
Epilepsy & Behavior 95 (2019) 43–50

Contents lists available at ScienceDirect

Epilepsy & Behavior

j ourna l homepage: www.e lsev ie r .com/ locate /yebeh

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by kashan university of medical sciences
Effect of probiotic supplementation on seizure activity and cognitive
performance in PTZ-induced chemical kindling
Samaneh Bagheri a, Ahzdar Heydari a, Azam Alinaghipour b, Mahmoud Salami a,⁎
a Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
b Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
⁎ Corresponding author.
E-mail address: salami-m@kaums.ac.ir (M. Salami).

https://doi.org/10.1016/j.yebeh.2019.03.038
1525-5050/© 2019 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 October 2018
Revised 22 January 2019
Accepted 20 March 2019
Available online 23 April 2019
Epilepsy is one of the most common neurological disorders that severely affect life quality of many people
worldwide. Ion transport in the neuronal membrane, inhibitory–excitatory mechanisms, and regulatory
modulator systems have been implicated in the pathogenesis of epilepsy. A bidirectional communication is
proposed between brain and gut where the brain modulates the gastrointestinal tract, and the gut can affect
brain function and behavior. The gut microbiome takes an important role in health and disease where dysbiosis
is involved in several neurological disorders. Probiotics as living microorganisms are beneficial to humans and
animals when adequately administered. In the present work, we evaluated the effect of a probiotic bacteria
mixture on seizure activity, cognitive function, and gamma-aminobutyric acid (GABA), nitric oxide (NO),
malondealdehyde (MDA), and total antioxidant capacity (TAC) level of the brain tissue in the pentylenetetrazole
(PTZ)-induced kindled rats. The Racine score and performance in water maze were considered as indices of the
epileptic severity and the spatial learning and memory, respectively. We found that the probiotic supplementa-
tion substantially reduces seizure severity so that almost no probiotic-treated animals showed full kindling. The
oral bacteriotherapy partially improved the spatial learning and memory in the kindled rats. The intervention
decreased NO and MDA and increased TAC concentration of the brain. The probiotic treatment also increased
the inhibitory neurotransmitter GABA. Our findings are the first preclinical report to show positive effect of
probiotic bacteria on seizure-induced neurological disorders. Further investigation is required to answer the
questions raised about the probable mechanisms involved.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Epilepsy is one of the most common neurological disorders with an
occurrence of about 1% of population. This chronic disorder affects
approximately 50 million people worldwide, and nearly 2.4 million
people are diagnosed with epilepsy each year [1]. Disturbed ion trans-
port or ion channel structure in the neuronalmembrane, imbalanced in-
hibitory/excitatory transmissions, and altered regulatory modulator
systems have been implicated in the pathogenesis of epilepsy [2–4].
Understanding the mechanisms underlying epileptogenesis helps in
designing effective medications for therapy of epilepsy [5]. Aberrant
synaptic transmission including gamma-aminobutyric acid (GABA)
ergic system has been considered as the main mechanism involved in
neuronal synchrony in seizures. In addition, impaired antioxidant
defense mechanisms and increased lipid peroxidation are implicated
in its pathogenesis [6–9]. Oxidative stress is also known to participate
in pathways leading to neurodegeneration,which is themost important
propagating factor in epileptogenesis and cognitive decline [10].
Pharmacoresistant epilepsy and associated comorbidities are two
different conditions that interfere with the therapy of epilepsy.
Antiepileptic drugs (AEDs) are the main feasible therapeutic methods
used to treat epilepsy. At present, there are only 20 AEDs licensed
globally, and there are many disadvantages associated with their use.
Apart from the inevitable adverse effects, AEDs only restrain the
symptoms of seizure rather than modify the development of epilepsy.
Furthermore, AEDs are only regarded as effective in 60–70% of
individuals with epilepsy [11].

The chemical kindling induced by pentylenetetrazole (PTZ), a GABAA

receptor antagonist, is an indistinguishable model of clinically resistant
epilepsy [12]. This model has become a pivotal and handy drug-
resistant epilepsy model to explore oxidative stress, neurochemical
alterations, and structural changes in brain [13].

