
HAL Id: hal-02276921
https://hal.archives-ouvertes.fr/hal-02276921

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Boolean Networks from Biological
Dynamical Constraints using Answer-Set Programming
Stéphanie Chevalier, Christine Froidevaux, Loïc Paulevé, Andrei Zinovyev

To cite this version:
Stéphanie Chevalier, Christine Froidevaux, Loïc Paulevé, Andrei Zinovyev. Synthesis of Boolean
Networks from Biological Dynamical Constraints using Answer-Set Programming. 31st International
Conference on Tools with Artificial Intelligence, 2019, Portland, Oregon, United States. �hal-02276921�

https://hal.archives-ouvertes.fr/hal-02276921
https://hal.archives-ouvertes.fr


Synthesis of Boolean Networks from Biological
Dynamical Constraints using Answer-Set

Programming
Stéphanie Chevalier

LRI, CNRS, U. Paris-Sud
U. Paris-Saclay, France

stephanie.chevalier@lri.fr

Christine Froidevaux
LRI, CNRS, U. Paris-Sud

U. Paris-Saclay, France
christine.froidevaux@lri.fr

Loı̈c Paulevé
LaBRI, CNRS, U. Bordeaux

Bordeaux INP, France
loic.pauleve@labri.fr

Andrei Zinovyev
Institut Curie, INSERM

U. PSL, Mines ParisTech, France
andrei.zinovyev@curie.fr

Abstract—Boolean networks model finite discrete dynamical
systems with complex behaviours. The state of each component
is determined by a Boolean function of the state of (a subset of)
the components of the network.

This paper addresses the synthesis of these Boolean functions
from constraints on their domain and emerging dynamical prop-
erties of the resulting network. The dynamical properties relate
to the existence and absence of trajectories between partially
observed configurations, and to the stable behaviours (fixpoints
and cyclic attractors). The synthesis is expressed as a Boolean
satisfiability problem relying on Answer-Set Programming with a
parametrized complexity, and leads to a complete non-redundant
characterization of the set of solutions.

Considered constraints are particularly suited to address
the synthesis of models of cellular differentiation processes, as
illustrated on a case study. The scalability of the approach is
demonstrated on random networks with scale-free structures up
to 100 to 1,000 nodes depending on the type of constraints.

Index Terms—model synthesis, discrete dynamical systems,
reachability, attractors, systems biology

I. INTRODUCTION

The modelling of complex dynamical systems usually re-
quires extensive knowledge on their functioning to be able
to reproduce their observed behaviours. For most physical
and biological systems, such a knowledge is out of reach.
In systems biology, the vast majority of (if not all) models
involved trial error approaches with arbitrary choices for
specifying the rules of the model, until its dynamics fits with
the desired behaviour.

The synthesis of dynamical models aims at providing an
automatic way of designing models that satisfy constraints
derived from knowledge on the structure and on the behaviour
of the system, and potentially gives insight into the diversity
of such models.

In this paper, we address the synthesis of Boolean Net-
works (BNs) from dynamical properties derived from partial
and discrete-time observations of the system. BNs model
the dynamics of a finite set of nodes having binary states.
The possible evolution of these configurations are computed

The authors ackowledge the support from ITMO Cancer and from the
French Agence Nationale pourla Recherche (ANR), in the context of ANR-
FNR project AlgoReCell ANR-16-CE12-0034

according to a collection of Boolean functions and an update
semantics. BNs are close to 1-bounded Petri nets [1], and are
extensively applied to model the complex dynamics of biolog-
ical networks. We consider positive and negative reachability
properties, i.e., the ability (or impossibility) for the model
to evolve from one configuration to another; and long-run
properties, i.e., on configurations that are eventually reached
after an infinite amount of time. The domain of Boolean
functions composing the candidate BNs is typically delimited
by a given influence graph (often called Prior Knowledge
Network), which specifies for each node the variables that can
be used in its Boolean function.

These properties are motived by the modelling of cellular
differentiation processes. Starting from a multi-potent (stem)
state, cells progressively specialize into specific types. Various
biological experimentation techniques measure the activities of
certain genes during the differentiation processes (at different
times). From these observations can then be derived positive
reachability properties to reproduce the sequence of observed
states; but also attractor properties when observations have
been performed in stabilized cells. Finally, negative reacha-
bility properties enable to model bifurcations inherent in the
differentiation process: once a cell enters a particular branch
of differentiation, it is impossible for it to reach cell types
related to the other branches.

In the literature, the synthesis of BNs subject to static
and dynamical properties derived from partial and discrete-
time observations essentially splits into either evolutionary
optimization algorithms, or satisfiablility problems. Methods
of the former category, such as [2], [3], couple genetic algo-
rithms to explore the model space together with simulations
to assess positive reachability and attractor properties. In
practice, they allow addressing networks between 20-40 nodes.
Such approaches do not guarantee terminating, nor finding a
globally optimal model. Moreover, they offer a very limited
access to the space of solutions of the synthesis problem. On
the other hand, [4] uses Answer-Set Programming, and [5]
Satisfiability Modulo Theory (SMT), to express the synthesis
problem. Such approaches enable the exhaustive enumeration
of all the solutions, potentially subject to optimization criteria.



f1(x) := ¬x2

f2(x) := ¬x1

f3(x) := ¬x1 ∧ x2

1

3

2

Fig. 1. Example of Boolean network f and its influence graph G(f) where
positive edges are with normal tip and negative edges are with bar tip.

