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Abstract—For most of non-Gaussian statistical models, the
data being modeled represent strongly structured properties, such
as scalar data with bounded support (e.g., beta distribution),
vector data with unit length (e.g., Dirichlet distribution), and
vector data with positive elements (e.g., generalized inverted
Dirichlet distribution). In practical implementations of non-
Gaussian statistical models, it is infeasible to find an analytically
tractable solution to estimating the posterior distributions of
the parameters. Variational inference (VI) is a widely used
framework in Bayesian estimation. Recently, an improved frame-
work, namely the extended variational inference (EVI), has been
introduced and applied successfully to a number of non-Gaussian
statistical models. EVI derives analytically tractable solutions,
by introducing lower-bound approximations to the variational
objective function. In this paper, we compare two approximation
strategies, namely the multiple lower-bounds (MLB) approxima-
tion and the single lower-bound (SLB) approximation, which can
be applied to carry out the EVI. For implementation, two differ-
ent conditions, the weak and the strong conditions, are discussed.
Convergence of the EVI depends on the selection of the lower-
bound, regardless of the choice of weak or strong condition. We
also discuss the convergence properties to clarify the differences
between MLB and SLB. Extensive comparisons are made based
on some EVI-based non-Gaussian statistical models. Theoretical
analysis is conducted to demonstrate the differences between the
weak and strong conditions. Experimental results based on real
data show advantages of the SLB approximation over the MLB
approximation.

Index Terms—Structured data, Beyesian estimation, non-
Gaussian statistical models, extended variational inference, lower-
bound approximation

I. INTRODUCTION

Aussian distribution is a ubiquitous probability distri-

bution used in statistics, signal processing, and pattern
recognition [1]. However, in reality data may be neither
Gaussian nor safely assumed to be Gaussian [2]. In many real-
life applications, the data are well-structured and, therefore,
not Gaussian distributed [3]. For example, the image pixel
values [4], the reviewer’s rating of an item in a recommenda-
tion system [5], [6], and the DNA methylation level data [7]

Z. Ma, J. Xie, and J. Guo are with the Pattern Recognition and Intelligent
System Lab., Beijing University of Posts and Telecommunications, Beijing,
China.

Y. Lai is with the Department of Information Security, North China
University of Technology, Beijing, China.

J. Taghia is with the Department of Information Technology, Division of
Systems and Control, Uppsala University, Uppsala, Sweden.

J.-H. Xue is with the Department of Statistical Science, University College
London, London, United Kingdom.

The corresponding author is Z. Ma. Email: mazhanyu@bupt.edu.cn

are distributed in a range with bounded support. The diversity
gain over the K fading [8] and the periodogram coefficients
in speech enhancement [9] are semi-bounded (nonnegative).
The spatial fading correlation [10] and the yeast gene ex-
pressions [11] have directional characteristics for which data
are assumed to be distributed on a unit hypersphere, i.e.,
satisfying /o unit norm. In signal processing, the acoustic
noise with colored spectra [12] and the measurement noise
in the state-space model [13] are heavy-tailed. In the stock
market, the asymptotic behavior of the first-order autoregres-
sive (AR) process is clearly non-Gaussian [14] and the un-
derlying Bayesian copula model for the stock index series are
similarly non-Gaussian [15]. Although the above mentioned
data represent diverse characteristics, a common property is
that these data not only have specific support ranges, but also
have “non-bell” distribution shapes. The natural properties of
a Gaussian distribution (the definition domain is unbounded
and the distribution shape is symmetric) do not fit such data
well. It has been found in recent studies that explicitly utilizing
the non-Gaussian characteristics can significantly improve the
practical performance on non-Gaussian structured data [2], [4],
[71-[91, [11]-[13], [16]. Hence, it is of particular importance
and interest to make thorough studies of non-Gaussian data
and non-Gaussian statistical models.

Bayesian analysis plays an essential role in parameter esti-
mation of statistical models [17]-[22]. Unlike the convention-
ally used maximum-likelihood (ML) estimation [23], Bayesian
estimation assumes that the parameters are random variables
with prior distributions, and derives the posterior distributions
of the parameters by applying the Bayes theorem [24] through
combining the prior distributions with the likelihood function
obtained from the observed data [17], [25]. Estimation of
the posterior distribution via Bayesian estimation has several
advantages over the ML estimation. Firstly, it gives proba-
bilistic description to the parameters, rather than simple point
estimates yielded by the ML estimation. This makes Bayesian
estimation more robust and reliable, by including the resulting
uncertainty into the estimation [18]. Secondly, it can potential-
ly prevent the overfitting problem, which is a main drawback
of the ML estimation. This robustness against overfitting
comes from marginalization, by integrating out uncertainties.
Last but not the least, Bayesian estimation embodies Occam’s
razor [26], which allows a model to automatically regulate the
model complexity. In the ML estimation, determination of the
model complexity often requires cross validations, which can
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be non-optimal and computationally costly [17].

Varitional inference (VI), among others, is a widely used
strategy to infer the posterior distributions of the parameters
in Bayesian analysis [17], [27]. In a fully Bayesian model
where all variables are assigned with prior distributions, the
task is to minimize the Kullback-Leibler (KL) divergence from
the true posterior to the approximating posterior [17, Ch. 10].
In variational inference, the difficulty in minimizing the KL
divergence of the true one from the approximating posteriors
is cast alternatively as a less challenging task of maximizing
a lower-bound defined on the marginal likelihood (model
evidence). During optimization, the posterior distributions over
all the variables are updated by iteratively updating one
variable (or one group of variables) in turn, while keeping the
other variables unchanged. VI has been successfully applied
to many Gaussian models [1], [17]. However, for many non-
Gaussian statistical models, maximizing the lower-bound still
involves intractable moment computations, and consequently
the resulting posteriors are not available in a closed-form
solution. Examples of such models previously studied in the
literature are: beta mixture model (BMM) [4], Dirichlet mix-
ture model (DMM) [28], [29], generalized Dirichlet mixture
model (GDMM) [30], inverted-Dirichlet Mixture Model (iD-
MM) [31], [32], generalized inverted-Dirichlet mixture model
(GiDMM) [33], von-Mises Fisher mixture model (VMM) [11],
Watson mixture model (WMM) [34], and beta-Gamma non-
negative matrix factorization (BG-NMF) [5]. Numerical meth-
ods, e.g., Gibbs sampling and Markov chain Monte Carlo,
are usually employed to sample from the posterior distribu-
tion [27]. Numerical methods are generally computationally
costly, and diagnosing their convergence can be difficult, in
particular for data from a high-dimensional space [35].

Recently, an improved framework, namely the extended
variational inference (EVI) [4], [5], [11], [28], [29], [36]—-[38],
has become popular in solving the above mentioned problem.
Similar to the classic VI framework, EVI seeks an optimal
approximation to the posterior distribution. The difference is
that EVI relaxes the objective function (the evidence lower-
bound to the marginal likelihood) by constructing a lower-
bound approximation to the objective function. Maximization
of the EVI lower-bound, which uses the convexity or relative
convexity [39] of the objective function, can yield analytically
tractable solution so that the parameter estimation is facilitated.

