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Juvenile myoclonic epilepsy is the most common genetic generalized epilepsy syndrome, characterized by a complex polygenetic

aetiology. Structural and functional MRI studies demonstrated mesial or lateral frontal cortical derangements and impaired fronto-

cortico-subcortical connectivity in patients and their unaffected siblings. The presence of hippocampal abnormalities and associated

memory deficits is controversial, and functional MRI studies in juvenile myoclonic epilepsy have not tested hippocampal activation.

In this observational study, we implemented multi-modal MRI and neuropsychological data to investigate hippocampal structure

and function in 37 patients with juvenile myoclonic epilepsy, 16 unaffected siblings and 20 healthy controls, comparable for age,

gender, handedness and hemispheric dominance as assessed with language laterality indices. Automated hippocampal volumetry

was complemented by validated qualitative and quantitative morphological criteria to detect hippocampal malrotation, assumed to

represent a neurodevelopmental marker. Neuropsychological measures of verbal and visuo-spatial learning and an event-related

verbal and visual memory functional MRI paradigm addressed mesiotemporal function. We detected a reduction of mean left

hippocampal volume in patients and their siblings compared with controls (P50.01). Unilateral or bilateral hippocampal mal-

rotation was identified in 51% of patients and 50% of siblings, against 15% of controls (P5 0.05). For bilateral hippocampi,

quantitative markers of verticalization had significantly larger values in patients and siblings compared with controls (P5 0.05). In

the patient subgroup, there was no relationship between structural measures and age at disease onset or degree of seizure control.

No overt impairment of verbal and visual memory was identified with neuropsychological tests. Functional mapping highlighted

atypical patterns of hippocampal activation, pointing to abnormal recruitment during verbal encoding in patients and their siblings

[P50.05, familywise error (FWE)-corrected]. Subgroup analyses indicated distinct profiles of hypoactivation along the hippocam-

pal long axis in juvenile myoclonic epilepsy patients with and without malrotation; patients with malrotation also exhibited

reduced frontal recruitment for verbal memory, and more pronounced left posterior hippocampal involvement for visual

memory. Linear models across the entire study cohort indicated significant associations between morphological markers of hippo-

campal positioning and hippocampal activation for verbal items (all P50.05, FWE-corrected). We demonstrate abnormalities of

hippocampal volume, shape and positioning in patients with juvenile myoclonic epilepsy and their siblings, which are associated

with reorganization of function and imply an underlying neurodevelopmental mechanism with expression during the prenatal

stage. Co-segregation of abnormal hippocampal morphology in patients and their siblings is suggestive of a genetic imaging

phenotype, independent of disease activity, and can be construed as a novel endophenotype of juvenile myoclonic epilepsy.
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Introduction
Juvenile myoclonic epilepsy (JME) is a highly prevalent

genetic generalized epilepsy syndrome, accounting for up

to 10% of all epilepsies (Camfield et al., 2013; Scheffer

et al., 2017). Complex polygenetic transmission mechan-

isms contribute to the aetiology of JME (Delgado-Escueta

et al., 2013). Clinical genetic investigations document high

levels of syndrome concordance in monozygotic twins

(Berkovic et al., 1998; Corey et al., 2011) and first-degree

relatives of index patients (Marini et al., 2004), further

supporting high heritability.

Neuropsychological evaluations in JME have shown

frontal lobe dysfunction, with impaired performance

during working memory, prospective memory, decision-

making and other executive tasks (Sonmez et al., 2004;

Wandschneider et al., 2012; Zamarian et al., 2013; Wolf

et al., 2015), and specific personality traits (Plattner et al.,

2007; de Araujo Filho and Yacubian, 2013). Abnormal

fronto-cortico-thalamic connections (Pulsipher et al.,

2009; O’Muircheartaigh et al., 2011, 2012) and augmented

structural and functional connectivity between motor areas

and prefrontal cognitive networks (Vollmar et al., 2011,

2012) have been interpreted as substrates of both ictogen-

esis and cognitive dysfunction (Koepp, 2005;

Wandschneider et al., 2012).

While most cognitive and imaging investigations have

focused on the frontal lobes, structure and function of tem-

poral lobe areas, particularly the hippocampus, are less well

characterized. Previous work detected left (Tae et al.,

2006), right (Lin et al., 2013) or bilateral hippocampal

volume loss (Kim et al., 2015), abnormal lateral temporal

cortical morphology (Ronan et al., 2012) and disrupted

maturational trajectories of temporo-parietal association

cortices (Lin et al., 2014). Other than atrophy, subtle

abnormalities include atypical appearance and positioning

of the hippocampal formation, with rounded or pyramidal

shape and abnormal collateral or occipito-temporal sulcal

morphometry, an entity known as hippocampal malrota-

tion (HIMAL) (Bernasconi et al., 2005; Tsai et al., 2016).

HIMAL is more common in individuals with various focal

epilepsy syndromes than in the general population

(Bernasconi et al., 2005), and is ascribed to incomplete in-

version of mesiotemporal structures during gestation, rep-

resenting a neurodevelopmental marker (Bajic et al., 2010).

Its prevalence in a syndrome underpinned by abnormalities

of neurodevelopment, such as JME, and its potential func-

tional consequences remain to be established.

As for temporal lobe functions, some studies reported

unaffected verbal and non-verbal memory in JME

(Roebling et al., 2009; Wandschneider et al., 2010),

though memory deficits encompassing verbal and visuo-

spatial domains were detected by others (Sonmez et al.,

2004; Pascalicchio et al., 2007; Giorgi et al., 2016), and

further documented by a recent meta-analysis (Loughman

et al., 2014). Functional MRI paradigms highlight the

neural correlates of episodic memory encoding (Kim,

2011; Sidhu et al., 2013; Voets et al., 2014), with event-

related designs specifically addressing subsequent memory

effects, and indicating a pivotal role of mesiotemporal

structures (Bonelli et al., 2010; Sidhu et al., 2013). To

date, no study has addressed the imaging correlates of

mesiotemporal function in JME.

This study was designed to investigate structure and func-

tion of the mesiotemporal lobes in JME. We used structural

MRI to provide quantitative measures of hippocampal vol-

umes. In view of the neurodevelopmental underpinnings of

JME, we tested for markers of atypical hippocampal

morphology pointing to HIMAL. Neuropsychological

tests were implemented to address verbal and visuo-spatial

learning, while an event-related analysis of a memory

encoding functional MRI paradigm, including both verbal

and visual items, was used to explore mesiotemporal acti-

vation. Given the polygenetic background and recent evi-

dence of overlapping imaging and neurobehavioural traits

in JME patients and unaffected relatives (Wandschneider

et al., 2014; Iqbal et al., 2015), the above measures were

also obtained for unaffected JME siblings. This provides a

framework to address trait heritability, and detect JME-

related endophenotypes, i.e. heritable traits associated
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with the disease at the population level, co-segregating in

families with affected members, which may closely relate to

disease pathophysiological mechanisms (Gottesman and

Gould, 2003).

