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Abstract

This paper investigates group consensus problems in networked multi-agent sys-

tems (NMAS) with communication delays. Based on the proposed state predic-

tion scheme, the group consensus control protocol is designed to compensate the

communication delay actively. In light of algebraic graph theories and matrix

theories, necessary and(or) sufficient conditions of group consensus with respect

to a given admissible control set are obtained for the NMAS with communi-

cation delays under mild assumptions. Finally, simulations are worked out to

demonstrate the efficacy of the theoretical results.

Keywords: networked multi-agent systems, group consensus, communication

delays, time delay compensation scheme

1. Introduction

In recent years, consensus analysis, which is a very important fundamen-

tal research focus in the field of cooperative control of multi-agent systems

(MASs), has been widely used in many scientific projects, such as distribut-

ed sensor networks[1, 2, 3, 4], intelligent traffic management systems[5, 6, 7],5
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power converters[8], PEM fuel cell air-feed system[9], unmanned aerial vehicles

(UAVs)[10], etc. Generally speaking, the main goal of consensus problems is

to design an appropriate control protocol based on the information exchange

between an agent and its neighbors so that all the agents in a MAS converge to

a common state.10

Since the first systemic framework for consensus analysis of a continuous

multi-agent system was established in 2004 by Olfati-Saber and Murray[11],

fruitful research explorations in consensus control of a MAS have begun in

various research communities. Ren et al.[12] considered the consensus prob-

lem under directed interaction typologies and gave discrete and continuous up-15

date schemes and convergent conditions. Xiao et al.[13] designed a valid dis-

tributed consensus algorithm for first-order discrete-time multi-agent systems

with switching topologies and time-varying delays, and analysis some applica-

ble conditions. Subsequently, good progress has also been made on consensus

problems of second-order and higher-order multi-agent systems with delays and20

noises[14, 15, 16]. Moreover, the existing theoretical results involve some extend-

ed consensus problems. Xiao et al.[17] studied asynchronous consensus prob-

lems of multi-agent systems in discontinuous information transmission. Wang

et al.[18] discussed the finite-time state consensus problems using the theory

of finite-time Lyapunov stability. Tahbaz-Salehi et al.[19] presented a sufficien-25

t and necessary condition for the stochastic consensus of discrete-time linear

multi-agent systems. Zhou et al.[20] designed constrained consensus controllers

of the asynchronous multi-agent systems,where each agent is required to lie in

a closed convex constraint set. For more details, see[21, 22, 23].

It is worth noting that the above research results only discuss how to design30

appropriate protocols and algorithms for guaranteeing consensus requirements

of all the agents in a network. However, in complex practical applications of

multi-agent control systems, changes of external environment, cooperative task

allocation or even time may lead to the fact that agents in a network converge

to more than one consistent states. Especially, when the analysis and design of35

large-scale complex network system is carried out, the complex large-scale net-
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work is decomposed into several smaller sub-network according to the specific

cooperative requirements. In nature, there are foraging and migration among

multiple species, for instance, birds, fish and primates often coordinate their

behavior in interaction with peers and other species[24]. In the study of social40

networks, the analytical results from some dynamic evolution models of human

opinion show that all the agents evolve into groups in some cases, and agents

in the same group asymptotically reach a consistent state[25]. Due to some

potential applications of group consensus into multi-group formation, flocking

and swarming control[26], some scholars have studied group consensus. Group45

consensus is more general than complete consensus, whose main goal is to design

appropriate control protocols and algorithms so that the agents in the same sub-

group reach a state agreement, but the consistent states of different subgroups

may not be the same[27]. Yu et al.[28, 29] investigate group consensus prob-

lems of first-order continuous-time multi-agent systems with connected undi-50

rected/directed topology and several criterions are established by using graph

theories and matrix theories. On this basis, double-tree-form transformations

are introduced to analyze the case of switching topology and communication

delay, and consequently the group consensus problem is converted into a stabil-

ity problem of switched linear systems. Wang et al.[30] studied the maximum55

(weight) stable set and vertex coloring problems with application to the group

consensus of MASs, and presented a new protocol design procedure by the ma-

trix semi-tensor product method. Wang et al.[31] designed competition-based

control protocol for a class of first-order continuous-time multi-agent systems

with time-delay and connected bipartite graph topologies. Ji et al.[32] further60

analyzed the coupling relationship between group consensus and time delays

based on the results from Wang et al. Futhermore, Guan et al.[33] pointed out

that the multiagent network may have several consistent states for a special

grouping or no grouping and group consensus can be recognized as one spe-

cial case of multiconsensus. For more details on second-order continuous-time65

multi-agent systems, please refer to Ref.[34, 35].

