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The fruitless search for the cause of Crohn’s
disease has been conducted for more than a
century. Various theories, including autoimmu-
nity, mycobacterial infection and aberrant
response to food and other ingested materials,
have been abandoned for lack of robust proof.
This review will provide the evidence, obtained
from patients with this condition, that the
common predisposition to Crohn’s is a failure
of the acute inflammatory response to tissue
damage. This acute inflammation normally
attracts large numbers of neutrophil leucocytes
which engulf and clear bacteria and autologous
debris from the inflamed site. The underlying
predisposition in Crohn’s disease is unmasked
by damage to the bowel mucosa, predominantly
through infection, which allows faecal bowel
contents access to the vulnerable tissues
within. Consequent upon failure of the

clearance of these infectious and antigenic
intestinal contents, it becomes contained, lead-
ing to a chronic granulomatous inflammation,
producing cytokine release, local tissue damage
and systemic symptoms. Multiple molecular
pathologies extending across the whole spec-
trum of the acute inflammatory and innate
immune response lead to the common predis-
position in which defective monocyte and
macrophage function plays a central role. Fam-
ily linkage and exome sequencing together with
GWAS have identified some of the molecules
involved, including receptors, molecules
involved in vesicle trafficking, and effector cells.
Current therapy is immunosuppressant, which
controls the symptoms but accentuates the
underlying problem, which can only logically
be tackled by correcting the primary lesion/s by
gene therapy or genome editing, or through the
development of drugs that stimulate innate
immunity.
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tion, inflammatory bowel disease, macrophage.

Introduction

The cause of Crohn’s disease has remained an
enigma for more than a century. However, the
application of direct experimentation on patients
together with the application of molecular biol-
ogy, molecular genetics and gene sequencing has
resulted in major advances in our understanding
of the underlying mechanisms that predispose to
the condition. The common theme of the results
produced by these investigations is that the acute
inflammatory response and innate immunity are
defective, and that the specific lesions span the
whole spectrum of the effector mechanisms of
these responses from receptors and signalling
pathways, through cytokine secretion and effec-
tor cell function.

The three-stage hypothesis

We have proposed that CD develops in three
distinctive phases [1](Figure 1):

Stage 1 – The trigger – gastrointestinal infection

The peak age of onset of CD is in the third decade of
life. The development of the disease is a stochastic
event. Affected individuals are generally entirely
normal until they develop the condition.

There is much evidence to implicate infection as
the triggering factor. Several prospective studies
have examined the consequences of gastrointesti-
nal infections on the incidence of CD and all have
found it to be increased especially during the first
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year after the infective episode [2–4] as compared
with uninfected subjects. In one of these studies
[3], the risk of developing CD remained whether or
not an infecting agent was identified, indicating
that damage to the bowel was to blame rather than
infection by a specific organism.

Another pointer to the role of infection is provided
by examining the emergence of CD after families or
populations migrate. Several studies have
described the development of CD in an unusually
large number of members of families moving to new
countries [5–7], and similar effects are seen at a
population level [8,9]. There is some evidence that
imported infections can spread through families
causing CD [5].

Most gastrointestinal infections lead to focal areas
of bowel ulceration [10,11], often in the ileocaecal
region, the most common site of lesions in CD.
Gastrointestinal infection is a stochastic process
[12], leading to a very variable age at which this
occurs. The consequences of the infection will
depend upon the extent of ulceration, the amount
of intestinal contents that penetrate into the tis-
sues and to the effectiveness of the innate immune
response.

Specific infecting agents are generally not isolated
from patients with CD. Most gastrointestinal infec-
tions are brief and the causal organism will be
cleared in the weeks or months before the diagno-
sis of CD has been established.

The possible influence of infection on the increased
incidence of CD in developed countries and those
that are rapidly evolving, like China and the
Middle-East, could be driven by social changes
including altered sexual behaviour [13].

Resistance to infection in the bowel involves a
panoply of interrelated defences. These include the
secretion of antimicrobial lysozyme and defensins
from Paneth cells, and lectins, mucins, and secre-
tory immunoglobulin A, that have the capacity to
bind microbes and contribute to barrier function in
the human gut [14]. Impairments of these barriers
will naturally lead to an increased predisposition to
infection, but this in itself will not cause CD. It is
an impairment of the response to the consequences
of this infection that is the underlying causal
mechanism.