Although extra systematic bias has been introduced due to
the lower-bound approximation, several works have demon-
strated the advantages of EVI in Bayesian estimation of sta-
tistical models [4], [5], [11], [29], [37]. In Bayesian estimation
of BMM, Ma et al. [4] derived an analytically tractable
solution which outperforms the numerical Gibbs sampling
based method. As an extension of [4], Bayesian estimation
of DMM via EVI has been proposed in [28] and [29], respec-
tively. For directional data, von-Mises Fisher distribution is an
important model in several applications. Analytically tractable
solution to Bayesian estimation of VMM has been proposed
by using EVI [11]. In Bayesian estimation of VMM, EVI was
also applied in deriving analytically tractable solution [34].
For non-negative matrix factorization (NMF), EVI was also
applied in deriving analytically tractable solutions for Poisson
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process (discrete) NMF [40], Gamma process NMF in music
recording [37], and beta-Gamma NMF for bounded support
data [5].

Convergence is an important issue in parameter estima-
tion. For VI-based methods, the objective function maximized
during each iteration is convex or relatively convex [39]
in terms of the target variable’s posterior distribution [17].
Hence, the convergence is theoretically guaranteed. In EVI,
the introduced lower-bound approximation to the objective
function can be obtained via either a single extension over the
whole variable group or multiple extensions, one for a subset
of the whole variable group. Based on this, two lower-bound
approximation strategies are obtained: one is the single lower-
bound (SLB) approximation [5], [11], [29], [37] and the other
is the multiple lower-bounds (MLB) approximation [4], [28].
For EVI with the SLB approximation, convergence is also
guaranteed because the VI objective function is replaced by a
single lower-bound called the EVI lower-bound (i.e., the single
lower-bound to the original objective function in VI). The EVI
lower-bound is convex or relatively convex and tight to the
VI objective function, and thus theoretically guaranteed to be
maximized with each iteration. However, when applying EVI
with the MLB approximation, the variable group is divided
into different disjoint subsets and there exist different lower-
bound approximations to the objective function. During each
iteration, different lower-bounds, one for each variable subset,
are maximized iteratively. Since the new objective function is
not unique, convergence cannot be theoretically guaranteed.

In order to clarify the convergence property of the EVI
framework, we will discuss and summarize the conditions
required in the EVI implementation. The SLB and MLB ap-
proximations will also be analyzed and compared qualitatively
and quantitatively. It is worth to note that all the models we
select and study in this paper (i.e., BMM, DMM, and GiDMM)
are typical non-Gaussian statistical models which have both
SLB and MLB derivations. Other non-Gaussian models, which
do not have both representations, are not discussed in this

paper.

II. VARIATIONAL INFERENCE AND EXTENDED
VARIATIONAL INFERENCE

A. Variational Inference

In Bayesian estimation, a universal solution to the variation-
al inference (VI) framework [41] is to approximate the pos-
terior distribution by a product of several factor distributions
and then update each factor distribution individually [17]. This
method is the so-called factorized approximation (FA) which
was developed from the mean field theory in physics [42].
With the FA method, the variational objective function that
we want to maximize can be represented as

_ P 2)
£= / (B =7

=Ez[lnp(X,Z) —Ing(Z)],

dzZ

&)

where X is the observed data, and Z denotes all the latent ran-
dom variable and parameters. If Z can be (approximately) fac-
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TABLE I
REQUIRED CONDITIONS FOR EVI.

Auxiliary function

Form of the Auxiliary Function | Systematic Gap

Strong condition p(X,Z) > ps(X,Z)

Gs > Gy

Weak condition

Ez [lnp(X, Z)] > Egz [lnﬁw(Xv Z)]

EZ\zi [lnﬁ(X, Z)} = lnpz(zz) t

 «“~” denotes that the two formulations at the LHS and RHS have the same mathematical form, up to a constant difference.

torized into M disjoint groups as Z = {Z1,...,Z;,...,Zy}
and we approximate the true posterior distribution p(Z|X) as

P(ZIX) ~ q(Z) = qu-(zi), )

the optimal solution can be written as
Ing; (Z;) = Ez\,, [Inp(X, Z)] + const. 3)

The operator Ez,, means expectation with respect to all
the variables in Z except for Z;. If the optimal solution to
the posterior distribution of Z,, which is Ing;(Z;) in (3),
has the same logarithmical form as the prior distribution, the
conjugate match between the prior and posterior distributions
are satisfied. Then we have obtained an analytically tractable
solution. However, this conjugate match is not satisfied in most
of the practical problems [4], [5], [28], [29]. This is due to
the fact that the optimal solution depends on the expectation
computed with respect to the factor distribution [17].

B. Extended Variational Inference

In order to satisfy the conjugate match requirement, some
approximations can be applied to get a nearly optimally
analytically tractable solution. Braun et al. [38] considered the
zeroth-order and first-order delta method for computation of
moments to derive an alternative for the objective function to
simplify the calculation. Blei et al. [36] proposed a correlated
topic model (CTM) and used a first-order Taylor expansion
to preserve a bound such that an intractable expectation was
avoided. Similar ideas were also applied in [4], [11], [28],
[29] for approximating the posterior distributions in BMM,
DMM, and VMM, respectively. Using Jensen’s inequality has
become commonplace in variational inference. In [37], the
concavity of the function —z~! and the convexity of —log =
were studied and the Jensen’s inequality and the first-order
Taylor expansion were applied to approximate the posterior
distribution. Moreover, the EVI strategy was also applied in
the low rank matrix approximation area [5], where the Taylor
expansion and Jensen’s inequality were both applied for the
purpose of deriving analytically tractable solutions.

All the aforementioned works utilized the following prop-
erty. Given an auxiliary function p(X, Z) which satisfies

Ez [Inp(X,Z)] > Ez [Inp(X,Z)] for all X, “)
the variational objective function (see [17], pp. 465 for more
details) can be lower-bounded as

L =Ez [lnp(X,Z)] — Ez [lnq(Z)]
>Ez [Inp(X,Z)] — Ez[In¢(Z)] )
2L,

Then we can maximize the EVI lower-bound E, which is a
lower-bound to the original objective function £. Since L is
tight to £ at least at one-point, maximizing £ would similarly
maximizes £ [4], [28], [29], [37]. The approximated optimal
solution in this case is written as

Ing;(Z;) = Ez\,, Inp(X,Z)] + const. (6)

This method is the so-called EVI framework [4], [5], [11],
[28], [29], [36]-[38]. Although it introduces systematic gap
when involving the lower-bound approximation, the EVI al-
lows more flexibility when calculating intractable integrations
in non-Gaussian statistical models and provides a convenient
way to obtain an analytically tractable solution.

