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We model how asset allocation decisions in a defined contribution (DC) pension plan might vary with

participants’ attitudes about risk and regret. We show that anticipated disutility from regret can have a

potent effect on investment choices. Compared to a risk-averse investor, the investor who takes regret into

account will hold more stock when the equity premium is low but less stock when the equity premium is high.

We also assess how regret can influence a DC plan participant’s view of rate-of-return guarantees, as measured

by his willingness-to-pay. We find that regret increases the regret-averse investor’s willingness to pay for a
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1 Introduction

This paper evaluates the portfolio allocation behavior of participants in defined contribution (DC) plans, taking

account of the possibility that such pension plan investors may be influenced by the prospect of regret. For

example, if the return on a specific asset turns out to be very high when a worker retires, he might regret not

having allocated a large enough portion of his contributions to that asset. Conversely, if the stock market does

poorly, the retiree might regret having invested in the stock market. Such anticipated disutility from regret is

particularly important in the context of a DC pension, since most participants select an initial asset allocation

when they join the plan but often do not manage their retirement accounts actively thereafter.1

Regret theory was developed by Loomes and Sugden (1982) and Bell (1982) and axiomatized by Sugden (1993)

and Quiggin (1994). In that work, as here, regret is defined as the disutility of not having chosen the ex-post

optimal alternative. Behavior compatible with such a preference structure has been observed in many contexts,

where it often explains deviations from expected utility models traditionally used in the finance and insurance

literature (cf Loomes and Sugden, 1987; Loomes,1988; Baron and Hershey, 1988; Loomes et al. 1992; Starmer

and Sugden, 1993; Connolly and Reb, 2003). Recently regret theory has been applied by Braun and Muermann

(2004) to insurance demand, and by Gollier and Salanie (2005) to risk-sharing and asset pricing in a complete

market setting. To date, researchers have not focused on how regret might alter investor behavior.

In the present paper, our goal is to examine the effect of regret on investment behavior and participants’ value

of guarantees in DC pension plans. Section 2 assesses how regret can influence the asset allocation decision in a

retirement account, between risk-free and risky assets. To protect retirees against capital market risk, some have

suggested that participants would benefit from financial products that will protect them against down-side asset

fluctuations (c.f. Lachance and Mitchell, 2003). It is interesting that Germany and Japan recently mandated that

DC participants be offered a principal-guaranteed account, on the grounds that this will make defined contribution

plans more attractive to unsophisticated participants (Maurer and Schlag, 2003). In Section 3, we evaluate the

impact of regret on participants’ willingness-to-pay for a guarantee on the risky asset. Section 4 offers concluding

remarks and areas for further research. All proofs are in the Appendix.

1Agnew et al (2003), in a study of 401k plan participants, report that the vast majority (87 percent) of participants had no annual
trades; over a four year period, only a single trade took place per participant. Similarly, Ameriks and Zeldes (2000) show that almost
half of all TIAA-CREF participants made no changes in their asset allocations at all during the decade 1987-96. Additionally,
Madrian and Shea (2001) find employees procrastinate in making or implementing savings decisions in 401(k) plans of large U.S.
corporations.
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2 The Impact of Regret on Portfolio Allocation

We begin by examining investment behavior in a DC setting under regret aversion. Suppose an investor has

initial wealth w0 which he can allocate between a risky and a risk-free asset. The return of the risky asset is

given by a random variable R which is distributed according to some cumulative distribution function F , whereas

the risk-free asset yields a deterministic return rf . In making his portfolio choice, the investor takes into account

the fact that he may regret having made an investment decision that proves to be suboptimal ex-post. For

example, if the return on the risky asset turns out to be very high, the investor might regret not having allocated

his total wealth to the risky asset. In the contrary case, if the return of the risky asset turns out to be very low

or negative, the investor could regret having allocated any wealth to the risky asset at all.

To examine the impact of regret on the participant’s ex-ante allocation of wealth, we follow the approach of

Braun and Muermann (2004) to pose the investor’s preferences as a two-attribute Bernoulli utility function

uk (w) = u (w)− k · g (u (wmax)− u (w)) .

Here w = w0 (1 + αR+ (1− α) rf ) is the actual level of wealth and wmax is the ex-post optimal level of final

wealth, i.e. the level of wealth that results from the optimal ex-ante allocation had the investor known the realized

return of the risky asset. The first attribute accounts for risk aversion and is characterized by the investor’s utility

function u (·) with u0 > 0 and u00 < 0. The second attribute relates to the fact that the investor is concerned

about the prospect of regret. The function g (·) measures the amount of regret that the investor experiences,
which depends on the difference between the value he assigns to the ex-post optimal level of wealth wmax that

he could have achieved, and the value that he assigns to his actual final level of wealth w. The parameter k ≥ 0
measures the importance of the second attribute “regret” relative to the traditional first attribute expressive of

risk aversion. We assume that g (·) is increasing and strictly convex, i.e. g0 > 0 and g00 > 0, which implies

regret-aversion. For k = 0, the investor would simply be a traditional risk-averse expected utility maximizer, i.e.

u0 (w) = u (w).