Stage 2 An impaired acute inflammatory response to bacteria in the
tissues

The infecting agent breeches the mucosal barrier,
permitting faecal material to enter the interior of
the bowel wall. If the load of bacteria exceeds the
ability of the innate immune system to clear it, it
will be retained in the tissues, resulting in a
granulomatous inflammatory response.

The unifying feature central to the pathogene-
sis of CD is the impaired capacity of the tissues
to clear the bacterial load as a result of com-
promised acute inflammation or innate
immunity.

Valuable information regarding the inflammatory
response to Escherichia coli in the tissues in CD
has emerged by determining the consequences of
injecting these bacteria into the subcutaneous
tissues of the forearms of patients with CD, ulcer-
ative colitis (UC) and in some cases rheumatoid
arthritis (RA), another chronic inflammatory dis-
ease [15,16] (Fig. 1).

Blood flow is depressed in CD
The dramatic increase in blood flow that has been
shown to normally follow the injection of E. coli is
markedly blunted in CD, more dramatically in
colonic disease, and this is accompanied by supra-
normal neutrophil counts and levels of acute phase
proteins in the circulation (Fig. 2).

Neutrophil accumulation is defective
Neutrophils normally swarm into sites of infection
or tissue damage [17] where they play a pivotal
role in removing the invading organisms and in
the clearance of damaged tissues. Neutrophil
migration is markedly delayed into inflammatory
sites in CD. This impairment has been demon-
strated in superficial dermal abrasions [15,18,19]
(Fig. 3), in cantharidin skin blisters [20], follow-
ing biopsies of the rectum and ileum [15] and
following the injection of bacteria into patients
[16] (Fig. 4a and b).

The fact that blood flow and neutrophil accumula-
tion are defective in the skin and subcutaneous
tissues as well as in the bowel is indicative of a
systemic, rather than local enteric, abnormality of
inflammation.
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Fig. 1 The Three-Stage
Hypothesis as to the
mechanisms leading to the
granulomatous inflammation
that characterizes Crohn’s
disease. Stage 1 Damage to the
mucosa and penetration of
faecal material into the bowel
wall. Stage2 The stage at
which the predisposition to CD
is unmasked. This is the stage
at which the effectiveness of
the acute inflammatory
response is critical. If this is
adequate, leading to a florid
recruitment of neutrophils, the
faecal material is cleared and
resolution ensues. If this does
not occur it leads to: Stage 3
Inadequate removal of the
bacteria and foreign material
results in a granulomatous
inflammation with an adaptive
immune response.
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Fig. 2 Blood flow in the forearm after the injection of E. coli subcutaneously into CD patients and control subjects, showing
that this is severely compromised in Crohn’s disease and protracted in ulcerative colitis [15] (Healthy control = HC).
Interestingly, the erythematous response was fairly similar in all individuals tested. Peripheral blood neutrophilia, IL-6 and
C-reactive protein levels were markedly elevated in the patients with colonic disease [15] (Healthy control = HC).
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Bacterial clearance from the tissues is delayed in
CD
The demonstration that these impairments of acute
inflammation result in failed or delayed clearance
of bacteria from the tissues in CD was directly
demonstrated by injecting Phosphorus-32-radiola-
belled E. coli into patients [16] (Fig. 4). Whereas in
normal subjects, the bacteria were cleared in about
10 days, clearance in CD took over four times
longer. It was significant that this effect was dose
dependent and only became apparent above a
certain threshold, when ≥107 of organisms were
injected (Fig. 4d). This dose-dependent effect
would explain why this particular disease presents
largely in the bowel, and particularly in those
regions prone to CD lesions, where very high

concentrations of bacteria [21] are present in
liquid, or semi-liquid faeces, that can more easily
gain access the tissues through a damaged
mucosa, and why systemic microbial infections
are not unusually common in CD.

