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Abstract. In this work various maps between the space of twists and the space
of finite screws are studied.

Dual quaternions can be used to represent rigid-body motions, both
finite screw motions and infinitesimal motions, called twists. The finite screws
are elements of the group of rigid-body motions while the twists are elements
of the Lie algebra of this group. The group of rigid-body displacements are
represented by dual quaternions satisfying a simple relation in the algebra.
The space of group elements can be though of as a six-dimensional quadric
in seven-dimensional projective space, this quadric is known as the Study
quadric. The twists are represented by pure dual quaternions which satisfy
a degree 4 polynomial relation. This means that analytic maps between the
Lie algebra and its Lie group can be written as a cubic polynomials. In order
to find these polynomials a system of mutually annihilating idempotents and
nilpotents is introduced. This system also helps find relations for the inverse
maps.

The geometry of these maps is also briefly studied. In particular, the
image of a line of twists through the origin (a screw) is found. These turn out
to be various rational curves in the Study quadric, a conic, twisted cubic and
rational quartic for the maps under consideration.
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1. Introduction

Dual quaternions were introduced by Clifford in [3] to transform what he called
rotors. These were vectors bound to points in space, essentially directed lines with
an associated magnitude. These rotors were intended to model angular velocities
and wrenches. The sum of two rotors is in general a motor, what would now be
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called a twist. In this work the term dual quaternion will be used rather than
Clifford’s name ‘biquaternion’ since this seems to refer to several possible cases.

In modern notation dual quaternions can be thought of as elements of the
degenerate Clifford algebra Cl(0, 2, 1) or perhaps more conveniently as the even
subalgebra of Cl(0, 3, 1). The Spin group for this algebra is the double cover of the
group of proper Euclidean displacements.

The group of proper Euclidean displacements itself can be realised as a
quadric in the projectivisation of the Clifford algebra, this quadric is usually known
as the Study quadric.

The Lie algebra of both groups also lies in the Clifford algebra. Lie algebra
elements, sometimes called twists, are represented by dual pure quaternions. That
is dual quaternions of the form s = a + εb, where ε is the dual unit satisfying
ε2 = 0 and a, b are quaternions with no real part.

The aim of this paper is to investigate some mappings between the Lie al-
gebra of the rigid-body displacement group and the group itself. These maps are
of fundamental importance in many areas. Apart from its theoretical importance,
the exponential map connects mechanical joints, specified by a Lie algebra ele-
ment with the possible displacements allowed by the joint. However, for general
helical joints the map is not algebraic. On the other hand the Cayley map is a
rational map. This has several practical advantages, numerical methods based on
the Cayley map do not need so many trigonometric function calls and are hence
more efficient. Many problems in the group can be linearised by mapping them
to the space of twists. Actually there are several different Cayley maps defined by
different matrix representations of the group. In this work we look at two of these
based on the 4× 4 homogeneous representation of the group and the 6× 6 adjoint
representation of the group. A Cayley map based on the dual quaternion represen-
tation of the group is also introduced and studied here. In particular, since the pure
dual quaternions satisfy a degree 4 relation, it is possible to find cubic polynomial
relation for all of these maps. Moreover, the inverse maps, from the group back
to the Lie algebra can also written as cubic polynomials in the group elements.
Many of the computations in this work are somewhat lengthy and therefore the
computer algebra package Mathematica has been used in several places.

The study of the maps follows a brief section explaining the dual quaternions
and their relation to rigid-body displacements in a little more detail, and a short
section looking at the exponential and Cayley maps for ordinary quaternions.

2. Dual Quaternions

Let us denote the algebra of quaternions by H, elements of this algebra have the
form, h = h0+hxi+hyj+hzk. The ring of dual numbers D, consists of pairs of real
numbers λ, µ in the form λ+εµ. Here ε is the dual unit which satisfies ε2 = 0 and
commutes with the real coefficients. Now the dual quaternions are the elements
of the algebra H ⊗ D. It is simple to show that this algebra is isomorphic to the
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Clifford algebra Cl(0, 2, 1). Elements of H ⊗ D have the form, ha + εhb where ha
and hb are both quaternions and the dual unit ε commutes with the quaternion
generators i, j and k.