To determine the ex-post optimal level of final wealth wmax for this investor, we must distinguish the cases

when the risky asset’s realized return exceeds the risk-free rate, R ≥ rf , from when R < rf . In the first case,

the regret-averse investor would have wanted to invest all wealth in the risky asset, whereas in the second case it
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would have been optimal to invest all wealth in the risk-free asset. Therefore

wmax =

 w0 (1 +R)

w0 (1 + rf )
if

R ≥ rf

R < rf

.

We now compare how anticipation of regret influences the investor’s optimal asset allocation. Let α∗k denote

the optimal fraction invested in the risky asset by an investor with regret parameter k ≥ 0 where α∗0 = α∗. The

following proposition shows that a regret-averse investor will always “hedge away from the extremes.” In other

words, compared to a traditional risk-averse investor, he will select a riskier portfolio allocation if the equity

premium is low, and a more moderate portfolio allocation if the equity premium is high.

Proposition 1 If E [R]− rf = 0 then α∗k > 0 for all k > 0 whereas α∗0 = 0. If E [R]− rf =
Cov(−R,u0(w0(1+R)))

E[u0(w0(1+R))]

then α∗k < 1 for all k > 0 whereas α∗0 = 1.

Proof. See Appendix A.1.

The regret-averse investor always invests a positive amount of his wealth in the risky asset (here, termed

stocks), even if the equity premium equals zero; by contrast, a risk-averse investor would hold all risk-free assets

(here, termed bonds) in that case. Additionally, for a sufficiently large equity premium, the regret-averse investor

always invests a positive amount in the risk-free asset, whereas the risk-averse investor holds all stocks. This

may be explained intuitively, by noting that taking an extreme position, e.g. all riskless, exposes the investor to

the possibility of facing extreme regret if stocks do well. By avoiding all bonds, the worker will feel less regret

if stocks do well but, in return, he will feel some regret if they do poorly. Regret aversion, i.e. convexity of g,

leads to suboptimality of extreme decisions.

In the following proposition, we show that higher regret amplifies the effect of “hedging one’s bet.”

Proposition 2 If the investor weights regret more strongly, relative to risk aversion, as measured by k, then for

E [R]− rf = 0 he invests more in the risky asset, whereas for E [R]− rf =
Cov(−R,u0(w0(1+R)))

E[u0(w0(1+R))]
he invests less in

the risky asset, i.e.
∂α∗k
∂k > 0 if E [R]− rf = 0

∂α∗k
∂k < 0 if E [R]− rf =

Cov(−R,u0(w0(1+R)))
E[u0(w0(1+R))]

.

Proof. See Appendix A.2.
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In other words, the more regret-averse the participant, the more likely he will be to hold stock in his portfolio

as long as the equity premium, E [R] − rf , is low. Conversely, he will hold less stock if the equity premium is

high.

In the next proposition, we show that there exists a risk-free rate of return brf , and therefore a level of equity
premium, where regret has no impact on the investor’s optimal fraction invested in the risky asset. That is, a

regret-averse investor holds the same portfolio allocation as a risk-averse investor, at that equity premium.

Proposition 3 There exists brf such that 0 < E [R]− brf <
Cov(−R,u0(w0(1+R)))

E[u0(w0(1+R))]
and α∗k = α∗0 for all k > 0.

Proof. See Appendix A.3.

In other words, for some intermediate level of the equity premium, a regret-averse investor chooses a portfolio

allocation as if he did not consider regret.

We summarize our findings in Figure 1. The equity premium is on the x-axis and the optimal level of

investment in the risky asset is depicted on the y-axis. With a zero equity premium, the risk-averse investor

would invest all of his wealth in the risk-free asset (α∗0 = 0). By contrast, the regret-averse investor would place

some of his wealth in the stock (α∗k > 0). As the level of regret aversion rises, i.e. k2 > k1, the amount of wealth

invested in the stock increases. With a relatively large equity premium, the risk-averse investor allocates all of

his wealth to stock (α∗0 = 1), while the regret-averse investor invests some money in the risk-free asset (α∗k < 1).

As the level of regret aversion increases, with a high equity premium, the amount of wealth invested in stock

decreases.

Our results therefore imply that pension plan participants with regret-averse preferences will select portfolio

allocations “less extreme” than those predicted by conventional expected utility. If a very risky portfolio were

selected by a purely risk-averse worker, his regret-averse counterpart will elect a less risky portfolio; conversely,

when the purely risk-averse individual is predicted to chose a non-risky portfolio, the regret-averse individual

would prefer a riskier portfolio. In essence, individuals who are regret-averse will tend to “hedge their bets,”

taking into account the possibility that their decisions may turn out to be ex-post suboptimal. Note that for an

equity premium that is sufficiently high, these predictions can help explain the equity premium puzzle.
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Figure 1: Asset Allocation under Regret Aversion

3 Guarantees: Mitigating Regret and Willingness-To-Pay

Next we assume that a guaranteed rate of return on the risky asset is made available. Guarantees may help

mitigate the regret experienced by investors, by protecting their wealth in states of the world where realized stock

outcomes are poor. The benefit of a guarantee is valuable for high levels of investment in the risky asset. For

example, an investor with a substantial portion of his wealth in stocks who finds himself in a state of the world

with a low realized return on this investment would experience a great deal of regret from having made such

a decision. Of course, a guarantee on an investment would offer some wealth protection, which would reduce

the individual’s feeling of regret. Certainly this regret mitigation feature of a guarantee is most beneficial when

the fraction of wealth invested in the risky asset is high. On the other hand, a guarantee also introduces an

additional cost to regret-averse investors. Ex-post, it is optimal to have either invested all wealth in the risky

asset, or all in the risk-free asset. Buying a guarantee therefore could exacerbate ex-ante regret.

