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Background: Mutations in the transcription factor hepatocyte nuclear factor 1B (HNF1B) are the most

common inherited cause of renal malformations, yet also associated with renal tubular dysfunction, most

prominently magnesium wasting with hypomagnesemia. The presence of hypomagnesemia has been

proposed to help select appropriate patients for genetic testing. Yet, in a large cohort, hypomagnesemia

was discriminatory only in adult, but not in pediatric patients. We therefore investigated whether hypo-

magnesemia and other biochemical changes develop with age.

Methods: We performed a retrospective analysis of clinical, biochemical, and genetic results of pediatric

patients with renal malformations tested for HNF1B mutations, separated into 4 age groups. Values were

excluded if concurrent estimated glomerular filtration rate (eGFR) was <30 ml/min per 1.73 m2, or after

transplantation.

Results: A total of 199 patients underwent HNF1B genetic testing and mutations were identified in 52

(mutþ). The eGFRs were comparable between mutþ and mut� in any age group. Although median

plasma magnesium concentrations differed significantly between mutþ and mut� patients in all age

groups, overt hypomagnesemia was not present until the second half of childhood in the mutþ group.

There was also a significant difference in median potassium concentrations in late childhood with lower

values in the mutþ cohort.

Conclusions: The abnormal tubular electrolyte handling associated with HNF1B mutations develops with

age and is not restricted to magnesium, but consistent with a more generalized dysfunction of the distal

convoluted tubule, reminiscent of Gitelman syndrome. The absence of these abnormalities in early

childhood should not preclude HNF1B mutations from diagnostic considerations.
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H
NF1B is a transcription factor highly expressed in
the developing kidney, genital tract, pancreas,

and liver.1 Heterozygote mutations in the encoding
gene lead to autosomal dominant tubulointerstitial
kidney disease–HNF1B,2 and besides cystic kidney
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disease the clinical spectrum can include renal mal-
formations, diabetes, genital tract abnormalities,
exocrine pancreatic insufficency, and gout.3,4 The high
clinical variability, a spontaneous mutation rate of
approximately 50%, and variable penetrance hamper
clinical diagnosis.5

Previously, we reported hypomagnesemia as part of
the clinical spectrum, suggesting a role for HNF1B not
only in morphological renal development, but also in the
maintenance of tubular function.6 To rationalize
patient selection for genetic testing, a clinical tool had
1
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Patients tested for HNF1B mutations (N=199)

HNF1B mutation not identified HNF1B mutation/deletion identified

eGFR available eGFR available

eGFR≥30 ml/min per 1.73 m2 eGFR≥30 ml/min per 1.73 m2

pre-transplant

(N=147) (N=52)

(N=106)

(N=89)
pre-transplant

(N=30)

(N=35)

Figure 1. Funnel diagram of patient identification. Shown is the number (n) of patients included in the analysis. A total of 199 patients with renal
malformations were identified that had testing for HNF1B performed. After exclusion of those without an available glomerular filtration rate (GFR;
measured or estimated) and those with a GFR of <30 ml/min per 1.73 m2, 30 mutþ and 89 mut� patients remained with biochemical values
suitable for analysis. eGFR, estimated glomerular filtration rate.
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subsequently been proposed that predicts the presence of
HNF1B mutations based on a score derived from several
clinical features, including hypomagnesemia.7 Yet, when
this score was applied to a large cohort in the United
Kingdom, which included patients investigated here,
hypomagnesemia was found to be discriminatory only in
adult patients, not in children.8 In another predominantly
pediatric cohort, hypomagnesemia was present in only a
quarter of patients with HNF1B mutations.9