In [4], only positive reachability properties are considered
using model-checking, and have been applied to network up to
80 nodes. In [5], both positive reachability and fixpoint prop-
erties are supported, but only a particular subset of candidate
Boolean functions are explored. Applications show scalability
up to 20-40 nodes, with the synchronous semantics.

In this paper, we consider the logical synthesis of BNs
from attractors, positive, and negative reachability properties
using Answer-Set Programming (ASP), giving a complete
characterization of the solutions. The considered dynamical
constraints can be typically derived from the observation of
cellular differentiation processes. We rely on the most permis-
sive semantics of BNs, which offers both a correct abstraction
of non-Boolean systems (as for biological systems), and a high
scalability for the verification of dynamical properties.

II. BACKGROUND

In this section, we formally define BNs, their influence
(causal) graphs, and dynamical properties related to stability
(trap spaces, attractors) and trajectories (reachability). Finally,
we give a short introduction to Answer-Set Programming.

A. Boolean Networks

A Boolean network (BN) of dimension n is a function

f : Bn → Bn (1)

where B := {0, 1}. For all i ∈ {1, . . . , n}, fi : Bn → B
denotes the local function of the i-th component. A vector
x ∈ Bn is called a configuration of the BN f . The set of
components which differ between two configurations x, y ∈
Bn is denoted by ∆(x, y) := {i ∈ {1, . . . , n} | xi 6= yi}.

A BN f is said locally monotonic whenever each of its local
functions is monotonic (this does not imply f monotonicity).
Intuitively, when expressing the local functions using proposi-
tional logic, local monotonicity imposes that a variable appears
always with the same sign in a minimal normal form.

Fig. 1 is an example of locally-monotonic BN with n = 3.

B. Influence Graph

For each component i ∈ {1, . . . , n}, fi typically depends
only on a subset of components of the BN. The influence
graph (also called interaction or causal graph) summarizes
these dependencies by having an edge from node j to i if fi
depends on the value of j. Formally, fi depends on j if there
exists a configuration x ∈ Bn such that fi(x) is different from
fi(x

′) where x′ is x having solely the component j different
(x′j = ¬xj). Moreover, assuming xj = 0 (therefore x′j = 1),
we say that j has a positive influence on i (in configuration x)

if fi(x) < fi(x
′), and a negative influence if fi(x) > fi(x

′).
It is possible that a node has different signs of influence on
i in different configurations (leading to non-monotonic fi).
Remark that different BNs can have the same influence graph.

Definition 1. Given a BN f of dimension n, its influence
graph G(f) is a directed graph ({1, . . . , n}, E+, E−) with
positive and negative edges such that (j, i) ∈ E+ (resp. (j, i) ∈
E−) iff ∃x, y ∈ Bn s.t. ∆(x, y) = {j}, xj < yj , and fi(x) <
fi(y) (resp. fi(x) > fi(y)).

Given two influence graphs G = ({1, . . . , n}, E+, E−) and
G′ = ({1, . . . , n}, E′+, E′−), we say that G is a subgraph of
G′, denoted by G ⊆ G′ iff E+ ⊆ E′+ and E− ⊆ E′−.

Fig. 1 (right) shows the influence graph of the BN example.

C. Meta-configurations and trap spaces

The results presented in this paper extensively use the notion
of meta-configurations, which denote hypercubes within Bn,
i.e., a set of components being fixed to a Boolean state, and
the others being free (noted with ∗).

Definition 2. A meta-configuration h of dimension n is a
vector in (B ∪ {∗})n. The set of its associated configurations
is denoted by c(h) := {x ∈ Bn | ∀i ∈ {1, . . . , n}, hi 6= ∗ ⇒
xi = hi}.

Given two meta-configurations h, h′ ∈ (B ∪ {∗})n, h is
smaller than h′ iff ∀i ∈ {1, . . . , n}, h′i 6= ∗ ⇒ hi = h′i.

Trap spaces of a BN f are special cases of meta-
configurations which are closed by f :

Definition 3. A trap space of a BN f of dimension n is a
meta-configuration t ∈ (B∪{∗})n such that ∀x ∈ c(t), f(x) ∈
c(t).

A trap space is minimal if there is no smaller trap space.
Remark that if x ∈ Bn is a fixpoint of f , i.e., f(x) = x,
then x is a (minimal) trap space (hypercube of dimension 0).

Finally, given a BN f of dimension n and a set of
components L ⊆ {1, . . . , n}, a L-constrained trap space is
defined similarly, except that the closure is ensured only for
the components not in L:

Definition 4. A L-constrained trap space of a BN f of
dimension n with L ⊆ {1, . . . , n} is a meta-configuration
w ∈ (B∪ {∗})n such that ∀i ∈ {1, . . . , n} \L, either wi = ∗,
or ∀x ∈ c(w), wi = fi(x).

Remark that ∅-constrained trap spaces are equivalent to trap
spaces.

In the following, we will often rely on smallest (constrained)
trap spaces containing a configuration x. These smallest meta-
configurations can be obtained by transfinite iterations of func-
tions (B∪{∗})n → (B∪{∗})n enlarging meta-configurations
to satisfy the trap conditions, initially applied to x. For
instance, the smallest L-constrained trap space containing x
can be obtained by the transfinite iteration of e initially applied
to x, where e(h) = h′ verifies ∀i ∈ {1, . . . , n}, h′i = ∗ if i /∈ L
and ∃x ∈ c(h) : fi(x) 6= xi, otherwise h′i = hi.



