RAPID QUANTIFICATION OF QUININE BY MULTI-STACKING IN A PORTABLE MICROCHIP ELECTROPHORESIS SYSTEM

TAI CHEE TUNG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2019
DEDICATION

Specially dedicated to my beloved families for all support and encouragement in completing this study
I would like to express my sincere and earnest appreciation to my supervisor, Dr. See Hong Heng who gave me the golden opportunity to conduct this excellent project. His valuable and patient guidance, kind supervision and unconditional help were responsible for the completion of this project. I am immensely obliged to my team members for their elevating inspiration, encouraging guidance and kind supervision in the journey to complete this project.

In addition, I would like to acknowledge Ministry of Higher Education Malaysia (MOHE) for the financial support to pursue my Master degree in Universiti Teknologi Malaysia.

Last, but not the least, my parents are also an important inspiration for me. So with due regards, I express my gratitude to them.
ABSTRACT

A new multi-stacking pre-concentration procedure based on field-enhanced sample injection (FESI), field-amplified sample stacking, and transient isotachophoresis was developed. The new procedure was implemented in a compact microchip electrophoresis (MCE) with a double T-junction glass chip, coupled with an on-chip capacitively coupled contactless conductivity detection (C^4D) system. A mixture of the cationic target analyte and the terminating electrolyte (TE) from the two sample reservoirs was injected under FESI conditions within the two sample-loading channels. At the double-T junction, the stacked analyte zones were further concentrated under field-amplified stacking conditions and then subsequently focused by transient-isotachophoresis and separated along the separation channels. The proposed multi-stacking strategy was verified under an Universal Serial Bus (USB) fluorescence microscope employing Rhodamine 6G as the model analyte. This developed approach was subsequently used to monitor the target quinine present in human plasma samples. The total analysis time for quinine was approximately 200 s with a sensitivity enhancement factor of approximately 61 when compared to the typical gated injection. The detection and quantification limits of the developed approach for quinine were 3.0 µg/mL and 10 µg/mL, respectively, with intraday and interday repeatability (%RSDs, n=5) of 3.6 % and 4.4 %. Recoveries in spiked human plasma were 98.1 % – 99.8 %.
ABSTRAK

Satu prosedur pra-pemekatan pelbagai timbunan baharu yang berdasarkan suntikan sampel dipertingkatkan medan (FESI), timbunan sampel diperkuatkan medan, dan isotakoforesis sementara telah dibangunkan. Teknik baharu ini telah dilaksanakan dalam elektroforesis kapili mikrocip (MCE) padat dengan cip kaca dua simpang-T, digandingkan dengan sistem pengesanan kekonduksian tanpa sentuh gandingan kapasitif atas cip. Campuran analit sasaran kationik dengan elektrolit penamat (TE) dari dua takungan sampel telah disuntik di bawah keadaan FESI di dalam dua saluran masukan-sampel. Di dua simpang-T, zon timbunan analit telah dipekatkan lagi di bawah keadaan timbunan diperkuatkan medan dan kemudian difokuskan oleh isotakoforesis sementara dan dipisahkan di saluran permisahan. Strategi pelbagai timbunan yang dicadangkan ini telah disahkan di bawah mikroskop pendarfluor Bas Bersiri Semesta (USB) dengan menggunakan Rhodamine 6G sebagai analit model. Pendekatan yang dibangunkan ini kemudian digunakan untuk memantau kehadiran kuinin sasaran di dalam sampel plasma manusia. Masa keseluruhan analisis bagi kuinin ialah 200 s dengan faktor peningkatan kepekaan lebih kurang 61 kali ganda berbanding dengan suntikan melalui kawalan biasa. Had pengesanan dan kuantifikasi kaedah ini bagi kuinin ialah masing-masing 3.0 µg/mL dan 10 µg/mL dengan kebolehulangan dalam-hari dan antara-hari (%RSD, n = 5) masing-masing 3.6 % dan 4.4 %. Perolehan semula analit daripada sampel pakuan plasma manusia adalah dalam julat 98.1 % – 99.8%.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Study
1.2 Problem Statement
1.3 Objectives of Study
1.4 Scope of Study
1.5 Significance of Study
1.6 Flowchart/Scheme of the Whole Planned Work