HNF1B-associated hypomagnesemia is associated with
altered transactivation of the gamma-subunit of the Naþ-
Kþ-ATPase in the distal convoluted tubule (DCT), which
regulates epithelial ion transport.6,10 Impaired general
transport activity in the DCT is usually associated with a
Gitelman-like tubulopathy, consisting of hypokalemic
hypochloraemic alkalosis with hypocalciuria, in addition
to hypomagnesemia.11 We prevously reported hypo-
calciuria in children withHNF1Bmutations, but had not
investigated hypokalemia, hypochloremia, or alkalosis,
although hypokalemia has previously been reported in
adult patients.6,12

We hypothesized that the electrolyte abnormalities
associated with HNF1B mutations develop during
childhood and therefore the application of the score in
younger children may wrongly predict the absence of a
mutation. We thus decided to assess this in our cohort
of children with renal malformations with and without
identified HNF1B mutations.
METHODS

Patients

We performed a retrospective analysis of clinical,
biochemical, and genetic results of patients tested for
HNF1B mutations seen at Great Ormond Street Hospital
2

with chronic kidney disease stage 1 to 3 between 2000 and
2017. Mutation analysis had been performed at the
discretion of the individual treating physician and pa-
tients’ leucocyteDNAwas screened forHNF1Bmutations
as described previously.5,6,13,14 An overview of patient
and data selection is given in Figure 1.
Biochemical Data

Biochemical and clinical data were retrieved from
relevant hospital databases. Results were anonymized
and analyzed.

Plasma and urine biochemistries were obtained and
compared between those with confirmed HNF1B mu-
tations (mutþ) and those without (mut�).

Formal measured glomerular filtration rates were
used if available. Clinical parameters were otherwise
used to calculate eGFR using the Schwartz-Haycock
formula with the factor k specifically adapted to our
hospital laboratory, as described previously.15 Results
with a concurrent measured or eGFR below 30 ml/min
per 1.73 m2 and all results post transplant were
excluded.

All available results for the following biochemical
parameters were obtained: plasma concentrations of
sodium, potassium, magnesium, chloride, calcium,
phosphate, and bicarbonate (measured as total CO2), as
well as urine calcium/creatinine ratios. As the normal
range for urine calcium/creatinine ratio changes with
age, ratios were normalized to the respective upper
limit of the normal range, as described previously.16

Results were then separated into 4 age groups:
0 to<4.5, 4.5 to<9, 9 to<13.5, and 13.5 to 18 years of age.

Ifwithin 1 agegroupmore than 1value perbiochemical
parameter was availble for an individual patient, we
Kidney International Reports (2019) -, -–-



Table 1. Plasma and urine biochemistry values

Parameters
by age, yr

n
(mutD)

mutD
Median
(range)