In addition, the proposed EVI framework, similar to the
conventional VI framework, can also be applied to implicit
distributions [43]. The implicit distributions are a family of
probability models that the PDF is intractable, but there exists
a way to sample from them and/or approximate expectations
under them and calculate the gradients w.r.z. the model pa-
rameters. In principle, the EVI framework can provide a more
flexible approximation to the original lower bound for the
purpose of providing the tools to handle the inference of the
implicit distributions.

III. CONVERGENCE OF EVI

We first compare the weak and strong conditions quanti-
tatively. Secondly, we intensively compare the performance
of the MLB approximation-based methods with the SLB
approximation-based methods. The selected models are typical
and widely applied non-Gaussian statistical models.

A. Typical non-Gaussian Statistical Models

o Beta mixture model (BMM)
Following the same notation in [4], we denote a BMM
with observation data x = {x1,...,zx} and [ mixture
components as

N I
fx;mou,v) = H ZmBeta(xn; ug,vi),  (7)
n=1i=1
where 7; is the mixture weight for the ¢th mixture com-
ponent with 7; > 0, Zfil m =1,u=[u1, - ,us],and
v = [v1,---,v]. Beta(z;u,v) is the beta distribution,

which can be presented as
Plutv) 4y -1

T/ N/ 1- Y ’ ;U > 07
F(u)F(v)m (1—x) u, v

®)
where z € [0,1] and T'(-) is the gamma function
defined as I'(z) = [;"t*"le~'dt. The beta mixture

Beta(z; u,v) =
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model has been widely applied in modeling non-Gaussian
distributed data with bounded support, such as image
pixels, the ratings assigned to an item in collaborative fil-
tering [6], and the epigenetic mark values in epigenome-
wide-association studies [5], [44].
o Dirichlet mixture model (DMM)

If a K dimensional vector x = [x1,...,7x]T contains
only positive values and the summation of all the K
elements is smaller than one, the underlying distribution
of x could be modeled by a Dirichlet distribution. The
probability density function (PDF) of a Dirichlet distri-
bution is [29]

K+1 K+1
(Igj 1 uk) H Ikk—l’ 9)

k=1

Dir (x;u) =

where 0 <z, < 1, Zpcy1 = 1 — Zszl zp, up > 0 and
u = [u1,...,ux+1]T is the parameter vector. The shape
of the Dirichlet distribution depends on the parameters.
With I mixture components, a DMM can be represented,

given a set of N i.i.d. observations X = [x1,...,Xx], as
N I

f(XILU) = [[ Y mibir (xn;ui),  (10)
n=1i=1

where 7; > 0, Ef:l 7= 1, I = [m,...,77]7 is the

mixture weights and U = [uy,...,u;] is the parameter
matrix. For modeling the data representing proportion-
s, e.g., the weighting factors in a mixture model [17],
and the topic model in document analysis [45], [46], the
Dirichlet distribution and the related DMM have been
extensively used.

o Generalized inverted-Dirichlet model (GiDMM)
Assume X = {x1,---,xy} is a set of K-dimensional
observations, where each vector x,, is generated from a
GiDMM with I mixture components [33], [47]

N I
= H ZmGiDir(xn;ui,w), (11)

n=1i=1

f(X;II,U,V)

where IT = [ry,..., 7|7 is the mixture weight vector
subject to the constraints m; > 0 and Zi[:1 m =1,
U = [u, - ,u] and V = [vy,---,v/] are the set
of parameters. GiDir(x;u,Vv) is a generalized inverted-
Dirichlet distribution with its own positive parameter
vectors u = [uy, - ,uk|T and v = [vy,--- ,vk]T as

1
Uk $Zk
’ )’Yk- )

(vr) (1+ Zk:l Lk
(12)

where I'(+) represents the Gamma function, v, = uy +
vp — V41 fork=1,--- | K and vig11 = 0.

GiDir(x; u, v) l_Ilj(ukJr

For positive data which are naturally generated by several
real life applications, the GiDMM, among others, has been
utilized for the purpose of clustering and classification of such
data [33], [48].
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(a) Weak condition of EVI.

(b) Strong condition of EVI.
Fig. 1. Comparisons of the weak and strong conditions of EVI for a
multi-modal distribution. The systematic gap introduced by the weak
condition can be calculated as Gy = (S1+S2) — (S3+ S4++ S5). For
either the strong or weak condition, the auxiliary function is chosen
to minimize the gap as much as possible. Generally speaking, the
systematic gap G is smaller than Gs.

B. Weak Condition and Strong Condition

As mentioned in Sec. II-B, finding an auxiliary function
p(X,Z) is an essential yet difficult part in EVI implementa-
tion. Generally speaking, this auxiliary function should satisfy
the relation presented in (4) or it should satisfy

p(X,Z) > p(X,Z), forall X and Z. (13)

It is straightforward to show that an auxiliary function which
satisfies (13) should also satisfy (4). Hence, the condition
in (4) is named as the weak condition and the one in (13)
is referred to as the strong condition. When using an auxiliary
function to lower-bound the original objective function, the
EVI will introduce a systematic gap. Generally speaking, the
gap! incurred by applying the weak condition is relatively
smaller than that introduced by using the strong condition.
Figure 1 illustrates the different gaps introduced by the weak
and strong conditions, respectively.

It is worthwhile to note that the auxiliary function p(X, Z)
is not necessary to be a normalized probability density function
(PDF)%. This will not affect the final solution since either
VI or EVI will re-normalize the obtained optimal posterior

'We calculate the gap via sampling methods.
2Actually, an auxiliary function that satisfies the strong condition cannot
be a normalized PDF, as p(X, Z) itself is a normalized PDF.
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distribution in the end. For example, the optimal solution to
G} (Z;) can be obtained by normalizing the RHS of (6) as

. exp(Ing(Z))
¢ (Zi) = Jexp (ng; (Z:)) dZ;

. (EZ\ZZ. [1H17(X,Z)]) (14)
- Jexp (Ez\zi [lnﬁ(X»Z)]) dZ,i’

where the constant part that does not contain Z; is cancelled
at the numerator and the denominator. More examples can be
referred to [17, Chap. 10].

In practice, in addition to the above mentioned weak or
strong condition, an auxiliary function should also have a
specific mathematical form so that the optimal solution in (6)
has the same logarithmic form as the prior distribution such
that the conjugate match between the prior and the posterior
is satisfied. This is another required condition for choosing
the auxiliary function. Table I lists the required conditions
when implementing EVI. In summary, in order to apply
the EVI to derive an analytically tractable solution to the
Bayseisn estimation of non-Gaussian statistical models, an
auxiliary function should 1) satisfy either the weak or strong
condition and 2) have the same mathematical form as the prior
distribution (up to a constant difference).

