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The effects of dietary protein levels on the disease resistance, gill immune function and physical barrier
function of grass carp (Ctenopharyngodon idella) were investigated in this study. A total of 540 grass carp
(264.11 + 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2
and 322.8 g digestible protein kg~ ! diet) for 8 weeks. After the growth trial, fish were challenged with
Flavobacterium columnare for 3 days. The results indicated that optimal levels of dietary protein had the
following effects: (1) the production of antibacterial components increased, and anti-inflammatory cy-
tokines, inhibitor of kBa, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels were up-
regulated, whereas mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-kB) P65, NF-
kB P52, IkB kinase (IKK) o, IKKB, IKKYy, el[F4E-binding proteins (4E-BP) 1 and 4E-BP2 were down-regulated
in the gills of grass carp (P < 0.05), indicating that fish gill immune function was enhanced at an optimal
level of dietary protein; (2) the activities and mRNA levels of antioxidant enzymes and glutathione
content increased, the contents of reactive oxygen species, malondialdehyde and protein carbonyl (PC)
decreased, and NF-E2-related factor 2, B-cell lymphoma protein-2, inhibitor of apoptosis proteins,
myeloid cell leukemia-1 and tight junction complexes mRNA levels were up-regulated, whereas Kelch-
like-ECH-associated protein (Keap) 1a, Keap1b, cysteinyl aspartic acid-protease 3, 8, 9, fatty acid syn-
thetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, c-Jun N-terminal protein
kinase, myosin light chain kinase and p38 mitogen-activated protein kinase mRNA levels were down-
regulated in the gills of grass carp (P < 0.05), indicating that the fish gill physical barrier function
improved at an optimal level of dietary protein. Finally, based on the gill rot morbidity, ACP activity and
PC content, the optimal levels of dietary protein for grass carp were estimated to be 286.65 g kg~! diet
(253.73 g digestible protein kg~! diet), 290.46 g kg~! diet (257.76 g digestible protein kg~! diet) and
296.25 g kg~ ! diet (260.69 g digestible protein kg~! diet), respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fish gill is an essential immune-competent organ that plays
a crucial role in respiration, homeostatic equilibrium and immune
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leads to a decline in growth [2] and even an increase in the mor-
tality rate [3]. Therefore, maintaining the status of gill health is
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critically important to fish. In our previous study, dietary protein
supplementation improved the growth performance of grass carp
[4]. It was reported that fish growth is positively correlated with gill
health status [2]. In fish, gill health status is largely dependent on its
immune function [5] and physical barrier function [6]. Studies in
our laboratory show that nutrients such as riboflavin [7] and folic
acid [8] improve the gill immune function and physical barrier
function of grass carp (Ctenopharyngodon idellus). Seifter et al. [9]
found that the content of riboflavin in the liver of rats decreased
with a low protein diet. These data suggest that dietary protein
levels may be associated with fish gill immune function and
physical barrier function, and therefore, these relations warrant
investigation.

To our knowledge, gill immune function depends in part on the
immune response in fish [5]. According to one report, antibacterial
compounds and cytokines play crucial roles in the immune re-
sponses of fish [10]. The transcription levels of cytokines in humans
are mediated by nuclear factor kappa B (NF-kB) [11] and target of
rapamycin (TOR) [12] signalling pathways. However, studies have
not investigated the effects of dietary protein level on gill immune
function or on the possible mechanisms for such effects on fish. A
report demonstrated that supplementation with protein increases
serum levels of insulin-like growth factor 1 (IGF-1) in humans [13],
and Pelosi et al. [14] demonstrated that up-regulation of IGF-1 led
to the down-regulation of gene expression of cytokines tumor
necrosis factor o (TNF-a) and interleukin 1 (IL-1f) in mice skeletal
muscle. Montaseri et al. [15] found that IGF-1 suppresses NF-kB
activation in human articular chondrocytes, and Xian et al. [16]
indicated that IGF-1 activates TOR in mice mesenchymal stem
cells. Based on these studies, a relationship between dietary protein
levels and gill immune function and the related signalling path-
ways in fish is apparent, which is worthy of investigation.

In addition to the immune function of the gill, the physical
barrier function also plays an important role in maintaining the gill
structural integrity of fish, with the barrier composed of epithelial
cells [17] and intercellular tight junction complexes (TJs) [ 18]. Based
on our understanding, the disruption of gill epithelial cells is highly
correlated with oxidative damage [19] and apoptosis [20] in fish.
According to reports, the transcript abundance related to antioxi-
dants and apoptosis may be regulated by NF-E2-related factor 2
(Nrf2) [21] and c-Jun N-terminal protein kinase (JNK) [22] in fish,
respectively. However, to date, no reports have focused on the ef-
fects of dietary protein levels on the structural integrity of gill
epithelial cells or on the possible mechanisms for such effects in
fish. In humans, dietary protein supplementation increases
glucagon-like peptide 1 (GLP-1) [23] and ghrelin concentration
[24]. Abdi et al. [25] found that GLP-1 increases the transcription of
Nrf2 in humans, and Wang et al. [26] reported that ghrelin inhibits
apoptosis and JNK activity in MING6 cells. Based on these data, a
possible relationship between dietary protein levels and antioxi-
dant capacity and apoptosis and the related signalling pathways in
fish gills are likely, which is worthy of further investigation.
Meanwhile, the tight junction complexes (T]s) are essential com-
ponents of the physical barrier, which includes occludin, zonula
occludens (ZO) and claudins in the gills of fish [27]. In fish, the gene
expression of TJs is regulated by myosin light chain kinase (MLCK)
[28]. However, the effects of dietary protein levels on the TJs of gills
or the possible mechanism for such effects in fish have not been
addressed in any study. In rats, dietary protein supplements in-
crease the absorption of intestinal iron [29], and Wang et al. [30]
observed that iron supplementation led to up-regulated mRNA
levels of occludin in the brain of rats. In chicks, a low-protein diet
elevates the plasma cholesterol level [31], and Zhu et al. [32]
demonstrated that a high cholesterol level increases MLCK
expression in rabbits. According to these data, a correlation

between dietary protein levels and the TJs of fish gills and the
related signalling pathway is possible, which requires further
investigation.

In this study, the growth trial was identical to that used in our
previous study [4], which is part of a larger research effort to
determine the effects of dietary protein levels on fish growth and
health status. Because a report indicates that the growth is also
closely correlated with the health of gills in fish [2], we hypothe-
sized that the optimal level of dietary protein would increase gill
immune function and physical barrier function and thereby
improve the status of fish gill health. To test the hypothesis and to
first identify the gill immune function and physical barrier function
of fish, we investigated the effects of dietary protein levels on
antibacterial components, cytokines, antioxidants, apoptosis and
intercellular TJs in the gills of grass carp after challenge with Fla-
vobacterium columnare. Additionally, we further investigated the
effects of dietary protein levels on the related signalling molecules
that included NF-«B, TOR, Nrf2, JNK and MLCK in the gills of grass
carp because an effect on these signalling molecules would provide
theoretical evidence, in part, for the mechanisms of protein-
regulated fish gill immune function and physical barrier function
to maintain gill health. Meanwhile, the optimal levels of dietary
protein for grass carp based on different indices were also evalu-
ated, which may provide a practical evidences for the protective
effects of dietary protein levels on the gill health of fish.

2. Materials and methods
2.1. Experimental diet and procedures

As shown in Table 1, the formulation and approximate compo-
sition analysis of the diets are the same as our previous study [4].
According to Deng et al. [33], fish meal, casein and gelatin were
used as dietary protein sources in a particular ratio at 6:16:3.
Crystalline amino acid mixtures were supplemented to simulate
the amino acid pattern according to the method described by Wang
et al. [34] and Gao et al. [35]. Fish oil and soybean oil were used as
dietary lipid sources. Six experimental diets with different protein
levels (170.0, 210.0, 250.0, 290.0, 330.0 and 370.0 g kg~ ! diet) were
used. The diets were formulated to be iso-energetic according to
the method of Garling et al. [36]. According to Kjeldahl method,
protein contents in the experimental diets were measured to be
169.2, 204.7, 244.3, 283.2, 323.3 and 366.3 g kg~! diet. The
digestible protein levels of grass carp in the six experimental diets
were estimated to be 143.1, 176.7, 217.2, 257.5, 292.2 and
322.8 gkg~! diet, respectively (according to our previous study [4]).
After being prepared completely, the diets were stored at —20 °C as
described by Takakuwa et al. [37].