Stage 3 – a granulomatous inflammation and adaptive immune
response

If the faecal material that enters the tissues
attracts a robust neutrophil response, it will be
phagocytosed and either digested by these cells or
discharged into the lumen of the bowel. If on the
other hand, inadequate numbers of neutrophils
appear, or of those that do arrive are unable to
digest normally, for example, due to abnormally
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Fig. 3 Neutrophil emigration into skin windows (a and d) after 5 h [18] and (b) over 48 h [19], and into rectum and ileum 6 h
after trauma (c) [15] was markedly reduced in Crohn’s disease. Of 42 inflammation-related cytokines, only IL-8 (e) and IL-1b
(f) were grossly elevated in skin window effluent [15]. Healthy subjects and patients with Crohn’s disease (CD), ulcerative
colitis (UC) and rheumatoid arthritis (RA) were studied. The CD patients in (d-f) are presented as the total and those with CD-
associated mutations in NOD2 (m/m) and those with wild-type NOD2 (w/w). In each case, the right hand column shows the
results after the NOD2 agonist, muramyl dipeptide (MDP), has been placed on the skin window. (d-f) show that neutrophil
accumulation and IL-8 and IL-1b secretion were depressed in CD, and that all these parameters responded to stimulation
with MDP, but not in those CD patients with NOD2 mutations (m/m).
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low pH of the phagocytic vacuoles in chronic
granulomatous disease (CGD) [22] or disordered
granule biology in Wiscott–Aldrich syndrome, a
granulomatous inflammation characteristic of CD
develops. ‘The basic etiological factor in the case of
all granulomas is probably the presence of a nidus
of insoluble material which, if small enough is
ingested by phagocytic cells, or, if too large,
remains extracellular’ [23], a granulomatous
inflammation characteristic of CD develops.

The insoluble material that accumulates in CD
granulomata is bacterial, at least in part. E. coli,
Streptococci and Listeria have all been demon-
strated immunochemically in macrophages, giant
cells and lymph nodes of CD patients [24], and
E. coli DNA has been identified in CD granulo-
mata isolated by laser capture microdissection
[25].

The retention of this faecal material within the
bowel leads to an intense adaptive immune
response and the tissues become infiltrated with
large numbers of T cells. These cells, as well as
macrophages, will react by producing cytokines
[26,27] that cause local inflammation and systemic
symptoms [28]. The bowel inflammation containing
together with the infiltration by macrophages and T
cells [29,30] has led to the misconception that CD
is a T-cell-dependent autoimmune disease [31]. It
is important to note that similar inflammation is
produced by the largely mechanical condition of
diverticulitis, where the trapped faeces produces
an inflammatory response indistinguishable from
that in CD [32] with an intense infiltration by
lymphocytes [33]. Animal models and other work
that has led to the erroneous belief in a causal role
for lymphocytes in the development of CD have
been reviewed separately [13].
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Fig. 4 After E. coli are injected
subcutaneously into the
forearms, neutrophils
accumulate at the sites of
bacterial injection and the
bacteria are cleared. Both the
recruitment of neutrophils and
clearance of bacteria are
dramatically delayed in CD. (a)
The gamma-camera image of
indium-111 labelled
neutrophils injected
intravenously at the same time
as unlabelled E. coli were
injected sub- cutaneously into
the forearms (arrows). The
rates of accumulation in
healthy controls (HC) and CD
patients of neutrophils at the
sites of bacterial injection are
shown in (b). In (c) and (d),
Phosphorus-32 labelled E. coli
were injected subcutaneously
into healthy subjects and
patients with CD and UC and
the rates of clearance
determined. Clearances in CD
were grossly delayed. (d)
Demonstrates that there is a
threshold bacterial load (≥107)
above which clearance is
impaired.
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Compromised release of inflammatory cytokines from
macrophages forms the underlying pathogenesis in most cases of
CD

Neutrophils from patients with CD are functionally
normal [34]. They migrate normally in vitro
[18,19,35] and will emigrate from skin windows in
normal numbers in the presence of chemoattrac-
tants like IL-8 [15]. The failure to recruit neu-
trophils to regions of tissue damage in CD is most
probably due to the failure of the secretion of
inflammatory cytokines by their macrophages
[16,36–39].

Damaged tissues produce a variety of molecules
that stimulate cells through pattern recognition
receptors. These include damage-associated
molecular patterns (DAMPS) [40] receptors, and
infecting microbes produce compounds, like MDP,
that stimulate these cells through pathogen-asso-
ciated molecular patterns (PAMPS) receptors.
These receptors on resident macrophages and
mast cells [41] activate the inflammasomes [42]
and induce the secretion of pro-inflammatory
cytokines and mediators to recruit neutrophils
[43]. The neutrophils amplify the response by
themselves producing pro-inflammatory cytokines
[44].