A range of pension guarantee mechanisms might be contemplated for DC pension plans, though in practice

they tend to take the form of either a rate of return guarantee or a minimum benefit guarantee. In the present
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paper, we focus on the former structure, wherein a pension manager commits to return to the worker his or her

contributions plus some stipulated rate of return. A variation on this is a principal guarantee, simply equivalent

to guaranteeing a nominal rate of return of zero percent. By contrast, Feldstein and Samwick (2001) have

suggested an alternative for the US, namely a real principal guarantee; a more generous plan still might promise

to pay back contributions plus the 10-year Treasury bond return.

The costs of providing such guarantees depends, of course, on how the guarantees are designed.2 First, it

matters how often the promise must be kept. For example, it might be sufficient to structure the program

so that the minimum return is evaluated only at the worker’s retirement date, rather than annually or more

frequently.3 Second, the cost of the pension guarantee depends on how much investment risk is borne by the

DC plan investor. Participants could make the guarantee more valuable, and hence more costly, if they have

an opportunity to chose riskier DC plan assets after receiving the guarantee. This moral hazard problem has

been recognized by Bodie and Merton (1993) and Smetters (2002), among others, and it has prompted some

countries to impose portfolio restrictions on investors’ DC pension asset allocations. For instance, Mexico and

Chile originally required that DB plan participants hold an all-bond portfolio. Alternatively, employers could

offer workers in DC plans some protection from market fluctuations without mandating a risk-free portfolio. This

can be accomplished by providing a guaranteed return on the risky asset (Turner and Rajnes, 2003; Walliser,

2003).

In this section, we examine how investors might value a pension guarantee by comparing the Willingness-To-

Pay (WTP) for such a guarantee for a regret-averse versus a risk-averse investor. The WTP is derived from an

indifference relation between a portfolio with and without the guarantee, and thus it provides a measure of how

much an individual values the guarantee.4

Let rg ≥ −1 be the guaranteed return on the risky asset. The return of this contingent contract is therefore
Rg = max (R, rg).5 As noted above, the guarantee does not alter the ex-post optimal level of final wealth wmax.

The ex-post optimal decision is to invest one’s entire portfolio in the risky asset, if its realized return is above the

risk-free rate of return, and all of it in the risk-free asset if otherwise, i.e. wmax = w0 (1 +max (R, rf )).

2 See, for instance, Lachance et al. (2003) and Mitchell and Smetters (2003).
3Pennachi (1999) and Fischer (1999) note that a more frequent minimum bar could be set, as in Chile, where pension plans must

meet an annual minimum threshold, or in Columbia, where three-year periods are used.
4Boulier et al. (2001) and Deelstra et al. (2003) derive optimal investment strategies of DC plan managers in the presence of

minimum guarantees. In this paper, we are concerned with how plan participants differently value guarantees depending on whether
they are regret-averse or not.

5Alternatively, the guaranteed return could apply to the entire portfolio. Our results extend to this case by redefining rg accordingly.
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Let Pk (rg, ᾱ) denote the maximum price the investor with regret parameter k ≥ 0 is willing to pay for the
guaranteed return rg, if his risky asset allocation were fixed at ᾱ.6 His WTP Pk (rg, ᾱ) is then determined by

the following indifference equation

E [uk (w0 (1 + ᾱR+ (1− ᾱ) rf ))] = E [uk (w0 − Pk (rg, ᾱ)) (1 + ᾱRg + (1− ᾱ) rf )] . (1)

Obviously, if no guarantee is provided, rg = −1, the investor’s WTP is zero, i.e. Pk (−1, ᾱ) = 0 for all

0 ≤ ᾱ ≤ 1. In addition, if the investor’s wealth were fixed all in bonds, his WTP for the stock guarantee is zero,
i.e. Pk (rg, 0) = 0 for all −1 ≤ rg ≤ rf .

In the following proposition, we show that a regret-averse investor values the guarantee less than the risk-

averse investor, when the fraction of wealth invested in the risky asset is low. However, if the fraction of wealth

invested in the risky asset is high, and the level of guaranteed return is low, a regret-averse investor will find the

guarantee more valuable than the risk-averse investor.

Proposition 4 Pk (rg, ᾱ) < P0 (rg, ᾱ) for low levels of ᾱ and all rg and Pk (rg, ᾱ) > P0 (rg, ᾱ) for high levels of

ᾱ and low levels of rg.

Proof. See Appendix A.4.