Bidirectional communication between brain and gut, known as gut–
brain axis, has long been recognized; the brain modulates the gastroin-
testinal tract by regulation of motility, secretion, absorption, and blood
flow, and concurrently, the gut can affect brain function and behavior
[14]. The scaffolding of the gut–brain axis includes the gastrointestinal
tract, central nervous system (CNS), autonomic nervous system, enteric
nervous system, neuroendocrine system, and immune system [14].
There has been increasing interest in the role of gut microbiome in
health and disease. Indeed, intestinal microbiota composition varies
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between healthy and diseased individuals for numerous diseases, and
thus, targeting the intestinal microbiota might offer new possibilities
for prevention and/or treatment of diseases.

Few studies have made a link between microbiota and epilepsy
[15], however, the connection between dysbiosis and epilepsy
remains restricted, mostly focusing on microbiome as a target for
ketogenic diet.

Probiotics are defined as the living microorganisms that are helpful
to humans and animals when adequately administered. The most
commonly used probiotics are different species of Lactobacilli and
Bifidobacteria that have been considered for their effects on CNS dys-
function in neurological disorders by increasing microbiota diversity
and beneficial bacteria compositions [16]. Probiotics capably interact
with the intestinal microbiome and provide health benefits [17]. In a
series of clinical [18–20] and preclinical [21] studies, we evaluated the
effect of probiotic supplementations on some brain disorders. Nothing
is reported about the effect of probiotics on epileptic statuses or animal
model seizures. Therefore, in the present work, we examined if a
mixture of probiotic bacteria underlies epileptic activity of neuronal
circuits in a PTZ-induced model of kindling.

2. Materials and methods

2.1. Animals

Two months old male Wistar rats (n = 40) were obtained from
Animal House of Kashan University of Medical Sciences (KAUMS).
Animalswere housed in standard polypropylene cages under controlled
laboratory conditions with 12 h light–dark diurnal cycle at 24 ± 2 °C
and humidity of 50–60%. The animals had freely access to food and
water except during the experiments. All experiments were performed
under the protocol approved by the Animal Ethics Committee of
KAUMS.

2.2. Experimental grouping

The experimental subjects were divided into five groups (n = 8 for
each). One group was the normal control group (CON) that received
carrier of the probiotics. Four groups of rats were kindled (as explained
later) that include the groups receiving carrier of probiotics (PTZ), the
probiotic supplement 24 days before kindling (PRO + PTZ) or during
(PTZ + PRO) kindling. Also, a positive control group (VAP) intraperito-
neally received 150 mg/kg valproic acid. Fig. 1 illustrates animal group-
ing and the experimental procedures throughout the study.

2.3. Induction of kindling

Chronic epileptic seizure was induced by administration of
subconvulsive doses of PTZ (35 mg/kg). Pentylenetetrazole was freshly
VPVehicle, 

Day: -21 

Probiotic  Pretreatment

Day: 0 

Day: 0 

Fig. 1. The experimental schedule outlining animal group
dissolved in saline (NaCl 0.9%) and injected intraperitoneally once every
second day for 24 days. The convulsive behavior was video-monitored
for 30 min. The intensity of the convulsions was registered according
to modified Racine's scale as follows:

Stage 0 — No response;
Stage 1 — Hyperactivity, restlessness, and vibrissae twitching;
Stage 2 — Head nodding, head clonus, and myoclonic jerks;
Stage 3 — Unilateral or bilateral limb clonus;
Stage 4 — Forelimb clonic seizures; and
Stage 5 — Generalized tonic–clonic seizures with falling.

The kindling score and the latency of kindling were measured
according to the method reported by Racine [22]. The vehicle control
rats received saline at the same number of injections.

The effect of the probiotic treatment on the seizure severity before
and during induction of kindling and % incidence of animals kindled at
the end of 24 days were assessed.