Materials and methods

Participants

In this observational study, we consecutively recruited 37 pa-
tients with JME, 16 unaffected siblings of 11 index patients,
and 20 healthy control subjects. Eighteen of 32 patients
(56%) and 11 of 16 siblings (69%) reported a family history
of epilepsy (beyond the JME index patient, for siblings),
while reliable anamnestic information was not available for
five patients. All controls had no family history of epilepsy.
Patients with JME were recruited from outpatient clinics at
the National Hospital for Neurology and Neurosurgery
and Epilepsy Society. Siblings were recruited through index
patients. Controls were recruited from the local
community (North-West London and Chalfont St Peter,
Buckinghamshire, UK). All patients had previously undergone
a structural MRI scan as part of diagnostic investigations.
None of the siblings and controls had received an MRI
scan prior to participating in this study. Demographic and
clinical details are reported in Table 1. The groups were com-
parable for age, gender, handedness and anxiety/depression
scores. Language laterality indices, derived from individual
verbal fluency functional MRI with the bootstrap method of
the Statistical Parametric Mapping (SPM) LI toolbox (Wilke
and Lidzba, 2007; Centeno et al., 2014) did not differ among
groups. All patients had a typical history of JME, with onset
of myoclonic and generalized tonic-clonic seizures during
adolescence, and absence seizures documented for some
(40.5%). At least one routine scalp EEG showed generalized
polyspike-wave discharges, and routine brain MRI scans were
normal. JME siblings and controls had never experienced un-
provoked seizures. EEG investigations could not be per-
formed in these subjects because of ethics restrictions.
Recruitment for this study received approval by the London
South-East Research Ethics Committee and by the UCL/
UCLH Joint Research Office. Written informed consent was
obtained from all participants.

Imaging data acquisition

T1-weighted structural MRI data were acquired for all
participants on a 3 T GE Signa-HDx MRI scanner with an
8-channel head coil, using a 3D fast-spoiled gradient-echo
(FSPGR) sequence with acquisition perpendicular to the hip-
pocampal long axis, matrix size 256 � 256, isotropic voxel
size: 1.1 mm, echo time/repetition time/inversion time: 2.8/
7.2/450 ms, flip angle: 20�. Functional MRI data were ob-
tained using a 50-slice gradient echo-planar sequence with
axial orientation, 64 � 64 matrix corresponding to in-plane
voxel size of 3.75 � 3.75 mm, 2.4 mm slice thickness, 0.1 mm
inter-slice gap, echo time/repetition time: 25/2500 ms, flip
angle: 70�.

Structural imaging analysis

Hippocampal volumetry

Hippocampal segmentation was carried out on T1-weighted
images using Hipposeg (https://hipposeg.cs.ucl.ac.uk/), an open-
source multi-atlas-based segmentation algorithm, and correction
of individual hippocampal volume for total intracranial volume
was achieved via linear regression, as detailed previously
(Winston et al., 2013). The occurrence of hippocampal shape
variants, including HIMAL, may decrease the accuracy of auto-
mated segmentation methods (Kim et al., 2012). Hence, all the
hippocampal masks were visually verified by one experienced
investigator (L.C.), blinded to the subject identity, and corrected
if appropriate. Minor corrections (545 mm3) were applied in
47/73 (64%) cases. In one subject, more extensive correction
was necessary owing to the erroneous inclusion of the fundus
of the collateral sulcus. Intra-rater reliability after mask correc-
tion, calculated on a randomly selected data subset (n = 30) and
based on two sessions 6 months apart, gave an intraclass cor-
relation coefficient (ICC) of 0.95.

Qualitative and quantitative assessment of hippo-

campal malrotation

Anonymized T1-weighted images were visually inspected by
two trained raters (L.C., F.X.) based on a global impression,
accounting for shape and orientation of the hippocampus,
depth and verticalization of the collateral and/or occipito-tem-
poral sulcus, as well as appearance of the subiculum and para-
hippocampal gyrus (Bernasconi et al., 2005; Cury et al., 2015;
Tsai et al., 2016). Each hippocampus was rated as normal,
borderline or with HIMAL by each investigator independently;
final diagnosis was reached via consensus. As a further means
to formally assess inter-rater reliability and validate qualitative
assessments, formal coding of the three criteria found to be
highly associated with HIMAL by Tsai et al. (2016) was deter-
mined as follows: (i) hippocampal shape: normal, borderline or
rounded/pyramidal; (ii) verticalization of the dominant inferior
temporal sulcus (DITS), the most prominent between the col-
lateral sulcus and the occipito-temporal sulcus: definite, bor-
derline or normal; and (iii) shape of the lateral hippocampal
aspect: curved, borderline or flattened (Fig. 1).

Using ITK-SNAP (3.6.0), we also obtained quantitative par-
ameters (Fig. 1), and chose the three features previously found
to be significantly associated with HIMAL by Tsai et al.
(2016): (i) hippocampal diameter ratio, representing the hip-
pocampal height divided by its width, measured on the slice
where the hippocampal shape appears most affected; (ii) DITS
height ratio, consisting of a ratio between the distance from
the inferior hippocampal margin to the superior limit of the
DITS, and the hippocampal vertical diameter, estimated on the
slice where the sulcus is deepest (in case of no overlap between
DITS and hippocampus, this measure is equal to zero); and
(iii) parahippocampal angle, measured on the first coronal slice
including the hippocampal body, and consisting of the angle
between the ascending and descending white matter branches
of the parahippocampal gyrus.

Neuropsychological data

The National Adult Reading Test (NART) (Nelson and
Willison, 1991) provided a measure of estimated intellectual

Hippocampal abnormalities in JME and siblings BRAIN 2019: 0; 1–18 | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z215/5542071 by U
C

L (U
niversity C

ollege London) user on 07 August 2019

https://hipposeg.cs.ucl.ac.uk/


level (IQ). The List Learning and Design Learning subtests of
the Adult Memory and Information Processing Battery (AMIPB)
addressed learning and recall of verbal and visuo-spatial cues,
respectively. During the verbal learning task, the participants
were read a list of 15 words to be subsequently recalled,
which was repeated for five consecutive trials (A1–A5). After
a short period of distraction, they were asked to recall again the
words of the list (A6). A similar test, implementing an abstract
design that subjects were required to draw, was utilised to
obtain measures of visuo-spatial learning (A1–A5; A6). These
measures were previously shown to be sensitive to the integrity
of mesiotemporal structures (Baxendale et al., 2006).

Statistical analysis of hippocampal
measures and neuropsychometry

Hippocampal measures and behavioural data were analysed
using SPSS Statistics 24.0 (IBM). Inter-rater reliability for
(i) pre-consensus diagnosis of HIMAL; (ii) qualitative; and
(iii) quantitative assessments of hippocampal features were con-
ducted using weighted Cohen’s kappa or ICC, as appropriate.
Statistics for items (ii) and (iii) were conducted on a randomly
selected data subset (44 hippocampi, 30% of the sample). Chi-
squared test was used for categorical data. Multivariate/univari-
ate ANOVA or Kruskal-Wallis test were used for parametric or
non-parametric data, with post hoc Bonferroni corrections for
multiple comparisons unless otherwise stated. Binomial logistic

regression with Firth’s correction was implemented to identify
categorical factors associated with HIMAL, while the relation-
ship between HIMAL, hippocampal volume, group allocation,
gender, handedness and neuropsychological test scores was as-
sessed with multiple regression analyses.