The major PRRs include the toll-like receptor (TLR)
family members, the nucleotide binding and
oligomerization domain, leucine-rich repeat con-
taining (NLR) family [45], the PYHIN (ALR) family,
the RIG-1-like receptors (RLRs), C-type lectin
receptors (CLRs) and the oligoadenylate synthase
(OAS)-like receptors and the related protein cyclic
GMP-AMP synthase (cGAS). The different PRRs
activate specific signalling pathways to collectively
elicit responses including the induction of cytokine
expression, processing of pro-inflammatory cytoki-
nes and cell-death responses. These responses
control pathogenic infection, initiate tissue repair
and stimulate the adaptive immune system [46]. A
central theme of many innate immune signalling
pathways is the clustering of activated PRRs
followed by sequential recruitment and oligomer-
ization of adaptors and downstream effector
enzymes, to form higher-order arrangements that
amplify the response and provide a scaffold for
proximity-induced activation of the effector
enzymes. Underlying the formation of these com-
plexes are co-operative assembly mechanisms,
whereby association of preceding components
increases the affinity for downstream components.

A consistent finding across several different inves-
tigations of macrophages derived from blood mono-
cytes from hundreds of patients with CD has been
that the secretion of pro-inflammatory cytokines is
impaired in response to stimulation with a variety
of agonists. These include E. coli, wound fluid
(bearing mediators from damaged tissues), C5a
(receptor C5aR1), and the toll-like receptor ago-
nists PAM3, lipopolysaccharide and flagellin
(Fig. 5) [15,16,36,39,47]. This defective secretion
applies to a wide spectrum of pro-inflammatory
cytokines, and the secretion is impaired to a
greater extent from cells from patients with colonic
rather than ileal disease [16].

In order to understand the cell biological basis
underlying impaired secretion of TNF by macro-
phages, its synthetic machinery was investigated.
It was demonstrated that mRNA expression was
normal, as was protein translation, but the protein
was then diverted to lysosomal degradation rather
than to secretion [16], indicative of abnormal
vesicle trafficking.

It is important to note that in almost all these
studies on CD patients, patients with ulcerative
colitis (UC) were included as a control group. This
indicates that the abnormal test results in CD were
not produced by chronic inflammatory mediators,
or by bacteria or bacterial contents entering the
circulation. In fact, quite the contrary was
observed [48,49]. In UC, neutrophil emigration
was normal, inflammatory responses to injected
E. coli were exaggerated, sometimes to an alarming
extent [49], with an abnormally high acute phase
response, and the secretion of pro-inflammatory
cytokines by monocyte-derived macrophages was
exaggerated [16,48]. It is of interest that in a meta-
analysis of GWAS described below, NOD2 and
PTPN2, two of the strongest risk alleles for CD,
showed significant protective effects in UC [50].

These results emphasize the fact the CD and UC
are quite distinct diseases, and combining them in
studies of ‘inflammatory bowel disease’ can be
misleading.

The use of molecular biology and genetics to identify genes and
molecules involved in the development of CD

The evolution of sophisticated techniques with
which to explore pathological mechanisms has
helped to reveal some of the molecular causes of
CD.
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Macrophage mRNA expression

In an attempt to discover what it was about
macrophages that caused them to produce sub-
normal amounts of pro-inflammatory cytokines,
levels of expression of mRNAs were measured in
these cells from 58 patients with CD and 48
healthy controls after stimulation with E. coli. The
mRNA that was most obviously under expressed
was that of Optineurin (Optn), which was abnor-
mally low in 12% of these patients. Optn protein
levels were also low in their macrophages, as was
the secretion by them of TNF, Interferon-c and IL-6
[47].

Genetics

Genetics plays an important role in the aetiology of
CD. The risk of a sibling of a CD patient developing
the disease is approximately 13–36 times that in
the general population [51], and the risk is also

significantly increased in first- (incident rate ratio
7.8), second- and third-degree relatives [52]. Fur-
thermore, the study of over 300 twin pairs has
demonstrated a higher concordance of disease
phenotype in monozygotic (37%) compared with
dizygotic twins (7%) [53].

Interestingly, about a third of first degree relatives
do demonstrate some abnormal gastrointestinal
function with modest increases in permeability
[54–56] or indicators of inflammation like the
neutrophil protein S100A12 [56].

However, despite this strong genetic influence, it
has been difficult to discover causal genetic muta-
tions. There are two main confounding factors. The
first is the lack of complete penetrance, exemplified
by the lack of concordance in monozygotic twins,
which confirms the genetic predisposition whilst
demonstrating the necessity for additional factors,
probably environmental, for progression to overt
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disease. The other factor that adds complexity is
the presence of phenocopies, where the CD pheno-
type in a family or population has more than one
genetic cause. Both these factors pose significant
constraints to analysis, and greatly increase the
numbers of subjects required to obtain statistically
significance.

Greater precision might be conferred upon genetic
studies if, in addition to overt disease, analysis was
extended to subclinical parameters like increased
permeability, or markers of bowel inflammation,
across the families.