2.4. Probiotic administration

Many studies have used Bifidobacteria and Lactobacilli preparations
and mostly show improving some CNS functions. Doses of 109 and 1010

colony forming unit (CFU) for 2 weeks in animals and 4 weeks in
humans have been sufficient to appearmeasurable effects [23]. The pro-
biotic supplements (Pedilact, prepared by Zist Takhmir Company, I.R.
Iran) were a mixture of three bacteria consisting of Lactobacillus
rhamnosus, Lactobacillus reuteri, and Bifidobacterium infantis (CFU~109

for each). The probiotic-treated animals received 1 ml solution/day (a
total of 3 × CFU~109) of probiotic mixture via intragastric gavage. The
control rats received 1ml carrier of the probiotics (as below). The treat-
ment lasted for 3 weeks.

2.5. Spatial learning and memory

The Morris water maze test was used to examine changes in the
spatial learning and memory abilities of the animals as previously
described [24]. The apparatus was a tank made of galvanized
metal (150 cm in diameter, 70 cm in depth) that was filled with water
(22 °C) up to 20 cm below the rim. The pool was divided into four
equal quadrants named northeast, southeast, southwest, and north-
west; each separated by 90° around the inner perimeter. A circular plat-
form (10 cm in diameter) was submerged 1.5 cm below the water
surface and was located in the center of one quadrant in fixed position
throughout the experiment. The walls around the pool were pasted
with the surrounding extramaze visual cues to provide spatial cues for
the animal during trials.

The test consisted of two phases;: acquisition phase followed by
probe trial phase. The first phase included four trials/day each for 90 s
Probioticor A
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ing, and the time and duration of protocols applied.
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Fig. 2. The effect of theprobioticmixture on the seizure severity in the kindled rats. Themean
Racine score in the PTZ groupwas the highest over the experiment. Valproic acid application
greatly reduced the epileptic activity in the VPA. The probiotic treatment significantly
diminished the level of seizure in the PRO + PTZ and PTZ + PRO, mostly in the former
group. *P b 0.05, **P b 0.01, ***P b 0.001 compared with PTZ. #P b 0.05, ##P b 0.01
compared with VPA. ¶P b 0.05 compared with PTZ + PRO.
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followed by a 10-minute break for 4 consecutive days. In each trial, the
animal was released facing the wall in one of four predetermined
starting points and allowed to swim for a maximum time of 90 s to
find the hidden platform. After reaching and mounting the platform,
the rat was allowed to rest for 20 s before the next trial was initiated.
If the subject failed to find the platform within 90 s, it was manually
guided to the platform by the researcher where it remained for 20 s.
Each day, the test was started from different quadrant for each animal.
In the acquisition phase, the time elapsed (escape latency) and the dis-
tance traveled to locate the platformwere measured as learning scores.
Following the completion of the trial, the rats were dried and returned
to their home cage.

On the fifth day, the rats were introduced to the probe trial to eval-
uate the animals' retrieval performance of spatialmemory. The platform
was removed, and the rats were allowed to navigate the maze for 30 s.
Spatial retention in the probe trial was measured concerning the dura-
tion of time spent and the distance traveled in the memorized region
of the water maze. A video autotracking system (RADIAB-7, I.R. Iran)
was used tomonitor and save the animal navigations in thewatermaze.

2.6. Brain tissue processing

On the last day of treatment, 30 min after PTZ administration,
the animals were deeply anesthetized and were transcardially perfused
with 100 ml of cold saline for 30 min. Then, the rats were sacrificed,
and the brain was immediately dissected and stored at −80 °C until
assessments.