mutL
Median
(range) Wilcoxon

GFR

0–4.5 76 (20) 61 (43–91) 70 (32–117) 0.4

4.5–9.0 51 (11) 69 (31–95) 60 (30–115) 0.4

9.0–13.5 43 (11) 71 (43–101) 62 (30–106) 0.3

13.5–18.0 26 (5) 59 (36–78) 62 (32–109) 0.7

Magnesium Normal >0.66 (<9 yr) or 0.7 (>9 yr) mmol/l

0–4.5 71 (18) 0.76 (0.53–0.88) 0.83 (0.61–1.11) 0.004a

4.5–9.0 49 (10) 0.69 (0.52–0.77) 0.77 (0.52–0.97) 0.005

9.0–13.5 40 (10) 0.57 (0.45–0.77) 0.81 (0.64–0.96) 0.00002a

13.5–18.0 24 (5) 0.53 (0.5–0.64) 0.84 (0.61–1.01) 0.001a

Potassium Normal >3.5 mmol/l

0–4.5 73 (20) 4.2 (3.8–5.3) 4.2 (3.8–5.3) 0.4

4.5–9.0 51 (11) 4.1 (3.7–4.6) 4.1 (2.8–5.6) 0.09

9.0–13.5 43 (11) 3.9 (3.3–5.1) 4.2 (3.3–5.0) 0.09

13.5–18.0 26 (5) 3.6 (3.4–4.0) 4.2 (3.4–4.9) 0.02a

Chloride Normal >100 mmol/l

0–4.5 14 (3) 106 (101–106) 105 (94–108) 1

4.5–9.0 14 (4) 104 (101–107) 106 (101–112) 0.9

9.0–13.5 16 (4) 101 (101–109) 104 (97–109) 0.26

13.5–18.0 6 (3) 100 (99–100) 103 (101–109) 0.14

Bicarbonate Normal <30 mmol/l

0–4.5 71 (20) 24 (16–27) 22 (15–34) 0.11

4.5–9.0 48 (11) 25 (22–29) 25 (18–29) 0.09

9.0–13.5 41 (11) 28 (24–31) 23 (18–30) 0.0002a

13.5–18.0 23 (5) 27 (25–31) 24 (18–28) 0.0007a

Normalized UCCR Normal <1

0–4.5 7 (2) 0.07 (0.07–0.07) 0.5 (0.3–1.1) 0.3

4.5–9.0 5 (3) 0.1 (0.07–0.1) 0.9 (0.1–1.8) 0.7

9.0–13.5 1 (0) No results 0.5 n/a

13.5–18.0 9 (3) 0.07(0.04–0.2) 0.7 (0.2–1.1) 0.07

All ages 22 (8) 0.07 (0.04–0.2) 0.5 (0.1–1.8) 0.0005a

GFR, glomerular filtration rate; n/a, not applicable; UCCR, urine calcium/creatinine ratio.
aSignificant (P < 0.05) values.
Shown are pertinent plasma and urine biochemistries separated according to HNF1B
mutations status (mutþ vs. mut�) and according to the 4 age groups. The respective
lower or upper limit of normal is indicated for each electrolyte concentration. The
number of patients with available data “n” according to mutation status is provided in
the second column, with the number of mutþ patients in parentheses. Note that pa-
tients can be represented in more than 1 age group, if data were available.
The Wilcoxon test compares the median values between the mutþ and mut� groups.
The UCCR is normalized to the respective upper limit of normal for age to allow com-
parison across the age groups. There were too few measurements for this parameter to
allow robust statistical comparison in the individual age groups.
Note that median magnesium values are significantly different between mutþ and
mut� patients in all age groups. Median bicarbonate and potassium values were also
significantly different but only in late childhood.

S Adalat et al.: HNF1B Tubulopathy CLINICAL RESEARCH
calculated median values to exclude bias from over-
representation of patients with more available results.

HNF1B Score

We identified those patients who had been included in
a previous study of the HNF1B score8 and who were
included in this study because of available bio-
chemistries. The previously calculated HNF1B score
was retrieved and adjusted using the latest plasma
magnesium concentration.

Statistical Analysis

Statistical analysis was performed using R (Vienna,
Austria).17 Nonparametric Wilcoxon and Fisher’s exact
tests were implemented for statistical analysis.

We used Fisher’s exact test (2-tailed) to assess the
siginificance of the difference in number of patients
with abnormal results, that is, below (Mg, K, and Cl) or
above (bicarbonate) the respective reference range be-
tween the mutþ and mut� groups.

We used the Wilcoxon test to compare all the nu-
merical values in the respective groups to determine
the signficance of the difference in the medians.

RESULTS

Patients

A total of 199 children had genetic testing for HNF1B
performed, 72 of whom had also been included in our
initial report of the association of hypomagnesemia
with HNF1B.6 In 52 patients (26%), mutations were
identified, constituting the mutþ cohort, most (n ¼ 33)
being whole gene deletions. As in our previous review,
no difference in electrolyte patterns could be seen be-
tween patients with intragenic mutations versus whole
gene deletions (data not shown).6

The remaining 147 patients constituted the mut�
cohort. There was no significant (P¼ 0.3–0.7) difference
between the 2 cohorts (mutþ vs. mut�) with respect to
glomerular filtration rates in any age group (Table 1).