Example. The meta-configuration 01∗ is a trap space of the
BN f of Fig. 1; c(01∗) = {010, 011}. The meta-configuration
1∗0 is a {1}-constrained trap space of f , it is the smallest
{1}-constrained trap space containing 110, and it is not a trap
space, nor the smallest {1}-constrained containing 100.

D. Reachability

Given two configurations x, y ∈ Bn, y is reachable from
x, noted x →∗ y, if there exists a possible evolution of the
configuration x, according to the BN f , which leads to y.

Numerous semantics of BNs have been defined in the
literature [6]–[8], the most prominent being the synchronous
update mode, where →∗ is the transitive closure of the binary
relation →s⊆ Bn × Bn with x →s y iff f(x) = y, i.e.,
all components get updated simultaneously in one step; and
the asynchronous update mode, where →∗ is the transitive
closure of the binary relation →a⊆ Bn × Bn with x →a y
iff ∀i ∈ ∆(x, y), yi = fi(x), i.e., any number of components
gets updated (non-deterministically) in one step.

However, all the update modes of BNs are inconsistent ab-
stractions of non-Boolean systems dynamics [9], i.e., they both
introduce spurious reachability properties and miss reachabil-
ity properties actually verified in more concrete quantitative
specifications. This constitutes a prime issue for BN synthesis
as it may lead to reject valid models.

The most permissive semantics of BNs has been recently
introduced to address this issue [1], [10]. This semantics
is currently the only one known which guarantees that its
reachability properties are a correct over-approximation of
reachability properties in any quantitative refinement of the
BN, with any update mode.

In this paper, we focus on most permissive BNs. The
reachability property x →∗ y can then be characterized with
the smallest constrained trap spaces containing x: y has to
be contained in one of such meta-configurations w, and in
the case a component i is free (wi = ∗) whereas xi = yi,
then there should exist a configuration z ∈ c(w) such that
fi(z) = yi. The most permissive reachability is formally
defined as follows.

Definition 5. Given a BN f of dimension n and two
configurations x, y ∈ Bn, x →∗ y if and only if there
exists L ⊆ {1, . . . , n} such that the smallest L-constrained
trap space w containing x verifies (1) y ∈ c(w), and (2)
∀i ∈ {1, . . . , n} \L where xi = yi and wi = ∗, ∃z ∈ c(w) s.t
fi(z) = yi.

Deciding x →∗ y in locally-monotonic BNs of dimension
n is in PTIME – NP-complete for general BNs – instead of
PSPACE-complete with classical update modes [1], [10].

Example. In the BN f of Fig. 1, 000 →∗ 111, 110 →∗
000→∗ 110 (L = ∅), but 010 6→∗ 100 (w = 01∗ with L = ∅).
In the BN g : B3 → B3 with g1(x) := 1, g2(x) := x1 ∧ x3

and g3(x) := ¬x2, 011 →∗ 000 (L = {1}, w = 0 ∗ ∗), but
001 6→∗ 010 (either 1 /∈ L, then @z ∈ c(w) : f1(z) = 0, or
1 ∈ L, then w = 001).

E. Attractors

The long-run behaviour of BNs is characterized by so-called
attractors, which are the smallest sets of configurations closed
by the reachability relation:

Definition 6. An attractor of a BN f of dimension n is a set
of configurations A ⊆ Bn such that ∀x, y ∈ A, x →∗ y and
y →∗ x, and ∀x ∈ A, z ∈ Bn, x→∗ z ⇒ z ∈ A.

The set of attractors of f is denoted by A(f).

We usually distinguish two kinds of attractors: the single-
ton attractors {x} corresponding to the fixpoints of the BN
(f(x) = x); and the cyclic attractors.

With the most permissive semantics, attractors match ex-
actly with the minimal trap spaces of f . Moreover, determining
if a trap space is minimal can be reduced to the verification of
two (most permissive) reachability properties, and is therefore
in PTIME for locally-monotonic BNs [10].

Example. The BN f of Fig. 1 has two attractors, being, in this
particular case, fixpoints: 011 and 100. The BN g illustrating
Def. 5 has a single cyclic attractor, being all the configurations
{100, 101, 110, 111}, i.e., the minimal trap space 1 ∗ ∗.

It is worth noticing that, due to the non-determinism of BN
semantics, one configuration can reach several attractors; it is
the case in the BN f of Fig. 1, where the configuration 000
can reach the two fixpoints. This is an important feature of
BNs for the modelling of biological differentiation processes.

F. Answer-Set Programming

Answer Set Programming (ASP; [11], [12]) is a declarative
approach to solving combinatorial satisfaction problems. It
is close to SAT (propositional satisfiability) [13] and known
to be efficient for enumerating solutions of NP problems
comprising up to tens of millions of variables. while providing
a convenient language for specifying the problem. We give a
very brief overview of ASP syntax and semantics that we use
in the next sections; see [12] for more details.

An ASP program is a Logic Program (LP) being a set of
logical rules with first order logic predicates of the form:

1 a0 ← a1, . . ., an, not an+1, . . ., not an+k.

where ai are (variable-free) atoms, i.e., elements of the Her-
brand base, which is built from of all the possible predicates
of the LP. The Herbrand base is built by instantiating the LP
predicates with the LP terms (constants or elements of the
Herbrand universe).

Essentially, such a logical rule states that when all
a1, . . . , an are true and none of an+1, . . . , an+k can be proven
to be true, then a0 has to be true as well. Whenever a0 is ⊥
(false), the rule, also called integrity constraint, becomes:

2←a1, . . ., an, not an+1, . . ., not an+k.