If the portfolio share in the risky asset is low, the regret-averse investor would be willing to pay less for the

guarantee than would a risk-averse investor. In this case, the benefits of the guarantee in mitigating regret are

low and outweighed by its added “regret cost” through the price. In contrast, when investment in the risky asset

is high and the guaranteed rate of return low, the benefits of regret mitigation would be high, outweighing its

cost. A regret-averse investor then values the guarantee more than a risk-averse investor.

4 Conclusions and Future Research

The last three decades have brought a dramatic transformation in the pension institution, with defined benefit

plans being replaced by defined contribution plans. In the traditional DB context, employers hired sophisticated

money managers to make asset allocation decisions; in DC pensions, by contrast, individual participants now

bear the risk and consequences of their pension asset allocation patterns. Recent research in behavioral finance

6We fix the investor’s portfolio allocation to mitigate the moral hazard problem of investors rebalancing their portfolio due to the
provided guarantee.
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suggests that workers faced with having to save and invest for their own retirement often fail to behave as

conventional expected utility models would predict.7

This paper shows how regret can influence investor portfolio allocations in such individually-managed DC

pensions. We also illustrate how much a regret-averse investor might be willing to pay for a rate of return

guarantee on the risky asset, given a fixed portfolio allocation. Our results show that regret moves investors’

decisions away from the extremes, if no guarantee is present. That is, investors who take regret into account will

hold more stock when the equity premium is low, but less stock when the equity premium is high. This result

may explain the equity premium puzzle, since for a sufficiently high equity premium a regret-averse investor will

hold less stock than a risk-averse investor. We also show that regret-averse investors value return guarantees

less than purely risk-averse investors, when the investment in the risky asset is small. Conversely, regret-averse

investors value return guarantees more than risk-averse investors when the investment in the risky asset is large

and the return guarantee is small. This work therefore has implications for efforts to add a DC component to a

national Social Security system and the likely importance of guarantees in this context (c.f. Cogan and Mitchell,

2003).

Extensions of our research might be fruitful. For instance, van der Hoek and Sherris (2001) have proposed a

risk measure that has a concave distortion function above a given reference point, but a convex distortion function

below that point. It would be interesting to translate their work to the regret context, using the ex-post optimal

level of wealth as the relevant reference point. Additionally, we could investigate what happens if the fraction

of the DC pension plan invested in risky assets cannot be fixed ex-ante. In this case, it would be of interest to

ask whether there is an incentive-compatible contract which would still permit an attractive guarantee, without

being prohibitively expensive.

7Mitchell and Utkus (2004) review several instances of such problems in the DC pension context.
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A Appendix

A.1 Proof of Proposition 1

The investor’s optimization program is

max
α∈[0,1]

E [uk (w (α))] = E [u (w (α))− k · g (u (wmax)− u (w (α)))] , (2)

where w (α) = w0 (1 + αR+ (1− α) rf ) and wmax = w0 (1 +max (R, rf )) denote the investor’s final level and
ex-post optimal level of wealth. The first- and second-order conditions for (2) are

dE [uk (w (α))]

dα
= E [w0 (R− rf )u

0 (w (α)) (1 + kg0 (u (wmax)− u (w (α))))] = 0 (3)

and

d2E [uk (w (α))]

dα2
= E

h
w20 (R− rf )

2
u00 (w (α)) (1 + kg0 (u (wmax)− u (w (α))))

i
(4)

−E
h
w20 (R− rf )

2 ku02 (w (α)) g00 (u (wmax)− u (w (α)))
i

< 0.

As E [uk (w (α))] is strictly concave in α, any solution of (3) determines the unique global maximum. The first
derivative (3) can be decomposed into

dE [uk (w (α))]

dα
=

dE [u0 (w (α))]

dα
+

rfZ
−1
kw0 (r − rf )u

0 (w (α)) g0 (u (w (0))− u (w (α))) dF (r)

+

∞Z
rf

kw0 (r − rf )u
0 (w (α)) g0 (u (w (1))− u (w (α))) dF (r) .

Evaluating the first derivative at α = 0 and α = 1 yields

dE [uk (w (α))]

dα
|α=0 =

dE [u0 (w (α))]

dα
|α=0 + kw0g

0 (0)u0 (w (0))

rfZ
−1
(r − rf ) dF (r) + kw0u

0 (w (0))

+

∞Z
rf

(r − rf ) g
0 (u (w (1))− u (w (0))) dF (r)

>
dE [u0 (w (α))]

dα
|α=0 + kw0g

0 (0)u0 (w (0)) (E [R]− rf )

= w0u
0 (w (0)) (E [R]− rf ) (1 + kg0 (0))
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and

dE [uk (w (α))]

dα
|α=1 =

dE [u0 (w (α))]

dα
|α=1 +

rfZ
−1
kw0 (r − rf )u

0 (w (1)) g0 (u (w (0))− u (w (1))) dF (r)

+

∞Z
rf

kw0 (r − rf )u
0 (w (1)) g0 (0) dF (r)

<
dE [u0 (w (α))]

dα
|α=1 + kw0g

0 (0)E [(R− rf )u
0 (w (1))]

= w0E [(R− rf )u
0 (w (1))] (1 + kg0 (0)) .