The Clifford conjugate of a dual quaternion is given by (ha+εhb)
− = h−a +εh−b

where the conjugates on the right of this equation are the standard quaternion
conjugates.

Elements of the Spin group satisfy the relation, gg− = 1. These can be written
in the form,

g = r +
1

2
εtr

where r is a quaternion representing a rotation, and t is a pure quaternion, that
is one with no real part, which represents the translation. The group elements g
and −g both represent the same rigid displacement, that is the spin group double
covers the group of rigid-body displacements.

Recall that quaternions representing rotations have the form,

r = cos
θ

2
+ sin

θ

2
ω̂ = cos

θ

2
+ sin

θ

2
(ω̂xi + ω̂yj + ω̂zk)

where θ is the angle of rotation and ω̂ is a unit vector (a pure quaternion with
unit modulus) directed along the rotation axis.

By Chasles’s theorem, a general rigid-body displacement is a finite screw
motion. That is, a rotation about a line followed by a translation in the same
direction as the rotation axis. Such a finite screw motion is specified by a line in
space, the screw axis; a rotation angle; and a pitch. The pitch gives the distance
translated along the screw axis for a complete turn. The dual quaternion repre-
senting such a displacement can be found as follows. First we will assume that
the rotation is about an axis through the origin and so is given by the quaternion
r. The translation in the direction of the screw axis will be given by the dual
quaternion,

1 +
1

2
ε
θp

2π
ω̂

where p is the pitch of the displacement, θ the angle of rotation and ω̂ the direction
of the screw axis. The screw motion about the line through the origin is represented
by the dual quaternion product,(

1 +
1

2
ε
θp

2π
ω̂
)
r = r +

1

2
ε
θp

2π
ω̂r.

Now to find the group element corresponding to a screw motion about an arbitrary
line in space we can use a group conjugation to move the line through the origin
to an arbitrary point in space. Suppose that q is a (pure quaternion representing
a) point on the arbitrary line, then the screw motion about this line can be found
by translating this point to the origin, performing the screw motion about the line
through the origin and finally translating the line back to its original position.
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This is represented by the product,

g = (1 +
1

2
εq)
(
r +

1

2
ε
θp

2π
ω̂r
)
(1− 1

2
εq)

= r +
1

2
ε
( θp

2π
ω̂r + qr − rq

)
(2.1)

Next suppose we write the group element as,

g = (a0 + a1i + a2j + a3k) + ε(c0 + c1i + c2j + c3k)

then the relation gg− = 1, for the dual quaternion to be a group element, simplifies
to two relations,

a20 + a21 + a22 + a23 = 1,

a0c0 + a1c1 + a2c2 + a3c3 = 0.

Thinking of these variables as homogeneous coordinates in seven-dimensional pro-
jective space P7, means that group elements g and −g are identified. The first
equation above is redundant and only the second equation is meaningful. In this
way elements of the group of rigid-body displacements are identified with point in
a six-dimensional quadric, called the Study quadric after its discoverer E. Study
[7]. Not every point in the Study quadric corresponds to a rigid-body displace-
ment, there is a 3-plane of elements satisfying a0 = a1 = a2 = a3 = 0 which do not
represent any rigid displacement, all other point in the Study quadric correspond
to distinct rigid displacements.

3. Map for Pure Quaternions

Before studying the exponential and Cayley maps for dual quaternions we take a
brief look at the corresponding maps for quaternions.