CHAPTER 2 LITERATURE REVIEW

2.1 Capillary Electrophoresis
2.2 Operation Mode of the Capillary Electrophoresis
 2.2.1 Capillary Zone Electrophoresis
2.2.2 Micellar Electrokinetic Chromatography 10
2.2.3 Capillary Gel Electrophoresis 11
2.2.4 Capillary Isoelectric Focusing 12
2.2.5 Capillary Isotachophoresis 13
2.3 Microchip Electrophoresis 13
2.4 Online Pre-Concentration Technique in Microchip Electrophoresis
 2.4.1 Field Amplified Sample Stacking and Field Enhanced Sample Injection 17
 2.4.2 Large Volume Sample Stacking 18
 2.4.3 Isotachophoresis 18
 2.4.4 Dynamic pH Junction 19
 2.4.5 Sweeping 20
 2.4.6 Micelle to Solvent Stacking 20
 2.4.7 Electrokinetic Supercharging 21
2.5 Quinine 22
 2.5.1 Physical and Chemical Properties of Quinine 22
 2.5.2 Previous Studies on Quinine 25
2.6 Rhodamine 6G 29

CHAPTER 3 RESEARCH METHODOLOGY 31
3.1 Chemical and Reagents 31
3.2 Preparation of Standard Solutions and Plasma Sample 32
3.3 Conventional Capillary Electrophoresis Procedure 33
3.4 Microchip Electrophoresis System 34
3.5 Microchip Electrophoresis Procedure 36
 3.5.1 Preconditioning of the Microchip Electrophoresis 36
 3.5.2 Gated Injection Method 37
 3.5.3 Monitoring of Rhodamine 6G using the Multi-Stacking Strategy 39
3.6 Monitoring of Quinine in the Human Plasma Using MCE-C^4D 41
3.6.1 Separation of Quinine Using the Gated Injection Method 41
3.6.2 Separation of Quinine Using the Multi-Stacking Strategy 41
3.7 Operational Research Framework 43

CHAPTER 4 RESULT AND DISCUSSION 45
4.1 Microchip Electrophoresis System 45
4.2 Monitoring of Rhodamine 6G Using the Multi-Stacking Strategy
 4.2.1 Method Validation of Rhodamine 6G 53
4.3 Optimization Concentration of Background Electrolyte Using Conventional Capillary Electrophoresis
 4.3.1 Concentration of Acetic Acid in BGE 54
 4.3.2 Concentration of Buffer Salt in BGE 55
4.4 Separation of Quinine Sulfate Using Gated Injection in Microchip Electrophoresis
 4.4.1 Optimization of BGE Concentration 57
4.5 Separation of Quinine Using Multi-Stacking Strategy in Microchip Electrophoresis
 4.5.1 Optimization of BGE Solution Concentration 60
 4.5.2 Optimization of Buffer Salt in BGE Solution 61
 4.5.3 Optimization of the Concentration of Terminating Electrolyte 63
 4.5.4 Optimization of Acid Concentration in Sample Solution 64
 4.5.5 Optimization of Focusing Time 66
4.6 Final condition of Quinine Analysis 67
4.7 Method Validation
 4.7.1 Standard Solution Spiked with Quinine 69
 4.7.2 Quinine Analysis in Spiked Human Plasma 71
<table>
<thead>
<tr>
<th>CHAPTER 5 CONCLUSIONS</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Conclusion</td>
<td>75</td>
</tr>
<tr>
<td>5.2 Future Directions</td>
<td>77</td>
</tr>
</tbody>
</table>