Linkage and Genome-Wide Association studies (GWAS)
Linkage
Linkage analysis is a technique for identifying a
causal mutation within the genome by demon-
strating that it is linked to expression of the
disease. The association of mutations in NOD2
with a predisposition to CD was identified by a
positional-cloning strategy, based on linkage anal-
ysis followed by linkage disequilibrium mapping, of
a known susceptibility region on chromosome 16
in 77 multiplex families [57]. Mutations in this
gene remain the most strongly associated genetic
risk factors for CD. No other causal genes for CD
have been found by linkage analysis.

Genome-wide association studies
Increasingly, large GWAS have been performed on
CD and the results analysed in meta-analyses
[50,58–61]. No single, or small number, of pene-
trant mutations have been found that indepen-
dently cause the disease.

With the exception of NOD2, the majority of the
associated genes although highly significant have
very small effect sizes, and they are thought to
combine to produce a predisposition. However, the
effect of their combined influence is small. The
latest study of over 70 000 cases of IBD and
controls found that the combined effect of these
loci only explain about 14% of the disease [48].

Most of these GWAS studies have been related to
IBD rather than CD and UC separately. These are
very different diseases that are lumped together
because they both involve the lower bowel and are
associated with inflammation. It is difficult to
obtain accurate phenotype data on the tens of
thousands of patients studied in these GWAS, but
by conflating these two different diseases the
effects of the genes causing the one will be diluted

by the lack of effect in the other. For example,
NOD2 and PTPN2, two of the strongest risk alleles
for CD, showed significant protective effects in UC
[50].

Transcriptome-wide association studies (TWAS)
are now being developed to integrate genome-wide
association studies (GWAS) and gene expression
datasets to identify gene-trait associations [62].

IBD loci are also markedly enriched in genes
involved in primary immunodeficiencies, particu-
larly those leading to Mendelian susceptibility to
mycobacterial disease and leprosy [63,64]. The
most significantly enriched gene ontology (GO)
terms were cytokine production, lymphocyte acti-
vation and response to molecules of bacterial origin
[50].

Apart from NOD2, the molecules most strongly
associated with CD, are IRGM and ATG16L1,
involved in membrane movements, and molecules
of the IL-23/Il-17 axis that activates T cells of the
adaptive immune system [65].

DNA sequencing
Genetic variation is determined by DNA sequenc-
ing, but this leads to the very considerable problem
of determining whether or not variants are causally
related to the disease process.

Whole genome sequencing at low coverage of 2513
adult patients with CD compared with 3652 pop-
ulation controls did not identify low-frequency risk
variants, and little of the heritability was explained
[66].

To improve the chances of identifying causally
related variants, studies were conducted on Ashke-
nazi Jews (AJ) because this population has a
restricted gene pool because it is thought to have
arisen from a relatively small number of individu-
als about 30 generations ago [67]. CD is about four
times as common in AJs as in the general popula-
tion [68]. Two very large families [69] were inves-
tigated. Exome sequencing identified an
inactivating missense mutation in DUOX2 in the
smaller family, which impaired its function, and a
truncating frameshift mutation in CSF2RB in the
other. In an associated study, and in a further
replication population, the same frameshift muta-
tion in CSF2RB was statistically significantly asso-
ciated with disease [70]. The mutant protein had a
dominant negative effect on STAT5 signalling in
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response to GM-CSF. Abnormalities in CSF2RB
signalling pathways have also recently been asso-
ciated with paediatric CD [71].

A further sequencing study on thousands of unre-
lated AJ patients found mutations in NOD2 and
LRRK2 to show evidence of association to CD [72].

Expression databases (e.g. BioGPS) indicate that
all three of the mutated molecules significantly
associated with CD in AJs, NOD2, CSF2RB and
LRRK2, are predominantly expressed in immune
cells, most abundantly in neutrophils and mono-
cytes, and not in the bowel. The evidence for the
expression of NOD2 in mucosal cells, including
Paneth cells is weak. It depends upon immunolo-
calization with antibodies. The original paper
describing NOD2 in the Paneth cells [73], pur-
ported to demonstrate Paneth cell-specific staining
in the ileum with their own antibody (2D9). The
lamina propria macrophages and dendritic cells do
not stain with this antibody although they express
NOD2 and respond to MDP, and the 2D9 antibody
shows positive staining in human foreskin fibrob-
lasts. NOD2 expression was not found in the
Paneth cells of mice [74].