Among all existing works, there are few literatures which concern group
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consensus of a MAS with high-order discrete-time dynamics. In addition, a

strict constraint is that the sum of adjacent weights from each agent in one

group to all agents in other groups equals zero at any moment, which has great70

conservation in practical application. Moreover, the issue of communication de-

lays that degrade the consensus performance is only focused on a first-order or

second-order integral-type MAS. To overcome the negative effects of communi-

cation delays on group consensus, most approaches have been presented directly

using theoretical results on time delay systems. These approaches commonly75

aim at obtaining the upper bound of the delay tolerance that guarantee group

consensus, which are so passive to compensate for communication delays.

The paper investigates the group consensus problem in a discrete-time MAS

with general linear dynamics and communication delays. Based on state predic-

tive scheme, a novel group consensus control protocol is designed to compensate80

for communication delays actively. By means of graph theory and matrix ap-

proach, necessary and (or) sufficient conditions are established for the realization

of group consensus in the time-varying delay case.

This paper is organized as follows. Some background of problem formulation

and group consensus control protocols are presented in Section 2. Section 385

describes necessary and(or) sufficient conditions of group consensus with respect

to a given admissible control set for the NMAS with communication delays.

Simulation results are given in Section 4 to demonstrate the feasibility and

efficiency of the proposed group consensus control protocol. The conclusion

drawn from the present study is presented in Section 5.90

Notation : Throughout the paper, R denotes the set of real numbers, Z+

denotes the set of non-negative integers, C denotes the set of complex numbers

and Rm×n stands for the set of m × n real matrices. I n is an n-dimensional

identity matrix. 1n = [ 1 · · · 1 ]T ∈ Rn×1 means an n× 1 column vector with

all elements equal to unity. The symbol ⊗ represents the Kronecker product.95

If W = (wij) is an m× n matrix and V = (vij) is a p× q matrix, then the

Kronecker product W ⊗V represents the mp× nq block matrix:
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W ⊗V =




w11V · · · w1nV

...
. . .

...

wm1V · · · wmnV


 .

2. Problem Formulation and Group Consensus Control Protocol

Let G = (V, E ,A) be a weighted directed graph of order N(N ≥ 2) with a

set of nodes V = {v1, v2, . . . , vN}, a set of edges E ⊆ V × V , and a nonnegative100

weighted adjacency matrix A(G) = [aij ] ∈ RN×N . The node indexes belong

to a finite index set ` = {1, 2, · · · , N}. A directed edge that starts from the

node vi and ends on the node vj is denoted by eij = (vi, vj). The adjacency

element aji associated with the edge eij is nonzero, i.e., eij ∈ E if and only if

aji 6= 0. Moreover, it is assumed that aii ≡ 0, ∀i ∈ `. The neighborhood set of105

the node vi is represented by Ni = {Vj ∈ V|(vj , vi) ∈ E}. The indegree of the

node vi is defined as din(i) =
∑

j∈Ni
aij . The degree matrix of G is a diagonal

matrix D(G) = diag
(
din(1), din(2), · · · , din(N)

)
. Then the Laplacian matrix of

G is defined as L(G) = D(G)−A(G).

Given a network composed of N agents, the state of the ith agent is de-110

noted by x i ∈ Rn, thus (G,x ) stands for the network with a state vector

x = [xT
1 xT

2 · · · xT
N ]T ∈ RnN and a topological graph G. The state of each

node can describe physical quantities in practical scene, such as position, veloci-

ty, acceleration, temperature, pressure, flow, liquid level, etc.. Considering each

agent as a node in the network (G,x ), an available communication link from115

agent vj to agent vi is corresponding to a directed edge eij ∈ E . Each agent

updates its current state based on its own information and the received from its

neighboring agents.