Age

Both cohorts were comparable with respect to median
age at first (2.19 years, range 0.15–15.9 [mutþ] vs. 2.8
years, range 0.02–17.1 [mut�]) and last available blood
test (8.9 years, range 0.21–17.3 [mutþ] vs. 7.3 years,
range 1.1–17.4 [mut� ]).

Magnesium

Table 1 summarizes the analysis of median biochem-
ical concentrations assessed by mutation status and
age group and they are graphically represented in
Figure 2. Individual plasma magnesium measurements
are plotted in Figure 3. Of note, although median
plasma magnesium values differed significantly be-
tween mutþ and mut� in every age group, the
Kidney International Reports (2019) -, -–-
number of patients with overt hypomagnesemia
(median magnesium concentration below 0.7 mmol/l)
became significantly different between the mutation
groups only in the second half of childhood (Table 2).
The median age at which hypomagnesemia was first
noted in mutþ patients was 10.0 years (1.05–17.4
years).

Table 3 highlights the predictive values of a low
plasma magnesium level in the different age quartiles
and shows that absence of hypomagnesemia in the
second half of childhood is highly predictive of not
having a HNF1B mutation in children with renal tract
malformations.
3



Figure 2. Plasma electrolyte abnormalities in mutþ patients develop over time. Shown are box plots for the plasma concentrations of (a)
magnesium (Mg), (b) potassium (K), (c) chloride (Cl), and (d) bicarbonate (TCO2) according to the 4 age groups. Box plot graphs represent the
median and interquartile range (IQR); the upper and lower whiskers include data points within 1.5 � IQR. Outliers are plotted individually. The
blue boxes represent the mut� group, and the red boxes represent mutþ. The respective normal range is represented by the transparent blue
boxes. Note the development with increasing age of a Gitelman-like tubulopathy with hypomagnesemia and hypokalemic, hypochloremic
metabolic alkalosis in the mutþ group. For number of patients for each plot and results of statistical comparisons, see Table 1.
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Potassium, Chloride, and Bicarbonate

HNF1B mutations were associated with lower plasma
potassium concentrations, but this was significant (P <
0.05) only in the oldest age group.

Similarly, plasma chloride concentrations trended
lower with increasing age in mutþ patients, whereas bi-
carbonate concentrations increased with age in the mutþ
group (Figure 2). However, the difference between the
cohortswas not statistically significant and values outside
the reference range were rare in both cohorts.

The cohorts were comparable with respect to plasma
sodium and phosphate concentrations across the length
of follow-up (data not shown).

Urine Calcium/Creatinine Ratios

Values were available for only 22 patients and thus
were too few for meaningful comparison across age and
mutation status (Table 1).
4

HNF1B Score

A total of 92 patients from this study had their HNF1B
score calculated in the previous UK study.8 The me-
dian scores after adjustment for the latest available
magnesium concentration was only slightly higher in
patients older than 9 years compared with the younger
patients, but the percentage of patients with a
score $8, which had previously been suggested as a
discriminator between mutþ and mut� patients,
increased to more than 90% in the older age group
(Table 4).7
DISCUSSION

Our study provides important insights into the nature
of the tubular dysfunction associated with HNF1B
mutations and informs selection of pediatric patients
for mutation analysis.
Kidney International Reports (2019) -, -–-



Figure 3. Magnesium levels in individual patients over time. Plotted are all plasma magnesium measurements included in the analysis with
individual patients represented by colored lines, if more than 1 measurement was available. Note the decreasing plasma magnesium levels in
the mutþ group, whereas no such trend is noticeable in the mut� group.