REFERENCES	79
APPENDICES	93-94
LIST OF PUBLICATION	95
LIST OF PRESENTATION RELATED TO THIS STUDY	96
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Type of quinine and dosage obtained in market</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Summary of previous studies on quinine using LC, CE or other methods</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Summary of the MCE – C\text{4D} components and their function</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Recoveries (%) for the quinine spiked human plasma</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Method validation for multi-stacking in quinine standard solution and quinine spiked human plasma.</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Comparison of the sensitivity of the recently reported works on quinine.</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Schematic diagram of CE instrumentation</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Chemical structure of quinine</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Chemical structure of Rhodamine 6G</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Chemical structure of (a) sodium deoxycholate (NaDCHA), and (b) tetraoctylammonium bromide.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Schematic of the battery operated MCE device with double-T geometry fabricated borosilicate glass microchip</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Electrophoretic preconditioning or floating injection method</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Gated Injection Method</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Proposed multi-stacking strategy procedure for quinine</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Overview and main components of an operable microchip electrophoresis system</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Layout of the sequencer software during the electrophoretic preconditioning or floating injection method</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Time sequence snapshots of the multi-stacking strategy in a double T-junction microchip at 0 s (a), 5 s (b), 7 s (c), 9 s (d) and 11 s (e)</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Electropherograms for the separation of quinine in various concentration of acetic acid</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Electropherograms for the separation of quinine in various concentration of buffer salt</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 4.6 Electropherograms for the separation of quinine in various concentration of acetic acid using gated injection in MCE

Figure 4.7 Electropherograms for the separation of quinine in various concentration of buffer salt using gated injection in MCE

Figure 4.8 Electropherograms for the separation of quinine in various concentrations of acetic acid using multi-stacking in MCE

Figure 4.9 Electropherograms for the separation of quinine in various concentrations of buffer salt with 10 mM acetic acid using multi-stacking in MCE

Figure 4.10 Electropherograms for the separation of quinine in different concentrations of TE with 10 mM acetic acid in sample solution using multi-stacking in MCE

Figure 4.11 Electropherograms for the separation of quinine in different concentrations of acetic acid with 10 mM TE in sample solution using multi-stacking in MCE

Figure 4.12 Electropherograms for the separation of quinine in different focusing time using multi-stacking in MCE

Figure 4.13 Graph of optimization of LE and TE

Figure 4.14 Electropherograms for the separation of quinine using a (a) typical gated injection (solute concentration: 6 µg/mL), (b) typical gated injection (solute concentration: 360 µg/mL) and (c) multi-stacking strategy (solute concentration: 6 µg/mL).