Such a rule is satisfied only if the right hand side of the rule
is false (at least one of a1, . . . , an is false or at least one of
an+1, . . . , an+k is true). On the other hand, a0 ← > (a0 is
always true) is abbreviated as a0. A solution (answer set) is



a stable Herbrand model, that is, a minimal set of true atoms
where all the logical rules are satisfied.

ASP allows using variables (starting with an upper-case)
instead of terms/predicates: these template declarations will be
expanded to the corresponding propositional logic rules prior
to the solving. For instance, the following ASP program

3 c(X) ← b(X).
4 b(1).
5 b(2).

has as unique solution {b(1), b(2), c(1), c(2)}.
We also use the notations a((x;y)) which is expanded

to a(x), a(y); #count {X: a(X)} which is the number
of distinct X for which a(X) is true; n {a(X): b(X)} m

which is satisfied when at least n and at most m a(X) are true
where X ranges over the true b(X); and a(X): b(X) which
is satisfied when for each b(X) true, a(X) is true. If any term
follows such a condition, it is separated with ;. Finally, rules
of form

6 {a} ← body.

leave the choice to make a true whenever the body is satisfied.

III. SYNTHESIS PROBLEM

This paper focuses on the synthesis of BNs from constraints
on its influence graph and on its dynamics, with reachability
and attractors properties.

The nature of the constraints is inspired by the modelling of
cellular differentiation processes. In this biological context, a
cell population evolves towards various phenotypes, and this
behaviour covers interesting properties both in healthy and
pathological context (respectively for studying embryogenesis
and cancer for instance). Typical experimental data provide
partial discrete-time observations of genes and proteins activity
along bifurcating trajectories. These data can be further statis-
tically processed to provide binary interpretation of the activity
of components at the collected time points and classify them
along differentiation branches. Then, putative components and
influences of interest can be extracted from databases and
completed by causal learning from the experimental data.

A (partial) observation o of a configuration of dimension
n is specified by a set of couples associating a component to
a Boolean value: o ⊆ {1, . . . , n} × B, assuming there is no
i ∈ {1, . . . , n} such that {(i, 0), (i, 1)} ⊆ o.

Formally, the synthesis problem we tackle is the following.
Given
• an influence graph G = {{1, . . . , n}, E+, E−),
• p partial observations o1, . . . , op,
• sets PR and NR of couples of indices of observations:

PR,NR ⊆ {1, . . . , p}2,
• subsets FP and FA of indices of observations:

FP,FA ⊆ {1, . . . , p},
• a set TP associating indices of observations with com-

ponents: TP ⊆ {1, . . . , p} × {1, . . . , n},
find a BN f of dimension n such that
• G(f) ⊆ G,

• there exist p configurations x1, . . . , xp such that:
– (observations) ∀m ∈ {1, . . . , p},∀(i, v) ∈ om, xm

i =
v,

– (positive reachability) ∀(m,m′) ∈ PR, xm →∗ xm′
,

– (negative reachability) ∀(m,m′) ∈ NR, xm 6→∗ xm′
,

– (fixpoints) ∀m ∈ FP, f(xm) = xm,
– (attractors) ∀m ∈ FA,∃A ∈ A(f) : xm ∈ A,
– (trap space) ∀(m, i) ∈ TP,∃t ∈ (B∪{∗})n : t is the

smallest trap space containing xm, and ti = xm
i .

Remark that such a problem can be non-satisfiable depend-
ing on the input influence graph and dynamical properties.
Besides the scalability challenge of such a synthesis problem,
desired features include the complete and non-redundant char-
acterization of the satisfying BNs. Completeness is possible as
there is a finite number of BNs f such that G(f) ⊆ G. Non-
redundancy implies that the method should enumerate only
among non-equivalent BNs (i.e., where their values differ for
at least one configuration).

IV. ANSWER-SET PROGRAMMING ENCODING

This section details the ASP encoding of the BN synthesis
from constraints on its influence graph and its dynamics.

The constraints on dynamics relate to the existence of
configurations which match their partial observations and
verify given reachability and attractor properties. A partial
observation of configuration X is specified by obs(X,N,V)

predicates, where N and V denote the component and its
observed Boolean value. Boolean values are encoded as −1 for
false, and 1 for true. The configuration X is encoded by a set
of predicates cfg(X,N,V). If the node N has been observed, V
is equal to the observed value; otherwise, its value is chosen:

1 cfg(X,N,V) ← obs(X,N,V).
2 1 {cfg(X,N,(-1;1))} 1 ← obs(X,_,_), node(N),

not obs(X,N,_).

A. Canonical Domain of Boolean Networks

The ASP encoding of locally-monotonic BNs compatible
with an influence graph faces two difficulties. First, two
different solutions should correspond to two non-equivalent
BNs f and f ′, i.e., there exists x ∈ Bn such that f(x) 6= f ′(x).
This requires ensuring that solutions match with canonical
representations of BNs. Second, the worst size of the specifi-
cation of a Boolean function is exponential in the number of
its variables. Therefore, the encoding should allow specifying
a bound on the size of the Boolean function specification,
ideally without bounding the number of variables.

We represent the Boolean functions composing a BN under
their Disjunctive Normal Form (DNF), i.e., a set of clauses,
where clauses are sets of literals, and two distinct clauses have
no subset relation (antichain). In ASP, we have to encode DNF
as lists of clauses, and therefore give an index to each clause.
The canonicity is then ensured by enforcing a total ordering
between the clauses. The maximum number of clauses for a
DNF with d variables is

(
d
bd/2c

)
, and our encoding allows

specifying a lower number to restrict the set of DNFs to
consider, without limiting the number of variables to consider.