Suppose that ω is a pure quaternion, that is a quaternion with no real part.
The exponential of such an element is given by the familiar Maclaurin series,

eω = 1 + ω +
1

2!
ω2 +

1

3!
ω3 + · · ·

Since ω = ωxi + ωyj + ωzk is a pure quaternion it satisfies the quadratic relation,

ω2 = −(ω2
x + ω2

y + ω2
z) = −|ω|2

Substituting this in the Maclaurin series above it is straightforward to recognise
the series for the sine and cosine functions and simplify the exponential to,

eω = cos |ω|+ sin |ω| ω
|ω|

Again this is easily recognised as a quaternion representing a rotation, the axis of
the rotation is ω̂ = ω/|ω| and the angle of rotation satisfies, |ω| = θ/2.

Now we turn to the Cayley map, let a be another pure dual quaternion. The
Cayley map is defined as,

Cay(a) = (1 + a)(1− a)−1,
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this is a straightforward generalisation of the well known Cayley map for SO(3),
see [2].

This can be developed as an infinite power series,

Cay(a) = (1 + a)(1 + a+ a2 + a3 + · · · )
Then substituting the quadratic relation for pure quaternions we get,

Cay(a) = (1 + a)
( 1

1 + |a|2
+

a

1 + |a|2
)

So that finally we can write,

Cay(a) =
1− |a|2

1 + |a|2
+

2a

1 + |a|2

Again this can be recognised as a rotation, using the ‘tan-half-angle’ formulas. The
axis of rotation is â and the angle of rotation will satisfy |a| = tan(θ/4).

4. Idempotents and Nilpotents

For dual quaternions the power series are not so easily simplified. However the pure
dual quaternions or twists, do satisfy a degree 4 relation. Let s = ω+ εv be a pure
dual quaternion, that is ω and v are pure quaternions, then it is straightforward
to verify that these elements satisfy the relation,

s4 + 2|ω|2s2 + |ω|4 = 0.

Notice that this relation factorises easily,

s4 + 2|ω|2s2 + |ω|4 = (s+ i|ω|)2(s− i|ω|)2,
where here i is the imaginary unit. (This should not be confused with the quater-
nion i, note the different typefaces used).

Using the above it is possible to find a system of idempotents and nilpotents
p+, p−, n+ and n−, satisfying,

p2+ = p+, p2− = p−, p+n+ = n+, p−n− = n−, n2+ = n2− = 0

and all other products are zero, [6]. This system can be used to write infinite power
series in s as cubic polynomials in s.

The system of idempotents and nilpotents is given by,

p+ =
1

4i|ω|3
(s− 2i|ω|)(s+ i|ω|)2, (4.1)

p− =
−1

4i|ω|3
(s+ 2i|ω|)(s− i|ω|)2, (4.2)

n+ =
−1

4|ω|2
(s+ i|ω|)2(s− i|ω|), (4.3)

n− =
−1

4|ω|2
(s+ i|ω|)(s− i|ω|)2. (4.4)
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The idempotents satisfy the simple relation,

1 = p+ + p−

The original twist is recovered from the relation

s = i|ω|p+ + n+ − i|ω|p− + n−

The point of using such a representation is that the powers of the twist are easily
found. Using the properties of the idempotents and nilpotent (4.1)–(4.4), we have
that the powers of s are given by,

sk = (i|ω|)kp+ + k(i|ω|)k−1n+ + (−i|ω|)kp− + k(−i|ω|)k−1n−
for integer k ≥ 1.

5. The Exponential and Cayley Maps

5.1. The Exponential Map

The last relation above can be used in an infinite series to substitute for powers of
s. For example, using this in the Maclaurin series for the exponential of s gives,

es = ei|ω|p+ + ei|ω|n+ + e−i|ω|p− + e−i|ω|n−

This can be rewritten as a polynomial in s by substituting for the idempotents
and nilpotents from (4.1)–(4.4). The resulting expressions, containing complex
exponential, can be simplified using Euler’s formula from complex analysis the
following result is obtained,

es =
1

2

(
2 cos |ω|+ |ω| sin |ω|

)
− 1

2|ω|
(
|ω| cos |ω| − 3 sin |ω|

)
s+

1

2|ω|
(

sin |ω|
)
s2 − 1

2|ω|3
(
|ω| cos |ω| − sin |ω|

)
s3. (5.1)

This is similar to the well known Rodrigues formula for rotations.
There are perhaps simpler ways of producing these results using eigenvalues

methods, see [8], however here the idemponents and nilpotents will be needed later.