Functional imaging

Task specifics

During a single scanning session, a total of 70 visual and 70
verbal items, grouped in seven blocks comprising 10 visual
(faces) and 10 verbal (words) items each, were visually pre-
sented via an MRI compatible screen. Each item was displayed
for 3 s within 30-s blocks. A 15-s cross-hair fixation block
(control condition) was intercalated every two task blocks.
We used a different inter-stimulus interval (3 s) compared to
our repetition time of 2.5 s to introduce jitter and ensure
random sampling. The visual blocks included a combination
of neutral and fearful non-famous faces, unfamiliar to the sub-
jects, while single concrete nouns (including emotionally ad-
verse words such as ‘cancer’ or ‘famine’) were used during the
verbal blocks. The participants were explicitly instructed to
memorize the items for subsequent out-of-scanner recall. A
deep encoding task (Craik, 2002), involving a subjective deci-
sion on whether each stimulus was pleasant or unpleasant, was
performed via a joystick. During the recall task, the items pre-
sented previously were intermixed with additional 50% novel

Table 1 Demographic details, clinical characteristics and neuropsychological test results

JME SIB CTR Test statistic P-value Post hoc

P-value

Age, median (IQR) 32.0 (14.0) 41.5 (20.0) 32.5 (7.0) 2.53# 0.28 –

Gender, F/M 20/17 10/6 13/7 0.75* 0.74 –

Handedness, L/R 2/35 2/14 2/18 1.28* 0.62 –

HADS/A, median (IQR) 6 (4) 5 (2) 4 (5) 5.10# 0.08 –

HADS/D, median (IQR) 2 (4) 1 (2) 1 (2) 4.00# 0.14 –

Language LI, median (IQR) 0.67 (0.28) 0.68 (0.17) 0.70 (0.34) 0.71# 0.70 –

NART IQ, median (IQR) 111.0 (13.3) 106.5 (18.8) 109.0 (10.0) 0.87# 0.65 –

List Learning (A1–5), median (IQR) 56.0 (16.0) 56.5 (14.8) 56.0 (12.3) 2.02# 0.37 –

List Learning (A6), median (IQR) 12.0 (5.0) 12.0 (3.0) 13.0 (2.3) 0.74# 0.69 –

Design Learning (A1–5), median (IQR) 38.0 (12.0) 36.5 (10.3) 39.5 (13.0) 1.68# 0.43 –

Design Learning (A6), median (IQR) 8.0 (3.0) 9.0 (1.0) 9.0 (2.0) 6.26# 0.04 CTR/SIB: 0.12

CTR/JME: 0.15

JME/SIB: 1.00

Recognition accuracy: fMRI Task (Words), median (IQR) 80.0 (19.3) 80.0 (22.5) 84.3 (35.7) 0.40# 0.82 –

Recognition accuracy: fMRI Task (Faces), median (IQR) 27.1 (17.9) 27.9 (20.7) 37.1 (25.7) 3.68# 0.16 –

History of febrile seizures, n, (%) 5 (13.5) 0 0 N/A N/A –

Age at disease onset, years median (IQR) 15.0 (4.0) N/A N/A N/A N/A –

Disease duration, years, median (IQR) 19.0 (16.0) N/A N/A N/A N/A –

Time since last seizure, years, median (IQR) 1.1 (4.7) N/A N/A N/A N/A –

AEDs at time of scan, median (IQR) 2.0 (1.0) N/A N/A N/A N/A –

AEDs trialled since disease onset, median (IQR) 3.0 (2.25) N/A N/A N/A N/A –

Patients were recruited from outpatient clinics at the National Hospital for Neurology and Neurosurgery and Epilepsy Society. Siblings were recruited through index patients.

Controls were recruited from the local community. Handedness was assessed via the Edinburgh Handedness Inventory. HADS/A scores pertain to anxiety-related symptom, HADS/

D scores refer to depression symptoms. List/Design Learning and Recall scores are reported as raw, and were not available in seven controls and two JME patients. Pairwise deletion

was applied in case of missing data. Details are provided in the main text. All P-values are reported as uncorrected for multiple comparisons. Post hoc P-values are Bonferroni-

corrected for multiple comparisons.

AED = anti-epileptic drug; CTR = controls; fMRI = functional MRI; HADS = Hospital Anxiety and Depression Scale; LI = laterality index; SIB = siblings of patients with JME.
#Kruskal-Wallis test, �2 statistic; *Pearson’s �2.
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stimuli in random order, and the subjects used a button box to
indicate whether items were remembered or novel. Recognition
accuracy was calculated as true positives minus false positives
for words and faces separately. Functional MRI data were
available for analysis in 28 patients, 12 siblings and 18
controls.

Data processing and analysis

Functional MRI data were analysed using SPM8 version 5236
software (http:// www.fil.ion.ucl.ac.uk/spm/). Images were re-
aligned for motion correction, spatially normalized to a

scanner- and acquisition-specific echo-planar imaging template
in Montreal Neurological Institute (MNI) space, resampled to
isotropic 3 � 3 � 3 mm voxels, and smoothed with a Gaussian
kernel of 8 mm full-width at half-maximum. An event-related
analysis was used to specifically investigate subsequent
memory effects, by comparing encoding-related responses for
subsequently remembered stimuli against those for forgotten
stimuli using a two-level random-effect model. Trial-specific
delta functions were convolved with the haemodynamic re-
sponse function and its temporal and dispersion derivatives.
For each participant, each of the four event types, namely

Figure 1 Qualitative and quantitative assessment of the hippocampus. (A) An example of a left hippocampus with HIMAL, as

evidenced by a round hippocampal shape, loss of the lateral hippocampal convexity, the latter implying an enhanced radius of curvature (left-hand

arrow), and verticalization of the DITS (right-hand arrow). The right hippocampus does not exhibit clear-cut features of HIMAL. (B) An example

of a subject with normal hippocampi. The right-hand parts of A and B provide demonstrations of the three quantitative measures implemented in

the study: diameter ratio, i.e. z divided by x; DITS height ratio, i.e. z divided by a, or value equal to zero in the absence of overlap between DITS

and hippocampus, resulting in no measurable a; and parahippocampal angle, for a hippocampus with HIMAL (A) and for a normal hippocampus

(B). See main text for details.
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words remembered (WR) or forgotten (WF) and faces remem-

bered (FR) or forgotten (FF), was modelled by a regressor of
interest, and motion parameters were included as regressors of

no interest. Contrasts were created for each subject to address
verbal or visual subsequent memory, defined by WR-WF and

FR-FF, respectively. Having recognized the full item list, three
patients with JME and two control subjects were excluded
from the verbal functional MRI analysis. At the second level,

one-sample t-tests addressed the main effects of each contrast
across all subjects, and separately within each group (JME, SIB

or healthy controls). Group comparisons were conducted with
one-way ANOVA. Further subgroup analyses were conducted

for the JME group only, because of sample size constraints, to
compare JME with or without HIMAL and controls. In ac-

cordance with previous literature, peak-level mesiotemporal
activations were considered significant at a threshold of

P50.05, corrected for multiple comparisons (FWE) using a
small-volume correction with a 12-mm diameter sphere,
centred at the location of the activation maximum in the

mesiotemporal regions of interest, hereafter reported as
FWE-svc (Sidhu et al., 2013; Zeidman et al., 2015). Extra-

mesiotemporal activations were considered statistically signifi-
cant at a threshold of P5 0.05, FWE-corrected voxel-wise

across the whole brain. Exploratory assessments were con-
ducted up to a threshold of P50.01, uncorrected, using a

cluster extent threshold of 10 voxels for display purposes.

Structure-function relations

We investigated correlations between memory-related activa-

tions and morphological markers of hippocampal positioning.
The measures of hippocampal diameter ratio, DITS height

ratio and parahippocampal angle were entered in a principal
component analysis. For left hippocampal parameters, the first

principal component (eigenvalue: 2.63, accounting for 87.5%
of the total variance) was considered as a composite marker of

left hippocampal positioning. Similarly, a component with
eigenvalue of 2.12, explaining 70.7% of the variance, was re-
garded as an overall measure of right hippocampal position-

ing. More positive values assumed by the latter variables
related to more malrotated hippocampi, i.e. presenting with

larger values for hippocampal diameter ratio and DITS
height ratio, and a more acute parahippocampal angle.