Overall, our encoding of canonical Boolean functions with
d variables generates O(ndk2) predicates and O(nd2k2) rules
where k is the fixed upper bound on the number of DNF
clauses per local function, the maximum being

(
d
bd/2c

)
. With

this maximum value, the number of solutions matches with the
number of distinct monotonic Boolean functions, the Dedekind
number [14], currently known up to d = 8 [15]1. Whenever the
specified k is lower than the maximum, Boolean functions are
not captured by the encoding. The constraints on canonicity
are necessary to obtain efficient enumeration of solutions.
Whenever checking only for the existence of at least one
solution, these constraints can be relaxed, reducing the number
of predicates and rules to O(ndk).

We detail the encoding hereby. We use a predicate template
clause(N,C,L,S) to specify that the literal L with sign
S is included in the C-th clause of the DNF of fN. For
instance, the two-clauses DNF fa(x) = (¬xa∧xb)∨xc is en-
coded by the three following predicates: clause(a,1,a,-1),
clause(a,1,b,1) and clause(a,2,c,1).

The domain of arguments N, L, and S is fully determined by
the input influence graph (V,E+, E−); C ranges from 1 to k.
The influence graph is encoded with node/1 predicates with
node(i) if and only if i ∈ V , and in/3 predicates such that
in(j,i,1) if and only if (j, i) ∈ E+ and in(j,i,-1) if and
only if (j, i) ∈ E−. The bound on the number of clauses is
set by maxC(N,k):

3 {clause(N,1..C,L,S): in(L,N,S), maxC(N,C)}.

The local monotonicity is ensured by denying a literal appear-
ing with both signs in the DNF of each component N:

4← clause(N,_,L,S), clause(N,_,L,-S).

DNFs without clauses result in constant functions, specified
with the predicate constant/2:

5 1 {constant(N,(-1;1))} 1 ← node(N),
not clause(N,_,_,_).

The canonicity is obtained by ensuring the clauses are
ordered by size and then lexicographically, and without subset
relation. The ordering by size is guaranteed by the following
integrity constraints. The first line ensures that clauses identi-
fiers increase continuously from 1.

6← clause(N,C,_,_), not clause(N,C-1,_,_),
C > 1.

7 size(N,C,X) ← clause(N,C,_,_),
X = #count{L,S: clause(N,C,L,S)}.

8← size(N,C1,X1), size(N,C2,X2), X1 < X2,
C1 > C2.

The lexicographic ordering between clauses of the same size
is enforced as follows, where clausediff(N,C1,C2,L)

indicates that L is present in the C1-th clause but not in the C2-
th; and mindiff(N,C1,C2,L) indicates that L is the smallest
literal such that clausediff(N,C1,C2,L).

1for 0 ≤ d ≤ 8: 2, 3, 6, 20, 168, 7581, 7828354, 2414682040998,
56130437228687557907788

9← size(N,C1,X), size(N,C2,X), C1 > C2,
mindiff(N,C1,C2,L1), mindiff(N,C2,C1,L2),
L1 < L2.

10 clausediff(N,C1,C2,L) ← clause(N,C1,L,_),
not clause(N,C2,L,_), clause(N,C2,_,_).

11 mindiff(N,C1,C2,L) ← clausediff(N,C1,C2,L),
L <= L’ : clausediff(N,C1,C2,L’);
clause(N,C1,L’,_).

Finally, the absence of subset relation is guaranteed by the
following integrity constraint:

12← size(N,C1,X1), size(N,C2,X2), X1 <= X2,
clause(N,C2,L,S): clause(N,C1,L,S);
C1 != C2.

B. Evaluation of Boolean functions

We define generic rules to evaluate Boolean functions
on meta-configurations. A meta-configuration is specified
similarly to configurations, with predictates mcfg(H,N,V),
where V in {−1, 1}, but with potentially two predicates
mcfg(h,i,-1) mcfg(h,i,1) indicating that the component i
is free in the meta-configuration h, i.e., hi = ∗. The encoding
of dynamical constraints takes care about instantiating their
related mcfg/3.

The rules ensure that eval(h,i,1) (resp. eval(h,i,-1)) if
and only there exists a configuration x ∈ c(h) such that fi(x)
is true (resp. false). A clause is evaluated to false whenever one
of its literal evaluates to false (l.13); and to true whevener all
its literals evaluate to true (l.14). Then, either the function is
a constant and its evaluation follows the constant value (l.17),
or the function is evaluated to true if all its clauses have been
evaluated true (l.15); and to false whenever one ot its clauses
is evaluated false (l.16).

13 eval(H,N,C,-1) ← clause(N,C,L,-V),
mcfg(H,L,V).

14 eval(H,N,C,1) ← clause(N,C,_,_),
mcfg(H,_,_), mcfg(H,L,V): clause(N,C,L,V).

15 eval(H,N,1) ← eval(H,N,C,1); clause(N,C,_,_).
16 eval(H,N,-1) ← clause(N,_,_,_), mcfg(H,_,_),

eval(H,N,C,-1): clause(N,C,_,_).
17 eval(H,N,V) ← constant(N,V), mcfg(H,_,_).

For each meta-configuration, this encoding generates O(nk)
predicates and O(ndk) rules.