2.2. Growth trial

The procedures used in this study were approved by the Animal
Care Advisory Committee of Sichuan Agricultural University. Grass
carp were obtained from fisheries (Sichuan, China). Before starting
the experiment, fish were acclimated to the experimental envi-
ronment for 4 weeks according to Kpogue et al. [38]. Then, 540 fish
(mean weight 264.11 + 0.76 g) were randomly assigned to 18
experimental cages (1.4 L x 1.4 W x 1.4 H m), resulting in 30 fish
per cage as described in our laboratory study [39]. Every cage was
equipped with a disc of 100 cm diameter in the bottom to collect
the uneaten feed according to our laboratory study [40]. For the
feeding trial, fish were fed with their respective diets four times
daily for 8 weeks according to Hossain et al. [41]. Thirty minutes
after feeding, uneaten feed was collected, dried and weighed to
calculate the feed intake according to our laboratory study [42].
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Composition and nutrients content of basal diet.
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Ingredients Dietary protein levels (dietary digestible protein levels) (g kg™ ')

169.2 (143.1) 204.7 (176.7) 2443 (217.2) 283.2 (257.5) 323.2(292.2) 366.3 (322.8)
Fish meal 50.1 62.2 74.3 86.5 98.6 110.8
Casein 1335 165.9 198.2 230.7 263.0 295.5
Gelatin 25.0 31.1 37.2 433 493 55.4
a-starch 240.0 240.0 240.0 240.0 240.0 240.0
Corn starch 402.6 352.1 301.8 251.2 201.0 150.5
Fish oil 7.9 7.1 6.3 5.5 4.7 3.9
Soybean oil 19.2 19.2 19.2 19.2 19.2 19.2
Microcrystalline cellulose 50.0 50.0 50.0 50.0 50.0 50.0
Ca(HzPO04)2 33.0 33.0 33.0 33.0 33.0 33.0
DL-Met (98%) 1.7 2.1 24 2.7 3.1 33
L-Arg (99%) 1.5 1.8 2.1 24 2.6 29
Vitamin premix® 10.0 10.0 10.0 10.0 10.0 10.0
Mineral premix” 20.0 20.0 20.0 20.0 20.0 20.0
Choline chloride (60%) 5.0 5.0 5.0 5.0 5.0 5.0
Ethoxyquin (30%) 0.5 0.5 0.5 0.5 0.5 0.5
Nutrient contents
Moisture® 137.0 139.7 142.5 143.5 138.7 131.8
Crude protein® 169.2 204.7 2443 283.2 323.2 366.3
Digestible protein® 143.1 176.7 217.2 257.5 292.2 3228
Crude lipid® 33.1 325 322 322 33.0 33.1
n-3¢ 5.0 5.0 5.0 5.0 5.0 5.0
n-6¢ 10.0 10.0 10.0 10.0 10.0 10.0

3 Per kilogram of vitamin premix (g kg~ '): retinyl acetate (500,000IU/g), 2.10; cholecalciferol (500,000IU/g), 0.40; D, L-a-tocopherol acetate (50%), 12.58; menadione (22.9%),
0.83; cyanocobalamin (1%), 0.94; D-biotin (2%), 0.75; folic acid (95%), 0.42; thiamine nitrate (98%), 0.11; ascorhyl acetate (95%), 4.31; niacin (99%), 2.58; meso-inositol (98%),
19.39; calcium-p-pantothenate (98%), 2.56; riboflavin (80%), 0.63; pyridoxine hydrochloride (98%), 0.62. All ingredients were diluted with corn starch to 1 kg.

b per kilogram of mineral premix (g kg~ ): MnSO4.H,0 (31.8% Mn), 1.8900; MgSO4-H,0 (15.0% Mg), 200.0000; FeS04.H,0 (30.0% Fe), 24.5700; ZnS04.H,0 (34.5% Zn), 8.2500;
CuS04.5H,0 (25.0% Cu), 0.9600; KI (76.9% I), 0.0668 g; Na,SeO3 (44.7% Se), 0.0168. All ingredients were diluted with corn starch to 1 kg.

¢ Moisture, crude protein, digestible protein and crude lipid contents were measured value.

4 n-3 and n-6 contents were calculated according to NRC (2011).

During the experiment, water temperature was averaged at
28 + 2 °C, and pH value was maintained at 7.0 + 0.2. The dissolved
oxygen not less than 6.0 mg L™! according to our laboratory study
[43]. The experimental units were under natural light and dark
cycle as described by Wen et al. [44].

2.3. Challenge trial

After the growth trial, a challenge trial was conducted to study
the effects of dietary protein levels on the immune responses in the
gill of grass carp. F. columnare was kindly provided by the College of
Veterinary Medicine, Sichuan Agricultural University, China, and
was used to cause gill disease in fish [45]. Fifteen fish with similar
body weights were obtained from each treatment group as
described by Shoemaker et al. [45] and acclimatized to the exper-
imental conditions for 5 days according to Arias et al. [46]. At the
end of the acclimatization period, fish were challenged by immer-
sion exposure to 1.0 x 10% colony-forming units (cfu) ml~! of
E columnare for 3 h after which the fish were returned to each
experimental cage to feed for 3 days. The infection dose was suf-
ficient to activate the immune system, and consequently, an
investigation was conducted of effluent on reactivity against a
threatening disease, according to our preliminary study data (un-
published data). During the 3 days challenge trial, fish were fed the
same diets as in the feeding trial four times each day. Experimental
conditions were identical to those in the growth trial.

2.4. Sample collection

At the end of the challenge trial, all fish from each treatment
were anaesthetized in a benzocaine bath as described by Geraylou
et al. [47]. Gill rot is the common gill disease of fish [3]. To inves-
tigate the effects of diets containing graded levels of protein on the
resistance of fish against gill rot, a scoring system was designed to

evaluate the severity of fish gill rot that was similar to Taylor et al.
[3]. When sacrificed, fish gills were quickly removed, frozen in
liquid nitrogen, and stored at —80 °C for later analysis as described
by Chen et al. [7].

2.5. Biochemical analysis

The gill samples were homogenized in 10 vol (w v~!) of ice-cold
physiological saline and centrifuged at 6000 g at 4 °C for 20 min,
and the supernatants were stored until used as described by Li et al.
[48]. The gill lysozyme (LA) and acid phosphatase (ACP) activities,
and complement 3 (C3) and complement 4 (C4) contents were
assayed according to Zhao et al. [49]. The contents of reactive ox-
ygen species (ROS), malondialdehyde (MDA), protein carbonyl (PC)
and glutathione (GSH) in the gills were assayed as described by
Feng et al. [50]. The activities of catalase (CAT) and glutathione
peroxidase (GPx) in the gills were determined according to Chen
et al. [7]. The total superoxide dismutase (SOD) and copper, zinc
superoxide dismutase (CuZnSOD) activities in the gills were
determined as described by Lu et al. [51]. The manganese super-
oxide dismutase (MnSOD) activity in the gills was calculated by
deducting CuZnSOD from total SOD. The glutathione-S-transferases
(GST) and glutathione reductase (GR) activities in the gills were
measured according to Shi et al. [8].

2.6. Real-time polymerase chain reaction (PCR) analysis

The procedures of RNA isolation, reverse transcription and
quantitative real-time PCR were similar to those previously
described in another study conducted in our laboratory [52]. The
total RNA was extracted from the gill samples using RNAiso Plus kit
(TaKaRa, Dalian, Liaoning, China) according to the manufacturer's
instructions followed by DNAse I treatment. RNA quality and
quantity were assessed using agarose gel (1%) electrophoresis and
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spectrophotometric (A260: 280 nm ratio) analysis, respectively.
Subsequently, RNA was reverse transcribed into cDNA using the
PrimeScript™ RT reagent Kit (TaKaRa) according to the manufac-
turer's instructions. For quantitative real-time PCR, specific primers
were designed according to the sequences cloned in our laboratory
and the published sequences of grass carp (Table 2). According to
the results of our preliminary experiment concerning the evalua-
tion of internal control genes (data not shown), f-actin was used as
a reference gene to normalize cDNA loading. The target and
housekeeping gene amplification efficiency were calculated ac-
cording to the specific gene standard curves generated from 10-fold
serial dilutions. The 2724 method was used to calculate the
expression results after verifying that the primers amplified with
an efficiency of approximately 100% as described by Livak and
Schmittgen [53].

2.7. Calculations and statistical analysis

The results were presented as the mean + standard deviation
(SD). All data were subjected to a one-way analysis of variance
(ANOVA) by Duncan's multiple range tests to determine significant
differences among the treatments at P < 0.05 with SPSS 18.0 (SPSS
Inc., Chicago, IL, USA) according to Jiang et al. [54].