Across all subjects, multiple regression models were imple-
mented within SPM to assess correlations between the com-

posite marker of left or right hippocampal positioning and
mesiotemporal activation during successful verbal or visual
encoding, respectively. Analyses were also repeated for a sub-

group composed of patients with JME and their siblings.
Ipsilateral hippocampal volume was used as nuisance regressor

in all models, to detect associations specific to hippocampal
positioning. Mesiotemporal correlational activations were con-

sidered significant at a threshold of P5 0.05, corrected for
multiple comparisons (FWE) using a small-volume correction

with a 12-mm diameter sphere, centred at the location of the
mesiotemporal activation maximum (Bonelli et al., 2012;

Sidhu et al., 2013). Extra-mesiotemporal correlational activa-
tions are reported for completeness, and considered statistically
significant at a threshold of P5 0.05, FWE-corrected voxel-

wise across the whole brain.

Data availability

The data supporting the findings of this study are available
from the corresponding author upon reasonable request.
They are not publicly available because of ethical restrictions.

Results

Hippocampal volumetry

There was a significant group effect regarding left hippo-

campal volume [JME/siblings/healthy controls, mean (SD):

2743 mm3 (247)/ 2663 mm3 (207)/ 2907 mm3 (220); one-

way ANOVA: F(2,70) = 5.47, P = 0.006, partial Z2 = 0.14].

Post hoc tests (Bonferroni-corrected) indicated that both

JME patients (P = 0.038, Cohen’s d = 0.7) and their siblings

(P = 0.007, Cohen’s d = 1.14) had a smaller left hippocam-

pus than controls. Post hoc comparison of JME and sib-

lings was not statistically significant (P = 0.76). Repeat

models using age, gender and handedness as covariates,

along with further sensitivity analyses accounting for out-

liers, showed convergence of volumetric measures for JME

and siblings, while confirming differences against controls

(Supplementary material). There were no significant be-

tween-group differences for right hippocampal volume

[JME/siblings/healthy controls, mean (SD): 2859 mm3

(285)/2870 mm3 (161)/2950 mm3 (211); one-way

ANOVA: F(2,70) = 0.95, P = 0.39, partial Z2 = 0.03]. In pa-

tients with JME, neither left nor right hippocampal volume

correlated with disease duration (left/right hippocampus,

Pearson’s r: 0.03/�0.24, P = 0.86/0.16) or age at disease

onset (r = 0.06/0.03, P = 0.73/0.87).

Hippocampal malrotation

Qualitative analysis

Based on the criteria outlined previously, a consensus diag-

nosis of unilateral or bilateral HIMAL was made in a total

of 30 subjects (left/right/bilateral malrotation: 22/3/5; ex-

amples are shown in Supplementary Fig. 1). In line with

previous literature (Cury et al., 2015; Tsai et al., 2016),

malrotation was significantly more frequent for the left

than for the right hippocampus (Pearson �2 = 13.57,

P5 0.001, Cramer’s V = 0.31). Hippocampal shape, lateral

aspect and verticalization of DITS were all significantly

associated with HIMAL (P50.0001; Supplementary

Table 1). Nineteen patients with JME (51.4%), eight JME

siblings (50%) and three healthy controls (15%) presented

with unilateral or bilateral HIMAL (left/right/bilateral mal-

rotation: 13/2/4 for JME patients, 6/1/1 for siblings, 3/0/0

in controls). There was a significant association between

study group and malrotation of at least one hippocampus

(Pearson �2 = 7.76, P = 0.021). Post hoc tests indicated a

higher frequency of HIMAL in JME and siblings compared

with controls (JME versus controls: �2 = 7.24, P = 0.014,

Cramer’s V = 0.36; siblings versus controls: �2 = 5.13,
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P = 0.046, Cramer’s V = 0.38; Bonferroni-corrected based

on two post hoc tests).

A logistic regression model, probing the effects of group,

gender and handedness on the likelihood of HIMAL, was

statistically significant [�2(4) = 17.8, P = 0.001]. Group was

a significant predictor [W(2) = 9.58, P = 0.008], with pa-

tients with JME being 14.6 times [W(1) = 9.45, P = 0.002]

and JME siblings being 10.6 times [W(1) = 6.44, P = 0.011]

more likely than controls to exhibit HIMAL. Gender was

also a significant predictor [W(1) = 5.86, P = 0.015], with

malrotation being 4.4 times more likely in males than fe-

males, while handedness was not significant [W(1) = 0.33,

P = 0.57]. Inter-rater reliability of qualitative features was

high, with � = 0.77/0.80/0.80 for shape, verticalization of

DITS and lateral hippocampal margin, and � = 0.90 for

between-investigator agreement regarding HIMAL diagno-

sis before consensus discussion.

Quantitative analysis

Comparison of hippocampi with and without malrotation,

irrespective of group allocation, revealed significant differ-

ences in hippocampal diameter ratio, DITS height ratio and

parahippocampal angle (all P50.0001; Supplementary

Table 1), corroborating high discrimination with the

chosen criteria. MANOVA, testing for group differences

across hippocampal quantitative measures, was statistic-

ally significant [Pillai’s trace = 0.36, F(12,132) = 2.44,

P = 0.007, partial Z2 = 0.18). Univariate analyses of vari-

ance for the items of the MANOVA are reported in

Table 2. We found significant group effects for: (i) left

hippocampal diameter ratio, with post hoc tests showing

higher values in JME and siblings compared to controls,

indicative of a more verticalized hippocampus (corrected,

Tukey’s range test); and (ii) right hippocampal diameter

ratio, with post hoc tests showing effects in the same dir-

ection as for the left hippocampus. For both comparisons,

there were no differences between JME and siblings. We

also found significant group effects for (iii) left parahippo-

campal angle, with post hoc tests indicating a more acute

angle in JME patients compared with controls only. There

were no significant intergroup differences for left and right

hippocampal DITS height ratio and right parahippocampal

angle. ICCs for hippocampal diameter ratio, DITS height

ratio and parahippocampal angle were 0.88, 0.91 and 0.83,

respectively, indicating excellent inter-rater agreement.

Further analyses assessing accuracy of hippocampal mor-

phometric measures in discriminating study subgroups are

reported in Supplementary material.

Relationship with hippocampal volumetry and clini-

cal characteristics

Considering patients with JME and their siblings, a regres-

sion model with corrected hippocampal volume as depend-

ent variable and side of the hippocampus (left or right),

group allocation, gender, handedness and HIMAL as inde-

pendent variables was significant [F(5,98) = 2.64,

P = 0.028, R2 = 0.12), but identified a significant effect of

hippocampal side only (beta = 0.23, t = 2.25, P = 0.027),

with right hippocampus being associated with a larger

volume than the left. Though HIMAL was related to

slightly smaller hippocampal volumes, the latter difference

was not statistically significant (beta = �0.12, t = �1.1,

P = 0.27). In patients with JME, HIMAL was not asso-

ciated with a history of febrile seizures (Fisher’s Exact

test, P = 1.0), with an earlier seizure onset (standardized

Mann Whitney’s U-test = �0.603, P = 0.57), or worse seiz-

ure control (i.e. seizures in the last year; �2 = 0.32,

P = 0.86).