1) Discussion: Generally speaking, it is usually not feasible
to find an auxiliary function that satisfies the strong condition,
except that the original function p(X,Z) is globally concave
in terms of Z 3. Unlike the case of the strong condition,
it is relatively easy to find an auxiliary function to fulfill
the weak condition, as the original function p(X,Z) might
be partially concave with respect to part of Z [5], [29].
For example [29], the multivariate log-inverse-beta (MLIB)
function in the Dirichlet distribution is not globally concave
in terms of all of its variables. It is only relatively concave w.r.z.
one of its variables when fixing the rest. Iteratively taking this
property, an auxiliary function that satisfies the weak condition
(with a proper expectation form) and the requirement of
the mathematical form can be found so that an analytically
tractable solution is derived. In practice, an auxiliary function
that satisfies either the strong or weak condition is difficult to
design/obtain. One way of obtaining an appropriate auxiliary
function is to consider the Jensen’s inequality or the Taylor
expansion, when combining with the convexity or relative
convexity of the original function [2], [5].

In general, the weak condition yields smaller systematic gap
in terms of approximation accuracy. Hence, if one can find an
auxiliary function that satisfies the weak condition, there is no
need to find another auxiliary function for the strong condition.

2) Comparisons of Weak and Strong Conditions: Since
Dirichlet distribution is a multivariate case of beta distribution,
the EVI-based Bayesian BMM that constructs an auxiliary
function with the weak condition can be obtained based on
the DMM work in [29] by simply setting the dimension to
2. The EVI-based Bayesian BMM proposed in [4] utilized
the strong condition to choose the auxiliary function. Based

3 According to our experience, for (most of) the non-Gaussian statistical
models, the original function is not globally concave.

on two different solutions for Bayesian estimation of BMM,
we demonstrate the differences between the strong and weak
conditions.

We consider the observation x,, and the unobserved indica-
tor vector z,, as the complete data. The conditional distribution
of X = {x1,...,zn} and Z = {z,...,zN} given the
parameters {U, V,II} is

f(X,Z]0, V., I0) =f(X|U, V, Z) f(Z|TI)

N 1
= H H [miBeta(zy, [ug, v;)]™ .

n=1i=1

15)

The ultimate goal is to estimate the posterior distributions of
u;, Vi, and z,;, respectively.

In order to derive an analytically tractable solution to the
posterior distributions, the most challenging part with the EVI
framework is to calculate the expectation of the bivariate log-
inverse-beta (LIB) function

I'(us + v
Eu, v, [LIB(us, v;)] = Eu, 0, [ (ui +v )} .

oA es] R

o EVI-based Bayesian BMM with Weak Condition [29]
In the Bayesian BMM with SLB approximation *, the
new objective function that we are maximizing is

Ez [Inpu (X, Z)]

a7)

+ @, [Y(u; +7;) — ()] (Elnu;] —Inw,;)
+0; (Ui + ;) — ¢(0)] (E[Inv;] — Inwy),

where T is the expected value of x and v¥(z) is

the digamma function defined as ¢ (z) = alnail;(x).
This lower-bound satisfies the weak condition such that
Ez[lnp(X,Z)] > Egz|[np,(X,Z)]. Moreover, this
lower-bound is identical for all the variables u;, v;, and
Zni

o EVI-based Bayesian BMM with Strong Condition [4]
In the case of the strong condition, an auxiliary function
ps(X,Z) is required. In [4], three different auxiliary
functions were derived for the variables u;, v;, and z,,;,
respectively. To specify, for w;, the auxiliary function is

(@ +7:)
I'(w;)I'(v;)

+ % [V + i) — ¥(w)] (Inw; —
+7; [W(@; +v;) — ()] (Inw; —In;)
+ v (W + v:)(Inu; — Inw;),

Ps,, (X,Z) =In

In Hi)

(18)

4A Bayesian BMM with SLB approximation can be derived from the
Bayesian DMM with SLB approximation [29] by setting the dimension of
the Dirichlet variable to two.
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where ¢’ (z) = 2% 6( *) Hence, when considering u; as the
variable, the objective function that is maximized is [4]

Lvis, =Bz [P, (X, 2Z)]

I F(ﬂl‘ + Ei)

I'(ui)I' ()
+3; (@ + ;) — »(@)] (E [Inw;] — In;)
+7; [W(u; +v;) — ()] (Elny;] — Inv;)

]
+ 0T (U + 1) (B [Inug] —
(19)

Similarly, due to the symmetry of u; and v;, the objective
function, when treating v; as the variable, is [4]

u; + U;)

==

‘CMLBW = ln

+u; [P (u; + v,) V()] (E
—¥(0)] (B
E[lnv] —

[Inw;] —Inwa;)

nv;] —Inv;)

_l’_
&
s
\e\
B
+
sl
=

(20)

When taking z,; as the only variable, the auxiliary
function that proposed in [4] is

P., (X, 2)
Wi i) I'(a; + ;)
T(@)I (vi)
+u; [U(u; +v;) — ()] (Inu;, — Inw;)
+7; [W(w; +v;) — ¢ (@;)] (Inv; — In;)

0.5 [w (@ +7:) — (m)} (Inw; — In;)?
+0.5-72 [w’ (W +7;) — (m)} (Inv; — In;)?

+u; - v; ’lb/(ﬂl —Q—Ei)(lnui —lnm).

21

—Inw;)(Inwv;

Correspondingly, the objective function for updating the
posterior distribution of z,; can be written as

ZMLBZM.

=Ez []’;szm (X7 Z)]

F(ﬂi + Ei)

()T (v:)

0 [P (Ui + ;) — (U] (B
+ i [Y(@; +0;) — ()] (E
10572 M(m +T) — 1//(@-)} E [(Inu; — In)?]
+0.5-77 {M(m +7) — w'(m)] E [(Inv; — In7,)?]
—1In Hz) (E
It has been analyzed in Sec. III-B that both the strong condition
and the weak condition incur systematic gaps. We now quan-
titatively compare the gaps. It is worth to note that the EVI-
based Bayesian BMM with the strong condition is also a MLB
approximation. In principle, there exist four combinations,

which are “strong condition+SLB”, “weak condition4+SLB”,
“strong condition+MLB”, and “weak condition+MLB”. We

=In
[lnw;] — Inw;)

[lnv;] — Inw;)

;T -1 (W 4 7) (B [In )

Inw;) + const.

InT;) + const.

lnv;] —Ino
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focus only on the comparisons of weak and strong conditions
in this section. The comparisons of the SLB approximation
with the MLB approximation will be presented in the next
section.

When taking u; as the variable, the difference between the
objective functions obtained via weak and strong conditions,
respectively, can be calculated as

=CLsip — ZMLBM
= — w09 (w; + v;)(E
>0,

ALsip vs. MLB,,,
Inw;] —Ina;)

(22)

where we used the fact that ¢/’ (z) > 0 and Inz is a convex
function with respect to x. For v;, it is straightforward to show
that the difference is also positive by using the symmetric
properties.