The relationship between CD related molecules and inflammation

Crohn’s disease is a misnomer. It is not one disease
but a syndrome of regional enteritis with many
different causes. In the majority of cases, there is a
failure or abrogation of the response to bacteria
and faecal material in the wall of the intestines,
and this failure can occur anywhere along the
inflammation pathway from initiation at the recep-
tor systems and downstream signalling pathways,
through secretion of pro-inflammatory cytokines,
to defective function of the effector cells (Fig. 6).
Thus, CD should be considered to be a group of
‘hypo-inflammatory’ disorders, caused not by an
inherent susceptibility to infection in most cases,
but as a result of an ineffective response to the
faecal material entering the tissues as a conse-
quence of such infections.

Receptor systems and signalling pathways

Pathogen-associated molecular pattern molecules
(PAMPs) are derived from microorganisms and are
recognized by pattern recognition receptor (PRR)-
bearing cells of the innate immune system, as well
as many epithelial cells. In contrast, damage-
associated molecular pattern molecules (DAMPs)

are cell-derived and initiate and perpetuate immu-
nity in response to tissue damage, either in the
absence or presence of pathogenic infection
[46,75].

The bowel lesions in CD might activate either or
both sets of receptors and signalling pathways.
NOD-like receptors and inflammasomes provide
mutual complementation, but also act in concert to
produce an enhanced inflammatory response [76].

Inflammasome
The skin window experiments shown in Fig. 3d-f
[15] provide important information as to the
inflammatory response in CD. IL-1b and IL-8 were
found in appreciable quantities and both were
released in much lower concentrations in CD.
Macrophages contain NALPs 1- 4 and 6, and
AIM2[77] and are induced to secrete IL-1b by both
pathogens [78] and cell damage [79]. When MDP
was applied to the skin windows, it was without
effect in those patients with CD-associated NOD2
mutations, however, in patients without such
mutations it elevated the secretion of both cytoki-
nes and neutrophil emigration to normal levels.
These results indicate that it is unlikely that the
signals emanating from the skin windows come
from stimulation by bacterial products and are
likely to predominantly involve DAMPs, signalling
through inflammasomes to secrete IL-1b. This
suggests that inflammasome activity is depressed
in CD.

It is of interest that NLRP2 was found high on the
list of damaging variants in two separate studies of
familial CD in AJs [80]. Very little is known about
the biology of this NLRP. It does appear to activate
MAP kinases [81] which is involved in the pro-
inflammatory response of macrophages [82].

NOD (nucleotide-binding oligomerization domain)
2, the product of the CARD15 gene, is the most
strongly of all molecules associated with the
pathogenesis of CD. It is mainly expressed in
peripheral blood monocytes [83] (and neutrophils),
which are rapidly recruited to sites of acute
inflammation [84] where they secrete pro-inflam-
matory cytokines [85,86] before transformation
into macrophages.

Although it was initially thought that NOD2 muta-
tions would be pro-inflammatory, in fact those
associated with susceptibility to Crohn’s disease in
the LRR domain are inactivating mutations
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because they prevent the recognition of muramyl
dipeptides as shown in Fig. 3d-f [87]. Activating
mutations are located in the nucleotide-binding
domain and cause the autoinflammatory condition
of Blau’s syndrome [88] which does not manifest as
bowel disease.

Membrane trafficking, lysosomal function and cytokine secretion

Many of the molecules that have been associated
with CD are involved in the movement and organi-
zation of membranes in cells and play an important
part in phagocytosis, lysosomal degranulation and
the secretory apparatus.

The association of ATG16L1 (autophagy-related
16-like 1) and IRGM (immunity-related GTPase
family M protein) with CD in GWAS have suggested
a possible causal role of defective autophagy in the
causation of the disease.

Autophagy is a process that takes place in the
cytoplasm in which damaged or aged organelles
and proteins are removed, or where cellular com-
ponents are digested and redeployed under condi-
tions of starvation [89].

ATG16L1 impairs signalling down the an uncon-
ventional pathway [90] in which it attaches to LC3
and the complex promotes degranulation of the
cytoplasmic granules/lysosomes which kill and
digest the engulfed organisms. IRGM interacts with
NOD2, and ATG16L1, to form a molecular complex
to modulate autophagy responses to microbial
products [91].