2.7. Biochemical assessments

The frozen brain samples were homogenized in an ice cold 10% (w/v)
sodium phosphate buffer (KCl, 140 mmol/l and phosphate, 20 mmol/l;
pH 7.4) and then centrifuged at 5000g for 5 min. The clear supernatant
was used for estimation of GABA, nitric oxide (NO), malondealdehyde
(MDA), and total antioxidant capacity (TAC) contents. The brain tissue
GABA concentrations (as ng/g tissue) were quantified by the use of
commercial enzyme-linked immunosorbent assay (ELISA) kit (GABA
ELISA Kit, myBioSource, USA). Nitric oxide metabolites (nitrite/nitrate)
in the brain tissue were measured by colorimetric method at 450 nm
based on the Griess reagent after reduction of nitrate to nitrite by vana-
dium trichloride. The nitrite/nitrate concentrations are expressed as
μmol/g tissue. Concentration of MDA, as the lipid peroxidation indicator,
was evaluated using the thiobarbituric acid reactive substance method.
The MDA level is expressed as μmol/g tissue. Ferric reducing ability of
plasma (FRAP) assay was used for measuring TAC of blood. This method
determines the ability of plasma to reduce Fe3+ to Fe2+. The complex
between Fe2+ and tripyridyl-s-triazine gives a blue color with absor-
bance at 593 nm [25].

2.8. Statistical analysis

Two-way analysis of variance (ANOVA) (kindling and probiotic
treatment as independent factors), followed by least significant differ-
ence (LSD) post hoc testwas applied on thedata pooled from seizure ac-
tivities and behavioral performances. Fischer's exact probability test
was used to evaluate the incidence % of the animals showing full kin-
dling (stage 5) across the experiments. Differences were considered to
be significant for values of P b 0.05. All data are presented as the
means ± standard error mean (S.E.M).

3. Results

3.1. The effect of probiotic supplement on the seizure severity

According to the statistical analysis, the testing groups showed dif-
ferent seizure activity (F4,407 = 71.965, P b 0.0001). In the PTZ group,
the score of seizure was gradually increased over the experiment
reaching to 4 ± 0.37. The seizure severity in the PRO + PTZ showed a
steady manner throughout the chronic chemical kindling with a maxi-
mum score of 1.85 ± 0.14. A difference was evident between the PTZ
and PRO+ PTZ groups (P b 0.0001). The PTZ+ PRO group also demon-
strated a decrease in the seizure severity that was almost steady over
the experiment. This group gained a maximum score of 2.9 ± 0.29
showing a significant difference with the PTZ group (P b 0.0001).
Valproate efficiently protected the animals against the effect of
PTZ where the VAP group rats showed the least level of the kindling
(1.5 ± 0.14 score) compared with the other kindled rats (P b 0.0001).
Therefore, our data demonstrate that the probiotic administration
decreases the level of epileptic activity (Fig. 2).

The incidence of full kindling in the tested groups was also consid-
ered. Fifty percent (4 out of 8) of animals in the PTZ group exhibited
the score of 5 within 3 consecutive scorings. None of the kindled rats
in the VAP and PTZ+ PRO groups showed the score of 5 over the exper-
iment. Only one rat showed the score of 5 in the PRO+ PTZ group. The
Fischer's exact test displayed a significant difference between the PTZ
group compared with the VAP and PTZ + PRO groups (P b 0.006).
Concerning the full kindling phase, no statistical difference was evident
between the animals in the VAP and both probiotic-treated groups.
These findings indicate that the probiotic supplementation substantially
reduces the seizure severity.
3.2. Assessment of the cognitive performances

To evaluate if the probiotic supplement influences spatial learning
and memory, the kindled animals were introduced to Morris water
maze. The acquisition and retrieval probe phases were considered to
indicate the learning and the memory consolidation, respectively.
3.2.1. Acquisition phase
Analysis of the time elapsed to locate the hidden platform indicated

a significant difference between the testing groups (F4,779 = 2.725,
P b 0.05). The post hoc test indicated that the PTZ+PRO and PRO+PTZ
rats overcame their PTZ counterparts (P b 0.01). The distance from the
point of release to the hidden platform was also considered for evalua-
tion of the maze steering. Our results demonstrated a considerable var-
iation between the different groups (F4,779 = 6.210, P b 0.001). Post
hoc analysis indicated that both probiotic-treated groupswere superior
on their PTZ counterparts (P b 0.01). On the other hand, the PRO+ PTZ
and PTZ+ PRO groups had a lowermaze performance when compared
with either CON or VPA groups (P b 0.01). Fig. 3 illustrates performance
of the animals in the acquisition phase of spatial cognition.
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3.2.2. Probe trial phase
Statistical analysis applied on the time elapsed in the target