C. Positive Reachability

Each (m,m′) ∈ PR is translated as a predicate
reach(m,m′), specifying that the configuration xm has to
be able to reach the configuration xm′

.
Following Def. 5, reachability properties in most permissive

BNs can be assessed with particular meta-configurations. The
rule below declares a meta-configuration dedicated to the
positive reachability constraint, initially being equal to the
initial configuration.

18 mcfg((pr,X,Y),N,V) ← reach(X,Y), cfg(X,N,V).

Then, the meta-configuration has to be extended to satisfy the
(constrained) trap space property (Def. 4). The extensions of
meta-configurations are encoded with ext(H,N,V) predicates,



and their application is encoded by the generic rule in l.19.
Whenever the function of the component N of the meta-
configuration can be evaluated to its value in the target
configuration Y, the meta-configuration is extended to include
this value (l.20). Whenever the function can be evaluated to
the opposite value of the target configuration, its inclusion in
the meta-configuration is a choice (l.21).

19 mcfg(H,N,V) ← ext(H,N,V).
20 ext((pr,X,Y),N,V) ← reach(X,Y),

eval((pr,X,Y),N,V), cfg(Y,N,V).
21 {ext((pr,X,Y),N,V)} ← reach(X,Y),

eval((pr,X,Y),N,V), cfg(Y,N,-V).

The resulting meta-configuration is a L-constrained trap space,
where L is the set of components where the extensions of l.21
have been skipped, provided the opposite value is not already
in the initial configuration.

Finally, the two properties that the constrained trap space
has to verify (Def. 5) lead to the following rules. The first
rejects models where the target configuration is not included
in the meta-configuration; the second rejects models where a
component is free in the meta-configuration (therefore not in
L), but its target value can not be obtained with its function
in the scope of the constrained trap space.

22← cfg(Y,N,V), not mcfg((pr,X,Y),N,V),
reach(X,Y).

23← cfg(Y,N,V), not ext((pr,X,Y),N,V),
ext((pr,X,Y),N,-V), reach(X,Y).

Accounting for eval-related rules, for each reach(X,Y)

predicate, O(nk) predicates and O(ndk) rules are generated.

D. Negative Reachability

Each (m,m′) ∈ NR is translated as a predicate
nonreach(m,m′), specifying that it is impossible to reach
the configuration xm′

from configuration xm.
The most permissive reachability property recalled in Def. 5

relies on the existence of subset of components L ⊆
{1, . . . , n} so that the smallest L-constrained trap space w
containing the initial configuration (1) contains the target
configurations, and (2) for each component i not in L, there
exists a configuration z ∈ c(w) such that fi(z) = yi.

Proving the absence of reachability would require that these
conditions are verified by none of these subsets of components
L. In [10], it has been demonstrated that its is sufficient to
consider at most n particular subsets of components L to
conclude on the absence of reachability. Essentially, we start
verifying the conditions with L = ∅ and then iteratively add
in L the components which do not satisfy the condition (2).
With this procedure, it is sufficient to check the condition (1)
in the L obtained at the nth iteration.

To assess the non-reachability of configuration y from x,
our encoding generates n meta-configurations, initially being
equal to x (l.24-25). Then predicates locked(X,Y,I+1,N)

specify that the component N is in the I+1th iteration of L.
Such a predicate has to be true if N does not verify condition
(2) at iteration I (l.26), or if it is already in L at the preceding
iteration (l.27). The extension of the meta-configuration at

iteration I is then constrained by components in L (l.28).
Finally, if there exists a component N such that yN is not the
meta-configuration of the last iteration, the predicate nr(x,y)
is true, indicating the absence of reachability (l.29). A model
is rejected if such a predicate cannot be proven true (l.30).

24 iter(1..K) ← nbnode(K).
25 mcfg((nr,X,Y,I),N,V) ← nonreach(X,Y),

cfg(X,N,V), iter(I).
26 locked(X,Y,I+1,N) ← cfg(X,N,V), cfg(Y,N,V),

not ext((nr,X,Y,I),N,V),
ext((nr,X,Y,I),N,-V), iter(I+1).

27 locked(X,Y,I+1,N) ← locked(X,Y,I,N),
iter(I+1).

28 ext((nr,X,Y,I),N,V) ← not locked(X,Y,I,N),
eval((nr,X,Y,I),N,V).

29 nr(X,Y) ← not mcfg((nr,X,Y,K),N,V),
nbnode(K), cfg(Y,N,V), nonreach(X,Y).

30← not nr(X,Y), nonreach(X,Y).

Accounting for eval-related rules, for each
nonreach(X,Y) predicate, this encoding generates O(n2k)
predicates and O(n2dk) rules.

E. Attractors

As indicated in Sect. III, we consider three different proper-
ties related to the attractors of the BN f : fixpoints properties,
where specified configurations have to be fixpoints of f ; trap
space properties, where specified configurations have to belong
to trap spaces where a subset of their components have a
fixed value; and general attractor properties, where specified
configurations should belong to an attractor of f , without any
assumption on its cardinality.

Accounting for eval-related rules, the encoding of each
of the following properties generates O(nk) predicates and
O(ndk) rules.

1) Fixpoints: Each m ∈ FP is translated as a predicate
is_fp(m), specifying that the configuration xm is a fixpoint
of f . The constraint is ensured by rejecting models where the
evaluation gives an opposite value for at least one component:

31 mcfg(X,N,V) ← is_fp(X), cfg(X,N,V).
32← is_fp(X), cfg(X,N,V), eval(X,N,-V).