If E [R] − rf = 0 then dE[uk(w(α))]
dα |α=0 > 0 for all k > 0, and if E [R] − rf =

Cov(−R,u0(w0(1+R)))
E[u0(w0(1+R))]

then
dE[uk(w(α))]

dα |α=1 < 0 for all k > 0. This implies that α∗k > 0 for all k > 0 in the first situation and α∗k < 1 for all
k > 0 in the latter.

A.2 Proof of Proposition 2

Taking the total differential of the first-order condition (3) with respect to α and k leads to

∂2E [uk (w (α))]

∂α2
¯̄
α=α∗k · dα+

∂2E [uk (w (α))]

∂α∂k

¯̄
α=α∗k · dk = 0

and therefore
∂α∗k
∂k

= −
∂2E[uk(w(α))]

∂α∂k

¯̄
α=α∗k

∂2E[uk(w(α))]
∂α2

¯̄
α=α∗k

.

As ∂2E[uk(w(α))]
∂α2

¯̄
α=α∗k < 0

sign

µ
∂α∗k
∂k

¶
= sign

µ
∂2E [uk (w (α))]

∂α∂k

¯̄
α=α∗k

¶
.

The cross-partial derivative equals

∂2E [uk (w (α))]

∂α∂k

¯̄
α=α∗k = E [w0 (R− rf )u

0 (w (α∗k)) g
0 (u (wmax)− u (w (α∗k)))] .

From the FOC (3) we imply

dE [uk (w (α))]

dα

¯̄
α=α∗k =

dE [u0 (w (α))]

dα

¯̄
α=α∗k + k · ∂

2E [uk (w (α))]

∂α∂k

¯̄
α=α∗k .

As dE[uk(w(α))]
dα

¯̄
α=α∗k = 0 we have

sign

µ
∂α∗k
∂k

¶
= sign

µ
∂2E [uk (w (α))]

∂α∂k

¯̄
α=α∗k

¶
= −sign

µ
dE [u0 (w (α))]

dα

¯̄
α=α∗k

¶
. (5)

If E [R]−rf = 0 then α∗0 = 0 and α∗k > 0 for all k > 0 according to Proposition 1. This implies dE[u0(w(α))]dα

¯̄
α=α∗k>0 <

0 and thus ∂α∗k
∂k > 0 by (5). If E [R]− rf =

Cov(−R,u0(w0(1+R)))
E[u0(w0(1+R))]

then α∗0 = 1 and α∗k < 1 for all k > 0 according

11



to Proposition 1. This implies dE[u0(w(α))]
dα

¯̄
α=α∗k<1 > 0 and thus ∂α∗k

∂k < 0 by (5).

A.3 Proof of Proposition 3

For any fixed k > 0 we have have shown in Proposition 1 that

α∗k > 0 and α∗0 = 0 if E [R]− rf = 0

α∗k < 1 and α∗0 = 1 if E [R]− rf =
Cov(−R,u0(w0(1+R)))

E[u0(w0(1+R))]
.

The Intermediate Value Theorem implies that there exists brf (k) with E [R]−Cov(−R,u0(w0(1+R)))
E[u0(w0(1+R))]

< brf (k) < E [R]

such that α∗k = α∗0 at this risk-free rate of return. The following first order conditions

dE [u (w (α))]

dα

¯̄
α=α∗0 = E [w0 (R− brf (k))u0 (w (α∗0))] = 0

and
dE [uk (w (α))]

dα

¯̄
α=α∗0 = E [w0 (R− brf (k))u0 (w (α∗0)) (1 + kg0 (u (wmax)− u (w (α∗0))))] = 0

lead to the condition
E [w0 (R− brf (k))u0 (w (α∗0)) g0 (u (wmax)− u (w (α∗0)))] = 0.

As this condition is independent of k we conclude that brf (k) = brf for all k ≥ 0.
A.4 Proof of Proposition 4

The WTP Pk (rg, α) of an investor is implicitly defined through (1)

E [uk (w0R (−1, ᾱ))] = E [uk ((w0 − Pk (rg, ᾱ))R (rg, ᾱ))]

where R (rg, ᾱ) = 1 + ᾱRg + (1− ᾱ) rf and Rg = max (R, rg). The regret-averse investor is willing to pay less
for the guarantee than the risk-averse investor, i.e. Pk (rg, α) < P0 (rg, ᾱ) for all rg, if and only if

E [u ((w0 − Pk (rg, ᾱ))R (rg, ᾱ))] > E [u ((w0 − P0 (rg, ᾱ))R (rg, ᾱ))] = E [u (w0R (−1, ᾱ))]

for all rg. Define the function f : [0, 1]→ R as

f (ᾱ) = E [u ((w0 − Pk (rg, ᾱ))R (rg, ᾱ))]− E [u (w0R (−1, ᾱ))] . (6)