quadrant proved a substantial difference among the testing groups
(F4,40 = 2.150, P N 0.05). Posttest analysis indicated a high maze per-
formance by the PTZ + PRO rats, which was varied significantly with
the VPA and PRO+PTZ animals (P b 0.01). Regarding the distance trav-
eled in the correct quadrant, we observed a general statistical difference
between the animal groups (F4,40= 3.060, P b 0.05).Within-group as-
sessments showed that the PTZ + PRO group was superior to the CON
and PTZ groups (Pb 0.05). Also, the PTZ+PROanimals showed a higher
performance than did their VPA and PRO+PTZ counterparts (P b 0.01).
Fig. 4 depicts how the animals perform the retrieval memory in the
probe trial test.

3.3. Biochemical assessments

3.3.1. The GABA concentration of the brain tissue
Measurement of level of the inhibitory neurotransmitter GABA

in the brain tissue indicated no variation between the CON and PTZ
groups. The probiotic treatment in the PTZ + PRO group considerably
elevated the GABA concentration compared with the CON (P b 0.001),
PTZ (P b 0.01), and VPA (P b 0.001) groups. Surprisingly, the GABA con-
centration was reduced in the VPA group in comparison with either
CON (P b 0.001) or PTZ (P b 0.01) groups (Fig. 5).

3.3.2. The level of MDA in the brain tissue
The brain concentration of the oxidant MDA was evaluated as

end product of lipid peroxidation. The MDA level was significantly
increased in the PTZ animals when compared with their CON
counterparts (P b 0.05). The brain concentration of MDA in both probi-
otic-treated groups was highly decreased in comparison with the PTZ
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Fig. 3. The water maze navigation of the testing groups across four days of acquisition
phase. A) The PTZ + PRO rats required less time to learn location of the hidden platform
than did the PTZ animals (P b 0.01). B) In comparison with the PTZ rats both probiotic
treated groups traveled less distance to find the hidden platform (P b 0.01).
group (P b 0.001). The MDA level of the brain was also diminished in the
VPA-kindled rats (P b 0.05). The PTZ + PRO and PRO + PTZ animals
showed a lower brain level of MDA even when compared with the CON
group (P b 0.05, Fig. 6).

3.3.3. The level of NO in the brain tissue
Concentration of NO in the brain tissue remained unchanged in

the PTZ rats compared with the CON ones. However, the brain level
of NO demonstrated a substantial reduction in either PTZ + PRO
or PRO + PTZ animals when compared with the PTZ and CON groups
(P b 0.001). The NO concentration was also mildly decreased in the
VAP rats in comparisonwith the PTZ andCONgroups (Pb 0.05). Further,
we observed a lower concentration of NO in the probiotic-treated
animals compared with the valproate-treated ones (P b 0.05, Fig. 7).

3.3.4. The level of TAC in the brain tissue
The chemical kindling had no substantial effect of the TAC level of

the brain. Valproic acid administration led to a slight decrease in the
VPA group compared with the CON one (P b 0.05). Whereas simulta-
neous kindling and probiotic treatment highly elevated the brain con-
centration of TAC in the PTZ + PRO rats compared with the other
testing groups (P b 0.001), the pretreatment with the probiotic mixture
in the PRO + PTZ was ineffective on the antioxidant index (Fig. 8).