5.2. The Cayley Map

Another map from the Lie algebra to the group of proper Euclidean transfor-
mations is given by the Cayley map. As above, this is defined as Cayq(s) =

(1 + s)(1 − s)−1. In a similar manner this map can also be expressed as a cu-
bic polynomial in the twist s = a+ εb. In terms of the idempotents and nilpotents
we have,

Cayq(s) =
(1 + i|a|)
(1− i|a|)

p+ +
2

(1− i|a|)2
n+ +

(1− i|a|)
(1 + i|a|)

p− +
2

(1 + i|a|)2
n−

Expanding the idempotents and nilpotents as polynomials in s using (4.1)–(4.4),
and simplifying produces the cubic polynomial,
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Cayq(s) =
1 + 2|a|2 − |a|4

(1 + |a|2)2
+

2 + 4|a|2

(1 + |a|2)2
s+

2

(1 + |a|2)2
s2 +

2

(1 + |a|2)2
s3 (5.2)

In order to understand this map in a little more detail a different approach
is useful. Notice that the powers of the twist can be written,

s = a+ εb

s2 = a2 + ε(ab+ ba)

s3 = a3 + ε(a2b+ aba+ ba2)

...

From this it can be seen that,

(1− s)−1 = (1− a)−1 + ε(1− a)−1b(1− a)−1

and hence the Cayley map can be written,

Cayq(s) = (1 + s)(1− s)−1 = (1 + a)(1− a)−1 + ε2(1− a)−1b(1− a)−1.

Now we compare this result to the dual quaternion representing a general
screw motion found in (2.1) above.

r +
1

2
ε
( θp

2π
ω̂r + qr − rq

)
= (1 + a)(1− a)−1 + ε2(1− a)−1b(1− a)−1

From the quaternion part we have r = (1 + a)(1 − a)−1 so that the direction of
the screw axis is given by, ω̂ = â and the angle of rotation satisfies, |a| = tan(θ/4).
From the dual part of the equation we have,

1

2

( θp
2π
âr + qr − rq

)
= 2(1− a)−1b(1− a)−1.

Rearranging this to isolate b gives,

b =
1

4
(1− a)

( θp
2π
âr + qr − rq

)
(1− a)

and using the fact that r = (1 + a)(1− a)−1 gives,

b =
1

4

( θp
2π
â(1 + |a|2) + 2(qa− aq)

)
Finally we can turn this into a vector equation using the Gibbs relation, so that,

b = q × a+
θp

8π
(1 + tan2 θ

4
)â = q × a+

θ/2

1− cos θ/2

( p

2π

)
a

So the twist s and the finite screw motion Cay(s) have the same screw axis, with
direction â passing through the point q. But while the finite screw has pitch p the
pitch of the twist is given by,

hq =
a · b
a · a

=
θ/2

1− cos θ/2

( p

2π

)
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Unlike the exponential map, the Cayley map depends on the representation
of the group. In [5] Cayley maps for the 4×4 homgeneous representation of SE(3)
and the 6× 6 adjoint representation were computed. In all of these maps and also
for the exponential map, the twist and its image in the group share the same screw
axis. The difference between the maps is their pitches, for the exponential map
the pitch of the twist is the same as the pitch of the finite screw motion. For the
4 × 4 homogeneous representation a pitch p finite screw is produced by a twist
with pitch,

h4 =
θ/2

tan θ/2

( p

2π

)
This quatity is the quasi-pitch or ‘quatch’ discussed in [4]. The pitch of a twist
associated to a pitch p screw motion by the Cayley map using the adjoint repre-
sentation of the group is,

h6 =
θ

sin θ

( p

2π

)
.

The dual quaternion representation give yet another map from the Lie algebra
of the rigid-body displacement group to the group itself.