Table 2. Comparison of hypomagnesemia in HNF1B mutþ and mut�
groups

Age (yr)
HNF1B
mutation

Hypomagnesemia
patients, n (%)

Normomagnesemia
patients, n (%)

Fisher’s exact
comparison

0–4.5 þ 4 (22) 14 (78) P ¼ 0.26
� 2 (4) 51 (96)

4.5–9.0 þ 5 (50) 5 (50) P ¼ 0.18
� 9 (23) 30 (77)

9.0–13.5 þ 9 (90) 1 (10) P ¼ 0.0001a

� 5 (17) 25 (83)

13.5–18.0 þ 5 (100) 0 (0) P ¼ 0.02a

� 3 (16) 16 (84)

aSignificant (P < 0.05) values.
Shown are the number (n) and percentage (%) of patients with hypomagnesemia by age
group and HNF1B mutation status. The Fisher exact test compares the number of pa-
tients with hypomagnesemia across the mutation groups. Note that the frequency of
hypomagnesemia increases with age and the difference between mutation groups
becomes significant in the second half of childhood. Also note that individual patients
may be represented in more than 1 age group, if their follow-up extended beyond this
age group.
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Most important, we show that hypomagnesemia
develops with increasing age. Although there was a
significant difference in median magnesium
Kidney International Reports (2019) -, -–-
concentrations between mutþ and mut� patients
across all age groups, overt hypomagnesemia was not
apparent until age group 9.0 to 13.5 years. Moreover,
the median age at which hypomagnesemia was first
noted was 10.0 years (range 1.0–17.4 years). Thus, the
absence of hypomagnesemia in younger children
should not be used as an argument against testing for
HNF1B, as the negative predictive value is low.

Next, we show that HNF1B mutations are not only
associated with hypomagnesemia, but with a trend for
a more complex pattern of electrolyte abnormalities
comparable to Gitelman syndrome. In some patients,
this can be quite dramatic, as in the boy reported
previously, who presented marked electrolyte abnor-
malities with the typical pattern of Gitelman syndrome
(K: 3.2, Cl: 97, and bicarbonate: 33 mmol/l) and
consequently received this as his clinical diagnosis, yet
on genetic testing was found to have an HNF1B
mutation.13
5



Table 3. Predictive values of hypomagnesemia for HNF1B mutation

Age (yr)
Positive

predictive value
Negative

predictive value

0–4.5 0.6 <0.5

4.5–9.0 0.5 <0.5

9.0–13.5 0.7 0.9

13.5–18.0 0.7 0.9

Shown are the positive and negative predictive values for hypomagnesemia and HNF1B
mutation. Note, absence of hypomagnesemia in the second half of childhood is highly
predictive of not having an HNF1B mutation in patients with renal tract malformations.

Table 4. HNF1B score according to age
Age <9 yr >9 yr

HNF1B mutation þ � þ �
Median score (n) 11 (13) 8 (37) 12 (13) 7.5 (28)

Score $8, % 77 51 92 50

Shown are the median HNF1B scores, as calculated previously,8 but adjusted for the
latest available plasma magnesium concentration. Median scores are higher in the
mutþ group, yet similar across the age groups. Note that the percentage of patients
with a score $8 increases in the mutþ group with age, consistent with better
discrimination between mutþ and mut� when using the suggested score cutoff of 8.
For more details see text.
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Interestingly, as with magnesium, these Gitelman-
like electrolyte abnormalities become apparent only
with increasing age, so that the difference in potas-
sium concentration between mutþ and mut� pa-
tients in our cohort became significant only after age
13.5 years. This may explain why in our initial re-
view of children with HNF1B mutations, hypokale-
mia was not noted as a specific feature, whereas in a
review of adult patients, approximately half were
noted to have hypokalemia with renal potassium
wasting, even despite worsening eGFR.6,12 Hypo-
magnesemia may contribute to hypokalemia, as lack
of intracellular magnesium unblocks the secretory
potassium channel KCNJ1.18 However, in familial
hypomagnesemia with secondary hypocalcemia due
to mutations in TRPM6, hypokalemia has not been
reported, arguing against a substantial contribution
of hypomagnesemia to decreased potassium
levels.19,20

Our study has several limitations, including a
relatively small sample size and the retrospective
design with inconsistent availability of the various
laboratory values. Individual patients may be repre-
sented in more than one age group, if data were
available. Although this may bias the results toward
those patients with multiple measurements, it also
allows the tracking of the development of electrolyte
abnormalities in individual patients, as shown for
magnesium (Figure 3).