4. Discussion

Our findings in the present study demonstrated that treatment of
chemically kindled animals with a mixture of probiotic bacteria substan-
tially diminished epileptic activities. Such an effect was reflected in the
Racine score levels as well as the number of the animals that reached
full kindling. The intervention also had a favorable effect on the cognitive
performances of the experimental subjects where it positively influenced
both learning and memory consolidation. The data from the biochemical
measurements support improvements in the epileptic and cognitive be-
haviors. The oxidant factors MDA and NO were reduced in the
probiotic-administered groups. Also, the antioxidant index TAC was en-
hanced in a group of probiotic-treated rats. Concentration of the inhibi-
tory neurotransmitter GABA was increased only in PTZ + PRO group.
Importantly, almost majority of either behavioral or biochemical assess-
mentsweremostly highlighted in the PTZ+PROgroup; inwhich the kin-
dling and probiotic administration occurred simultaneously.

gamma-Aminobutyric acid as a bioactive component of pharmaceuti-
cals and foods is produced by various microorganisms. Of probiotics,
Lactobacilli are considered the main producers of GABA among bacteria
[26]. Also, some strains of Bifidobacteria are shown to produce GABA
[27]. These bacteria are able to produce GABA from its precursor
monosodium glutamate [28]. Glutamic acid decarboxylase (GAD) en-
zymes are necessary for catalyzing the reaction. GAD genes are found in
the gut microbiome as well as GABA-producing probiotic strains and in-
fluence health and behavior in animal models [29–31]. Therefore, it
seems that increased level of GABA neurotransmitter in the probiotic-
treated kindled rats might be contributed to alleviation of the kindling ef-
fects. However, we found a slight decrease in the level of GABA neuro-
transmitter in the VPA-treated PTZ group. Consistent result was
reported by Safar et al. where they found that VPA decreased concentra-
tion of GABA [32]. A study of Guzman et al. also indicated that GABA con-
centration is not sensitive toVPA [33]. Considering the present results and
those reported by other researchers, it seems that VPAmay display its an-
ticonvulsant properties through various mechanisms [34]. It should be
noted that the role of the other main brain neurotransmitters must not
be ignoredwhere, alongwith inhibition of inhibitor GABAneurotransmit-
ters, PTZ-induced convulsions that proceed into generalized form also
start by activation of glutamate receptors [35].

Growing body of evidence indicates that certain pathologies, related
to an altered microbiome, are linked to mood, stress, behavior, and
cognition [14]. It is well known that PTZ-induced kindling is associated
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with a variety of behavioral, neurophysiological, and neurochemical al-
terations. Epilepsy is known to be associatedwith cognitive dysfunction
and, hence, impaired cognitive performance is reported in PTZ kindling
[36]. Hence, it is important to have antiepileptic therapeutic paths with
positive effects on epilepsy-associated cognition disturbances.

Although evidence indicating a link between gut microbiota and
brain function is emerging [37], however, data addressing direct
effects of probiotics on improving impaired learning and memory are
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scarce. Reports of a few studies are in accordance with our findings
[38,39]. Gareau reported that intestinal dysbiosis in germ-free animals
(containing no microbiota), bacterial infection with an enteric
pathogen, and administration of probiotics all can modulate cognitive
behaviors including learning and memory [40]. Our previous clinical
and experimental findings prove that probiotic supplements may
restore cognitive disorders [19,21]. Although the present findings
provide further proof for favorable effect of probiotic on the cognitive
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aspects during an abnormal condition of brain, regardless, we are still in
introductory status to judge if and how the probiotics affect learning
and memory.

Plenty reports indicate that brain damages caused by oxidative
stress are importantly involved in pathogenesis of some neurological
disorders, including epilepsy [41–44]. Increasing evidence indicates
that elevated oxidative stress, decreased antioxidant enzyme activity,
and repetitive seizure attacks play an important role in neuronal death
[45]. It is proposed that deficient antioxidant protection mechanisms
and increased lipid peroxidation end products are reasoned for seizural
activity [6–9]. Therefore, antioxidant agents have been expected to
treat epilepsy [46]. Based on studies, AEDs attempt to adjust the
antioxidant/oxidant balance in patients with epilepsy [9,47].