Definition 1 : A network (G1,x 1) with a topological graph G1 = (V1, E1,A1)

is said to be a sub-network of a network (G,x ) with a topological graph with120

G = (V, E ,A) if (i)V1 ⊆ V , (ii)E1 ⊆ E and (iii)A1 inherits A. In a similar

way, G1 is called a sub-graph of G. Moreover, if the conditions (i) and (ii) are
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strictly satisfied, and E1 = {(vi, vj)|(vi, vj) ∈ E , i, j ∈ V1}, the network (G1,x 1)

is called a proper sub-network of the network (G,x ) and G1 is said to be a proper

sub-graph of G.125

Considering a complex network (G,x ) composed ofN+M(N,M > 1) agents,

denote its state vector x = [ xT
1 xT

2 · · · xT
N+M ]T ∈ Rn(N+M), and its topolog-

ical graph G = (V , E ,A). G = (V , E ,A) is a weighted directed graph composed

of the sub-graph G1 = (V1, E1,A1) and the sub-graph G2 = (V2, E2,A2), where

V1 = {v1, v2, · · · , vN}, V2 = {vN+1, vN+2, · · · , vN+M}, `1 = {1, 2, · · · , N},130

`2 = {N + 1, N + 2, · · · , N + M}. For node vi, the set of its neighbor n-

odes in two sub-graphs are defined as N1i = {Vj ∈ V1|(vj , vi) ∈ E} and

N2i = {Vj ∈ V2|(vj , vi) ∈ E}, respectively. It is clear that V = V1

⋃
V2,

Ni = N1i

⋃
N2i, ` = `1

⋃
`2. Therefore, (G,x ) is considered to be composed of

two sub-network (G1, χ1) and (G2, χ2), where χ1 = [ xT
1 xT

2 · · · xTN ]T ∈ RnN ,135

χ2 = [ xT
N xT

N+1 · · · xT
N+M ]T ∈ RnM , and x = [ χT

1 χT
2 ]T . It implies in-

formation exchanges among agents exist not only in the same sub-network but

also in different sub-networks.

Suppose the discrete-time dynamics of the ith agent in the network (G,x )

are described by a general linear system:140

x i(t+ 1) = Ax i(t) +Bu i(t)

y i(t) = Cx i(t), ∀ i ∈ `. (1)

where x i(t) ∈ Rn is the state vector, y i(t) ∈ Rm is the measured output vector,

u i(t) ∈ Rr is the control input vector, A ∈ Rn×n, B ∈ Rn×r and C ∈ Rm×n.

In this paper, the objective is to design a suitable group consensus control

protocol for a MAS subject to communication constraints in two sub-networks

so that the first N agents converge to one consistent state asymptotically while145

the last M agents converge to another consistent state asymptotically. In order

to describe systemic structure and network characteristics of the NMAS (1), the

following assumptions are made:

Assumption 1 The matrix pair (A, C ) is detectable.

Assumption 2 The ith agent (∀i ∈ `) can receive the information of its150
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own and the information of the jth agent (vj ∈ Ni) through a communication

network with time-varying delays τij(t), and

0 ≤ τ0 ≤ τ̌ij(t) ≤ τij(t) ≤ τ̂ij(t) ≤ τ, ∀ i, j ∈ `, (2)

where τ̌ij(t) and τ̂ij(t) is known bounded functions, τ0 and τ are the lower and

upper bounds of communication delays, respectively.

Assumption 3 The data packets transmitted in the network are with time155

stamps.

Assumption 4 The adjacent weights aij of the sub-network (G1, χ1) and

(G2, χ2) satisfy

∑

vj∈N2i

aij = α, ∀ i ∈ `1,

∑

vj∈N1i

aij = β, ∀ i ∈ `2, (3)

where α, β ∈ R are constant numbers.

Due to the presence of time delay τij(t) in the transmission channel from160

the jth agent to the ith agent, the ith agent at time t might only receive the

jth agent’s information at time t − τij(t). At present, many different types of

control protocols directly using delayed information have been developed for

solving the group consensus problem for instance

ui(t) =





K

(
∑

vj∈N1i

aij
(
x j(t− τij(t))− x i(t− τij(t))

)

+
∑

vj∈N2i

aijx j(t− τij(t))

)
, ∀ i ∈ `1,

K

(
∑

vj∈N2i

aij
(
x j(t− τij(t))− x i(t− τij(t))

)

+
∑

vj∈N1i

aijx j(t− τij(t))

)
, ∀ i ∈ `2.