For ᾱ = 0 we have f (0) = 0. To prove that Pk (rg, ᾱ) < P0 (rg, ᾱ) for small ᾱ and all rg we thus have to show
that f 0 (0) > 0. Differentiating f with respect to ᾱ yields

f 0(ᾱ) =

 −∂Pk
∂ᾱ E[R (rg, ᾱ)u

0 ((w0 − Pk (rg, ᾱ))R (rg, ᾱ))]
+E[(w0 − Pk (rg, ᾱ)) (Rg − rf )u

0 ((w0 − Pk (rg, ᾱ))R (rg, ᾱ))]
−E[w0 (R− rf )u

0(w0R (−1, ᾱ))]


and thus

f 0(0) = u0 (w0 (1 + rf ))

·
−∂Pk (rg, ᾱ)

∂α
|α=0 (1 + rf ) + w0E[(Rg −R))]

¸
. (7)

12



Differentiating (1) with respect to ᾱ implies

E [w0 (R− rf )u
0(w0R (−1, ᾱ)) (1 + kg0 (u (wmax)− u (w0R (−1, ᾱ))))]

=

· −∂Pk
∂ᾱ E [R (rg, ᾱ)u

0((w0 − Pk)R (rg, ᾱ)) (1 + kg0 (u (wmax)− u ((w0 − Pk)R (rg, ᾱ))))]
+E [(w0 − Pk) (Rg − rf )u

0((w0 − Pk)R (rg, ᾱ)) (1 + kg0 (u (wmax)− u ((w0 − Pk)R (rg, ᾱ))))]

¸
where Pk = Pk (rg, ᾱ). For ᾱ = 0 we get

w0u
0 (w0 (1 + rf ))E [(R− rf ) (1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]

=

·
−∂Pk(rg,ᾱ)

∂ᾱ |ᾱ=0 (1 + rf )u
0(w0 (1 + rf ))E [(1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]

+w0u
0(w0 (1 + rf ))E [(Rg − rf ) (1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]

¸
which implies

∂Pk (rg, ᾱ)

∂ᾱ
|ᾱ=0 = w0E [(Rg −R) (1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]

(1 + rf )E [(1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]
. (8)

Substituting (8) into (7) yields

f 0 (0) = w0u
0 (w0 (1 + rf ))

µ
−E [(Rg −R) (1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]

(1 + rf )E [(1 + kg0 (u (wmax)− u (w0 (1 + rf ))))]
+E [Rg −R]

¶
= − w0u

0 (w0 (1 + rf )) k

E [1 + kg0 (u (wmax)− u (w0 (1 + rf )))]
· Cov (Rg −R, g0 (u (wmax)− u (w0 (1 + rf )))) .

We have

Cov (Rg −R, g0 (u (wmax)− u (w0 (1 + rf )))) = Cov (Rg −R, g0 (u (w0 (1 +max (R, rf )))− u (w0 (1 + rf )))) < 0

and thus f 0(0) > 0. This implies f(ᾱ) > 0 for small ᾱ as f (0) = 0 and therefore Pk (rg, ᾱ) < P0 (rg, ᾱ) for small
ᾱ and all rg.
Next, we would like to show that Pk (rg, ᾱ) > P0 (rg, ᾱ) for large α and small rg. This holds if and only if

f(ᾱ) < 0 for large α and small rg (see (6) for the definition of f (·)). We have

f(1) = E[u (((w0 − Pk (rg, 1)) (1 +Rg))]−E[u (w0 (1 +R))].

At rg = −1, f(1)|rg=−1 = 0. Differentiating f (1) with respect to rg implies

∂f(1)

∂rg

= −∂Pk
∂rg

|ᾱ=1E[(1 +Rg)u
0((w0 − Pk (rg, 1)) (1 +Rg))] +E[

∂Rg

∂rg
(w0 − Pk (rg, 1))u

0((w0 − Pk (rg, 1)) (1 +Rg))]

= −∂Pk
∂rg

|ᾱ=1E[(1 +Rg)u
0((w0 − Pk (rg, 1)) (1 +Rg))] + (1 + rg) (w0 − Pk (rg, 1))u

0((w0 − Pk (rg, 1)) (1 + rg))

Evaluating at rg = −1 yields
∂f(1)

∂rg
= −∂Pk

∂rg
|ᾱ=1,rg=−1E[(1 +R)u0(w0 (1 +R))].

13



Differentiating (1) with respect to rg implies" −∂Pk
∂rg

E [R (rg, ᾱ)u
0((w0 − Pk)R (rg, ᾱ)) (1 + kg0 (u (wmax)− u ((w0 − Pk)R (rg, ᾱ))))]

+E
h
(w0 − Pk)

∂Rg
∂rg

u0((w0 − Pk)R (rg, ᾱ)) (1 + kg0 (u (wmax)− u ((w0 − Pk)R (rg, ᾱ))))
i # = 0 (9)

where Pk = Pk (rg, ᾱ). For ᾱ = 1 we get· −∂Pk
∂rg
|ᾱ=1E [(1 +Rg)u

0((w0 − Pk (rg, 1)) (1 +Rg)) (1 + kg0 (u (wmax)− u ((w0 − Pk (rg, 1)) (1 +Rg))))]

+ (1 + rg) (w0 − Pk)u
0((w0 − Pk) (1 + rg)) (1 + kg0 (u (w0 (1 + rf ))− u ((w0 − Pk) (1 + rg))))