Nevertheless, the effect of AEDs on antioxidant status of epilepsy
has been controversial where both effective [9,47,48] and ineffective
[7,41,49] reports about the effect of AEDs on the antioxidant status of
patients with epilepsy are present. In the present study, we asked if
the probiotic bacteria underlie the brain concentration of the two oxida-
tive stressorsNOandMDA.We found that bothNO andMDA level of the
brain was decreased in the probiotic-administered animals. We also
considered the TAC level of the brain as an indicator of antioxidant.
The probiotic treatment elevated the TAC level of the brain tissue in
the kindled rats.

Nitric oxide synthase (nNOS) is broadly expressed in neurons of
the brain, where it produces NO. This enzyme is structurally associated
with N-methyl-D-aspartic acid (NMDA) receptors [50]. It is
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demonstrated that PTZ kindling activates NMDA receptor [51],
which, in turn, induces nNOS activity [52]. Hence, it is proposed
that, during epileptic condition, nNOS is stimulated through NMDA
receptor activation, which, in turn, enhances NO.

Malondealdehyde, as an oxidative factor, is an indicator of lipid per-
oxidation [46]. It affects ion exchange through cell membranes to cause
cross-linking of membrane compounds, which has undesirable effects
such as altered ion permeability and enzymatic activity. Some studies
have suggested that, indeed, AEDs regulate the oxidant/antioxidant
balance in patients with epilepsy [9,47].

Results of a meta-analysis revealed that probiotic treatment coun-
teracts plasma concentration of oxidative stressors [53]. In an in vitro
study, Lactobacillus plantarum C88 consumption increased TAC but
decreased MDA in liver cells [54]. Also, in a clinical trial, probiotic sup-
plementation increased plasma TAC and decreasedMDA [55]. Increased
level of TAC and decreased level of MDA by probiotic treatment were
demonstrated in the study of Asemi and his colleagues [56]. In our
previous studies, we found that while probiotic intake decreases
plasma level of MDA in the patients with multiple sclerosis and
Alzheimer's disease, the intervention is ineffective on TAC and NO con-
centration [18].

Some other substances have also shown both antiepileptic and
antioxidant properties. Mehvari et al. reported that vitamin E adminis-
tration caused a significant decrease in the frequency of seizures in
patients with epilepsy along with a higher TAC, catalase, and glutathi-
one [57]. Rathor et al. found that Aloe vera leaf extract administration
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was associated with increased latency to onset and decreased duration
of clonic convulsion, reduced brain levels of MDA, and increased levels
of Glutathione (GSH) [58]. Magnesium supplementation displayed the
anticonvulsant effects and enhanced the brain level of GSH and TAC in
PTZ-induced kindled animals [32].

Evidence indicates that probiotics inhibit oxidative stress via re-
ducing inflammation and increasing antioxidant enzymes [59].
Davis and Milner showed that intestinal microbiota provides addi-
tional enzymatic activities involved in the transformation of dietary
compounds leading to increased bioavailability of dietary antioxi-
dant [60]. Importantly, antioxidative stress role of probiotics is
exerted through restoring gut microbiota [61,62]. Concomitantly,
evidence shows that perturbations in the gut microbiome increase
susceptibility to epilepsy [15].

Thus, we concluded that improvement of antioxidant/oxidant ratio
might be anotherwaybywhich the probiotic supplementation prevents
the kindling-induced adverse effects.

5. Conclusion

The present work, as the first study evaluating the effect of probiotic
supplementation on an animal model of epilepsy, revealed that the
probiotic bacteria substantially reduce seizure severity. The oral
bacteriotherapy also partly improved the spatial learning and memory
in the kindled rats. While the imbalance of inhibitory/excitatory neu-
rotransmission and the antioxidant/oxidant agents is known to be
among the main reasons of epileptic seizure, our findings uncovered
that the probiotic treatment reasonably increases the GABA activity
and improves the antioxidant/oxidant balance in the kindled rats.
Nevertheless, our findings are preliminary, and further preclinical and
clinical studies are warranted to provide better scientific support
confirming full potential of probiotics as a therapeutic strategy in
management of epilepsy and epilepsy-associated complications.
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