Neurobehavioural data

There were no significant group differences for general

intellectual level (NART IQ), measures of verbal learning

(A1–A5), verbal recall (A6) and visuo-spatial learning (A1–

A5). Kruskal-Wallis test highlighted differences for visuo-

spatial recall (A6), although corrected post hoc tests were

not statistically significant (Table 1). A regression analysis

to ascertain the influence of left HIMAL, group allocation,

and age on memory scores (verbal learning/recall) was

overall not significant, and did not substantiate an effect

of HIMAL (beta = 0.10/0.12, t = 0.79/0.84, P = 0.44/0.41

for verbal learning/recall, respectively). Analyses addressing

factors influencing visuo-spatial memory performance could

not be carried out owing to the scarcity of right HIMAL

cases. There were no significant differences for verbal and

visuo-spatial learning scores between seizure free and

non-seizure free JME patients (all P4 0.05, Mann-Whitney

U-test). Recognition accuracy of the memory encoding func-

tional MRI task did not differ among groups (Table 1).

Mesiotemporal function

Verbal memory functional MRI

Across all subjects, the verbal memory task elicited the ac-

tivation of the left hippocampus (P5 0.05, FWE-svc). In

healthy controls, robust effects were identified within left

hippocampus, amygdala and parahippocampal gyrus

(P5 0.05, FWE-svc). Left hippocampal and parahippocam-

pal activation was observed in siblings (P5 0.05, FWE-

svc), while hippocampal activation failed to reach statistical

significance in the JME group (Fig. 2 and Supplementary

Table 2). In controls, uncorrected left-lateralised effects (all

P5 0.001) were detected in extra-mesiotemporal regions,

including middle temporal, inferior, middle and superior

frontal gyrus, orbitofrontal cortex and putamen (Fig. 2

and Supplementary Table 2). As for mesiotemporal activa-

tion, extra-temporal effects were scarce in JME and sib-

lings. An F-test in a one-way ANOVA (Supplementary

Table 3) indicated significant between-group differences in

mesiotemporal activation, and uncorrected group differ-

ences for bilateral fronto-temporal cortices. Pair-wise com-

parisons against controls (Fig. 3 and Supplementary Table

3) revealed significantly lower left amygdalo-hippocampal

activation in JME patients (P = 0.019, FWE-svc) and
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reduced left amygdalo-hippocampal and right hippocampal

activation in JME siblings (left local maximum: P = 0.009,

FWE-svc; right local maximum: P = 0.049, FWE-svc).

Analyses controlling for left hippocampal volume did not

affect significance of left mesiotemporal comparisons

(Supplementary Table 3). At uncorrected thresholds, there

was reduced activation of fronto-temporal cortices in JME

and siblings (Fig. 3 and Supplementary Table 3).

Subgroup analyses showed that lower activation in JME-

HIMAL compared with controls was confined to the left

hippocampal body (P = 0.025, FWE-svc), whereas patients

with JME and normal hippocampi exhibited lower amyg-

dala and anterior hippocampal activation compared to con-

trols (P = 0.035, FWE-svc). Repeat models with left

hippocampal volume as covariate produced virtually identi-

cal results (Supplementary Table 3). We also detected lower

recruitment of the middle frontal gyrus in JME-HIMAL

compared to JME with normal hippocampi (right/left:

P5 0.031, whole-brain FWE-corrected/P50.001 uncor-

rected, respectively). A similar pattern was evidenced for

JME-HIMAL against controls at P5 0.001, uncorrected

(Fig. 3).

Visual memory functional MRI

Across all subjects, significant activations related to success-

ful visual encoding were found in left anterior and posterior

hippocampus and right parahippocampal gyrus (Fig. 4 and

Supplementary Table 4). Robust effects were identified

within bilateral anterior hippocampi in healthy controls

(P50.05, FWE-svc). Activation of right parahippocampal

gyrus and left posterior hippocampus (P50.05, FWE-svc)

was identified in patients with JME, but there was no

suprathreshold right hippocampal activation. Siblings ex-

hibited right anterior and left posterior hippocampal acti-

vations, which were not statistically significant. Across all

groups, extra-mesiotemporal activation was scarce (Fig. 4

and Supplementary Table 4) An F-test in a one-way

ANOVA did not substantiate significant between-group dif-

ferences. Subgroup analyses comparing JME with or with-

out HIMAL and controls (Fig. 5 and Supplementary Table

5) revealed higher left posterior hippocampal activation in

JME with HIMAL than controls (P = 0.007, FWE-svc) and

JME with normal hippocampus P = 0.034, FWE-svc).

Covarying for left hippocampal volume did not affect the

results (Supplementary Table 5). There were no significant

mesiotemporal differences between JME without HIMAL

and controls, while extra-temporal uncorrected differences

included higher anterior cingulate activation in JME with-

out HIMAL.

Structure-function relations

For successful verbal encoding, left hippocampal activation

was negatively associated with the composite index of left

hippocampal positioning (P = 0.005, FWE-svc; Fig. 6 and

Supplementary Table 6). Findings remained unchanged

when additionally controlling for group allocation. Repeat

models, assessing structure-function correlations in a sub-

group composed of JME patients and siblings, produced

similar results (P = 0.015, FWE-svc; Fig. 6 and

Supplementary Table 6). Uncorrected negative associations

were also detected between hippocampal positioning and

Table 2 MANOVA on quantitative hippocampal measures

Test Test statistic P-value Mean (SD) Post hoc P-value

Diameter ratio, left hippocampus (%) F(2,70) = 3.89 0.025 JME: 75.3 (15.9) JME/CTR: 0.044

SIB: 77.5 (18.5) SIB/CTR: 0.044

CTR: 65.0 (10.4) JME/SIB: 0.89

Diameter ratio, right hippocampus (%) F(2,70) = 4.27 0.018 JME: 69.6 (13.0) JME/CTR: 0.025

SIB: 70.4 (8.7) SIB/CTR: 0.047

CTR: 61.9 (4.7) JME/SIB: 0.97

DITS height ratio, left hippocampus (%) F(2,70) = 2.36 0.10 JME: 47.8 (20.8) –

SIB: 39.6 (25.7)

CTR: 36.0 (15.4)

DITS height ratio, right hippocampus (%) F(2,70) = 2.90 0.062 JME: 28.0 (18.1) –
SIB: 24.5 (20.4)

CTR: 16.5 (12.5)

Parahippocampal angle, left hippocampus (degrees) F(2,70) = 3.37 0.04 JME: 109.5 (16.3) JME/CTR: 0.031

SIB: 112.6 (15.3) SIB/CTR: 0.30

CTR: 120.0 (10.3) JME/SIB: 0.75

Parahippocampal angle, right hippocampus (degrees) F(2,70) = 1.11 0.34 JME: 117.3 (13.2) –

SIB: 120.6 (12.4)

CTR: 121.9 (8.2)

Univariate analyses for items of the MANOVA on hippocampal quantitative measures. Post hoc evaluations (corrected, Tukey’s range test; fifth column) were carried out on

statistically significant items of the MANOVA. Values in bold indicate statistically significant P-values.

CTR = healthy controls; SIB = unaffected JME siblings.
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bilateral middle frontal activation, with peaks on the left,

both for the whole sample and in the JME-sibling subgroup

(all P5 0.001, uncorrected; Fig. 6 and Supplementary

Table 6).

No significant correlations were detected between mesio-

temporal activations for visual encoding and the composite

indicator of right hippocampal positioning.