Figure 4.15 Fig. 4.12: Electropherograms for the separation of quinine in the (a) spiked plasma extract containing 10 µg/mL quinine after the deproteinization and (b) blank plasma extract.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGE</td>
<td>Background electrolyte</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CGE</td>
<td>Capillary gel electrophoresis</td>
</tr>
<tr>
<td>CIEF</td>
<td>Capillary isoelectric focusing</td>
</tr>
<tr>
<td>CITP</td>
<td>Capillary isotachophoresis</td>
</tr>
<tr>
<td>CZE</td>
<td>Capillary zone electrophoresis</td>
</tr>
<tr>
<td>C^4D</td>
<td>Capacitively coupled contactless conductivity detector</td>
</tr>
<tr>
<td>DI</td>
<td>Deionised</td>
</tr>
<tr>
<td>EC</td>
<td>Electrochemical</td>
</tr>
<tr>
<td>EOF</td>
<td>Electroosmotic flow</td>
</tr>
<tr>
<td>FASI</td>
<td>Field amplified sample injection</td>
</tr>
<tr>
<td>FESI</td>
<td>Field enhanced sample injection</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>ITP</td>
<td>Isotachophoresis</td>
</tr>
<tr>
<td>LE</td>
<td>Leading electrolyte</td>
</tr>
<tr>
<td>LIF</td>
<td>Laser-induced fluorescence</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>LVSS</td>
<td>Large volume sample stacking</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEKC</td>
<td>Micellar electrokinetic capillary chromatography</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MGE</td>
<td>Microchip gel electrophoresis</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MSS</td>
<td>Micelle to solvent stacking</td>
</tr>
<tr>
<td>NaDCHA</td>
<td>Sodium deoxycholate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal to noise</td>
</tr>
<tr>
<td>TDM</td>
<td>Therapeutic drug monitoring</td>
</tr>
<tr>
<td>TE</td>
<td>Terminating electrolyte</td>
</tr>
<tr>
<td>tITP</td>
<td>Transient isotachophoresis</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>I.D</td>
<td>Internal diameter</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolts</td>
</tr>
<tr>
<td>MΩ·cm</td>
<td>Megaohm-centimetre</td>
</tr>
<tr>
<td>mg/mL</td>
<td>Milligram per millilitre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>ng/mL</td>
<td>Nanogram per millilitre</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>pg/mL</td>
<td>Picogram per millilitre</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>µg/mL</td>
<td>Microgram per millilitre</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>µS/cm</td>
<td>MicroSiemens per centimetre</td>
</tr>
<tr>
<td>V·s</td>
<td>Volt-second</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>The Calibration Graph for Typical Gated Injection Method</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>The Calibration Graph for Proposed Multi-Stacking Strategy</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Electrophoresis is the movement of electrically charged particles in a conductive medium according to their charge-to-size ratio under the influence of an electric field. Electrophoresis of cation is called cataphoresis, while electrophoresis of anion is called anaphoresis. In 1930, Arne Tiselius introduced the use of electrophoresis as an analytical technique to separate proteins in free solution [1]. Capillary electrophoresis (CE) is now a mature and powerful technique for analytical separation which provides several advantages such as high efficiency and the consumption of small amount of sample [2]. Nowadays, simple, fast and sensitive analytical methods and instrumentation are common in separation science. Microchip capillary electrophoresis (MCE) was invented by Manz and co-workers in the early 1990s. Miniaturized MCE, also referred to as lab-on-a-chip, integrates all functions of conventional CE into a single device. Unlike conventional CE which consists of essentially a single capillary, multiple fluidic channels or different designs of the microchip offer the potential for high-throughput and innovative and versatile analytical methods [3]. Hence, MCE has brought a lot of benefits such as low consumption of materials (including the sample), rapid analysis and portability.
Despite their advantages, the detection limit of MCE systems is one of their often-cited limitations, particularly in comparison to other instrumentation like conventional CE and liquid chromatography (LC) [4]. In order to overcome the sensitivity limitation, researchers have proposed several on-line pre-concentration techniques such as field-amplified stacking injection [5-7], large-volume sample stacking (LVSS) [8], isotachophoresis (ITP) [9-11], sweeping [12], dynamic pH junction [13], multi-stacking strategy [14-15] and electrokinetic supercharging [16-19].

Field-amplified sample stacking (FASS) is the simplest method to increase the sensitivity in CE. Haglund and Tiselius were the first group to introduce the stacking method using low-conductivity background electrolyte (BGE) for the sample [20]. In order to perform FASS, lower conductivity of sample solution than BGE solution is mandatory. Electrokinetic supercharging (EKS) was first introduced by Hirokawa and co-workers in 2003 [16]. EKS is a powerful online pre-concentration technique in electrophoresis which combines field enhanced sample injection (FESI) and transient isotachophoresis (tITP). In EKS, analytes are introduced electrokinetically between the leading electrolyte (LE) and terminating electrolyte (TE). Although EKS is considered as a most powerful on-line pre-concentration technique in CE, it is still not widely implemented in MCE. Until now, there have only been a few publications that have discussed integrating EKS into microchip gel electrophoresis to perform DNA fragment analysis using single channel or cross-column geometry chips [17-19].

Quinine is one of the most powerful antimalarial agents and is widely used to treat *Plasmodium falciparum*, a parasite that causes malaria, in areas where multiple drug resistance. The treatment of malaria with quinine was the first successful use of a chemical compound in the treatment of an infectious disease. Until 1820, the *Cinchona* bark was dried, ground into powder, mixed with a liquid and administered
orally to a sick person. Since 1820, quinine has been extracted from the *Cinchona* bark [21]. Over the years, quinine was considered as a safe drug but adverse allergic reactions can still occur to some of patients [22]. Currently, quinine is still the drug of choice for severe and complicated malaria disease caused by the *Plasmodium falciparum*. Moreover, the Food and Drug Administration (FDA) also warned against the usage of quinine in beverages for the treatment of leg cramps. In order to overcome this problem, therapeutic drug monitoring (TDM) was conducted to ultimate the dosage of the drug in the human body. A quinine level of 10 – 15 µg/mL in patient plasma was suggested for effective parasite clearance and tolerable side effects, but these levels were described as toxic in non-malaria subjects [23].

