza vaccine revealed a direct correlation
between IP-10, type I and II interferon production,
and enhanced NK cell activation and
proliferation.111,112 Similarly, a bursin-like peptide
shown to stimulate immune cells induced higher
levels of IL-2 and IL-4 and increased NK cell
frequencies and IFN-c secretion in mice vaccinated
with inactivated influenza H9N2 compared to
vaccine alone.113 Taken together, these studies
indicate that PRR-mediated activation and
maturation of accessory cells such as DCs by vaccine
adjuvants increase the production of costimulatory
cytokines leading to heightened NK cell activation.
Whether these NK cells share features of CIML NK
cells has not yet been formally tested.

CONCLUDING REMARKS

Although there is now considerable evidence of
enhanced NK cell responses after vaccination, the
functional importance of NK cells in vaccination-
induced immunity is rather difficult to evaluate.
The NK cell response to vaccination varies
depending on the type of vaccine, the cytokine
signature induced by the vaccine/adjuvant
combination and subsequent accessory cell
activation (Figure 1). The ability of NK cells to
respond to signals from both innate and adaptive
immune cells suggests that when one arm of the
immune response is impaired, such as T cell
responses in HIV infection or innate cell
dysregulation in EVD, NK cells may play an

important immune effector role, maximising the
impact of the remaining arm of the immune
system. Successful activation of APCs and induction
of an early inflammatory response by a vaccine
correlate with enhanced and sustained NK cell
activation and function. Importantly, NK cell
education by HLA-KIR or other receptor-ligand
combinations may well calibrate functional
capacity on induction by both adaptive and innate
pathways thereby driving individual variability in
vaccine-induced responses. The addition of
adjuvant systems to vaccines to increase accessory
cell activation and therefore augmenting NK cell
function including ADCC activity could play a role
in the future design of new vaccines, postexposure
therapy, therapeutic cancer vaccines, regimen
optimisation and evaluation of vaccine efficacy.
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