(4)

As is known, the past information cannot express the current of a control165

system in time. Consequently, these design methods ignore network characteris-

tics and attempt to exert control passively within upper bounds to the maximal
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tolerable delay that can guarantee group consensus. In order to overcome ad-

verse effects caused by network delay, a network delay compensation scheme is

proposed to predict the state and control input of each agent.170

On the basis of Assumptions 1–3, suppose the state of the ith agent

(∀ i ∈ `) is not measurable. For the state estimation of its neighboring agent j,

a state observer on the ith agent is constructed as

x̂ j(t− τ + 1|t− τ) = Ax̂ j(t− τ |t− τ − 1) +Buj(t− τ)

+ L
(
y j(t− τ)− ŷ j(t− τ)

)

ŷ j(t− τ) = Cx̂j(t− τ |t− τ − 1), ∀ i ∈ `. (5)

where x̂ j(t − p|t − q) ∈ Rn (p < q) means the state estimation of the agent

j for time t − p on the basis of the information up to time t − q, ŷ j(t) ∈ Rm
175

is the observer output at time t. Although Equation (5) provides a one-step

ahead state estimation of the agent j using the output at time t− τ , the state

estimations from time t− τ + 2 to time t+ τ can be calculated by

x̂ j(t− τ + 2|t− τ) = Ax̂ j(t− τ + 1|t− τ) +Buj(t− τ + 1)

...

x̂ j(t|t− τ) = Ax̂ j(t− 1|t− τ) +Buj(t− 1). (6)

On the ith agent, a consensus control protocol using the above state estima-

tion scheme is constructed as180

u i(t) =





K

(
∑

vj∈N1i

aij
(
x̂ j(t|t− τ)− x̂ i(t|t− τ)

)

+
∑

vj∈N2i

aij x̂ j(t|t− τ)

)
, ∀ i ∈ `1,

K

(
∑

vj∈N2i

aij
(
x̂ j(t|t− τ)− x̂ i(t|t− τ)

)

+
∑

vj∈N1i

aij x̂ j(t|t− τ)

)
, ∀ i ∈ `2,

(7)

where K ∈ Rr×n denotes the control gain matrix, and the adjacency weight aij
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satisfies the following conditions:

(i) aij ≥ 0, ∀ i, j ∈ `1;

(ii) aij ≥ 0, ∀ i, j ∈ `2;

(iii) aij ∈ R, ∀ (i, j) ∈ φ = {(i, j) : i ∈ `1, j ∈ `2}
⋃

{(i, j) : i ∈ `2, j ∈ `1}.

(8)

Remark 1 : By the above state estimation scheme, the state of the agent

j at time t can be predicted using the information up to time t − τ . Active

compensation of communication delays can be made by employing the sate185

predictions into the design of group consensus control protocols. On account

of τij(t) < τ , measured output and control input of the agent j from time

t − τ to t − τij(t) are obtained on the ith agent at time t. Meanwhile, on the

basis of the state estimation equations (5)–(6) and the control protocol (7), the

information of agent j from time t − τ + 1 to t − τij(t) is not involved in the190

calculation of control input u i(t). Although redundant state estimations lead to

the increased amount of computation on the ith agent to a certain extent, the

above network delay compensation scheme provides a unified prediction process

and overcomes time-varying delay effects on consensus performance. Moreover,

in practical application, embedded microprocessors with powerful computing195

ability can ensure smooth execution of the whole estimation algorithm, and the

controller of each agent can be combined into an integrated controller with a

quite powerful function at low cost.

Let

u(t) =
[
uT

1 (t) u
T
2 (t) · · · uT

N+M (t)
]T

. (9)

If Assumptions 1–4 stand, for system (1), considering the following ad-200

missible control set:

U =
{
u(t) : Z+ −→ Rr(N+M)|u i(t) satisfies Equations (7)–(8), ∀ i ∈ `, ∀ t =

0, 1, · · ·
}
. An important question is that under what conditions, the NMAS (1)

achieves group consensus with respect to (w.r.t.) the admissible control set U?

Aiming at this question, this paper defines the group consensusability of an205

MAS w.r.t. the admissible control set U .
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Definition 2 For the NMAS (1), if there exists u(t) ∈ U such that for any

initial state x i(0), i ∈ `, the NMAS (1) is said to be group consensusable w.r.t.