6. Geometry of the Cayley Maps

It is possible to say a little more about the geometry of these different Cayley maps.
We begin with the 4× 4 Cayley map. Consider a general group element, a pitch p
screw motion about an axis with direction ω̂ and moment v = qω̂ − ω̂q = q × ω̂,

g = (cos
θ

2
+ sin

θ

2
ω̂) + ε(sin

θ

2
v − 1

2

(
θp

2π

)
sin

θ

2
+

1

2

(
θp

2π

)
cos

θ

2
ω̂, )

see (2.1) above. Now take the 2-plane determined by this point and the two other
points 1 and ε. This 2-plane meets the 5-plane a0 = c0 = 0 of screws in a point,

s = ω̂ + ε

(
v +

θ/2

tan θ/2

( p

2π

)
ω̂

)
This projection determines a map from the group to the space of screws, that is
to the projective 5-space formed by taking the lines through the origin in the Lie
algebra. This map is almost the inverse of the 4× 4 Cayley map, ‘almost’ because
the screws have no amplitude. Notice that the intersection of the group with the
2-plane determines a conic of points in the group which all map to the same screw.
This can be interpreted as follows, consider the line of twists in the Lie algebra
which determine the same screw, the 4× 4 Cayley map of this line will be a conic
in the space of group elements.

This can be viewed in another way, consider the finite screw motions with
pitch p about the z-axis. Restricting attention to rigid displacements about this
particular axis will not affect the results here since we can always use a group
conjugation to put the screw axis in general position. Moreover it is clear that the
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action of the Cayley maps commute with the conjugation by a group element. The
dual quaternion representing such motion is,

g = (cos
θ

2
+ sin

θ

2
k) +

1

2
ε
(
− θp

2π
sin

θ

2
+
θp

2π
cos

θ

2
k
)

Now we seek the group elements which have the same quatch, that is the group
element that project to the same screw. The quatch is given by,

h4 =
θ/2

tan θ/2

( p

2π

)
so if we substitute

θp

2π
= 2h4 tan θ/2

we get

g = (cos
θ

2
+ sin

θ

2
k) + ε(−h4 tan

θ

2
sin

θ

2
+ h4 sin

θ

2
k) (6.1)

These group elements lie on the Study quadric a0c0 + a1c1 + a2c2 + a3c3 = 0 of
course, but also on the 5 hyperplanes, a1 = a2 = c1 = c2 = 0 and h4a3 − c3 = 0.
Hence these points do form a conic and we can give a rational parameterisation of
the curve,

g = (c2 + sck) + ε(−h4s2 + h4sck)

where s and c are homogeneous parameters.
We can perform a similar analysis for the other Cayley maps. For the 6 × 6

Cayley map the pitch of the screw is given by,

h6 =
θ

sin θ

( p

2π

)
.

and hence the finite screws about the z-axis which map to this screw have the
form,

g = (cos
θ

2
+ sin

θ

2
k) + ε(−h6 sin2 θ

2
cos

θ

2
+ h6 sin

θ

2
cos2

θ

2
k)

These points can be parameterised by a homogeneous cubic,

g = ((c2 + s2)c+ (c2 + s2)sk) + ε(−h6cs2 + h6c
2sk)

Hence, under this map the group elements which result from a line of twists about a
given screw form a twisted cubic curve. Such curves always lie in the intersection of
three linearly independent quadrics, here one of the quadrics is given by the Study
quadric and the other two are a0c3−a3c0−ha0a3 = 0 and ha0c0+c20+c23 = 0. The
curve lies in the 3-plane defined by the linear equations, a1 = a2 = c1 = c2 = 0.
Notice that the motion defined by these curves are vertical Darboux motions, see
[1, p. 321].