When comparing ESLB with ZMLBZM , the difference is

ALsL vs. MLB. .

=Lsip — Lmis.

. {0.5 72 [w’ (@ +7;) — (m)] E [(Inu; — In%)?]
+0.5-7 [z/; (@ +7;) — ¥ (3; )} E [(Inv; — In7,)?]
+ T T (T + 7)) (B [Inwg] — InG) (B [Inwv;] — hm-)} .

It can be proved that the difference AZSLB vs. MLB. is also
greater than or equal to 0. More details for this proof can be
found in Appendix A.

The aforementioned three positive differences indicate that
the new objective function with the weak condition [29] is
tighter (i.e., closer to the original objective function) than
that with the strong condition [4]. Thus, for the EVI-based
Bayesian BMM, the systematic gap incurred by the weak
condition is smaller than that incurred by the strong condition.
This makes the weak condition more favorable in practice [5],
[11],[29],[37]. Similar analysis can be applied to the Bayesian
DMM with MLB [28] and the Bayesian DMM with SLB [29],
as Dirichlet distribution is a multivariate extension of beta
distribution.

C. SLB Approximation and MLB Approximation

If we can find an auxiliary function p(X,Z) that contains
all the variables Z and satisfies the aforementioned required
1)Cond1t10ns the convergence of EVI is naturally guaranteed as
this new objective function is convex or relatively convex in
terms of ¢;(Z;) [17]. Since only one lower-bound approxima-
tion is applied to the original objective function, this approach
is referred to as the single lower-bound (SLB) approximation
and has been applied in, e.g., [5], [11], [29].
When dividing Z into M disjoint groups as Z =
{Zy,...,Z;,...,Z}, there might exist several auxiliary
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1
2
3 7
4
5 TABLE II
6 SLB AND MLB APPROXIMATION COMPARISONS WITH DIFFERENT NON-GAUSSIAN STATISTICAL MODELS.
7 (a) Comparisons of the objective functions for Bayesian BMM.
8 | Model | Parameters | Lsiz — LvmiB | KLgsi g — KLmig |
9 — — —
10 A 7:_;1: 00.51’521: 125’7”7)12 :84 3.6x 1073 28 %1073
N T = 03,1 = 10,0, = 2
12 B | m=04us=20s=12 | 1.3x10°% | —0.58x 1073
12 5 = 0.3,u3 = 10, v3 = 10
15 (b) Comparisons of the objective functions for Bayesian DMM.
16 | Model | Parameters | Lsip — LmL | KLsi 5 — KLyip
17 T =065, u; = [4 12 3]F ,3 ,3
18 A 72 = 0.35, ug — [10 6 2]T 2.6 x 10 —-1.8 x 10
19 =02 u =[35126"
20 B | m=05 u=[41239T | 45x1073 | -42x1073
21 73 =03, us = [10 6 2 5]T
22
23 (c) Comparisons of the objective functions for Bayesian GiDMM.
24 | Model | Parameters | Lsig — Lvmi | KLgsig — KLvis |
25 =03, u =3 10 5T, v; = [8 10 4]T
26 A mo =04, uy =[123 8], vo =[49 4T 19.55 —5.6 x 1073
27 73 =03, uz=[124 7T, v5=[6 8 10]T
28 T = 0.2, u; = 25 15 40 32 5]T, v; = [10 28 21 12 10]T
29 B | m =04, uy=[18105 25 40]T, v, = [24 18 20 8 16T 10.15 —7.2x1073
;‘1) m3 = 0.3, uz = [48 28 15 8 36]T, v5 = [10 16 10 20 18]T
32
33 functions. For example, we could have M auxiliary functions If we maximize each lower-bound separately, the optimal
34 as solutions to these two disjoint groups are
32 p(X,Z) >p1(X,Z1) InG;(Z1) =Ez\,, [Inp1(X,Z1)] + const (26a)
37 Ing;(Z2) =Ez\,, [Inp2(X, Z2)] + const. (26b)
38 p(X,Z) >pi(X,Z;) (23)
39 . With these solutions, it appears what we are maximizing is
40 - just two times of the original lower-bound as

p(X,Z) >pm (X, Znr).
41 2% L >L1 + Lo (27a)
42 This approach is referred to as the multiple lower-bound (ML- -
43 B) approximation. As each of the above mentioned auxiliary =Ez [Inp1(X,Z1)] — Ez [Ing¢(Z)] (27b)
44 functions satisfies the required conditions in Sec. III-B, the +Ez [Inp2(X,Z2)] — Ez [Ing(Z)]. (27¢)
45 optimal solution in (6) is
46 When performing the update strategy (26a), we get (27b)
47 Ing;(Z;) = Ez [Inp;(X,Z;)] + const = Inp;(X, Z;) +const. to be maximized. It is due to the fact that the optimal
48 (24) solution Ingj(Z,) maximizes £;. This maximization makes
49 In this case, the new objective function that is maximized the distribution of Z; to be less uncertain. As —Egz [In ¢(Z)]
50 during each iteration is not unique. Hence, there is no globally —in (27c¢) is the differential entropy of Z, (27c) is decreasing
51 objective function that is maximized during each iteration. while (27b) is maximizing. It is hard to evaluate if (27b)
52 Thus, the convergence cannot be theoretically guaranteed. This ~ changes more than (27¢) or not. Thus, the overall lower-
53 approach has been applied in [4] and [28]. Although con- bound, i.e., £1 + Lo in (27a), might decrease during some
54 vergence is not theoretically guaranteed, it can be monitored iterations. On the one hand, as the lower-bound (i.e., £1 + L2)
55 empirically. to the original objective function cannot be guaranteed to
56 Let us study a simple case with two disjoint groups in the be maximized all the time, this strategy may not promise
57 MLB approximation. Assuming that Z = {thQ} and we convergence. On the other hand, if the change in (27b) is
58 have two auxiliary functions p1 (X, Z1) and p2(X, Z2) for Z; larger than that in (27c¢), the convergence is still guaranteed.
59 and Zo, respectively. As mentioned above, two different lower-  There is no general judgement for the convergence. It should
60 bounds are obtained as be studied case by case. Similar arguments can be applied

Ly =Ez [Inp1(X,Zy) — Inq(Z)]

- ~ (25)
Lo =Egz [Inp2(X, Zs) — Ing(Z)].

to the case with more than two auxiliary functions. Thus,
the convergence of MLB approximation is unguaranteed. In
summary, SLB approximation can theoretically guarantee the
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Fig. 3. Observations of decreasing values of the objective function during iterations. In principle, objective function should always increase
(at least not decrease). This non-convergence fact indicates that the MLB approximation-based method may not promise convergence. Model
A is a BMM with parameter 71 = 0.3,7m2 = 0.7,u1 = [2 8]T,u2 = [15 4]T, model B is a three-dimensional DMM with parameter
m = 0.35,m2 = 0.65,u; = [4 12 S}T,ug = [10 6 Q]T, and model C is a three-dimensional GiDMM with parameter 71 = 0.3, 72 =

0.4,m3 = 0.3, w; = [3 10 5], vi = [8 10 4], us = [12 3 87, v

generated from each model.