U , if the following conditions holds:

(i) lim
t→+∞

‖x i(t)− x j(t)‖ = 0, ∀ i, j ∈ `1;

(ii) lim
t→+∞

‖x i(t)− x j(t)‖ = 0, ∀ i, j ∈ `2;

(iii) lim
t→+∞

‖x i(t)− x̂ i(t|t− 1)‖ = 0, ∀ i ∈ `. (10)

For the convenience of theoretical analysis, define the following new vari-210

ables:

ζi(t) = x 1(t)− x i(t), ∀ i ∈ `1,

ηi(t) = xN+1(t)− xi(t), ∀ i ∈ `2,

εi(t) = xi(t)− x̂i(t|t− 1), ∀ i ∈ `,

ζ(t) =
[
ζT2 (t) ζT3 (t) · · · ζTN (t)

]T
,

η(t) =
[
ηTN+2(t) ηTN+3(t) · · · ηTN+M (t)

]T
,

δ(t) =
[
ζT (t) ηT (t)

]T
.

From Definition 2, it is obvious that the equation (10) stands if and only if

t → ∞, ‖δ(t)‖ → 0, ‖εi(t)‖ → 0.

Before the presentation of main results, some relevant matrices are labeled

as follows.215

L(G1) =


 L11(G1) L12(G1)

L21(G1) L22(G1)


 =


 L1(G1)

L2(G1)


 ,

L(G2) =


 L11(G2) L12(G2)

L21(G2) L22(G2)


 =


 L1(G2)

L2(G2)


 ,
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Ω(G1) =




−a1(N+1) −a1(N+2) · · · −a1(N+M)

−a2(N+1) −a2(N+2) · · · −a2(N+M)

· · · · · · · · · · · ·

−aN(N+1) −aN(N+2) · · · −aN(N+M)




=


 Ω11(G1) Ω12(G1)

Ω21(G1) Ω22(G1)


 =


 Ω1(G1)

Ω2(G1)


 ,

Ω(G2) =




−a(N+1)1 −a(N+1)2 · · · −a(N+1)N

−a(N+2)1 −a(N+2)2 · · · −a(N+2)N

· · · · · · · · · · · ·

−a(N+M)1 −a(N+M)2 · · · −a(N+M)N




=


 Ω11(G2) Ω12(G2)

Ω21(G2) Ω22(G2)


 =


 Ω1(G2)

Ω2(G2)


 ,

L(G) =


 L(G1) Ω(G1)

Ω(G2) L(G2)


 ,

where L11(G1) ∈ R, L12(G1) ∈ R1×(N−1), L21(G1) ∈ R(N−1)×1, L22(G1) ∈

R(N−1)×(N−1), L11(G2) ∈ R, L12(G2) ∈ R1×(M−1), L21(G2) ∈ R(M−1)×1,

L22(G2) ∈ R(M−1)×(M−1), Ω1(G1) ∈ R1×M , Ω2(G1) ∈ R(N−1)×M , Ω1(G2) ∈

R1×N , Ω2(G2) ∈ R(M−1)×N .

3. Main Results220

In this section, group consensus control protocols (7) in NMAS (1) with

network topologies satisfying Equations (3) and (8) has been investigated. Nec-

essary and/or sufficient conditions for reaching group consensus in the case of

time-varying communication delays are given.

Theorem 1 When Assumptions (1)–(4) stand, if there exists the time-225

varying delay (2) in the networked multi-agent system (1) with two sub-networks
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(G1, χ1) and (G2, χ2), the control protocol (7) solves the admissible group con-

sensus problem if and only if the matrices Υ and A− LC are Schur stable, i.e.

their eigenvalues lie in the unit circle, where

Υ =


 Λ1 Π1

Π2 Λ2


 ,

Λ1 = IN−1 ⊗A−
(
L22(G1)− 1N−1L12(G1)

)
⊗

(
BK

)
,

Π1 = −
(
Ω22(G1)− 1N−1Ω12(G1)

)
⊗

(
BK

)
,

Π2 = −
(
Ω22(G2)− 1N−1Ω12(G2)

)
⊗

(
BK

)
,

Λ2 = IM−1 ⊗A−
(
L22(G2)− 1N−1L12(G2)

)
⊗

(
BK

)
.

Proof : By the state observer equation (5), it is easy to get the following230

state error equation:

εi(t+ 1) = (A− LC)εi(t). (11)

At the same time, using the state estimation equation (6) recursively leads to

x̂i(t|t− τ) = x̂i(t|t− 1)−
τ−2∑

s=0

AsLCεt−s−1

= xi(t)− εi(t)−
τ−2∑

s=0

AsLCεt−s−1

= xi(t)−Θ(τ)Ei(t), (12)

where Θ(τ) =
[
I LC ALC · · · Aτ−2LC

]
∈ Rn×nτ , Ei(t) =

[
εi

T (t) εi
T (t −

1) εi
T (t− 2) · · · εi

T (t− τ + 1)
]T

∈ Rnτ×1.