Lastly the dual quaternion Cayley map introduced above determines the
pitch,

hq =
θ/2

1− cos θ/2

( p

2π

)
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so the finite screw motion about the z-axis can be written,

g = (cos
θ

2
+ sin

θ

2
k) + ε(−hq(1− cos

θ

2
) sin

θ

2
+ hq(1− cos

θ

2
) cos

θ

2
k)

This curve can be parameterised by homogeneous quartic forms,

g = ((c2 + s2)(c2 − s2) + 2(c2 + s2)csk) + ε(−4hqcs
3 + 2hq(c

2 − s2)s2k)

This shows that the dual quaternion Cayley map sends a line of twists to a rational
quartic curve in the group.

7. Polynomial Expressions for the Cayley Maps

In this section polynomials in the dual quaternions will be found for the 4× 4 and
6× 6 Cayley maps.

In order to carry out the computations it is easiest to look at the case of
motion about the z-axis, as usual the action of the group can be used to generalise
the results found to motions about arbitrary axes. So begin with a pitch p motion
about the z-axis, substituting for the pitch using the relation for the pitch of the
corresponding twist under the 4× 4 Cayley map yields (6.1).

Now the corresponding twist will have the form s = |a|(k + h4εk). For such
a twist the idempotents and nilpotents will be,

p+ =
1

2
(1− ik),

p− =
1

2
(1 + ik),

n+ =
1

2
h4|a|ε(i+ k),

n− =
1

2
h4|a|ε(−i+ k).

In these cases the rotation angle is related to the Lie algebra element by the
relation, |a| = tan(θ/2). Using this and the relations above equation (6.1) can be
written in terms of the idempotents and nilpotents as,

g =
1 + i|a|√
1 + |a|2

p+ +
1 + i|a|√
1 + |a|2

n+ +
1− i|a|√
1 + |a|2

p− +
1− i|a|√
1 + |a|2

n−.

Now, as argued above, this is a general relation for motion about an arbitrary
axis, so we may assume that the idempotents and nilpotents are given by (4.1)–
(4.4) again. Expanding the idempotents and nilpotents then gives the polynomial,

Cay4(s) =
1

2
√

1 + |a|2
(
(2 + |a|2) + 2s+ s2

)
. (7.1)

Notice that map is only quadratic in s, the cubic term has disappeared.
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The 6 × 6 Cayley map can be treated in the same manner. This yields an
expression in terms of idempotents and nilpotents,

g =
1 + i|a|

(1 + |a|2)1/2
p+ +

1 + i|a|
(1 + |a|2)3/2

n+ +
1− i|a|

(1 + |a|2)1/2
p− +

1− i|a|
(1 + |a|2)3/2

n−.

This leads to the following dual quaternion expression for the 6× 6 Cayley map,

Cay6(s) =
1

2(1 + |a|2)3/2
(
(2 + 3|a|2) + (2 + 3|a|2)s+ s2 + s3

)
. (7.2)

8. Inverse Maps

Here we compute polynomials in the group elements for the inverse maps. The
group elements also satisfy a polynomial equation. The polynomial satisfied by
unit quaternions is simple to spot. Consider a general unit quaternion,

r = cos
θ

2
+ sin

θ

2
ω̂

where ω̂ is unit vector, so as a pure quaternion satisfies ω̂2 = −1. Such a unit
quaternion represents a rotation by and angle θ about an axis ω̂. Is is simple to
verify that these unit quaternions satisfy the quadratic relation,

r2 − 2 cos
θ

2
r + 1 = 0. (8.1)

To find the polynomial satisfied by the unit dual quaternions is not so straight-
forward. The system of idempotents and nilpotents can be used to find it however.
Suppose that a unit dual quaternion is given in terms of the system of idempo-
tents and nilpotents as, g = αp+ + βn+ + γp− + δn−. The unit dual quaternions
must satisfy the relation, g−1 = g−, from the relations for the idempotents and
nilpotents (4.1)–(4.4) above it is easy to see that the Clifford conjugates of these
elements are p−+ = p− and n−+ = −n−. Hence a unit dual quaternion will be given
in terms of the idempotents and nilpotents by,