2) Trap spaces: Each (m, i) ∈ TP is translated as a
predicate is_tp(m,i), specifying that the smallest trap space
t containing the configuration xm has to have the component
i fixed, i.e., ti 6= ∗. The initialisation and extension of the
smallest trap space containing x are obtained with rules in
l.33-34. The model is rejected if the resulting trap space has
any free component specified as trapped.

33 mcfg((ts,X),N,V) ← cfg(X,N,V), is_tp(X,_).
34 mcfg((ts,X),N,V) ← eval((ts,X),N,V).
35← is_tp(X,N), cfg(X,N,V), mcfg((ts,X),N,-V).

3) General attractors: Each m ∈ FA is translated as a
predicate is_in_at(m), specifying that the configuration xm

is within an attractor of f , i.e., within a minimal trap space.
The smallest trap space containing xm (l.36-37) is a minimal
trap space if and only if there is a co-reachability (l.40-41)
of two configurations within the trap space having the most



1

2

3

4

5

configuration
fixpoint
positive reachabiility
negative reachability

Fig. 2. Sketch of the constraints for the synthesis on random graphs

different components [10], e.g., the configuration where free
components are fixed to 0 and the one where they are fixed to
1. These two configurations are created with values identical
to xm for all fixed components (l.38), and mutually opposed
regarding the free components (l.39).

36 mcfg((at,X),N,V) ← cfg(X,N,V), is_in_at(X).
37 mcfg((at,X),N,V) ← eval((at,X),N,V).
38 2{cfg((a0,X),N,V);cfg((a1,X),N,V)}2 ←

mcfg((at,X),N,V), not mcfg((at,X),N,-V).
39 2{cfg((a0,X),N,0);cfg((a1,X),N,1)}2 ←

mcfg((at,X),N,V), mcfg((at,X),N,-V).
40 reach((a0,X),(a1,X)) ← is_in_at(X).
41 reach((a1,X),(a0,X)) ← is_in_at(X).

V. EVALUATION

We performed experiments to assess the scalability and
illustrate potential biological applications of our encoding of
BN synthesis. We used the ASP solver CLINGO2 using default
solving strategies3.

A. Scalability on Random Boolean Networks

We randomly generated scale-free directed graphs with
different biases on the in-degree of nodes in order to obtain
influence graphs similar to the usually encountered with gene
and cell signalling networks.

The synthesis has then been performed with each of these
networks as input influence graph, and with a generic dy-
namical property of a two stages differentiation processes, as
illustrated in Fig. 2. The properties are specified using 5 empty
observations {1, . . . , 5}, among which 3 should match with
a distinct fixpoint (FP = {3, 4, 5}). The first observation is
supposed to reach the second and third, whereas the second
is expected to reach the fourth and fifth, but not the third:
PR = {(1, 2), (1, 3), (2, 4), (2, 5)}, NR = {(2, 3)}.

Fig. 3 gives an overview of successfully solved instances
within 2h of CPU time (2.5Ghz). With canonic solutions and
the maximal number of clauses, it scales to networks up to
50 nodes, with maximal in-degree 15. With bounded number
of clauses, instances with up to 200 nodes have been solved,
provided a similar in-degree. Solving larger instances requires
dropping negative reachability constraints. The main limit is
the number of variables and rules generated by the encoding,
which is often larger than 232 with negative reachability.
Almost all solved instances are satisfiable, except in a couple
of cases with ≤ 20 nodes with negative reachability.

2version 5.3.0 available at https://potassco.org/clingo
3Instances available at http://www.labri.fr/perso/lpauleve/ictai19.zip

k=maximal

k=32

k=128

Fig. 3. Successfully solved random instances for different sets of constraints
(marker shapes) and different bounds on the number of clauses (marker sizes)
in function of the number of components n and maximal in-degree d.

Fig. 4. Influence graph for CNS development

B. Application to Cell Differentiation Modelling

We illustrate our methodology on a cell differentiation con-
text: the central nervous system (CNS) development. Neural
stem cells can terminally differentiate into neurons, astrocytes
and oligodendrocytes, and an influence graph gathering known
gene interactions is available in the literature [16]. This graph
with two differentiation stages (Fig. 4) consists of 12 genes.
Despite its relatively small size, this influence graph already
entails more than 226 millions of compatible BNs (the number
of BNs compatible with an influence graph is given by the
product of the Dedekind numbers related to each node).

The observations are given in Table I, and the positive and
negative reachability constraints are set as PR = {(iPax6, tM),
(tM, fT), (iPax6, tO), (tO, fMS), (iPax6, tS), (tS, fA)}, NR =
{(0, fT), (0, fMS), (0, fA)}.

To test the impact of various hypotheses on the stability
of the phenotypes, trap spaces (with the fixation of the 4
phenotypes markers Aldh1L1, Myt1L, Sox8 and Tuj1), fix-
points and general attractors constraints are applied on the
observations fT, fMS and fA. Their relevance depends on the
assumptions and knowledge precision about the phenotypes.



TABLE I
LIST OF OBSERVED NODES IN EACH OBSERVATION

obs. ID activated genes inactivated genes
0 none all

iPax6 Pax6 the 11 others
tM Pax6 Aldh1L1, Olig2, Scl, Sox8, Tuj1
fT Brn2, Tuj1, Zic1 Aldh1L1, Sox8
tO Olig2, Pax6 Aldh1L1, Scl, Sox8, Tuj1

fMS Sox8 Aldh1L1, Brn2, Tuj1, Zic1
tS Pax6, Scl Aldh1L1, Olig2, Sox8, Tuj1
fA Aldh1L1 Brn2, Sox8, Tuj1, Zic1

TABLE II
NUMBER OF ADMISSIBLE BNS W.R.T. VARIOUS PROPERTIES

applied constraints # solutions
application of a single type of constraint:

3 negative reachability (NR) 224 025 280
6 positive reachability (PR) 24 076 416
12 trap spaces (TP) 17220
3 general attractors (FA) 4970
3 fixpoints (FP) 4970

application of combination of constraints:
PR + NR 16 050 944
PR + TP 8964
NR + TP 5667
PR + NR + TP 3735
PR + FP 3360
PR + NR + FP 1120

In this particular case, applying general attractors equates to
fixpoints since the influence graph structure does not offer
freedom for oscillating.