Let ζ̂i(t|t− τ) = x̂i(t|t− τ)− x̂1(t|t− τ), ∀ i ∈ `1, η̂i(t|t− τ) = x̂i(t|t− τ)−235

x̂N+1(t|t− τ), ∀ i ∈ `2. Based on the above equation, it can be obtained that

ζ̂i(t|t− τ) = ζi(t)−Θ(τ)Ei(t) +Θ(τ)E1(t), ∀ i ∈ `1,

η̂i(t|t− τ) = ηi(t)−Θ(τ)Ei(t) +Θ(τ)EN+1(t), ∀ i ∈ `2 (13)

12



Combining with Equations (7) and (13) results in

ζi(t+ 1)

= Aζi(t) +B
(
ui(t)− u1(t)

)

= Aζi(t) +BK

( ∑

vj∈N1i

aij
(
x̂j(t|t− τ)− x̂i(t|t− τ)

)

+
∑

vj∈N2i

aij x̂j(t|t− τ)

−
∑

vj∈N11

a1j
(
x̂j(t|t− τ)− x̂1(t|t− τ)

)

−
∑

vj∈N21

a1j x̂j(t|t− τ)

)

= Aζi(t) +BK

( ∑

vj∈N1i

aij
(
ζ̂j(t|t− τ)− ζ̂i(t|t− τ)

)

+
∑

vj∈N2i

aij
(
η̂j(t|t− τ) + x̂N+1(t|t− τ)

)
−

∑

vj∈N11

a1j ζ̂j(t|t− τ)

−
∑

vj∈N21

a1j
(
η̂j(t|t− τ) + x̂N+1(t|t− τ)

))
, ∀ i ∈ `1

(14)

According to Assumption 4, it is easily to be obtained

∑

vj∈N2i

aij x̂N+1(t|t− τ) = αx̂N+1(t|t− τ),

∑

vj∈N21

a1j x̂N+1(t|t− τ) = αx̂N+1(t|t− τ).

13



Substituting Equation (13) in Equation (14) drives

ζi(t+ 1) = Aζi(t) +BK

( ∑

vj∈N1i

aij
(
ζj(t)−Θ(τ)Ej(t)− ζi(t) +Θ(τ)Ei(t)

)

+
∑

vj∈N2i

aij
(
ηj(t)−Θ(τ)Ej(t) +Θ(τ)EN+1(t)

)

−
∑

vj∈N11

a1j
(
ζj(t)−Θ(τ)Ej(t) +Θ(τ)E1(t)

)

−
∑

vj∈N21

a1j
(
ηj(t)−Θ(τ)Ej(t) +Θ(τ)EN+1(t)

))

= Aζi(t) +BK

( N∑

j=1

aij
(
ζj(t)− ζi(t)

)

−
N∑

j=1

a1jζj(t) +

N+M∑

j=N+1

(aij − a1j)ηj(t)

)

+BKΘ(τ)

( N∑

j=1

aij
(
Ei(t)−Ej(t)

)
+

N∑

j=1

a1j
(
Ej(t)−E1(t)

)

−
N+M∑

j=N+1

(
aij − a1j)Ej(t)

)
, ∀ i ∈ `1. (15)

14



Similarly,240

ηi(t+ 1) = Aηi(t) +BK

( ∑

vj∈N2i

aij
(
ηj(t)−Θ(τ)Ej(t)− ηi(t)

+Θ(τ)Ei(t)
)
+

∑

vj∈N1i

aij
(
ζj(t)−Θ(τ)Ej(t) +Θ(τ)E1(t)

)

−
∑

vj∈N2(N+1)

a(N+1)j

(
ηj(t)−Θ(τ)Ej(t) +Θ(τ)EN+1(t)

)

−
∑

vj∈N1(N+1)

a(N+1)j

(
ζj(t)−Θ(τ)Ej(t) +Θ(τ)E1(t)

))

= Aηi(t) +BK

( N+M∑

j=N+1

aij
(
ηj(t)− ηi(t)

)
−

N+M∑

j=N+1

a(N+1)jηj(t)