Discussion
We detected abnormal morphometric features of the

hippocampus, including reduced left hippocampal

volume, higher prevalence of malrotation, and more

marked vertical orientation. Assessment of mesiotemporal

function using neuropsychological tests and functional

Figure 2 Activations related to subsequent verbal memory. Activations in relation to subsequently remembered verbal items (WR-WF)

are shown across all subjects (A) and separately for each group [B, controls; C, siblings (SIB); D, patients with JME]. Statistical maps for

mesiotemporal activations (orange-yellow scale) show voxels included in the 12-mm diameter spherical regions of interest used for multiple

comparison correction, centred on local maxima, where peak-level significance at P5 0.05-FWE corresponds to z-scores 42.3). Extra-mesio-

temporal activations are displayed at an uncorrected threshold (P5 0.01, cluster extent threshold of 10 voxels; ‘hot’ colour scale). ‘LH’ refers to a

sagittal section of the left hemisphere. Colour bars reflect z-score scales for mesiotemporal (right) and extra-mesiotemporal activations (left). MNI

coordinates and parameter estimates are provided in Supplementary Table 2.
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MRI revealed no overt impairment of verbal and non-

verbal memory performance, but highlighted atypical pat-

terns of mesiotemporal activation in JME, particularly

prominent in the subgroup with HIMAL. Most of the

above traits were substantiated in unaffected JME siblings,

suggesting a heritable basis, and pointing to the hippo-

campus as a structure affected by genetic variants predis-

posing to JME.

Figure 3 Group comparisons for subsequent verbal memory activations. The figure shows group comparisons for activation related

to subsequently remembered verbal items (WR-WF) in patients with JME compared with controls (A), along with subgroup analyses for JME with

HIMAL (B) and JME without HIMAL versus controls (C), and for the direct comparison of JME with and without HIMAL (D). Comparison of JME

siblings against controls is shown in E. Statistical maps for mesiotemporal activations (cyan scale) show voxels included in the 12-mm diameter

spherical regions of interest used for multiple comparison correction, where peak-level significance at P5 0.05-FWE corresponds to z-scores

42.3). Extra-mesiotemporal activations are displayed at an uncorrected threshold (P5 0.01, cluster extent threshold of 10 voxels; blue-green

colour scale). ‘LH’ refers to a sagittal section of the left hemisphere. Colour bars reflect z-score scales for mesiotemporal (right) and extra-

mesiotemporal activations (left). MNI coordinates are provided in Supplementary Table 3.
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Hippocampal volume loss in JME and
unaffected siblings

Previous analyses addressing brain morphology in JME iden-

tified mesial or lateral frontal abnormalities (Woermann

et al., 1999; O’Muircheartaigh et al., 2011; Alhusaini

et al., 2013), suggesting either reduced or increased cortical

volume or thickness, along with atrophy of thalami and

basal ganglia and impaired fronto-cortico-subcortical con-

nectivity (Keller et al., 2011; O’Muircheartaigh et al.,

Figure 4 Activations related to subsequent visual memory. Mesiotemporal activations in relation to subsequently remembered visual

items (FR – FF) are shown across all subjects (A) as well as separately for each group [B, controls; C, siblings (SIB); D, patients with JME].

Statistical maps for mesiotemporal activations (orange-yellow scale) show voxels included in the 12-mm diameter spherical regions of interest

used for multiple comparison correction, where peak-level significance at P5 0.05-FWE corresponds to z-scores 42.3). Extra-mesiotemporal

activations are displayed at an uncorrected threshold (P5 0.01, cluster extent threshold of 10 voxels; ‘hot’ colour scale). Colour bars reflect z-

score scales for mesiotemporal (right) and extra-mesiotemporal (left) activations. ‘LH/RH’ refer to sagittal sections of the left/right hemisphere,

respectively. MNI coordinates and parameter estimates are provided in Supplementary Table 4.
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2012; Perani et al., 2018). Several reports detected morpho-

logical abnormalities encompassing lateral temporal neocor-

tices (Ronan et al., 2012; Lin et al., 2014), while data

regarding the involvement of mesiotemporal structures in

JME are discordant (Lin et al., 2013; Kim et al., 2015,

2018). Our findings indicate left hippocampal volume loss

(5–8%) in both patients with JME and their siblings com-

pared with controls. Siblings exhibited slightly smaller mean

volumes than patients, but intergroup differences were not

statistically significant. Sensitivity analyses showed conver-

gence of left hippocampal volumetric values for patients

and siblings, and further divergence of both from controls.

Thus, our findings do not substantiate volumetric differences

between patients and their siblings. In the JME group, hip-

pocampal volume was not influenced by epilepsy duration or

age at disease onset.

Evidence of hippocampal volume reduction, more

marked on the left, was also reported in genetic generalized

epilepsy with generalized tonic-clonic seizures only (Zhou

et al., 2015). The aetiology of hippocampal changes in gen-

etic generalized epilepsy syndromes, such as JME, remains

debated. Focal epileptiform waveforms, including temporal

spikes, are described in �35% of JME cases (Aliberti et al.,

1994), and EEG source analyses identified basal or mesial

temporal sources (Holmes et al., 2010). Nonetheless, EEG-

functional MRI analyses in mixed genetic generalized epi-

lepsy groups and in JME do not suggest the involvement of

the hippocampus (Hamandi et al., 2006; Dong et al.,

2016). With our data, we cannot establish whether hippo-

campal abnormalities in JME point to ictogenic networks

involving the mesiotemporal structures. The absence of cor-

relations with disease-related variables, along with the find-

ing of atrophy in unaffected JME siblings, however,

concurs with the view that hippocampal volume loss may

represent a genetically determined trait. Previous literature

indicates high heritability of global hippocampal volumes

and individual hippocampal subfields (Blokland et al.,

2012; Whelan et al., 2015). Higher vulnerability of the

left hippocampus, as found here, may relate to asymmetric

gene expression profiles underlying hippocampal develop-

ment (Sun et al., 2005; Moskal et al., 2006). Moreover,

subtle hippocampal abnormalities, in the same range (4–

Figure 5 Subgroup analyses for subsequent visual memory. The figure shows subgroup analyses comparing mesiotemporal activation for

subsequently remembered visual items (FR � FF) in JME with and without HIMAL against healthy controls (A and C, respectively), along with the

direct contrast of JME with and without HIMAL (B). Statistical maps for mesiotemporal activations (orange-yellow scale) show voxels included in

the 12-mm diameter spheres used for multiple comparison correction, where peak-level significance at P5 0.05-FWE corresponds to z-scores

42.3. Extra-mesiotemporal activations are displayed at an uncorrected threshold (P5 0.01, cluster extent threshold of 10 voxels; ‘hot’ colour

scale). ‘LH/RH’ refers to a sagittal section of the left/right hemisphere, respectively. Colour bars reflect z-score scales for mesiotemporal (right)

and extra-mesiotemporal (left) activations. MNI coordinates are provided in Supplementary Table 5.
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8%) as those shown here for JME, were reported for dis-

orders with childhood- or adolescence-onset and abnormal

neurodevelopment, including attention deficit and hyper-

activity disorder (Hoogman et al., 2017) and schizophrenia,

where they additionally involved first-degree relatives

(Moran et al., 2013). Similar to our study, one investiga-

tion in schizophrenia reported smaller left hippocampal vol-

umes in siblings relative to patients (Tepest et al., 2003).

Such findings might stem from higher homogeneity in the

sibling group, sampling error, or a combination of these.

By detecting common left hippocampal volume loss in

patients with JME and their siblings, our findings may

thus point to genetic vulnerability, identifying a novel ana-

tomical abnormality associated with the genetic risk for

JME. Overall, it is tempting to consider subtle hippocampal

abnormalities in JME and siblings as reflective of genetic-

ally-driven altered neurodevelopment mechanisms. The

latter appear common features of neuropsychiatric diseases

with complex multi-factorial aetiologies.