3. Results
3.1. Gill rot morbidity of fish after infection with F. columnare

Gill rot morbidity (Fig. 1) after infection with E columnare
gradually decreased with the increase in dietary protein levels up to
257.5 g digestible protein kg~' diet and then gradually increased.
After infection of grass carp with E columnare, compared with low
and high levels of protein, at the optimal level of dietary protein,
the gill rot symptoms were clearly alleviated (Fig. 2).

3.2. Gill immune parameters

The effects of dietary protein levels on the activities of LA and
ACP and the contents of C3 and C4 in the gills of grass carp are
presented in Table 3, and these parameters all gradually increased
with the increase in dietary protein levels up to 176.7, 257.5, 257.5
and 257.5 g digestible protein kg~ diet, respectively, and then all
gradually decreased. As shown in Fig. 3A, based on the quadratic
regression analysis of ACP, the optimal level of dietary protein for
grass carp was estimated to be 257.76 g digestible protein kg~! diet.

3.3. Relative mRNA levels of antimicrobial peptides, cytokines and
related signalling molecules in the gills

The effects of dietary protein levels on immune-related indices
in the gills of grass carp are presented in Figs. 4—6. The mRNA levels
for liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B,
Hepcidin and B-defensin in the gills of grass carp were gradually
up-regulated with increasing dietary protein levels up to 257.5,
217.2, 257.5 and 2575 g digestible protein kg~ diet, respectively,
and then all gradually down-regulated.

The mRNA levels for IL-1f, IL-12p40, interferon y2 (IFN-y2),
TNF-a, NF-kB P65, NF-kB P52, IkB kinase a (IKKa), IKKB, elF4E-
binding proteins 1 (4E-BP1) and 4E-BP2 in the gills of grass carp
were gradually down-regulated with increasing levels of dietary
protein up to 257.5, 257.5, 257.5, 257.5, 292.2, 217.2, 257.5, 257.5,
2575 and 217.2 g digestible protein kg~ diet, respectively; above
these levels, all were gradually up-regulated. The mRNA level of IL-
8 in the gills of grass carp reached the lowest level at 217.2 g
digestible protein kg~' diet (P < 0.05). For IKKy in the gills of grass

carp, the mRNA level was gradually down-regulated with
increasing dietary protein levels up to 176.7 g digestible protein
kg~ ! diet; above this value, the level plateaued (P > 0.05).

The mRNA levels of IL-6, IL-11, transforming growth factor 2
(TGF-B2), inhibitor of kBa. (IkBa), TOR and ribosomal protein S6
kinases 1 (S6K1) in the gills of grass carp were gradually up-
regulated with increasing dietary protein levels up to 257.5, 257.5,
217.2, 257.5, 217.2 and 217.2 g digestible protein kg~' diet, respec-
tively; the levels were then all gradually down-regulated. Fish fed
2575 g digestible protein kg~! diet showed the maximum mRNA
level for TGF-B1 in the gills. However, the mRNA level of IL-10 was
not significantly different in the gills at different levels of dietary
protein (P > 0.05).

3.4. Antioxidant-related parameters, Nrf2, Keapla and Keap1b
relative mRNA levels in the gills

The effects of dietary protein levels on the gill antioxidant-
related parameters of grass carp are shown in Table 4. The con-
tents of ROS and PC in the gills of grass carp both gradually
decreased with the increase in dietary protein levels up to 257.5 g
digestible protein kg~! diet above which the contents gradually
increased. The MDA content in the gills of grass carp decreased
significantly with increasing dietary protein levels up to 257.5 g
digestible protein kg~! diet (P < 0.05) above which the content
plateaued (P > 0.05). The activities of CAT, GPx, GST and GR in the
gills of grass carp were gradually increased with increasing dietary
protein levels up to 217.2, 217.2, 257.5 and 217.2 g digestible protein
kg~! diet, respectively; above these levels, all were gradually
decreased. The GSH content in the gills of grass carp was gradually
increased with increasing dietary protein levels up to 217.2 g
digestible protein kg~! diet above which the content plateaued
(P > 0.05). However, the activity of CuZnSOD was not significantly
different in the gills with different dietary protein levels (P > 0.05).
The activity of MnSOD in the gills of grass carp was gradually
decreased with increasing dietary protein levels up to 2922 g
digestible protein kg~! diet, and then gradually increased. As
shown in Fig. 3B, based on the quadratic regression analysis of PC,
the optimal dietary protein level for grass carp was estimated to be
260.69 g digestible protein kg~ diet.

The effects of dietary protein levels on antioxidant enzymes and
related signalling molecules relative mRNA levels in the gills of
grass carp are presented in Fig. 7. The gene expression of MnSOD,
CAT, GPx1a, GPx1b, GPx4a, GPx4b, GSTR, GSTO, GR and Nrf2 were
gradually up-regulated with increasing dietary protein levels up to
257.5,257.5,257.5,257.5,257.5,217.2,257.5,257.5,257.5 and 257.5 g
digestible protein kg~! diet in the gills of grass carp, respectively,
and then all gradually down-regulated. The CuZnSOD mRNA level
in the gills of grass carp was gradually up-regulated with increasing
dietary protein levels up to 176.7 g digestible protein kg~! diet, and
then plateaued (P > 0.05). The gene expression of Kelch-like-ECH-
associated protein 1a (Keapla) and Keaplb in the gills of grass
carp were both gradually down-regulated with increasing dietary
protein levels up to 257.5 and 217.2 g digestible protein kg~ diet,
respectively, and then gradually up-regulated.

3.5. Relative mRNA levels of apoptosis-related parameters in the
gills

The effects of dietary protein levels on apoptosis and related
signalling molecules relative mRNA levels in the gills of grass carp
are presented in Fig. 8. The cysteinyl aspartic acid-protease 3
(caspase 3), caspase 8, caspase 9, apoptotic protease activating
factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), fatty acid syn-
thetase ligand (FasL) and JNK mRNA levels in the gills of grass carp
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Real-time PCR primer sequences.”

Target gene

Primer sequence forward (5 —3’)

Primer sequence reverse (5 —3')

Temperature (°C)