Differences in plasma chloride and bicarbonate
concentrations and urine calcium were not significant
in our study, and this likely reflects the small number
of patients with available measurements (Table 1).
Nevertheless, the trend for hypochloremia and alka-
losis with increasing age is apparent in our data
(Figure 2). Clinical symptoms potentially associated
with the electrolyte abnormalities were not captured in
this review. Autosomal dominant tubulointerstitial
kidney disease–HNF1B is rare and larger cohort
studies, ideally based on national or international reg-
istries, will be needed to overcome these limitations.

The DCT is the key nephron segment for magnesium
regulation.21 HNF1B has been shown to regulate
expression of FXYD2, which in turn regulates the
6

activity of the basolateral Naþ-Kþ-ATPase, the overall
“engine” for all transport activity in this segment.6,10

Thus, the biochemical phenotype is expected to be
similar to that associated with mutations in FXYD2.
Patients with mutations in this gene are exceedingly
rare and only 1 mutation has so far been described.
Initially, FXYD2 disease was described as a cause of
isolated hypomagnesemia, yet subsequent data on
newly discovered patients also show a trend to a
Gitelman-like tubulopathy.22,23 Interestingly, in a
recent report of mutations in ATP1A1, encoding the
alpha subunit of the Naþ-Kþ-ATPase, hypomagnesemia
was the predominant electrolyte abnormality, with
hypokalemic alkalosis much less noticable.24 These data
suggest that impaired activity of the Naþ-Kþ-ATPase in
DCT appears to primarily affect magnesium reabsorp-
tion. This also fits with the observation that impaired
energy provision from mitochondria can also predom-
inantly affect plasma magnesium levels.25

The finding of a slow evolution of the electrolyte
abnormalities throughout childhood fits with clinical
observations in other disorders of the DCT and raises
interesting questions about the development of the role
of this nephron segment. The archetypical disorder of
impaired salt reabsorption in DCT is Gitelman syn-
drome and affected patients typically present during
school age or even adulthood.26–28 A similar slow
development of electrolyte abnormalities has been re-
ported in a family with EAST/SeSAME syndrome.29

Gordon syndrome, the mirror image of Gitelman syn-
drome, also typically manifests later in life.30 Perhaps
even more interesting is the clinical observation that
patients with mutations in CLCNKB (Bartter syndrome
type 3) often initially present with classical Bartter
syndrome, but later in childhood may revert to a
Gitelman-like phenotype.31 This chloride channel is
expressed both in the thick ascending limb of Henle
and in DCT, and the phenotypic switch to DCT-typical
electrolyte abnormalities may represent the developing
and increasing importance of salt reabsorption in this
segment during childhood.11 Our clinical observations
raise the question of whether HNF1B may actually be a
transcriptional driver of this developmental change in
apparent DCT activity. Yet, although there are several
Kidney International Reports (2019) -, -–-



S Adalat et al.: HNF1B Tubulopathy CLINICAL RESEARCH
studies demonstrating the critical importance of HNF1B
for kidney and especially also for tubular development,
there are no data yet available to investigate the role of
HNF1B in postnatal tubular maintenance and transport
activity.32–36
CONCLUSION

Our analysis of clinical data shows that the renal
tubular dysfunction associated with mutations in
HNF1B extends beyond isolated renal magnesium loss
toward a Gitelman-like phenotype. Importantly, the
electrolyte abnormalities associated with this tubulop-
athy develop during childhood and become most
apparent in adolescence. The absence of these abnor-
malities in younger children with other suggestive
findings thus does not argue against a potential un-
derlying HNF1B mutation.
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