+

N∑

j=1

(aij − a(N+1)j)ζj(t)

)

+BKΘ(τ)

( N+M∑

j=N+1

aij
(
Ei(t)−Ej(t)

)

+
N+M∑

j=N+1

a(N+1)j

(
Ej(t)−EN+1(t)

)

−
N∑

j=1

(aij − a(N+1)j)Ej(t)

)
, ∀ i ∈ `2. (16)

Let

E(t) =
[
ET

1 (t) · · · ET
N (t) ET

N+1(t) · · · ET
N+M (t)

]T
,

In the light of Equations (11), (15) and (16), one obtains a compact repre-

sentation with intragroup tracking error vectors and estimation error vectors

as



ζ(t+ 1)

η(t+ 1)

E(t+ 1)


 =




Λ1 Π1 Γ1

Π2 Λ2 Γ2

0 0 In(N+M)τ ⊗ (A− LC)







ζ(t)

η(t)

E(t)


 , (17)

where245

Γ1 =
[
L2(G1)− 1N−1 ⊗ L1(G1) Ω2(G1)− 1N−1 ⊗ Ω1(G1)

]
⊗

(
BKΘ(τ)

)
,

Γ2 =
[
Ω2(G2)− 1M−1 ⊗ Ω1(G2) L2(G2)− 1M−1 ⊗ L1(G2)

]
⊗

(
BKΘ(τ)

)
.

15



Clearly Equation (17) describes an upper block triangular matrix. It is

well-known that a block triangular matrix is Schur stable if and only if its

submatrices on the diagonal line are Schur stable. Based on Definition 2 , the

control protocol given by (7) can solve the admissible group consensus problem

for the networked multi-agent system (1) if and only if an upper system (17)250

is Schur stable which implies that the matrices Υ and A − LC are required to

have their eigenvalues with magnitude less than one. The proof is completed.

Remark 2 It is easy to see from Theorem 1 that the state-estimation-

based group consensus protocol (7) provides an active time-delay compensation

of NMAS (1) in a complex network with multiple subnetworks. In the design of255

the group consensus control protocol (7), the stability of the augmented error

system (17) is only determined by the matrices Υ and A−LC, which simplifies

the controller design process of each agent without taking into account time

delay. This brings great flexibility and efficiency for theoretical design and

engineering implementation.260

Let

u(t) =
[
uT
1 (t) u

T
2 (t) · · · uT

N+M (t)
]T

. (18)

Corollary 1 When Assumptions (1)–(4) stand, for NMAS (1) with two

sub-networks (G1, χ1) and (G2, χ2) and the time-varying network delay (2), the

following conclusions are equivalent:

(i) The control protocol (7) solves the group consensus problem;265

(ii) Suppose an arbitrarily chosen pair of matrices U12 ∈ RN×(N−1) and

U22 ∈ RM×(M−1), satisfying that U1 =

[
1√
N
1N U12

]
and U2 =

[
1√
M
1M U22

]

are orthogonal matrices, and the two matrices Ψ and A−LC are Schur stable,

where

Û =


 U 12 0

0 U22


 , Φ = Û

T
L(G)Û and Ψ = IN+M−2 ⊗A− Φ⊗ (BK).

16



Proof : Let270

S =


 S1 0

0 S2


 , S1 =

[
1N−1 − IN−1

]
and S2 =

[
1M−1 − IM−1

]
.

It is easy to be obtained that

Υ = IN+M−2 ⊗A−
(
SL(G)ST (SST )−1

)
⊗BK. (19)

Define

U =


 U1 0

0 U2


 , T =


 S1U12 0

0 S2U22


 ,

Because S1 and S2 have full row rank, it is easy to be deduced that S1U12 and

S2U22 are invertible. Also,

SL(G)ST (SST )−1

= (SU)
(
UTL(G)U

)
(SU)T

(
(SU)(SU)T

)−1

= (SU)
(
UTL(G)U

)
(SU)T

(
(SU)(SU)T

)−1

= (SU)
(
UTL(G)U

)
(SU)T

(
(SU)(SU)T

)−1

=


 (S1U12)U

T
12L(G1)U12(S1U12)

−1 (S1U12)U
T
12Ω(G1)U22(S2U22)

−1

(S2U22)U
T
22Ω(G1)U12(S1U12)

−1 (S2U22)U
T
22L(G2)U22(S2U22)