Accession number

Hepcidin AGCAGGAGCAGGATGAGC GCCAGGGGATTTGTTTGT 59.3 ]Q246442.1
LEAP-2A TGCCTACTGCCAGAACCA AATCGGTTGGCTGTAGGA 59.3 FJ390414
LEAP-2B TGTGCCATTAGCGACTTCTGAG ATGATTCGCCACAAAGGGG 59.3 KT625603
B-defensin TTGCTTGTCCTTGCCGTCT AATCCTTTGCCACAGCCTAA 58.4 KT445868
IFN-y2 TGTTTGATGACTTTGGGATG TCAGGACCCGCAGGAAGAC 60.4 JX657682
TNF-a. CGCTGCTGTCTGCTTCAC CCTGGTCCTGGTTCACTC 58.4 HQ696609
IL-1B AGAGTTTGGTGAAGAAGAGG TTATTGTGGTTACGCTGGA 57.1 ]Q692172
IL-6 CAGCAGAATGGGGGAGTTATC CTCGCAGAGTCTTGACATCCTT 62.3 KC535507.1
IL-8 ATGAGTCTTAGAGGTCTGGGT ACAGTGAGGGCTAGGAGGG 60.3 JN663841
IL-10 AATCCCTTTGATTTTGCC GTGCCTTATCCTACAGTATGTG 61.4 HQ388294
IL-11 GGTTCAAGTCTCTTCCAGCGAT TGCGTGTTATTTTGTTCAGCCA 57.0 KT445870
IL-12p35 TGGAAAAGGAGGGGAAGATG AGACGGACGCTGTGTGAGTGTA 554 KF944667.1
IL-12p40 ACAAAGATGAAAAACTGGAGGC GTGTGTGGTTTAGGTAGGAGCC 59.0 KF944668.1
TGF-B1 TTGGGACTTGTGCTCTAT AGTTCTGCTGGGATGTTT 55.9 EU099588
TGF-B2 TACATTGACAGCAAGGTGGTG TCTTGTTGGGGATGATGTAGTT 55.9 KM279716
NF-kB P52 TCAGTGTAACGACAACGGGAT ATACTTCAGCCACACCTCTCTTAG 58.4 KM279720
NF-kB P65 GAAGAAGGATGTGGGAGATG TGTTGTCGTAGATGGGCTGAG 62.3 K]526214
IkBou TCTTGCCATTATTCACGAGG TGTTACCACAGTCATCCACCA 62.3 KJ125069
IKKo. GGCTACGCCAAAGACCTG CGGACCTCGCCATTCATA 60.3 KM279718
IKKPB GTGGCGGTGGATTATTGG GCACGGGTTGCCAGTTTG 60.3 KP125491
IKKy AGAGGCTCGTCATAGTGG CTGTGATTGGCTTGCTTT 58.4 KMO079079
TOR TCCCACTTTCCACCAACT ACACCTCCACCTTCTCCA 61.4 JX854449
S6K1 TGGAGGAGGTAATGGACG ACATAAAGCAGCCTGACG 54.0 EF373673
4E-BP1 GCTGGCTGAGTTTGTGGTTG CGAGTCGTGCTAAAAAGGGTC 60.3 KT757305
4E-BP2 CACTTTATTCTCCACCACCCC TTCATTGAGGATGTTCTTGCC 60.3 KT757306
occludin TATCTGTATCACTACTGCGTCG CATTCACCCAATCCTCCA 594 KF193855
Z0-1 CGGTGTCTTCGTAGTCGG CAGTTGGTTTGGGTTTCAG 59.4 KJ000055
Z20-2 TACAGCGGGACTCTAAAATGG TCACACGGTCGTTCTCAAAG 60.3 KM112095
claudin b GAGGGAATCTGGATGAGC ATGGCAATGATGGTGAGA 57.0 KF193860
claudin ¢ GAGGGAATCTGGATGAGC CTGTTATGAAAGCGGCAC 594 KF193859
claudin 3 ATCACTCGGGACTTCTA CAGCAAACCCAATGTAG 57.0 KF193858
claudin 7a ACTTACCAGGGACTGTGGATGT CACTATCATCAAAGCACGGGT 59.3 KT625604
claudin 7b CTAACTGTGGTGGTGATGAC AACAATGCTACAAAGGGCTG 59.3 KT445866
claudin 12 CCCTGAAGTGCCCACAA GCGTATGTCACGGGAGAA 55.4 KF998571
claudin 15a TGCTTTATTTCTTGGCTTTC CTCGTACAGGGTTGAGGTG 59.0 KF193857
claudin 15b AGTGTTCTAAGATAGGAGGGGAG AGCCCTTCTCCGATTTCAT 62.3 KT757304
MLCK GAAGGTCAGGGCATCTCA GGGTCGGGCTTATCTACT 53.0 KM279719
FasL AGGAAATGCCCGCACAAATG AACCGCTTTCATTGACCTGGAG 61.4 KT445873
p38 MAPK TGGGAGCAGACCTCAACAAT TACCATCGGGTGGCAACATA 60.4 KM112098
JNK ACAGCGTAGATGTGGGTGATT GCTCAAGGTTGTGGTCATACG 62.3 KT757312
Bcl-2 AGGAAAATGGAGGTTGGGAT CTGAGCAAAAAAGGCGATG 60.3 JQ713862.1
Mcl-1 TGGAAAGTCTCGTGGTAAAGCA ATCGCTGAAGATTTCTGTTGCC 58.4 KT757307
Bax CATCTATGAGCGGGTTCGTC TTTATGGCTGGGGTCACACA 60.3 JQ793788.1
Apaf-1 AAGTTCTGGAGCCTGGACAC AACTCAAGACCCCACAGCAC 61.4 KM279717
IAP CACAATCCTGGTATGCGTCG GGGTAATGCCTCTGGTGCTC 58.4 FJ593503.1
caspase 3 GCTGTGCTTCATTTGTTTG TCTGAGATGTTATGGCTGTC 55.9 JQ793789
caspase 8 ATCTGGTTGAAATCCGTGAA TCCATCTGATGCCCATACAC 59.0 KM016991
caspase 9 CTGTGGCGGAGGTGAGAA GTGCTGGAGGACATGGGAAT 59.0 JQ793787
CuZnSOD CGCACTTCAACCCTTACA ACTTTCCTCATTGCCTCC 61.5 GU901214
MnSOD ACGACCCAAGTCTCCCTA ACCCTGTGGTTCTCCTCC 60.4 GU218534
CAT GAAGTTCTACACCGATGAGG CCAGAAATCCCAAACCAT 58.7 FJ560431
GPx1a GGGCTGGTTATTCTGGGC AGGCGATGTCATTCCTGTTC 61.5 EU828796
GPx1b TTTTGTCCTTGAAGTATGTCCGTC GGGTCGTTCATAAAGGGCATT 60.3 KT757315
GPx4a TACGCTGAGAGAGGTTTACACAT CTTTTCCATTGGGTTGTTCC 60.4 KU255598
GPx4b CTGGAGAAATACAGGGGTTACG CTCCTGCTTTCCGAACTGGT 60.3 KU255599
GSTR TCTCAAGGAACCCGTCTG CCAAGTATCCGTCCCACA 58.4 EU107283
GSTO GGTGCTCAATGCCAAGGGAA CTCAAACGGGTCGGATGGAA 58.4 KT757314
GR GTGTCCAACTTCTCCTGTG ACTCTGGGGTCCAAAACG 59.4 ]X854448
Nrf2 CTGGACGAGGAGACTGGA ATCTGTGGTAGGTGGAAC 62.5 KF733814
Keapla TTCCACGCCCTCCTCAA TGTACCCTCCCGCTATG 63.0 KF811013
Keap1b TCTGCTGTATGCGGTGGGC CTCCTCCATTCATCTTTCTCG 57.9 KJ729125
B-actin GGCTGTGCTGTCCCTGTA GGGCATAACCCTCGTAGAT 61.4 M25013

2 LEAP-2, liver expressed antimicrobial peptide 2; IFN-y2, interferon y2; TNF-a, tumor necrosis factor o; IL, interleukin; TGF-f, transforming growth factor ; NF-kB, nuclear
factor kappa B; IkBa, inhibitor of kBa; IKK, IkB kinase; TOR, target of rapamycin; S6K1, ribosomal protein S6 kinases 1; 4E-BP, eIF4E-binding proteins; ZO, zonula occludens;
MLCK, myosin light chain kinase; FasL, fatty acid synthetase ligand; p38 MAPK, p38 mitogen-activated protein kinase; JNK, c-Jun N-terminal protein kinase; Bcl-2, B-cell
lymphoma protein-2; Mcl-1, myeloid cell leukemia-1; Bax, Bcl-2 associated X protein; Apaf-1, apoptotic protease activating factor-1; IAP, inhibitor of apoptosis proteins;
caspase, cysteinyl aspartic acid-protease; CuZnSOD, copper, zinc superoxide dismutase; MnSOD, manganese superoxide dismutase; CAT, catalase; GPx, glutathione peroxi-
dase; GST, glutathione-S-transferase; GR, glutathione reductase; Nrf2, NF-E2-related factor 2; Keap1, Kelch-like-ECH-associated protein 1.
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Fig. 1. The gill rot morbidity of grass carp (Ctenopharyngodon idella) fed diets con-
taining graded levels of protein after infection with Flavobacterium columnare for 3
days.

dietary protein levels up to 257.5, 257.5 and 217.2 g digestible
protein kg~! diet, and then all gradually down-regulated.

3.6. Relative mRNA levels of TJs, MLCK and p38 MAPK in the gills

The effects of dietary protein levels on intercellular TJs, MLCK
and p38 mitogen-activated protein kinase (p38 MAPK) relative
mRNA levels in the gills of grass carp are presented in Fig. 9. Fish fed
292.2, 2575, 257.5, 217.2, 257.5, 257.5, 257.5, 257.5, 2575 and
2575 g digestible protein kg~! diet showed the maximum mRNA
levels of occludin, ZO-1, ZO-2, claudin c, claudin 3, claudin 7a,
claudin 7b, claudin 12, claudin 15a and claudin 15b in the gills,
respectively, and then all gradually down-regulated. The claudin b
mRNA level in the gills of grass carp was significantly up-regulated
with increasing dietary protein levels up to 176.7 g digestible pro-
tein kg~! diet, and then plateaued (P > 0.05). The MLCK and p38
MAPK mRNA levels in the gills of grass carp were both down-

Low level of protein

High level of protein

Fig. 2. Compared with low and high levels of protein, optimal dietary protein level obviously alleviated gill rot symptom after infection with F columnare in grass carp.

Table 3

Lysozyme (LA, U mg~! protein), acid phosphatase (ACP, U mg~" protein) activities, complement 3 (C3, mg g~ protein) and complement 4 (C4, mg g~ ' protein) contents in the
gill of grass carp (Ctenopharyngodon idella) fed diets containing graded levels of protein for 8 weeks.