More than volume: HIMAL as a novel
JME endophenotype?

HIMAL, also termed incomplete hippocampal inversion,

refers to an atypically shaped hippocampus, with round

or pyramidal configuration, loss of the lateral convexity

and verticalization of the collateral sulcus, owing to incom-

plete mesiotemporal infolding during prenatal neurodeve-

lopment (Bernasconi et al., 2005; Bajic et al., 2008).

HIMAL appears common in patients with malformations

of cortical development (MCD) causing epilepsy (Baulac

et al., 1998; Bernasconi et al., 2005). The prevalence of

HIMAL in MCD is higher than in temporal lobe epilepsy,

where its lateralization may not overlap with that of the

epileptogenic focus, suggesting independent aetiologies

(Tsai et al., 2016). In single-centre studies, prevalence in

healthy controls was 10–24% (Bernasconi et al., 2005;

Bajic et al., 2008; Tsai et al., 2016), while a multicentre

investigation on �2000 healthy subjects detected HIMAL

in 17% and 6% of left and right hippocampi, respectively

(Cury et al., 2015).

It is debated whether HIMAL may represent a patho-

logical entity. Prevalence in unaffected control populations

is not negligible, and relates to abnormalities of temporal

sulcal morphometry (Cury et al., 2015), whilst the frequent

co-existence with overtly anomalous brain development

and/or epilepsy is equally unquestionable. Recent evidence

points to more frequent findings of HIMAL in cases of

febrile status epilepticus compared to simple febrile seizures

(Chan et al., 2015), and hippocampal maldevelopment was

documented for sudden unexplained death in childhood

(Kinney et al., 2009; Hefti et al., 2016). Overall, these mul-

tiple lines of evidence suggest that HIMAL may not be an

entirely benign finding.

Here, we detected a significantly higher occurrence of

HIMAL both in JME and siblings, affecting about 50%

Figure 6 Structure-function relations. The scatterplots high-

light the association between the composite morphological indica-

tor of left hippocampal positioning and activation of the left

hippocampus (orange-yellow scale) and middle frontal gyrus (‘hot’

colour scale) for successfully encoded verbal items. (A) Analysis of

all study subjects. (B) Analysis of a subgroup composed of patients

with JME and their siblings. Local activation maxima, corresponding

to the area of maximal correlation between structural and func-

tional metrics, are shown on coronal sections. Maps for mesio-

temporal effects show voxels included in the 12-mm diameter

sphere centred on the local maximum, where peak-level significance

at P5 0.05-FWE corresponds to a z-score 42.3. Extra-mesio-

temporal activations are displayed at an uncorrected threshold

(P5 0.01, cluster extent threshold of 10 voxel), corresponding to z

scores 42.3. Colour-bars reflect z-score scales for mesiotemporal

and extra-mesiotemporal activations. The P-values reported on the

scatterplots for hippocampal effects are small-volume corrected for

multiple comparisons (asterisk); the P-values for middle frontal

effects are uncorrected for multiple comparisons. MNI coordinates

are provided in Supplementary Table 6.
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of individuals in each subgroup, as opposed to a prevalence

of 15% healthy controls, which mirrors previous observa-

tions. Logistic regression modelling, controlling for gender

and handedness, corroborated significantly higher odds of

HIMAL in JME and siblings. Moreover, comparisons re-

garding the horizontal to vertical hippocampal diameter

ratio, expressing a quantitative measure of vertical orienta-

tion, identified significantly higher values in the whole JME

and sibling groups for both left and right hippocampi, cap-

turing a group-level phenomenon not easily addressed by

qualitative criteria. The left parahippocampal angle, repre-

senting another marker of vertical orientation, was more

acute in patients with JME and their siblings, though

post hoc tests were significant for the JME group only.

As previously reported (Cury et al., 2015; Tsai et al.,

2016), HIMAL was more frequent in left than right hippo-

campi. This relates to evidence of faster right-sided hippo-

campal development (Bajic et al., 2012), and may occur as

a consequence of asymmetric gene expression (Sun et al.,
2005; Moskal et al., 2006).

Collectively, this is the first demonstration of morpho-

metric anomalies affecting the hippocampal formation in

JME. Similar prevalence of HIMAL and overlapping hip-

pocampal morphometric patterns in unaffected JME sib-

lings indicate trait heritability, suggesting a genetic basis.

Along with hippocampal volume loss, hippocampal malpo-

sitioning can thus be construed as a novel imaging inter-

mediate phenotype (endophenotype) of JME. As HIMAL

implicates incomplete mesiotemporal infolding during ges-

tation, we interpret abnormalities of hippocampal morph-

ometry as the reflection of mesiotemporal vulnerability

during prenatal neurodevelopment. Our findings provide

novel insights into the structural neural correlates of the

genetic risk for JME, suggesting the involvement of regions

beyond the classically implicated fronto-cortical networks.

In accordance with the definition of endophenotype

(Gottesman and Gould, 2003), the reported mesiotemporal

abnormalities may be associated with the JME phenotype

at the population level, but not sufficient to develop the

disease. The lack of a relation between disease variables

and HIMAL among JME patients suggests that hippocam-

pal anomalies may not represent suitable markers of epi-

lepsy-related symptom severity in disease cases, indicating

likely distinct genetic underpinnings. However, the quanti-

tative traits with endophenotypic potential identified in our

study, hippocampal volume and diameter ratio, showed

high discrimination of JME patients and of a combined

JME-sibling subgroup from controls, both individually

and via a composite construct. These findings support suit-

ability of the latter as quantitative traits to assist future

large-scale investigations into the genetic substrates of

JME, paralleling initiatives in psychiatric research (Potkin

et al., 2009; Blokland et al., 2018).

Pointing to a prenatal neurodevelopmental basis, our

findings dovetail with current theories on the aetiology of

JME, conceptualized as a polygenetic condition with high

heterogeneity (Wolf et al., 2015). Whether abnormalities

predisposing to JME may overlap with determinants of

hippocampal development under a unifying genetic frame-

work remains undetermined. Several genetic loci have been

associated with hippocampal volume (Stein et al., 2012;

Hibar et al., 2017), but the genetic underpinnings of

HIMAL are unclarified. Frequent incidence of HIMAL

(64%) was detected in a small sample of individuals with

22q11.2 deletion syndrome (Andrade et al., 2013), though

only one subject presented with generalized epilepsy. Large-

scale genetic investigations observed a higher prevalence of

22q11.2 microdeletions in genetic generalized epilepsy (de

Kovel et al., 2010; Lal et al., 2015), but specific associ-

ations with JME were not substantiated (Helbig et al.,

2013), and information regarding concomitant hippocam-

pal abnormalities was not available.

The prevalence figures of HIMAL in our JME and sib-

lings cohort resemble previous observations in patients with

a variety of MCDs (Bernasconi et al., 2005). Interestingly,

MRI studies detected abnormalities of cortical morphology,

surface area and cortical maturation trajectories in JME

(Ronan et al., 2012; Lin et al., 2014), while cortical

micro-dysgenesis is suggested by neuropathological post-

mortem case series (Meencke and Janz, 1984). Hence, we

speculate that HIMAL, expressing hippocampal vulnerabil-

ity to maldevelopment, may represent the common denom-

inator of a spectrum of genetically-underlain developmental

disorders associated with epilepsy. A link with a specific

epilepsy syndrome, however, seems not to be substantiated.