E,[In5,(X.2,)] E,[Inp(X,2)]

E,[Inp,(X.2,)]

E,[n5(X,2)]

Fig. 2. Qualitative comparisons of SLB and MLB. For MLB, two
different lower-bounds are introduced for Z; and Z, respectively
(the blue lines). For SLB, there is only one lower-bound (the green
line). The original objective function is marked with red solid line.
It can be observed that the new objective function that needs to be
maximized is not unique in the MLB case. Hence, the convergence
is not guaranteed. A new single objective function is employed
and maximized in the SLB case. Therefore, the convergence is
theoretically guaranteed.

convergence while MLB approximation, in general, cannot
promise convergence.’

1) Comparisons of MLB and SLB Approximations: In the
previous section, we analyzed and compared the weak and
strong conditions for the EVI framework. Another important
issue in EVI implementation is to distinguish the MLB and
SLB approximations, as the latter can guarantee convergence
but the former may not. To this end, we compare the MLB
approximation-based algorithm with the SLB approximation-
based algorithm in this section.

o Observations of Oscillation

As discussed in Sec. III-C, the convergence of the
MLB method is not guaranteed. We ran the ML-
B approximation-based Bayesian BMM algorithm [4],
Bayesian DMM algorithm [28], and Bayesian GiDM-
M [48], respectively, and monitored the value of the
objective function during each iteration. It was observed

STn practice (e.g., [4], [28]), the EVI-based algorithm may also converge
with MLB approximation. However, it is empirical result without proof.

=[494]", uz=[1247", vz =1[68 10]T. 400 samples were

that, for some rounds of simulations °, the objective
function was oscillating during some iterations. This
phenomenon was observed for several times, for BMM,
DMM, and GiDMM. Figure 3 illustrates the decreasing
objective function values and the corresponding itera-
tions. For the SLB approximation-based Bayesian BMM
and Bayesian DMM [29], the monitored objective func-
tion was always increasing until convergence. The obser-
vations of oscillation demonstrate that the convergence
with MLB approximation cannot be guaranteed.
o Comparisons of Estimation Accuracy

In this section, we compare the MLB approximation with
the SLB approximation quantitatively. With a known BM-
M or DMM or GiDMM, 2,000 samples were generated,
respectively. The above-mentioned Bayesian estimation
algorithms were applied to estimate the posterior distribu-
tions, respectively. We calculated the original variational
objective function in (1) to examine which approximation
is better. With the obtained posterior distribution ¢*(Z),
the original variational objective function is calculated
numerically by sampling methods. Hence,we got two
different values, Lsig and Lypp, from the SLB ap-
proximation and the MLB approximation, respectively.
Larger value means closer lower-bound approximation.
In addition to this, we also measure the estimation
accuracy by the KL divergence of the estimated PDF
from the true one as KL(p(X|®)|[p(X[®)), where ©
is the true parameter vector and ® is the estimated one.
Similarly, we numerically calculated KLgi g and KLy p
from the SLB and MLB approximations ’, respectively.
The smaller the KL divergence is, the more accurate the
estimation is.

For Bayesian BMM, comparisons are presented in Ta-
ble II(a), Figure 4(a) and 4(d). The comparisons of the
Bayesian DMM via SLB [29] and MLB [28] approxima-
tions are illustrated in Table II(b), Figure 4(b) and 4(e).
For GiDMM, the comparisons of Bayesian GiDMM via
SLB (algorithm presented in Appendix B) and MLB [48]

%Here, one simulation round means that we ran the estimation algorithm
until it stops according to some criterion.

"For the MLB approximation, we only take those simulation rounds that
always converge into consideration.
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Fig. 4. Comparisons of the original objective functions for Bayesian BMM, Bayesian DMM, and Bayesian GiDMM (with SLB and MLB,
respectively). For each sub-figure, 20 rounds of simulations were conducted. In each boxplot, mark is the median, the box edges are the
25" and 75" percentiles. The outliers are marked individually. Model settings are the same as Table II.

approximations are shown in Table II(c), Figure 4(c)
and 4(f). All the simulations were run 20 rounds and
the mean values are reported.

It can be observed that, for Bayesian BMM, Bayesian
DMM and Bayesian GiDMM, the SLB approximation
yields higher objective function value than the MLB
approximation, respectively. Meanwhile, the KL diver-
gences obtained by the SLB approximation are all smaller
than those obtained by the MLB. The results suggest
that the SLB approximation is superior to the MLB
approximation.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we compare the SLB-based GiDMM with
the MLB-based GiDMM using the tasks of text categorization,
object detection, and image categorization.

We apply several statistical models to describe the under-
lying distribution of the structured features extracted from
text and images. It is worth noting that the main motivation
of the real data evaluation is to evaluate and analyze the
multiple/single lower bound approximations for non-Gaussian
mixture models. Hence, we do not involve other non-mixture
model-based methods for comparisons.

2) Text Categorization: With the development of internet,
the amount of the text documents has been dramatically
increased. If the text documents are organized and processed
manually, it not only will consume a great deal of manpower,
but also is hard to conduct efficient analysis [49], [50]. Hence,
there exists urgent need to develop a technique which can
organize the documents efficiently. In order to meet the re-
quirements and challenges, automatic text categorization [S0]—

[52], which is a key technique for processing and organizing
vast amount of text data, has been widely applied. It has very
realistic significance for efficient management and effective
utilization of information and has gradually become an im-
portant research direction in the domain of data mining [47].
Recently, different statistical model-based approaches have
been proposed and utilized to carry out the text categorization
task [30], [51]-[55].