The autophagy molecules have largely been iden-
tified in assays that measure autophagy in cul-
tured cells, initially in mutant yeast [92].
Autophagy requires the movement of double
membranous structures to enclose the intracel-
lular target so that it can then be digested by
lysosomal enzymes. Many of the proteins identi-
fied as being required for autophagy are engaged
in the movement of membranes. ATG16L1 is an
example of one of these autophagy-related mole-
cules that has an effect unrelated to autophagy
itself. The disease risk allele of ATG16L1 alters
the lysosome and defensin containing vesicles in
Paneth cells. These vesicles have an abnormal
structure, are relatively deficient in lysozyme,
and their secretion is disorganized [93]. Leu-
cine-rich repeat kinase 2 (LRRK2) [94] and
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Fig. 6 Crohn’s disease-associated genes span the whole spectrum of the acute inflammatory response from receptors of
pathogens PAMPs and tissue damage DAMPs, leading to the production of pro-inflammatory cytokines, their packaging,
transport through, and secretion from, macrophages, and the activation of effector cells.
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Optineurin [95,96] also have roles not only in
autophagy but also in vesicle trafficking and
cytokine secretion.

An aspect of autophagy that might be of impor-
tance in the pathogenesis of CD is xenophagy, a
process in which organisms that have escaped
into the cytoplasm, such as Shigella or Listeria,
or are sequestered in intracellular vacuoles, like
Salmonella and Mycobacteria [97,98], are
enclosed within autophagocytic vacuoles and
digested. Xenophagy is abnormal in Niemann–
Pick disease type C1 and in XIAP deficiency with
NOD2 variants both of which predispose to CD
[99].

By far the greatest numbers of bacteria that enter
the body are phagocytosed, killed and digested by
neutrophils, xenophagy only has to deal with a tiny
minority escaping this process.

LRRK2 is predominantly found in myeloid cells
[94] and in microglia in the nervous system [100]
in which it is involved in vesicle transport and in
recycling endosomes. LRRK2 had been exten-
sively studied because mutations in it cause
familial and sporadic Parkinson’s disease (PD).
Analysis of the extended LRRK2 locus in 24 570
CD cases, patients with Parkinson’s disease (PD),
and healthy controls revealed extensive pleio-
tropy, with shared genetic effects between CD
and PD in both Ashkenazi Jewish and non-
Jewish cohorts [101]. The LRRK2 N2081D CD
risk allele is located in the same kinase domain
as G2019S, a mutation that is the major genetic
cause of familial and sporadic PD. Like the
G2019S mutation, the N2081D variant was asso-
ciated with increased kinase activity. The
R1398H variant, which was protective of CD
had increased GTPases activity, thereby deacti-
vating LRRK2 [72]. An increased risk of PD was
also seen in a Danish population with IBD [102].

Optineurin (Optn) [95,96]. Optineurin is a multi-
functional adaptor protein intimately involved in
various vesicular trafficking pathways. Through
interactions with an array of proteins, such as
myosin VI, Huntingtin, Rab8 and Tank-binding
kinase 1, as well as via its oligomerization,
optineurin has the ability to act as an adaptor,
scaffold or signal regulator to coordinate many
cellular processes associated with the trafficking of
membrane-delivered cargo [103].

Effector cells

CSF2RB is the shared b subunit of the receptors for
granulocyte-macrophage colony-stimulating factor
(GM-CSF), interleukin (IL)-3 and IL-5[104]. These
receptors are required for the normal function of
myeloid cells, dendritic cells (DCs), T cells, B cells,
natural killer (NK) cells, mast cells, basophils and
eosinophils.

A large proportion of very early onset inflammatory
bowel disease, or bowel inflammation, has been
shown to be associated with Mendelian lesions in
known immunodeficiency genes, about 50% of
which are associated with neutrophil function
defects (Uhlig undergoing re-review).

Roughly half the patients with chronic granuloma-
tous disease (CGD), the preeminent primary
immunodeficiency disease of neutrophil function
has been shown to have bowel lesions indistin-
guishable from CD [105] and the other neutrophil
defects, including Hermansky–Pudlak [106], glyco-
gen storage disease 1b [107] and leucocyte adhe-
sion deficiency all have a CD phenotype clinically,
endoscopically and histopathologically, with gran-
ulomata evident on biopsy [105].

Adaptive immunity

Two other genes have been strongly linked to CD.
IL-23 is produced by myeloid cells and attaches to
its receptor IL23R. Variants that are strongly
associated with CD in Caucasians are protective,
and display loss of function due to impaired
protein stability and intracellular trafficking
[108]. This molecule is found on type 17 T helper
cells (TH17 cells) which generate IL-17 and several
other pro-inflammatory cytokines [109]. TNFSF15
variants contribute strongly to heritability in
Asians [110]. It produces TL1A in several cell types
and is important for T-cell differentiation, lympho-
cyte proliferation and cytokine production [111].