Functional implications:
neuropsychometry and memory
functional MRI

Having identified a spectrum of hippocampal structural

abnormalities, we aimed to explore whether patients with

JME and their siblings exhibit performance impairment and

reorganization of functional MRI activations for functions

typically ascribed to the mesiotemporal lobes.

Neuropsychological tests addressing verbal and visuo-

spatial learning and recall did not substantiate between-

group discrepancies, and there were no differences in

recognition memory accuracy on the functional MRI task

for both verbal and visual items. Multiple regression

models did not identify significant effects of left HIMAL

on verbal learning and recall. Collectively, our results do

not indicate specific memory deficits in our cohort of

people with JME and their siblings. Previous literature ad-

dressing memory in JME has provided discordant results

(Wandschneider et al., 2012). Pooled estimates from a

recent meta-analysis suggest deficits in long-term memory

retrieval and storage (Loughman et al., 2014), which were

not formally tested in our study. Syndromic heterogeneity

may account for the variability of these results. On balance,

impaired memory might not represent a prominent trait of

JME, as opposed to the more frequently documented dys-

executive features, which may emerge in the context of
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more prolonged maturational trajectories of executive

skills.

Our understanding of the cognitive implications of

HIMAL is limited. Our findings, after controlling for po-

tentially confounding variables, do not substantiate an in-

fluence of HIMAL on verbal learning and short-term

delayed recall scores, in line with reports from a previous

paediatric series (Stiers et al., 2010). In the latter study,

however, significant performance differences during an ex-

ecutive task were detected for children with epilepsy and

HIMAL compared to those without HIMAL, implicating

specific dorso-lateral frontal dysfunction. This evidence in-

dicates a complex relationship between hippocampal mal-

development and cognition, suggesting that potential

cognitive implications of HIMAL may be remote from its

mesiotemporal site. Future investigations should assess

functions subserved by the hippocampus not tested in our

study, such as pattern separation, long-term memory re-

trieval or autobiographical memory, and should aim to

identify whether HIMAL may uniquely contribute to ex-

ecutive dysfunction in JME.

Studies providing imaging measures of hippocampal

function in JME are scarce. By contrasting brain activation

patterns for items remembered with those for forgotten

stimuli, subsequent memory functional MRI paradigms spe-

cifically address the imaging correlates of successful

memory formation (Kim, 2011), and have largely demon-

strated the pivotal role of mesiotemporal structures (Squire

et al., 2004). Verbal subsequent memory implicates pre-

dominant left hippocampal activation (Kim, 2011), as

demonstrated here in healthy controls. JME siblings dis-

played less extensive hippocampal and parahippocampal

recruitment, while patients failed to exhibit significant

mesiotemporal activation, overall pointing to altered mesio-

temporal function in relation to verbal encoding, and impli-

cating phenotypic heritability. Single-subject inspection and

group-level parameter estimates for left hippocampal

maxima in JME indicated wide confidence intervals, sug-

gesting high heterogeneity. Analysis of extra-temporal acti-

vation provides preliminary, uncorrected evidence that

profiles of memory-related activation in JME and siblings

may also be non-normative for extra-mesiotemporal areas,

particularly in frontal locations. With subgroup analyses,

we further detected two distinct profiles of dysfunction

along the longitudinal hippocampal axis in JME, character-

ized by anterior mesiotemporal hypoactivation in JME with

normal hippocampi, and more posterior activation differ-

ences, within the hippocampal body, in JME-HIMAL. As

HIMAL is particularly diagnosed based on abnormalities of

the hippocampal body, the latter finding may be considered

its functional counterpart.

The structure-function analysis revealed a linear relation-

ship between quantitative measures of left hippocampal

positioning and activation for successful verbal encoding,

independent of hippocampal volumetry. This provides

direct evidence that morphological features of the hippo-

campus may modulate its functional recruitment during a

memory task. Of note, normalization to standard space

entailed the use of a scanner- and acquisition-specific

echo-planar imaging template, derived from a representa-

tive sample of healthy controls and epilepsy patients eval-

uated at our centre, and robust to a spectrum of

hippocampal structural abnormalities. Across subjects and

in the JME-sibling group, correlation analysis also linked

more abnormal measures of positioning with lower recruit-

ment of the middle frontal gyrus, at the same locations

where significant activation differences between JME with

and without HIMAL were observed. We speculate that this

may represent a remote, network-led effect of hippocampal

positioning, and may provide a unifying framework to

understand the contribution of mesiotemporal abnormal-

ities to the altered frontal lobe function typical of JME

(Wandschneider et al., 2012).

In line with previous studies (Bonelli et al., 2010; Sidhu

et al., 2013), visual memory activated bilateral anterior

hippocampi across all subjects and in the control group.

Bilateral mesiotemporal activations were also elicited in

JME, though maxima in right parahippocampal gyrus

and left posterior hippocampus implicated a non-normative

spatial distribution. In JME siblings, visual subsequent

memory related to subthreshold mesiotemporal activation.

There were no significant differences among the main study

groups. Subgroup analyses, however, detected higher left

posterior hippocampal activation for visual items in JME-

HIMAL, compared with both JME without HIMAL and

healthy controls. The latter observations are not paralleled

by differences in handedness, language laterality or cogni-

tive performance, and are in sharp contrast with the re-

sponse typically obtained during visual memory tasks

(Sidhu et al., 2013). We therefore propose that this may

represent the imaging signature of functional

reorganization.

Overall, our findings provide evidence for altered mesio-

temporal activation in JME, and to a lesser extent in their

siblings, despite normal memory scores, and imply specific

effects of hippocampal positioning on mesiotemporal and

frontal recruitment in JME with HIMAL. Less extensive

abnormalities in siblings suggest lower influence of genetic

variables on mesiotemporal functional imaging profiles,

compared with structural measures. Across all subjects, a

linear relationship is shown between morphological mar-

kers of hippocampal positioning and functional recruitment

during successful memory encoding. Whether atypical

mesiotemporal morphology may affect executive functions

and be accompanied by more extensive reshaping of extra-

temporal cognitive networks remains subject of future re-

search in JME.

Limitations

Our study has limitations. Although participants were com-

parable for estimated intellectual level, and there were no

inter-group differences in visual and verbal memory scores,

formal matching for education and social status was not
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attained. The latter aspect is likely not to influence volu-

metric and morphometric hippocampal assessments, but

might represent a confound of our memory functional

MRI analyses.

Although none of the participants’ mothers had had a

diagnosis of epilepsy, we did not have access to informa-

tion regarding maternal intake of anti-epileptic drugs (or

other drugs/medications) during pregnancy, and we could

not establish whether in utero exposure to drugs may differ

among our study groups. However, we note the absence of

documented associations between HIMAL and prenatal

drug exposure.

Conclusion
In patients with JME and their unaffected siblings, morpho-

metric abnormalities of the hippocampus range from subtle

hippocampal volume loss to higher occurrence of malrota-

tion and verticalization of the hippocampal body, implicat-

ing abnormal shape and positioning. Despite the absence of

overt memory impairment, abnormal mesiotemporal re-

cruitment during a memory functional MRI task occurs

in siblings and patients, with more marked changes docu-

mented for JME-HIMAL. Co-segregation of imaging pat-

terns in both groups is suggestive of genetic imaging

phenotypes, independent of disease activity. The hippocam-

pus, and more generally the mesiotemporal lobe, is identi-

fied as a neural system affected by genetic variants

predisposing to JME.
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