In this paper, we report the experimental results by using
the Bayesian GiDMM as a classifier for the task of text
categorization on the dataset gathered from the top 10 largest
categories of the “ModApte” split of the Reuters-21578%. This
dataset is composed of 9990 news stories which were grouped
into 10 categorizations. Each categorization is randomly split
into two halves, one half for training and the other half for test.
Following the work in [56], the Porter’s stemming [57] is used
to reduce the words to their base forms. In this pre-processing
stage, the words that occur less than 3 times or are shorter
than 2 in length are eliminated. Eventually, each document
was represented by a 10-dimensional vector which contains
only positive elements. Based on the aforementioned pre-
processing, we trained a statistical model (Bayesian GiDMM
with SLB approximation, denoted as “Bayesian GiDMMgp”.
Detailed algorithm is presented in Appendix B) for each
categorization and calculate the likelihood for the test vectors.
A test document is considered correctly categorized if its
corresponding model yields the highest likelihood. For com-
parison, we have also applied four other approaches for catego-
rizing text documents: the Bayesian GiDMM using the MLB

8http:/kdd.ics.uci.edu/databases/reuters21578/
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10
TABLE III
TEXT CATEGORIZATION ACCURACIES OBTAINED BY DIFFERENT METHODS.
Method Bayesian GiDMMg g Bayesian GiDMMy s | Bayesian iDMMg g Bayesian iDMM)yy g | Bayesian GMM
Accuracy (in %) 86.89 86.45 86.02 85.82 80.63
Runtime (in s)’ 533 11.71 8.20 13.56 12.41

T On a ThinkCentre® computer with Intel® Core™ i5 — 4590 CPU 4G.

approximation (denoted as “Bayesian GiDMMuyg” [48].),
the iDMM using the SLB and MLB approximation (which
we refer to as “Bayesian iDMMgip” [58] and “Bayesian
iDMMwmis” [59], respectively), and the Bayesian Gaussian
mixture model (Bayesian GMM) [17]. The main motivation is
to validate the approaches of text categorization by considering
comparable statistical model-based methods. Table III shows
the categorization accuracies. It can be observed that the
best performance is obtained by “Bayesian GiDMMg; 5", in
terms of the categorization accuracy rate (i.e., 86.89%), which
demonstrates the advantage of using the SLB approximation
over using the MLB approximation, for the non-Gaussian
statistical model-based text categorization task. The reported
values are the means of 10 times evaluations. In each evalua-
tion, the aforementioned procedures are repeated.

3) Object Detection: Object detection refers to the task of
distinguishing a specific object (e.g., car, face) from other
objects in an image, which is an essential task in computer
vision. It has been a topic of extensive studies in the past
decades. Object detection has various applications, such as
robotics [60], medical image analysis [61], surveillance and
human computer interaction [62]. Although humans usually
perform well in object detection, it is much difficult to obtain
similar performance for the machines, which is mainly due to
the changes in illumination conditions, orientations, positions
and scales. The aforementioned factors can dramatically affect
the appearance of a given object. Recently, a great deal of re-
search efforts have devoted to overcome such difficulties [33],
[63]-[65]. These researches can be divided into two main
categories. The first one has been devoted to the development
of excellent global or local visual image descriptors [66]. The
second one has been focusing on the development of powerful
and robust classifiers [67].

As with the majority of computer vision tasks, a key step
for accurate object detection is to extract good descriptors
to represent these target objects. Recently, researchers have
proposed many global and local visual descriptors, such as
the Histogram of Oriented Gradient (HOG) descriptor [68],
which is originally developed for detecting pedestrian in gray-
scale images. Here, we use the rectangular HOG (denoted
as RHOG) descriptor [69], which generates positive feature
vectors. Moreover, it is found to be efficient and convenient
for our object detection task. Experiments were conducted by
considering seven windows for the RHOG descriptor, such that
each image can be represented by a 441-dimensional feature
vector. We use the publicly available ETH-80 dataset [70].
This dataset consists of 3280 images, which are categorized
into eight object classes. Each class contains 10 unique objects
and 41 views (i.e., 410 images for each class). Example images
from this dataset are shown in Figure 5. During the evaluation,
we trained one detector for each class. For a given class, we
take all the images from this class as the positive set and the

images in the negative set for this class were taken from the
other seven remaining classes, where each class contributes
1/7 (approx. 58 images from each of the seven classes) to
the negative examples. The detector was trained on half of the
positive set and half of the negative set, where these two sets
were randomly split into two equal parts, respectively. The
remaining half of the positive and negative sets were used as
the test set.

With the above training/test set selection, our methodology
for object detection can be summarized as follows. First,
RHOG descriptors were extracted from each image. By doing
this, the description of each image was represented as a posi-
tive vector. Second, each vector is assumed generated from a
mixture of generalized inverted-Dirichlet distributions and we
apply the proposed Bayesian GiDMMg g as a classifier to de-
tect objects by assigning the test image to the group which has
the highest posterior probability according to Bayes’ decision
rule. Similar to the text categorization task in Sec. IV-2, we
also train classifiers based on Bayesian GiDMMy_ g, Bayesian
iDMMg; 5, Bayesian iDMMyy g, and Bayesian GMM, respec-
tively. We report on the accuracies of the aforementioned
five classifiers in Table IV. As can be observed from this
table, the Bayesian GiDMMgp achieves the best detection
rates, compared to the other referred methods. Similar to the
task of text categorization, it is also observed that the SLB
approximation is superior to the MLB approximation for both
Bayesian GiDMM and Bayesian iDMM in the object detection
task. We conducted 10 rounds of simulations and the mean
values are reported.

4) Image Categorization: With the development and broad
applications of digital information acquiring techniques, the
number of digital images has grown enormously. Image cat-
egorization task is developed to meet the requirements of
many important applications, such as image retrieval [71],
content-based images recommendation [72], and automatic
image understanding [73]. Recently, image categorization has
emerged as an attractive area in computer vision [66], [74],
[75]. A key step for accurate images categorization is to
extract robust and efficient image descriptors to represent these
images. Here, we use the RHOG descriptor [69] again by
considering eight windows for the RHOG descriptor such that
each image in the dataset was then represented by a 576-
dimensional feature vector.

The evaluations were based on the MIT Scene dataset [76]
which is composed of 2688 images categorized into eight
categories. The categories are coast (360 images), forest (328
images), mountain (374 images), open country (410 images),
highway (260 images), inside of cities (308 images), tall
building (356 images), and street (292 images). All of the
color images are in JPEG format, and the size of each image is
256 x 256. A few example images from this dataset are shown
in Figure 6. This dataset can be divided into two subsets: the
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(a) Apple. (b) Car. (c) Cow. (d) Cup.

(e) Dog. (f) Horse. (g) Pear. (h) Tomato.

Fig. 5. Example images from the ETH-80 dataset. Each column represent a set of examples from one class.

TABLE IV
THE AVERAGE DETECTION RATES (%) ON THE ETH-80 DATASET, USING DIFFERENT METHODS .

Class Bayesian GiDMMg g  Bayesian GiDMMyp
Apple 96.96 95.76
Car 97.21 95.78
Cow 88.73 86.94
Cup 99.51 98.39
Dog 87.89 84.73
Horse 87.81 86.79
Pear 99.39 98.95
Tomato 98.73 97.76

Bayesian iDMMg 3 Bayesian iDMMy 3 | Bayesian GMM
92.26 91.51 88.33
89.26 88.34 87.16
83.88 8243 80.95
92.12 91.64 87.34
82.58 81.17 80.35
80.24 78.15 76.82
95.76 93.89 90.14
93.37 92.69 89.37

natural subset and the man-made subset. The natural subset
contains 1472 images from four different categories: coast,
forest, mountain, and open country. The man-made subset has
1216 images from another four different categories: highway,
inside of cities, tall building, and street. During evaluations,
each category was randomly split into two separate halves,
one for training and the other for test. For each category,
the feature vectors in the training sets were then modeled
by the Bayesian GiDMMg . Finally, the Bayes classification
rule was applied to assign each test vector to a given class
according to their posterior probabilities. With the same proce-
dure mentioned above, four other statistical models, Bayesian
GiDMMyy s, Bayesian iDMMg; 5, Bayesian iDMMyy g, and
Bayesian GMM were also applied. Ten rounds of simulations
were conducted and we reported the mean value in Table V.
It is clearly shown that the Bayesian GiDMMg;p achieved
the highest accuracy rate, compared with other methods. It
is also observed that the SLB approximation-based methods
outperforms the MLB approximation-based methods.