Dietary protein levels (dietary digestible protein levels) (g kg™ ')

169.2 (143.1) 204.7 (176.7) 2443 (217.2)

2832 (257.5) 3232 (292.2) 366.3 (322.8)

LA 60.57 + 5.88° 133.91 + 13.00° 133.59 + 12.32°
ACP 114.02 + 6.98% 183.85 + 13.87° 204.99 + 16.06%¢
c3 13.13 + 0.83° 16.11 = 1.19° 18.31 + 1.18¢

c4 1.45 +0.11° 1.67 + 0.15° 231 + 0219
Regression

Ycs = 0.0693x + 3.4431; Yuax = 18.7170
Yca = —1.0092 x 1074x? + 0.0488x — 3.5749

122.04 + 10.28"
192.75 + 26.81°

123.52 + 3.23°
21851 + 14.14%

123.82 + 10.20°
237.27 + 10.48°

19.38 + 0.89¢ 18.75 + 1.29° 18.43 + 1.13¢
2.49 + 0.22¢ 1.89 + 0.18¢ 1.69 + 0.13%
R? = 0.9802 P = 0.090
R? = 0.8388 P = 0.065

! Values are means + SD (n = 6), and different superscripts in the same row are significantly different (P < 0.05).

were gradually down-regulated with increasing dietary protein
levels up to 257.5, 217.2, 257.5, 257.5, 2172, 217.2 and 2575 g
digestible protein kg~! diet, respectively, and then all gradually up-
regulated.

The B-cell lymphoma protein-2 (Bcl-2), inhibitor of apoptosis
proteins (IAP) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in
the gills of grass carp were gradually up-regulated with increasing

regulated with increasing dietary protein levels up to 257.5 g
digestible protein kg~! diet, and then gradually up-regulated.

4. Discussion

This study used the identical growth trial as that in our previous
study [4] and was a part of a larger research effort to determine the
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Fig. 4. Relative expression of LEAP-2A, LEAP-2B, Hepcidin and B-defensin in the gill of grass carp (Ctenopharyngodon idella) fed diets containing graded levels of protein for
8 weeks. Data represent means of six fish in each group, error bars indicate S.D. Values having different letters are significantly different (P < 0.05). LEAP-2, liver-expressed

antimicrobial peptide 2.

effects of dietary protein levels on the growth, immune function
and physical barrier function in fish. In a previous study, at the
optimal level of dietary protein, the growth of grass carp increased
[4]. In fish, in general, growth is dependent on gill health [2]. Thus,
in the current study, first, the effects of dietary protein levels on gill
health in fish were investigated.

4.1. Optimal level of dietary protein improved fish resistance to
disease

Based on our understanding, fish gill health is highly correlated
with the resistance to disease [55]. Moreover, F. columnare, the
etiological agent of columnaris disease, is distributed world-wide
in aquatic environments and is an established pathogen of fresh-
water fish [56]. E columnare induces marked pathologic changes in
numerous ectopic tissues, and the adhesion of F. columnare to the
gill results in pronounced erosion and necrosis of external tissues
[57,58]. Sun et al. [59] found that E columnare infection triggers the
immune events, which were related to the immune function in the
gill of channel catfish. Thus, after the feeding trial, to investigate the
resistance of fish against gill rot, we infected the fish with
E. columnare and evaluated the gill rot morbidity. In this study, we

observed that low and high levels of protein caused 46.67% and
29.33% gill rot morbidity, respectively, whereas at an optimal level
of dietary protein, the gill rot morbidity decreased to 13.33% in
grass carp after infection with E columnare, suggesting that optimal
level of dietary protein improved fish resistance against gill rot.
Based on the quadratic regression analysis of protecting fish against
gill rot morbidity with different levels of dietary protein (Y gii rot
morbidity = 0.0030x? - 1.5224x + 204.9639, R? = 0.9621, P < 0.01), the
optimal dietary protein level for grass carp was estimated to be
253.73 g digestible protein kg~ diet. Fish gill health is also closely
correlated with the immune function [5] and physical barrier
function [6]. Therefore, we next investigated the effects of dietary
protein levels on the gill immune function and physical barrier
function of grass carp.

4.2. Optimal level of dietary protein enhanced immune function in
the gills of fish

4.2.1. Optimal level of dietary protein increased antibacterial
compounds in the gills of fish

The immune function of fish primarily depends on the immune
response, which is closely correlated with antibacterial compounds
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Fig. 5. Relative expression of inflammatory cytokines IL-1f, IL-8, IL-12p35, IL-12p40, IFN-y2, TNF-a, IL-6, IL-10, IL-11, TGF-B1 and TGF-B2 in the gill of grass carp (Cteno-
pharyngodon idella) fed diets containing graded levels of protein for 8 weeks. Data represent means of six fish in each group, error bars indicate S.D. Values having different
letters are significantly different (P < 0.05). IL, interleukin; IFN-y2, interferon y2; TNF-o, tumor necrosis factor o; TGF-p, transforming growth factor p.
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Fig. 6. Relative expression of NF-kB P65, NF-kB P52, IkBo, IKKa, IKKB, IKKY, TOR, S6K1, 4E-BP1 and 4E-BP2 in the gill of grass carp (Ctenopharyngodon idella) fed diets
containing graded levels of protein for 8 weeks. Data represent means of six fish in each group, error bars indicate S.D. Values having different letters are significantly different
(P < 0.05). NF-kB, nuclear factor kappa B; IkBe, inhibitor of kBe; IKK, IkB kinase; TOR, target of rapamycin; S6K1, ribosomal protein S6 kinases 1; 4E-BP, elF4E-binding proteins.

such as LA, ACP, complements and antimicrobial peptides [10,60].
According to Chen et al. [ 7], the gill immune function of grass carp is
enhanced with an increase in LA and ACP activities and C3 content
and the up-regulation of LEAP-2 and Hepcidin mRNA levels. In this
study, compared with low or high levels of protein, at an optimal
level of dietary protein, the activities of LA and ACP and contents of
C3 and (4 increased, and the mRNA levels of LEAP-2A, LEAP-2B,
Hepcidin and B-defensin were up-regulated in the gills of grass
carp. These data indicated that at an optimal level of dietary protein
the gill immune function of fish improved. According to a report,

the immune function in fish is closely correlated with the inflam-
mation response, which is primarily mediated by cytokines [61].
Hence, we next investigated the relationship between dietary
protein levels and cytokines in the gills of grass carp.

4.2.2. Optimal level of dietary protein attenuated inflammatory
response partly through NF-kB and TOR signalling pathways in the
gills of fish

Based on our understanding, inflammatory cytokines in fish are
classified as pro-inflammatory cytokines (such as IL-1f, IL-8 and
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Table 4

MDA (nmol mg ™! protein), PC (nmol mg~! protein) and ROS (% DCF florescence) contents, and activities of CuZnSOD (U mg~! protein), MnSOD (U mg~! protein), CAT (U mg~'
protein), GPx (U mg~" protein), GST (U mg~" protein) and GR (U mg " protein), and GSH (mg g~ protein) content in the gill of grass carp (Ctenopharyngodon idella) fed diets

containing graded levels of protein for 8 weeks.?