¸
= 0

Evaluated at rg = −1 implies ∂Pk
∂rg
|ᾱ=1,rg=−1 = 0 and thus ∂f(1)

∂rg
|rg=−1 = 0. Differentiating again implies

∂2f(1)

∂r2g
=



−∂2Pk
∂r2g

|ᾱ=1E[(1 +Rg)u
0((w0 − Pk (rg, 1)) (1 +Rg))]

−∂Pk
∂rg
|ᾱ=1E[∂Rg∂rg

u0((w0 − Pk (rg, 1)) (1 +Rg))]

+
³
∂Pk
∂rg
|ᾱ=1

´2
E[(1 +Rg)

2
u00((w0 − Pk (rg, 1)) (1 +Rg))]

−∂Pk
∂rg
|ᾱ=1 (w0 − Pk (rg, 1))E[(1 +Rg)

∂Rg
∂rg

u00((w0 − Pk (rg, 1)) (1 +Rg))]

+ (w0 − Pk (rg, 1))u
0((w0 − Pk (rg, 1)) (1 + rg))

− (1 + rg)
∂Pk
∂rg
|ᾱ=1u0((w0 − Pk (rg, 1)) (1 + rg))

− (1 + rg)
2 (w0 − Pk (rg, 1))

∂Pk
∂rg
|ᾱ=1u00((w0 − Pk (rg, 1)) (1 + rg))


At rg = −1 we have ∂Pk

∂rg
|α=1 = 0 and thus

∂2f(1)

∂r2g
|rg=−1 = −

∂2Pk
∂r2g

|ᾱ=1E[(1 +R)u0(w0 (1 +R))] + w0u
0(0).

Differentiating (9) again with respect to rg and evaluating at ᾱ = 1 and rg = −1 implies"
−∂2Pk

∂r2g
|rg=−1E [(1 +R)u0(w0 (1 +R)) (1 + kg0 (u (wmax)− u (w0 (1 +R))))]

+w0u
0(0) (1 + kg0 (u (w0 (1 + rf ))− u (0)))

#
= 0

and hence
∂2Pk
∂r2g

|rg=−1 =
w0u

0(0) (1 + kg0 (u (w0 (1 + rf ))− u (0)))

E [(1 +R)u0(w0 (1 +R)) (1 + kg0 (u (wmax)− u (w0 (1 +R))))]

Therefore

∂2f(1)

∂r2g
|rg=−1

= − w0u
0(0) (1 + kg0 (u (w0 (1 + rf ))− u (0)))

E [(1 +R)u0(w0 (1 +R)) (1 + kg0 (u (wmax)− u (w0 (1 +R))))]
E[(1 +R)u0(w0 (1 +R))] + w0u

0(0)

=
kw0u

0(0)E [(1 +R)u0(w0 (1 +R)) (g0 (u (wmax)− u (w0 (1 +R)))− g0 (u (w0 (1 + rf ))− u (0)))]

E [(1 +R)u0(w0 (1 +R)) (1 + kg0 (u (wmax)− u (w0 (1 +R))))]

For R < rf we have

14



g0 (u (wmax)− u (w0 (1 +R)))− g0 (u (w0 (1 + rf ))− u (0))

= g0 (u (w0 (1 + rf ))− u (w0 (1 +R)))− g0 (u (w0 (1 + rf ))− u (0)) < 0

For R > rf we have

g0 (u (wmax)− u (w0 (1 +R)))− g0 (u (w0 (1 + rf ))− u (0))

= g0 (0)− g0 (u (w0 (1 + rf ))− u (0)) < 0

Therefore ∂2f(1)
∂r2g

|rg=−1 < 0. As f(1)|rg=−1 = 0 and ∂f(1)
∂rg

|rg=−1 = 0 we thus derived f(1) < 0 for small guarantee
levels, i.e. close to rg = −1. This in turn yields Pk (rg, ᾱ) > P0 (rg, ᾱ) for large ᾱ and small rg.

15



References
[1] Agnew, J., P. Balduzzi, and A. Sunden, 2003. Portfolio choice and trading in a large 401k plan. American

Economic Review 93 (1), 193-215.

[2] Ameriks, J. and S. Zeldes, 2000. How do household portfolio shares vary with age?. TIAA-CREF Working
Paper.

[3] Baron, J. and J. Hershey, 1988. Outcome bias in decision evaluation. Journal of Personality and Social
Psychology 54 (4), 569-579.

[4] Bell, D. E., 1982. Regret in decision making under uncertainty. Operations Research 30 (5), 961-981.

[5] Bodie, Z. and R. Merton, 1993. Pension Benefit Guarantees in the United States: A Functional Analysis.
In: The Future of Pensions in the United States. R. Schmitt, ed. University of Pennsylvania Press,
Philadelphia, pp. 194-234.

[6] Boulier, J. F., S. J. Huang, and G. Taillard, 2001. Optimal management under stochastic interest rates: the
case of a protected defined contribution pension fund. Insurance: Mathematics and Economics 28 (2),
173-189.

[7] Braun, M. and A. Muermann, 2004. The impact of regret on the demand for insurance. Journal of Risk and
Insurance 71 (4), 737-767.