V. CONCLUSIONS

Structured data are ubiquitous existing in daily life. Com-
pared with the conventional Gaussian distributed data, such
type of data have different properties and distributions. Hence,
specific non-Gaussian statistical models are required to ap-
plied. The extended variational inference (EVI) framework
can be efficiently implemented in estimation of non-Gaussian
statistical models. We discussed and summarized the required

conditions for selection of the auxiliary functions in the EVI
framework. Moreover, we also analyzed and compared the
multiple lower-bounds (MLB) approximation and the sin-
gle lower-bound (SLB) approximation. Theoretical analysis
showed that the weak condition, in general, incurs smaller sys-
tematic gap than the strong condition. Hence, if the auxiliary
function under the weak condition can be obtained, the weak
condition is preferable. Otherwise, we can apply either the
strong or weak condition to design/obtain an auxiliary function
to carry out EVI. Synthesized structured data evaluations
with Bayesian beta mixture model, Bayesian Dirichlet mixture
model, and Bayesian generalized inverted-Dirichlet mixture
model demonstrated that the SLB approximation can theo-
retically guarantee convergence and is superior to the MLB
approximation. The advantages of the SLB approximation over
the MLB approximation were also illustrated by three real-life
structured data-based applications.
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(a) Coast. (b) Forest. (c) Mountain.  (d) Open country.  (e) Highway. (f) Incidecity. (g) Street. (h) Tall building.

Fig. 6. Example images from MIT Scene dataset [76].

TABLE V
THE AVERAGE CATEGORIZATION ACCURACIES (IN %) ON MIT SCENE DATASET, USING DIFFERENT METHODS.

Category | Bayesian GiDMMg g Bayesian GiDMMy g | Bayesian iDMMg g Bayesian iDMMpy g | Bayesian GMM
All 73.04 72.05 68.14 67.88 65.17
Natural 76.29 75.30 73.11 72.58 70.76
Man-made 79.12 77.83 74.63 74.27 71.12

APPENDIX A Since ’L/JI(LE) is a monotonously decreasing function and

PROOF OF ALsp vs. MLB., . > 0 lim, o % () = 0, we have
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Glus,vi) =05 o (7 +71) = ' (@) | (n s — In,)? O @+ T) =¥ () <¥ (W + 7).
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(31) ALsip v ms., = —E[G(u;,v:)] > 0.
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4
5
6 APPENDIX B Algorithm 1 Variational GiDMM.
7 ALGORITHM FOR BAYESIAN GIDMM WITH SLB Input: Observation X = [xi,---,xy], initial number of
8 Following the approach proposed in [48], the estimation of mixture components 1 .
9 the parameters in (17) is equivalent to the estimation of the Initialize gir, = 1, hux = 0.1, sip = 1, iy, = 0.1 for i =
10 parameters in the following mixture model L k=1, K K1
11 Set Ynk = xnk/(]- + Zl:l l'nl)
12 repeat
13 Y, ILU,V) = nl_[l ; e H iBeta(ynk; Wik, vir), (36) Elzn] — pnz/Z L i
14 -~ gzk Yiko + Z —1 [Z’flk] [w(ﬂﬂﬂ + @ik) - ¢(ﬂ1k)] Uik
15 where yn1 = Tp1 and ypg = xnk/(l + Zl:l -Z'nl) for k > 1 hzk = hzko Z —1 E[Z"k] [ln Ynk — 111(1 + ynk)]
16 and iBeta(y; u, v) is an inverted Beta distribution defined with Sk = Siky + 3or_q Elznk] [ (Ui + Vi) — ¥ (Uik)] Vik
17 parameters (u,v), defined as e = ting — Son_ Elzpe] In(1 + yr)
18 et CDutv) . . s 0 37 until Stop criteria.l are reached.
;(9) iBeta(y; u, v) = I‘(u)I‘(v)y (1+y) ;o >0.37) Output: The optimal hyper-parameters g}, b, sy, t5,.
21 For each observation x,, (also for y,), we introduce an
22 I-dlr.nepsmnallbmary random vector zn = (2n1," - 727”.)’ GiDMM, which is summarized in Algorithm 1. The related
23 specifying which component that x, belongs to. If x,, is . . .
92 generated from component i, z,; = 1. 0thadse, 2n; = 0. expectations in Algorithm 1 are calculated as
25 The prior distribution of Z, given the mixing coefficients II, In pp;
26 is defined as K
N I - B B B
27 p(Z|H) _ H Hﬂ_;m' (38) =Inm + Z |:,R,Z + (Uik — 1) Iny,x — (uik + Uik’) ln(l + ynk)}7
28 bl k=1
29 n=11i=1 .
30 To perform the variational inference of the GiDMM, we have R;
31 to place conjugate priors over the model parameters U and T (g, + vir) - - - L
32 V. Here, we consider the Gamma distribution as a conjugate = ‘! 7“111'1@) o) + W (in, + Vi) — P (Uir)] [hl Uik, — In uzk] Uik
prior distribution for them as _ _ _ — 1
33 Lk + [¥(@ir + Vi) — P (0ir)] [Invi, — In v | Vi,
34
35 FU) =]] ] Gam(uir; gk, hir) and
i=1k=1 T « «
> K gk (39) Uik = iik o Inwie =9 (g,) — Inhi,
37 hzk w9k Lo hinwik ik 42)
38 H F(g ik ‘ 7 Sikk * *
39 im1 k=1 Ik Vi = t%v e = ¥(sj,) — Intf.
40 and ik
41 I K The point estimation of the GiDMM parameters can be ob-
42 _ H H Gam(vig; iz, Lir) tained by taking the posterior means as
43 i=1 k=1 * *
4 Tk ” (40) = Tk gy = ZRG=1 e k=1 K (43)
45 _ H H g]::k 1e—t,-k7)ik . ik ik
.
46 im1 k1 lk) In addition, the mixing coefficients are given by
47 Therefore, the joint density of latent variables ® = {Z, U, V} 1
48 and observations Y given IT can be written as i = o7 Z E[zni] (44)
49
o f(Y. ©]m)
51 :f(Y|Z U, V)f(ZIL) f(U) f(V) REFERENCES
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