g = (λp+ + λµn+ +
1

λ
p− +

µ

λ
n−) (8.2)

where λ and µ are arbitrary. The first four powers of such a group element are
given by,
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1 = p+ + p−

g = λp+ + λµn+ +
1

λ
p− +

µ

λ
n−

g2 = λ2p+ + 2λ2µn+ +
1

λ2
p− + 2

µ

λ2
n−

g3 = λ3p+ + 3λ3µn+ +
1

λ3
p− + 3

µ

λ3
n−

g4 = λ4p+ + 4λ4µn+ +
1

λ4
p− + 4

µ

λ4
n−

Now suppose we assume that the group elements satisfy a quartic relation:
g4 = αg3 + βg2 + γg + δg. Comparing the coefficients of the idempotents and
nilpotents gives a set of linear equations in the unknown coefficients of the quartic.

αλ3 + βλ2 + γλ + δ = λ4

3αλ3µ + 2βλ2µ + γλµ = 4λ4µ

αλ−3 + βλ−2 + γλ−1 + δ = λ−4

3αλ−3µ + 2βλ−2µ + γλ−1µ = 4λ−4µ

These equations could be solved by standard techniques from linear algebra
however it not too difficult to see that the equation are in the same form as
the equations for a Hermite interpolation problem. The coefficients sought in the
problem above are the same as the coefficients in the polynomial through the point
(λ, λ4) with gradient 4λ3 and through the point (λ−1, λ−4) with gradient 4λ−3.
Note that the second and forth equations above can be divided by λµ and λ−1µ
respectively.

Standard techniques for solving Hermite interpolation problems can be ap-
plied and this yields the following result for the quartic polynomial satisfied by
the unit dual quaternions,

g4 = 2(λ1 + λ−1)g3 − (λ2 + 4 + λ−2)g2 + 2(λ1 + λ−1)g − 1. (8.3)

Comparing this with the results for the exponential map given above, we can
identify the parameter λ with eiθ/2 where θ is the rotation angle of the transfor-
mation g.

g4 − 4 cos
θ

2
g3 + (4 cos2

θ

2
+ 4)g2 − 4 cos

θ

2
g + 1 = 0 (8.4)

Notice that this relation will also give a polynomial expression for the Clifford
conjugate of a general group element, since for group elements gg− = 1. That is,

g− = −g3 + 4 cos
θ

2
g2 − (4 cos2

θ

2
+ 4)g + 4 cos

θ

2
(8.5)
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8.1. The Logarithm

The same technique can be used to compute polynomials for the inverse functions
to other maps from the Lie algebra to the group. The inverse to the exponential
function is of course the Logarithm, this can be found by Hermite interpolation
through the points (eiθ/2, iθ/2) and (e−iθ/2, −iθ/2) with gradients e−iθ/2 and eiθ/2

respectively.
This produces the polynomial,

log(g) =
1

8 sin3(θ/2)

(
2(θ − sin θ)g3 + 4(sin

3θ

2
− 3θ

2
cos

θ

2
)g2 +

2(3θ − 8 sin θ − sin 2θ)g +
(
2 sin

3θ

2
− 2 sin

θ

2
+ θ cos

3θ

2
− 3θ cos

θ

2
)
)
.

(8.6)

8.2. The Inverse Cayley Maps

Similar results can be produced for the inverse Cayley maps. For the dual quater-
nion Cayley map the points for the Hermite interpolation are

(
(1 + i|a|)(1 −

i|a|)−1, i|a|
)

and
(
(1− i|a|)(1 + i|a|)−1, −i|a|

)
with (1/2)(1− i|a|)2 and (1/2)(1 +

i|a|)2 as the gradients at the respective points.