[8] Cogan, J. F. and O. S. Mitchell, 2003. Perspectives from the president’s commission on social security
reform. Journal of Economic Perspectives 17 (2), 149-172.

[9] Connolly, T. and J. Reb, 2003. Omission bias in vaccination decisions: where’s the "omission"? where’s
the "bias"? Organizational Behavior and Human Decision Processes 91 (2), 186-202.

[10] Deelstra, G., M. Grasselli, and P. F. Koehl, 2003. Optimal investment strategies in the presence of a minimum
guarantee. Insurance: Mathematics and Economics 33 (1), 189-207.

[11] Feldstein, Martin S. and Andrew A. Samwick, 2001. Potential paths of social security reform. NBER
Working Paper W8592.

[12] Fischer, K. P., 1999. Pricing pension fund guarantees: a discrete martingale approach. Canadian Journal of
Administrative Sciences 16 (3), 256-266.

[13] Gollier, Ch., and B. Salanie, 2005. Individual decisions under risk, risk-sharing and asset prices with regret.
Working paper.

[14] van der Hoek, J. and M. Sherris, 2001. A class of non-expected utility risk measures and implications for
asset allocations. Insurance: Mathematics and Economics 28 (1), 69-82.

[15] Lachance, M.-E., O. S. Mitchell, and K. Smetters, 2003. Guaranteeing defined contribution pensions: the
option to buy back a defined benefit promise. Journal of Risk and Insurance 70 (1), 1-16.

[16] Lachance, M.-E. and O. S. Mitchell, 2003. Understanding Individual Account Guarantees. In: The Pension
Challenge: Risk Transfers and Retirement Income Security. Olivia S. Mitchell and Kent Smetters, eds.
Pension Research Council, Oxford University Press, Oxford, pp. 159-186.

[17] Loomes, G., 1988. Further evidence of the impact of regret and disappointment in choice under uncertainty.
Econometrica 55 (217), 47-62.

[18] Loomes, G., C. Starmer, and R. Sugden, 1992. Are preferences monotonic - testing some predictions of
regret theory. Econometrica 59 (233), 17-33.

[19] Loomes, G., and R. Sugden, 1982. Regret theory: an alternative theory of rational choice under uncertainty.
Economic Journal 92 (368), 805-824.

16



[20] Loomes, G., and R. Sugden, 1987. Testing for regret and disappointment in choice under uncertainty.
Economic Journal 97 (Suppl.), 118-129.

[21] Madrian, B. C. and D. F. Shea, 2001. The power of suggestion: inertia in 401(k) participation and savings
behavior. The Quarterly Journal of Economics 116 (4), 1149-1187.

[22] Maurer, R. and Ch. Schlag, 2003. Money-Back Guarantees in Individual Account Pensions: Evidence from
the German Pension Reform. In: The Pension Challenge: Risk Transfers and Retirement Income Security.
Olivia S. Mitchell and Kent Smetters, eds. Pension Research Council, Oxford University Press, Oxford,
pp. 187-213.

[23] Mitchell, O. S. and K. Smetters, eds., 2003. The Pension Challenge: Risk Management and Retirement
Income Security. Pension Research Council, The Wharton School, Philadelphia, pp. 1-18.

[24] Mitchell, O. S. and S. P. Utkus, eds., 2004. Pension Design and Structure: New Lessons from Behavioral
Finance. Oxford University Press, Oxford.

[25] Pennachi, G. G., 1999. The value of guarantees on pension fund conversion. Journal of Risk and Insurance
66 (2), 219-237.

[26] Quiggin, J., 1994. Regret theory with general choice sets. Journal of Risk and Uncertainty 8 (2), 153-165.

[27] Smetters, K., 2002. Controlling the costs of minimum benefit guarantees in public pension conversions.
Journal of Pension Economics and Finance 1 (1), 9-34.

[28] Starmer, C., and R. Sugden, 1993. Testing for juxtaposition and event-splitting effects. Journal of Risk and
Uncertainty 6 (3), 235-254.

[29] Sugden, R., 1993. An axiomatic foundation of regret. Journal of Economic Theory 60 (1), 159-180.

[30] Turner, J. and D. Rajnes, 2003. Retirement Guarantees in Voluntary Defined Contribution Plans. In: The
Pension Challenge: Risk Transfers and Retirement Income Security. Olivia S. Mitchell and Kent Smetters,
eds. Pension Research Council, Oxford University Press, Oxford, pp. 251-267.

[31] Walliser, J., 2003. Retirement Guarantees in Mandatory Defined Contribution Systems. In: The Pension
Challenge: Risk Transfers and Retirement Income Security. Olivia S. Mitchell and Kent Smetters, eds.
Pension Research Council, Oxford University Press, Oxford, pp. 238-250.

17


	University of Pennsylvania
	ScholarlyCommons
	9-1-2005

	Regret, Portfolio Choice, and Guarantees in Defined Contribution Schemes
	Alexander Alexander Muermann
	Olivia S. Mitchell
	Jacqueline M. Volkman
	Regret, Portfolio Choice, and Guarantees in Defined Contribution Schemes
	Abstract
	Keywords
	Disciplines


	guarantee091405web.dvi