Dietary protein levels (dietary digestible protein levels) (g kg")

169.2 (143.1) 204.7 (176.7)

2443 (217.2)

283.2 (257.5)

3232 (292.2)

366.3 (322.8)

ROS 100.00 + 8.20° 98.05 + 6.28° 54.30 + 4.50° 41.52 + 3.78° 42.05 + 2.82° 39.56 + 3.29°
MDA 229 +0.15¢ 211 +0.12° 1.85 +0.17° 1.45 + 0.10° 1.37 £ 0.13% 1.30 £ 0.07°
PC 4.19 + 0.37° 3.65 + 0.34° 334 +0.31%® 3.09 + 0.24% 3.28 +0.14% 3.42 + 0.07%
CuZnSOD 3.64 + 0.66° 3.81 +0.51° 3.74 + 0.64° 3.27 + 0.58° 3.80 + 0.59° 3.58 + 0.44°
MnSOD 3.63 + 1.20¢ 341 + 1.11 2.96 + 0.57°¢ 2.46 + 0.52%¢ 1.60 + 0.55° 2.19 + 0.83%
CAT 0.63 + 0.05 0.63 + 0.06" 0.68 + 0.05° 0.58 + 0.05%° 0.56 + 0.05% 0.56 + 0.05%
GPx 118.46 + 5.29° 125.74 + 8.46%° 131.50 + 7.90° 125.27 + 6.57%° 120.86 + 9.20%° 117.21 + 11.46°
GST 63.17 + 2.79° 70.79 + 5.59° 80.08 + 6.05° 81.05 + 5.54° 75.64 + 7.01°¢ 68.79 + 6.01%
GR 19.64 + 1.75% 21.37 + 2.03° 24.24 +2.11° 23.78 + 2.32P 20.89 + 1.35° 20.02 + 1.32°
GSH 117 £ 0.112 1.28 +0.117 1.45 + 0.08" 1.47 +0.11° 1.42 + 0.09" 1.47 +0.11°
Regression

Yros = —0.5762x + 187.9058; Ypiin = 41.0435 R? = 0.9080 P < 0.05

Ympa = —0.0073x + 3.3720; Yin = 1.3753 R? = 0.9821 P<0.01
Ynmsop = —0.0104x + 5.1759; Yy = 2.0807 R? = 0.9860 P<0.01

Yepx = —0.0014x% + 0.6268x + 58.0601 R? = 0.8695 P <0.05

Yest = —0.0018x2 + 0.8967x — 28.2008 R? = 0.9781 P<0.01

Yer = —5.2240 x 107%x? + 0.2439x — 4.7614 R? = 0.8752 P < 0.05

2 Values are means + SD (n = 6), and different superscripts in the same row are significantly different (P < 0.05). ROS, reactive oxygen species; MDA, malondialdehyde; PC,
protein carbonyl; CuZnSOD, copper, zinc superoxide dismutase; MnSOD, manganese superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GST, glutathione-S-

transferase; GR, glutathione reductase and GSH, glutathione.
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Fig. 7. Relative expression of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b, GPx4a, GPx4b, GSTR, GSTO, GR, Nrf2, Keapla and Keap1b in the gill of grass carp (Ctenopharyngodon
idella) fed diets containing graded levels of protein for 8 weeks. Data represent means of six fish in each group, error bars indicate S.D. Values having different letters are
significantly different (P < 0.05). CuZnSOD, copper, zinc superoxide dismutase; MnSOD, manganese superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GST,
glutathione-S-transferase; GR, glutathione reductase; Nrf2, NF-E2-related factor 2; Keap1, Kelch-like-ECH-associated protein 1.

TNF-2)) and anti-inflammatory cytokines (such as IL-6, IL-10 and
TGF-B1), and down-regulated pro-inflammatory cytokines IL-1,
IL-8 and TNF-o mRNA levels and up-regulated anti-inflammatory
cytokines IL-6, IL-10 and TGF-f1 mRNA levels could attenuate
inflammation [7,62,63]. In the present study, compared with low or
high levels of protein, the optimal levels of dietary protein led to the
down-regulation of the pro-inflammatory cytokines IL-1f, IL-8,
IFN-v2 and TNF-a. mRNA levels and the up-regulation of the anti-
inflammatory cytokines IL-6, IL-11, TGF-f1 and TGF-B2 mRNA
levels in the gills of grass carp. These results suggested that optimal
level of dietary protein could attenuate gill inflammation in fish.
Notably, compared with low or high levels of protein, the mRNA

level were down-regulated for the pro-inflammatory cytokines IL-
12p40 at the optimal level of dietary protein, but we found no
significant effect on the mRNA level of IL-12p35. In this case, for this
study, at different levels of dietary protein, IL-1p might regulate the
mRNA level of IL-12p40 (rather than IL-12p35). As reported for
Atlantic salmon (Salmo salar), IL-1p up-regulates the mRNA level of
IL-12p40 but has no effect on the mRNA level of IL-12p35 [64]. In
this study, at the optimal level of dietary protein, the IL-13 mRNA
level was down-regulated in the gills of grass carp. Correlation
analysis showed that the mRNA level of IL-12p40 was positively
correlated with the mRNA level of IL-1f in the gills of grass carp
(Table 5). According to the above data, we presumed that at
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different levels of dietary protein might regulate IL-12p40 (rather
than IL-12p35) through IL-1f in fish gills, although further inves-
tigation is required. Notably, we also found that different levels of
dietary protein did not alter gene expression of IL-10, with this
phenomenon possibly related to IL-12p35. According to a report,
the down-regulation of IL-12p35 expression increases IL-10 pro-
duction in humans [65]. In this study, we found that different di-
etary protein levels had no significant effect on the IL-12p35 in the
gills of grass carp. Hence, the absence of change in mRNA level of IL-
10 in the gills of grass carp at different levels of dietary protein

might be partly attributed to the IL-12p35 in fish gills. However, to
test this hypothesis, further investigations are required.

As reported, the signalling molecule NF-kB plays a critical role in
mediating gene expression of inflammatory cytokines in humans
[66]. Min et al. [67] found that the inhibition of NF-«kB activation
decreases levels of the pro-inflammatory cytokines IL-1f, IL-8 and
TNF-o in human mast cell lines. It was reported that NF-kB P65 and
NF-kB P52 are the subunits of NF-«B in fish [68]. In the present
study, compared with low or high levels of protein, we found that at
the optimal levels of dietary protein down-regulated NF-kB P65
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Table 5
Correlation coefficient of parameters in the gill of grass carp.
Independent parameters Dependent parameters Correlation coefficients P
IL-1B IL-12p40 +0.878 <0.05
NF-kB P65 IL-1B +0.818 <0.05
IL-8 +0.913 <0.05
TNF-a +0.946 <0.01
IFN-y2 +0.894 <0.05
IL-12p40 +0.973 <0.01
NF-kB P52 IL-1B +0.803 =0.055
TNF-o. +0.836 <0.05
IFN-y2 +0.817 <0.05
IL-12p40 +0.812 <0.05
IkBo NF-kB P65 —0.745 =0.089
NF-kB P52 -0.794 =0.059
IKKo, -0.971 <0.01
IKKB -0.915 <0.05
IKKy —-0.810 =0.051
TOR IL-6 +0.913 <0.05
IL-11 +0.699 =0.122
TGEF-p1 +0.670 =0.145
TGF-p2 +0.843 <0.05
GPx4a mRNA level GPx activity +0.769 =0.074
GPx4b mRNA level GPx activity +0.879 <0.05
GSTR mRNA level GST activity +0.922 <0.01
GSTO mRNA level GST activity +0.926 <0.01
GR mRNA level GR activity +0.893 <0.05
Nrf2 CAT +0.835 <0.05
GPxla +0.817 <0.05
GPx1b +0.967 <0.01
GPx4a +0.877 <0.05
GPx4b +0.822 <0.05
GSTR +0.880 <0.05
GSTO +0.888 <0.05
GR +0.931 <0.01
Keapla Nrf2 -0.713 =0.112
Keaplb Nrf2 -0.871 <0.05
FasL caspase 8 +0.921 <0.01
JNK FasL +0.876 <0.05
caspase 9 caspase 3 +0.899 <0.05
Apaf-1 caspase 3 +0.944 <0.01
Bax caspase 3 +0.940 <0.01
Bcl-2 caspase 3 —0.982 <0.01
Mcl-1 caspase 3 -0.877 <0.05
IAP caspase 3 —0.965 <0.01
MLCK occludin —0.836 <0.05
Z0-1 -0.936 <0.01
Z0-2 —-0.897 <0.05
claudin b -0.677 =0.140
claudin 3 -0.923 <0.01
claudin7a —0.961 <0.01
claudin 7b —0.968 <0.01
claudin 12 -0.938 <0.01
claudin 15a —0.903 <0.05
claudin 15b -0.818 <0.05
p38 MAPK MLCK +0.844 <0.05

and NF-kB P52 mRNA levels in the gills of grass carp. Correlation
analysis indicated that the mRNA levels of pro-inflammatory cy-
tokines TNF-a, IL-1B, IL-8, IFN-y2 and IL-12p40 were positively
correlated with the mRNA levels of NF-kB P65 and NF-kB P52 in the
gills of grass carp (Table 5). The nuclear translocation of NF-kB may
be inhibited by IkBa in humans [69], and Heissmeyer et al. [70]
reported that the IKK complex (including IKKe, IKKB and IKKy)
catalyses IkBo degradation in 293 cells. In the present study,
compared with low or high levels of protein, we found that the
optimal levels of dietary protein led to the down-regulation of IKKa,
IKKB and IKKy mRNA levels and the up-regulation of IkBo. mRNA
level in the gills of grass carp. Correlation analysis indicated that the
mRNA levels of NF-kB P65 and NF-kB P52 were negatively

correlated with that of IkBa and that the mRNA level of IkBa was
negatively correlated with the mRNA levels of IKKa, IKKpB and IKKy
in the gills of grass carp (Table 5). These results suggested that
optimal levels of dietary protein might up-regulate IkBa to inhibit
the nuclear translocation of NF-kB (NF-kB P65 and NF-kB P52) by
down-regulating IKKa, IKKB and IKKy mRNA levels in the gills of
fish.