1.2 Problem Statement

Various techniques have been described for the determination of quinine in biological fluids and beverages, which include spectrophotometry [24], liquid chromatography [25], fluorometry [26], polarography [27], and CE [28] techniques with a variety of detection systems. Although the established methods are beneficial in monitoring quinine content in biological fluid and beverages samples, they are also existed some drawbacks like time-consuming and require expensive instrumentation. Morover, bulky size of the instrument also become a critical issue in portability when requires to access TDM for patients living in rural and remote areas. Furthermore, the determination of quinine using the MCE platform has not yet been reported. Although MCE able to provide a rapid monitoring for target analyte within few minute but poor detection sensitivity always be its limitation in practical analysis of real sample. With this, a rapid, portable and more sensitive on-line pre-
concentration technique is developed for the determination of quinine with a portable MCE platform.

1.3 Objectives of the Study

The objective of this study are:

- To study the new multi-stacking strategy which involves the integration of EKS and FASS into MCE and visualize the process involved using Rhodamine 6G as a model analyte detected by a fluorescence microscope.

- To optimize the operational parameters and subsequently validate the newly established multi-stacking strategy with MCE coupled with C4D detector for monitoring of quinine in human biological fluid.

1.4 Scope of the Study

Non aqueous based MCE was demonstrated to analyse quinine in real human plasma. A new on-line pre-concentration technique that involves EKS and FASS was
implemented in an established battery-powered portable MCE system coupled with C4D detector. The multi-stacking strategy is visualized using Rhodamine 6G as a model analyte under a fluorescence microscope. The verified method is subsequently applied to the monitoring of quinine. Several operational parameters were comprehensively optimized in the MCE system such as the concentration of the background electrolyte, concentration of the leading and terminating electrolyte, concentration of acid in sample solution and focusing time. The developed method is then validated and subsequently applied for the determination of quinine in human biological fluid.

1.5 Significance of the Study

In this study, a significant contribution in developing a new multi-stacking strategy in an established MCE system for the determination of quinine in biological fluid. Fundamental concept of the EKS technique in conventional CE system was transferred into a miniaturized MCE system. A monitoring assay for quinine sulfate is crucial for guiding treatment decisions, therapeutic monitoring, pharmacokinetic and bioavailability studies, as well as the quality control of the dosage forms. The portable MCE system allows the analysis to be performed on-site and this is important in improving the quality of health of people in remote locations and rural areas. Moreover, the development of new highly efficient, fast and simple methods to perform separation could improve the efficiency of analytical performance in quinine monitoring. It is believed that the new protocol can be applied in a wide range of applications.
1.6 Flowchart/Scheme of Planned Work

Selecting a suitable BGE solution in analysis of quinine

Studying the new multi-stacking strategy which involves the integration of FESI and tITP in the MCE and visualise the process using Rhodamine 6G as a model analyte and detected by fluorescence microscope

Implementing the new proposed method to monitor quinine by optimising the operation parameters such as BGE concentration, TE concentration and focusing time.

Validating the new proposed method in linearity range, limit of detection (LOD), limit of quantification (LOQ) and repeatability on the quinine standard solution and human biological fluid spiked with quinine.
REFERENCES

APPENDICES A

The calibration Graph for Typical Gate Injection Method

![Graph showing Peak Area vs Concentration (Gated Injection)](image)

The equation for the graph is:

\[y = 8 \times 10^{-5}x - 0.0048 \]

\[R^2 = 0.9944 \]
The calibration Graph for Proposed Multi-Stacking Strategy (Standard Solution)

\[y = 0.006x + 0.004 \]

\[R^2 = 0.9997 \]
LIST OF PUBLICATION

1. Chee Tung Tai & Hong Heng See. “Rapid Quantification of Quinine by Multi Stacking in a Portable Microchip Electrophoresis System”, Oral presentation at The 1st ACS Asia-Pacific International Chapters Conference 6th November, 2017, Jeju, Korea organized by ACS APICC.