Cay−1q (g) =
1

8

(
(|a|2 + 1)2g3 + (3|a|4 − 2|a|2 − 5)g2 +

(3|a|4 − 2|a|2 + 11)g + (|a|4 + 2|a|2 − 7)
)
. (8.7)

Recall that the rotation angle of the group element satisfies |a| = tan(θ/4).
However, the sine and cosine of the half-angles are more immediately accessi-
ble, note that cos(θ/2) = a0 and sin2(θ/2) = a21 + a22 + a23, where ai are the
first four homogenous coordinates in P7, see section 2 above. Using the relation
tan(θ/4) =

(
1− cos(θ/2)

)
/ sin(θ/2), the inverse map can be written,

Cay−1q (g) =
1

2(cos(θ/2) + 1)2
(
g3 − (4 cos

θ

2
+ 1)g2 +

(4 cos2
θ

2
+ 4 cos

θ

2
+ 3)g + (2 cos2

θ

2
+ 4 cos

θ

2
+ 1)

)
.(8.8)

The other Cayley maps can be treated in the same way, except for the fact
that now we have that |a| = tan(θ/2). For the 4× 4 Cayley map the result is,

Cay−14 (g) =
1

2 cos(θ/2)

(
g3 − 4 cos

θ

2
g2 + (4 cos2

θ

2
+ 3)g − 4 cos

θ

2

)
. (8.9)

And the 6× 6 Cayley map gives,

Cay−16 (g) =
−1

2 cos2(θ/2)

(
g2 − 4 cos

θ

2
g + (2 cos2

θ

2
+ 1)

)
. (8.10)

Again notice that in this case the map is only quadratic in the group element.
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9. Conclusions

In this work cubic polynomials have been given for the exponential and Cayley
maps from the space of twists to the space of finite screw motions. Polynomials
for two other Cayley maps have also been found. It has also been possible to find
polynomials for the inverses of these maps.

A little about the geometry of these maps has also been found. The expo-
nential of a zero or infinite pitch screw is well known to map to a line in the Study
quadric. Screws of general pitch do not map to algebraic curve. Here it has been
shown that the 4×4 Cayley maps sends screws to conics in the Study quadric. The
6× 6 Cayley map sends screws to twisted cubic curves in the Study quadric. The
image of a screw under the dual quaternion Cayley map is a twisted quartic curve.
Moreover, the twisted cubic curves in the group correspond to motions already
studied in the kinematics literature, they are known as vertical Darboux motions.
A Darboux motion is a rigid-body motion under which the points of space trace
conic trajectories, not all lying in the same plane. Rigid body motions correspond-
ing to conics in the Study quadric are also know. The motions of the coupler bar
in a Bennett mechanism is known to follow a conic curve in the Study quadric. It
has not been determined if the the image of a screw under the 4×4 Cayley map is
one of these Bennett motions. Motions corresponding to rational quartic curves in
the Study quadric are less well understood (the well known Bricard-Borel motion
corresponds to an elliptic quartic).

In the introduction it was stated that the Cayley maps could be used in
efficient numerical methods. In order to carry this out it would usually be necessary
to have polynomial relations for the derivatives of these maps and their inverses.
Using the methods of this paper it would be a straightforward matter to complete
these computations.

It is possible that there are other Cayley maps resulting from other repre-
sentations. Notice that the dual quaternions could be viewed as an 8 × 8 matrix
representation of the group by writing a dual quaternion as an 8-dimensional vec-
tor and representing the right and left products as matrix operations. It may be
possible to find all possibilities by studying the possible representations of the
maps in terms of the system of idempotents and nilpotents described in the paper.
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[6] G. Sobczyk. The generalized spectral decomposition of a linear operator. The College
Mathematics Journal pp. 27–38, 1997.

[7] E. Study, “Von den Bewegungen und Umlegungen”, Mathematische Annalen, vol 39,
pp. 441–566, 1891.

[8] M. Visser, S. Stramigioli and C. Heemskerk, Cayley-Hamilton for roboticists, “Proc.
IEEE/RSJ International Conference on Robots and Intelligent Systems” Beijing,
China 2006, pp. 4187–4192.

J.M. Selig
Faculty of Business,
London South Bank University,
London SE1 0AA, U.K.
e-mail: seligjm@lsbu.ac.uk