Additionally, Weichhart et al. [71] reported that the mTOR sig-
nalling pathway is related to the modulation of anti-inflammatory
cytokines gene expression in mammalian innate immune cells. As
reported, S6K1 and 4E-BP are the downstream effectors of TOR in
humans [72], and Guertin et al. [73] found that TOR activates S6K1
and inhibits 4E-BP expression in Drosophila. In human monocytes,
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TOR increases production of the anti-inflammatory cytokines IL-10
[74]. In the present study, compared with low or high levels of
protein, optimal levels of dietary protein led to the up-regulation of
TOR and S6K1 mRNA levels and to the down-regulation of 4E-BP1
and 4E-BP2 mRNA levels in the gills of grass carp. Based on corre-
lation analysis, the mRNA levels of anti-inflammatory cytokines IL-
6, IL-11, TGF-B1 and TGF-B2 were positively correlated with the
mRNA level of TOR in the gills of grass carp (Table 5), suggesting
that optimal levels of dietary protein may partly through [TOR/
(S6K1, 4E-BP1, 4E-BP2)] signalling to up-regulate these anti-
inflammatory cytokines mRNA levels in the gills of fish. The fish
physical barrier, composed of epithelial cells [17] and intercellular
TJs [18], also plays a key role in maintaining the gill structural
integrity. Therefore, we further explored the effects of dietary
protein levels on the integrity of epithelial cells and their inter-
cellular TJs in the gills of grass carp.

4.3. Optimal level of dietary protein improved physical barrier
function in the gills of fish

4.3.1. Optimal level of dietary protein prevented oxidative damage
and elevated antioxidant capacity partly through Nrf2 signalling
pathway in the gills of fish

In fish, an excess of ROS causes oxidative damage to lipids and
proteins, which is reflected in the contents of MDA and PC,
respectively [75,76]. In the present study, compared with low or
high levels of protein, at optimal levels of dietary protein, the
contents of ROS, MDA and PC decreased in the gills of grass carp,
indicating that an optimal level of dietary protein protected fish
from oxidative damage to the gill. To our knowledge, oxidative
damage is closely associated with non-enzymatic antioxidants such
as GSH and antioxidant enzymes such as CAT and GPx in fish
[77,78]. In the present study, compared with low or high levels of
protein, at optimal dietary protein levels, the activities of CAT, GPx,
GST and GR and the content of GSH were increased in the gills of
grass carp, suggesting that at an optimal level of dietary protein the
antioxidant capacity of fish gill improved.

We know that antioxidant enzyme activities are highly corre-
lated with their mRNA levels in fish [79]. In this study, compared
with low or high levels of protein, at optimal levels of dietary
protein, the mRNA levels of CAT, GPx (GPx1a, 1b, 4a, 4b), GST (GSTR,
0) and GR were up-regulated in the gills of grass carp. Correlation
analysis revealed that the activities of CAT, GPX, GST and GR were
positively correlated with their mRNA levels in the gills of grass
carp (Table 5), suggesting that the increase in the activities of
antioxidant enzymes at optimal levels of dietary protein might be
attributed in part to the up-regulation of their mRNA levels in the
gills of fish. Notably, at the optimal level of dietary protein, MnSOD
activity decreased and CuZnSOD activity was not affected, although
the mRNA levels of CuZnSOD and MnSOD were indeed up-
regulated in the gills of grass carp. The different patterns
observed between gene expression and their corresponding
enzyme activities might be explained by two factors, in part. First,
we observed no changes or decreases in enzyme activities because
the increases in mRNA levels of antioxidant enzymes indicated an
adaptive mechanism; the fish gill required more de novo synthesis
of those antioxidant enzymes to scavenge excess ROS, but at either
low or high levels of protein, the activities of those antioxidant
enzymes were constantly inactivated by the ROS. Similar results
were observed in previous studies in our laboratory with Jian carp
(Cyprinus carpio var Jian) [80,81]. Second, the enzyme activities are
influenced not only by gene transcription but also by post-
transcriptional processes (such as translation and post-
translational modification) in fish [80]. However, determination
of the exact mechanism requires further investigation.

Moreover, Nrf2 is reported to be a key factor in promoting gene
transcription of antioxidant enzymes in HepG2 cells [82]. In the
present study, compared with low or high levels of protein, at the
optimal level of dietary protein, the mRNA level of Nrf2 was up-
regulated in the gills of grass carp. Based on correlation analysis,
the mRNA levels of CAT, GPx1a, GPx1b, GPx4a, GPx4b, GSTR, GSTO
and GR were positively correlated with the mRNA level of Nrf2 in
the gills of grass carp (Table 5), suggesting that optimal level of
dietary protein may partly through up-regulating Nrf2 trans-
location to up-regulate these antioxidant enzymes gene expression
in the gills of fish. Meanwhile, Nrf2 constitutively binds to Keap1 in
the cytoplasm of fish [83], and Velichkova and Hasson [84]
demonstrated that knockdown of Keap1 gene increases Nrf2 ac-
tivity in mice. In this study, compared with low or high levels of
protein, at optimal levels dietary protein, the mRNA levels of
Keapla and Keap1b were down-regulated in the gills of grass carp.
Based on correlation analysis, the mRNA level of Nrf2 was nega-
tively correlated with the mRNA levels of Keap1a and Keap1b in the
gills of grass carp (Table 5), suggesting that optimal level of dietary
protein may promote Nrf2 translocation into the nucleus by down-
regulating Keapla and Keaplb mRNA levels in the gills of fish.
Additionally, based on a previous study in our laboratory, oxidative
damage induces apoptosis in the gills of grass carp [50]. Therefore,
we further examined the effects of dietary protein levels on
apoptosis in the gills of grass carp.

4.3.2. Optimal level of dietary protein inhibited apoptosis partly
through JNK signalling molecules in the gills of fish

As generally acknowledged, caspases play a central role in
apoptotic responses and are broadly divided into initiators, such as
caspase 8 and caspase 9, and effectors, such as caspase 3 in Jurkat T
lymphoblastoid cells [85]. In the present study, compared with low
or high levels of protein, at optimal levels of dietary protein, the
mRNA levels of caspase 3, caspase 8 and caspase 9 were down-
regulated in the gills of grass carp, indicating that optimal level of
dietary protein could inhibit apoptosis in fish gills. In humans, the
two primary pathways to initiate apoptosis are the death receptor
pathway and the mitochondrial pathway [86]. The death receptor
pathway is primarily regulated by FasL and caspase 8 in rats [87],
and the inhibition of FasL can decrease caspase 8 activity in Jurkat T
lymphocytes [88]. In our study, compared with low or high levels of
protein, at an optimal level of dietary protein, the mRNA level of
FasL was down-regulated in the gills of grass carp. Based on cor-
relation analysis, the mRNA level of caspase 8 was positively
correlated with the mRNA level of FasL in the gills of grass carp
(Table 5), suggesting that optimal level of dietary protein might be
part through down-regulating FasL mRNA level to down-regulate
caspase 8 mRNA level in the gills of fish. Additionally, inhibition
of JNK suppresses FasL expression in human ovarian carcinoma
cells [89]. In this study, compared with low or high levels of protein,
at the optimal level of dietary protein, the mRNA level of JNK was
down-regulated in the gills of grass carp. Based on correlation
analysis, the mRNA level of FasL was positively correlated with that
of JNK in the gills of grass carp (Table 5), suggesting that optimal
level of dietary protein down-regulated FasL mRNA level might be
partly related to the down-regulated mRNA level of ]NK in the gills
of fish. According to the above results, at different levels of dietary
protein, JNK/FasL/caspase 8 signalling might regulate the death
receptor apoptotic pathway in the gills of fish.