To appreciate the pertinence of the method, Table II presents
the number of inferred BNs given each defined constraint and
combinations thereof. Each constraint complements the filter-
ing by adding new information, and while 226 millions of BNs
were candidates for modelling the CNS development, applying
a relevant combination of constraints leads to select almost
instantaneously the relatively small set of models respecting
the observed behaviour. This huge reduction combined with
the exhaustiveness of the method is twice interesting for
biological studies. It first enables the analysis of variability
across the models to study the components significance in
the observed behaviours. Secondly, it offers the opportunity
to quantify the data informativeness and even inform of the
inconsistency of an hypothesis.

VI. DISCUSSION

Taking advantage of stable models offered by ASP, we
provide a compact encoding of the BN synthesis from static
and dynamical properties, with part of the complexity being
parametrized. The method enables addressing scales and type
of dynamical properties beyond the scope of already existing
approaches.

Although not explicitly addressed in the encoding and
evaluation, the use of ASP also enables efficient synthesis
with optimization, e.g., finding BNs with minimal/maximal
influence graph.

Negative reachability has a limited scalability due to the
O(n2) variables and rules it generates (n being the dimension
of the BNs). Future work will investigate SMT-like approaches
to generate part of the constraints on the fly.

The considered properties are inspired by models of cellular
differentiation. In such a context, having access to the com-
plete set of candidate models enables uncovering influence
motifs which are key for reproducing desired behaviours.
Related to the applications, being able to account for universal
properties on (reachable) attractors in the synthesis would
increase the precision of inferred models, and constitutes a
challenging direction.

ACKNOWLEDGEMENT

Part of the experiments was carried out using the PlaFRIM
experimental testbed, supported by Inria, CNRS (LABRI and
IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).

REFERENCES

[1] T. Chatain, S. Haar, J. Kolčák, L. Paulevé, and A. Thakkar, “Concurrency
in Boolean networks,” Natural Computing, 2019.

[2] C. Terfve, T. Cokelaer, D. Henriques, A. MacNamara, E. Goncalves,
M. K. Morris, M. v. Iersel, D. A. Lauffenburger, and J. Saez-Rodriguez,
“CellNOptR: a flexible toolkit to train protein signaling networks to data
using multiple logic formalisms,” BMC Systems Biology, vol. 6, no. 1,
p. 133, 2012.

[3] J. Dorier, I. Crespo, A. Niknejad, R. Liechti, M. Ebeling, and I. Xenar-
ios, “Boolean regulatory network reconstruction using literature based
knowledge with a genetic algorithm optimization method,” BMC Bioin-
formatics, vol. 17, no. 1, p. 410, 2016.

[4] M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski,
“Boolean network identification from perturbation time series data
combining dynamics abstraction and logic programming,” Biosystems,
vol. 149, pp. 139 – 153, 2016.

[5] B. Yordanov, S.-J. Dunn, H. Kugler, A. Smith, G. Martello, and
S. Emmott, “A method to identify and analyze biological programs
through automated reasoning,” Systems Biology and Applications, vol. 2,
2016.

[6] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
nected nets,” Journal of Theoretical Biology, vol. 22, pp. 437–467, 1969.

[7] R. Thomas, “Boolean formalization of genetic control circuits,” Journal
of Theoretical Biology, vol. 42, no. 3, pp. 563 – 585, 1973.

[8] J. Aracena, E. Goles, A. Moreira, and L. Salinas, “On the robustness of
update schedules in Boolean networks,” Biosystems, vol. 97, no. 1, pp.
1 – 8, 2009.

[9] T. Chatain, S. Haar, and L. Paulevé, “Boolean Networks: Beyond Gen-
eralized Asynchronicity,” in Cellular Automata and Discrete Complex
Systems, ser. LNCS, vol. 10875. Springer, 2018, pp. 29–42.

[10] T. Chatain, S. Haar, and L. Paulevé, “Most Permissive Semantics of
Boolean Networks,” CoRR, vol. abs/1808.10240, 2018.

[11] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[12] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, ser. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool Publishers, 2012.

[13] F. Lin and Y. Zhao, “ASSAT: Computing answer sets of a logic program
by SAT solvers,” Artificial Intelligence, vol. 157, no. 1, pp. 115–137,
2004.

[14] D. Kleitman, “On Dedekind's problem: The number of monotone
Boolean functions,” Proceedings of the American Mathematical Society,
vol. 21, no. 3, p. 677, 1969.

[15] D. Wiedemann, “A computation of the eighth dedekind number,” Order,
vol. 8, no. 1, pp. 5–6, 1991.

[16] X. Qiu, Q. Mao, Y. Tang, L. Wang, R. Chawla, H. A. Pliner, and
C. Trapnell, “Reversed graph embedding resolves complex single-cell
trajectories,” Nature Methods, vol. 14, no. 10, pp. 979–982, 2017.