CD-associated variants in IL23R and in TNFSF15
are both deactivating. The protective effects of
these inactivating mutations are understandable
in that they would have a similar effect to immuno-
suppressants, reducing the adaptive immune
response to the bacterial and other debris in the
tissues.

The evidence presented above strongly supports
the concept that it is the failure of the inflammatory
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response and innate immunity, and not excessive
inflammation that set the scene for the develop-
ment of CD. There are two discordant pieces of
evidence.

Interleukin-10 (IL-10) is well-recognized as an
anti-inflammatory cytokine, potently inhibiting
the production of numerous cytokines synthe-
sized by T-lymphocytes, neutrophils and mono-
cytes/macrophages [112], yet IL-10 deficiency, or
receptor dysfunction, is associated with bowel
inflammation. However, IL-10 can also be pro-
inflammatory [112] and the presentation of
patients with IL-10 or IL-10 receptor deficiency
is similar to that of patients with primary neu-
trophil immunodeficiencies [113,114], with bac-
terial infections like folliculitis, and ear and chest
infections. There was also a high prevalence of
perianal disease with abscesses, fissures and
fistulae that characterize neutrophil immunodefi-
ciencies [105–107,115]. If, on the other hand, the
IL-10 deficient phenotype was caused by the
proposed excessive and unregulated macrophage
response, then it might be expected that treat-
ment with immunosuppressive therapy would be
effective, which was found not to be the case
[114].

The other argument is that CD patients respond
to anti-inflammatory treatments like those with
anti-TNF drugs, suggesting that it is caused by
an excess of inflammation. The symptoms are
indeed caused by too much inflammation in the
third phase of the disease, which is the adaptive
immune response to faecal material in the tis-
sues. Current drug and biological treatments
dampen down the secondary inflammation
induced by the retained foreign material within
the tissues. Anti-TNF treatments can be very
helpful but do not provide a comprehensive
answer and only one third of patients are in
remission after one year on these treatments
[116]. Immunosuppressant treatment further
compromises the underlying innate immune def-
icit to mucosal damage, thereby increasing the
likelihood of further infection and the influx of
bowel contents into the tissues, and its impaired
clearance. Thus, additional suppression of an
already impaired inflammatory response could
further impair the clearance of faecal material
from the bowel wall, increasing the frequency of
secondary inflammations and converting CD from
a sporadic to a more chronic condition.

Treatment

Treatment of CD poses a problem. It would be
logical to correct the underlying pathogenesis by
enhancing innate immunity, however, no such
drugs are currently available.

Immunostimulation might exaggerate ongoing
bowel inflammation. However, if developed, such
treatments, could be useful to maintain patients in
remission after they had been cleared of disease by
surgical resection, or through the use of nonim-
munosuppressant therapies such as elemental
diets [117], They might also be useful as a prophy-
lactic measure in subjects like siblings of patients
or members of families with multiply affected
individuals at high risk of developing the disease.

Past attempts to stimulate immunity with Levami-
sole were unsuccessful [118], and GM-CSF was
modestly effective but was never adopted as an
FDA-approved treatment [119].

An alternative approach that is likely to be applied
in the near future, given that most of the defective
genes are in myeloid cells in the bone marrow,
would be transplantation of autologous bone mar-
row transfected with the normal gene or altered by
genome editing, into conditioned recipients.

There is evidence that allogeneic bone marrow
transplantation can cure CD [120] but risk of death
or major side effects precludes its routine use
except in children with severe monogenic disease.
It was hoped that autologous haematopoetic stem
cell transplantation into conditioned patients
might ‘reset’ the immune system without correcting
the underlying genetic lesion, but a randomized
trial did not result in a statistically significant
improvement and was associated with significant
toxicity [121].

Specific correction of the causal genetic lesions
appears logical and is becoming increasingly fea-
sible. Gene therapy using viral vectors to transfect
haemopoietic stem cells with the wild-type gene
now provides standard clinical practise for several
primary immunodeficiency diseases and other
conditions [122]. This approach should be cur-
rently applicable to treat CD where the causal gene
defect is readily identifiable, for example, in sub-
jects with homozygous truncating mutations in
NOD2. In the near future, improvements in gene
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editing technologies should lead to a personalized
medicine approach with the correction of the
genetic architecture of individual patients as the
contributions to their disease by individual vari-
ants in genes regulating innate immunity become
better defined and easier to identify.
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