The Bcl-2 family includes anti-apoptotic members (such as Bcl-2
and Mcl-1) and pro-apoptotic members (such as Bax), which play
key roles in the mitochondrial apoptotic pathway in humans [86].
Additionally, IAP inhibits caspases in mammals [90]. Inactivated
Apaf-1 inhibits the activation of caspase 9, leading to the sup-
pression of caspase 3 in human embryonic kidney 293T cells [91].
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With the reported inhibition of pro-apoptotic Apaf-1 and Bax and
the increase of anti-apoptotic Bcl-2, Mcl-1 and IAP suppress the
cascade of reactions with the assistance of caspases in mammalian
cells [92]. In the present study, compared with low or high levels of
protein, at optimal levels of dietary protein, the mRNA levels of pro-
apoptotic Apaf-1 and Bax were down-regulated and anti-apoptotic
Bcl-2, Mcl-1 and IAP were up-regulated in the gills of grass carp.
Based on correlation analysis, the mRNA level of caspase 3 was
positively correlated with the mRNA levels of caspase 9, Apaf-1 and
Bax, whereas the correlation was negative with Bcl-2, Mcl-1 and
IAP mRNA levels in the gills of grass carp (Table 5), suggesting that
the optimal level of dietary protein might be partly by down-
regulating the mRNA levels of caspase 9, Apaf-1 and Bax and up-
regulating the mRNA levels of Bcl-2, Mcl-1 and IAP to down-
regulate the mRNA level of caspase 3 in the gills of fish. As these
data indicate, at different levels of dietary protein, the mitochon-
drial apoptotic pathway might be partly regulated through (Apaf-1,
Bax, Bcl-2, Mcl-1, IAP)/caspase 9/caspase 3 signalling in fish gills.
We know TJs are an important part of the physical barrier for the
fish gills [18]. Therefore, we next investigated the effects of dietary
protein levels on the tight junctions in the gills of grass carp.

4.3.3. Optimal level of dietary protein strengthened tight junctions
partly through MLCK and p38 MAPK signalling molecules in the gills
of fish

In fish, the gill tight junction is composed primarily of TJs, such
as occludin, ZO-1 and claudins [93]. The up-regulation of occludin,
Z0-1 and claudin 12 mRNA levels revealed that damage to the gill
epithelial T] barrier function was attenuated in grass carp [94]. In
the present study, compared with low or high levels of protein, at
the optimal levels of dietary protein, we found that occludin, ZO-1,
Z0-2, claudin c, claudin b, claudin 3, claudin 73, claudin 7b, claudin
12, claudin 15a and claudin 15b mRNA levels were up-regulated in
the gills of grass carp. These finding suggested that optimal level of
dietary protein could enhance tight junction barrier in the gills of
fish. In this case, at different levels of dietary protein, the regulation
of the TJs in fish gills may be associated with MLCK. It was reported
that inhibition of MLCK expression prevents the redistribution of
occludin, ZO-1 and claudins, which improves tight junction barrier
function in T84 cells [95]. In this study, compared with low or high
levels of protein, at the optimal level of dietary protein, the gene
expression of MLCK was down-regulated in the gills of grass carp.
Based on correlation analysis, the mRNA levels of TJs (i.e. occludin,
Z0-1, Z0-2, claudin ¢, claudin b, claudin 3, claudin 7a, claudin 7b,
claudin 12, claudin 15a and claudin 15b) were negatively correlated
with MLCK mRNA level in the gills of grass carp (Table 5). These
results indicated that the up-regulation of T] proteins in the gill at
different levels of dietary protein was partly related to MLCK gene
expression in fish. Moreover, MLCK gene expression is regulated by
its upstream signalling molecule p38 MAPK, and the inhibition of
p38 MAPK leads to the down-regulation of the MLCK gene
expression in breast cancer cells [96]. In the present study,
compared with low or high levels of protein, at the optimal level of
dietary protein, the gene expression of p38 MAPK was down-
regulated in the gills of grass carp. Based on correlation analysis,
the mRNA level of MLCK was positively correlated with that of p38
MAPK in the gills of grass carp (Table 5), suggesting that optimal
level of dietary protein down-regulated MLCK gene expression may
be partly due to the down-regulation of p38 MAPK mRNA level in
the gills of fish.

Of note in this study, the gene expression of ZO-2 and claudin
15b in the gills of grass carp were up-regulated at the optimal level
of dietary protein. In previous studies in the intestine of this species
of fish, we found that different levels of dietary protein had no
significant effect on the mRNA levels of ZO-2 and claudin 15b [4].

Until this study, no information on the effect of dietary protein
levels on ZO-2 gene expression in different tissues was available,
and we hypothesized that the reasons were related to gene
expression of IL-12p35. As reported, the inhibition of pro-
inflammatory cytokine IL-12 production increases ZO-2 expres-
sion [97], and IL-12p35 is one of the subunits of IL-12 [98] in mice.
In our studies, at the optimal level of dietary protein, IL-12p35 gene
expression was down-regulated, but for the mRNA level of ZO-2,
there was no significant change in the intestine. In contrast to the
intestine, in the gill, at different levels of dietary protein, the mRNA
level of IL-12p35 was not affected, whereas the gene expression of
Z0-2 was up-regulated. Thus, the discrepancies in gene expression
of ZO-2 in different tissues, as affected by dietary protein levels,
might be due to IL-12p35. However, this possible mechanism re-
quires further investigation. Additionally, the cause for the dis-
crepancies in the data for claudin 15b from different tissues
remains unclear, with two possible explanations for these dis-
crepancies. First, the difference in the mRNA level of claudin 15b in
grass carp gill versus intestine might be related to the transcript
abundance in fish. Sun et al. [99] reported that the gene expression
of claudin 15a is higher than that of claudin 15b in the intestine of
fish, whereas the mRNA level of claudin 15a is similar to that of
claudin 15b in the gills of channel catfish (Ictalurus punctatus).
These data might explain the discrepancies in gene expression of
claudin 15b between the intestine and gill in fish. Second, this
discrepancy might be partly explained by the function of claudin
15. According to a literature report, claudin 15 creates Na*-selective
paracellular channels, which are associated with Na"-K"-ATPase in
fish gills [100]. Meanwhile, a dietary protein supplement increases
plasma growth hormone concentration in sea bream (Sparus aur-
ata) [101], and McCormick [102] found that growth hormone
enhanced the Na™-K*-ATPase activity in the gill of Atlantic salmon
(Salmo salar). Hence, we hypothesize, at the optimal level of dietary
protein, more Nat was required for transport than at low or high
levels of protein and therefore, caused the up-regulation of claudin
15b in the gills, which did not occur in the intestine of fish. How-
ever, to test this hypothesis, further investigations are required.

4.4. Comparison of optimal levels of dietary protein for grass carp
based on the different indices

In this study, we investigated optimal levels of dietary protein
for grass carp based on different indices. The optimal level of di-
etary protein for the against gill rot morbidity in grass carp (264 g-
787 g) was estimated to be 286.65 g kg~ diet (253.73 g digestible
protein kg™! diet). Additionally, based on the biochemical indices
[immune-related indices (ACP activity) and antioxidant-related
indices (PC content)], the optimal levels of dietary protein for
grass carp (264 g-787 g) were estimated to be 290.46 g kg~! diet
(257.76 g digestible protein kg~! diet) and 296.25 g kg~ ! diet
(260.69 g digestible protein kg~! diet), respectively. These optimal
levels of dietary protein for grass carp (264 g-787 g) were based on
disease resistance, and the immune-related and antioxidant-
related indices were slightly higher than (or close to) that on the
growth requirement 286.82 g kg~ diet (250.66 g digestible protein
kg~! diet) evaluated in our previous study [4], suggesting that
slightly more dietary protein was required to maintain gill health.

5. Conclusions

Overall, our study showed that an optimal level of dietary pro-
tein improved fish gill health, and we are also the first to reveal the
possible mechanisms in fish gills. We found that at optimal levels of
dietary protein, the production of antibacterial compounds
increased and the gene expression of pro-inflammatory cytokines
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down-regulated and that of anti-inflammatory cytokines up-
regulated, in addition to an increase in antioxidant capacity,
inhibited apoptosis and an improved tight junction barrier in the
gills of grass carp after infection with E columnare, leading to the
increase of gill immune function and physical barrier function in
fish. Moreover, the improvement in fish gill immune function and
physical barrier function at optimal level of dietary protein might
partially involve the signalling molecules NF-«B, TOR, p38 MAPK,
MLCK, JNK and Nrf2. Additionally, based on the gill rot morbidity,
ACP activity and PC content, the optimal levels of dietary protein for
grass carp (264 g-787 g) were estimated to be 286.65 g kg~ ! diet
(253.73 g digestible protein kg~! diet), 290.46 g kg~! diet (257.76 g
digestible protein kg~ diet) and 296.25 g kg~! diet (260.69 g
digestible protein kg~! diet), respectively.
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