−1




= TΦT−1. (20)

From the above equation, it follows that275

(T ⊗ In)
−1Υ (T ⊗ In)

= (T ⊗ In)
−1

(
IN+M−2 ⊗A−

(
SL(G)ST (SST )−1

)
⊗BK

)
(T ⊗ In)

= IN+M−2 ⊗A−
(
T−1

(
SL(G)ST (SST )−1

)
T
)
⊗

(
BK

)

= IN+M−2 ⊗A− Φ⊗ (BK)

= Ψ. (21)

It means that Υ is similar to Ψ . Since similar matrices have the same eigenvalues,

Υ is Schur stable if and only if Ψ is Schur stable. Based on Theorem 1 , it is

17



obvious that NMAS (1) subjected to control protocol (7) can achieve group

consensus asymptotically if and only if Ψ and A − LC are Schur stable. This

completes the proof.280

Corollary 2 When Assumptions (1)–(4) stand, a NMAS (1) with two

sub-networks (G1, χ1) and (G2, χ2) is considered. If A is unstable, the necessary

condition of group consensusability w.r.t. the admissible control set U is that

L(G) has the zero eigenvalue with algebraic multiplicity 2, furthermore,

(i) If Ω1 = 0 or Ω2 = 0, then both of (G1, χ1) and (G2, χ2) contain a spanning285

tree;

(ii) If A is nonsingular, then (A,B) is stabilizable.

Proof : Denote

P =




1 0 0 0

1N−1 0 IN−1 0

0 1 0 0

0 1M−1 0 IM−1




,

Q =




1 0 0 0

0 0 IN−1 0

0 1 0 0

0 0 0 IM−1




,

Γ =




0 L12(G1) 0 Ω12(G1)

0 L22(G1)− 1N−1L12(G1) 0 Ω22(G1)− 1N−1Ω12(G1)

0 Ω12(G2) 0 L12(G2)

0 Ω22(G2)− 1M−1Ω12(G2) 0 L22(G2)− 1N−1L12(G2)




.

By computation and comparison, an equivalence relation is constructed as

P−1L(G)P =


 02×2 F

0 SL(G)ST (SST )−1




= Q−1ΓQ, (22)
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where290

F =


 L12(G1) Ω12(G1)

Ω12(G2) L12(G2)


 .

Let the eigenvalues of L(G) be λ1 = λ2 = 0, λ3, · · · , λN+M . From the Equa-

tion (22), it is easy to verify that the eigenvalues of the matrix SL(G)ST (SST )−1

are λ3, · · · , λN+M . Thus, there exists a transformation matrixT1 ∈ R(N+M−2)×(N+M−2)

such that

J = T−1
1

(
SL(G)ST (SST )−1

)
T1

= diag
(
J3(λ3),J4(λ4), · · · ,Js(λs)

)
,

where Ji(λi) is the upper triangular Jordan block corresponding to λi, i =295

3, 4, · · · , N +M .

Therefore

(T1 ⊗ In)
−1Υ (T1 ⊗ In) = IN+M−2 ⊗A− J⊗BK, (23)

which implies the eigenvalues of Υ are given by the eigenvalues of A − λiBK,

i = 3, 4, · · · , N + M . Hence, all the eigenvalues of A − λiBK lie in the unit

circle. Following the condition that A is unstable, it is easy to get λi 6= 0,300

i = 3, 4, · · · , N + M , the zero eigenvalue of L(G) has algebraic multiplicity of

two.

If Ω1 = 0 or Ω2 = 0, then σ
(
L(G)

)
= σ

(
L(G1)

)⋃
σ
(
L(G2)

)
. Since L(G1)1N =

0 and L(G2)1M = 0, the eigenvalue of L(G) has algebraic multiplicity equal to

2. To be sure for L(G1) and L(G2), each of them has exactly one zero eigenvalue.305

From the Equation (8), A(G1) and A(G2) are nonnegative matrices. Based on

Lemma 3.3 in [36], G1 and G2 contain a spanning tree, respectively.

In the following sections, the above conclusion (ii) will be proved.

The proving process is similar to Theorem 4 in [37]. For all i = 3, 4, · · · , N+

M , if there exists a real number denoted by λ3, all the eigenvalues of A −310

λ3BK lie in the unit circle. It is obvious that (A,B) is stabilizable. If λi (i ∈

{3, 4, · · · , N +M}) is an imaginary number, i.e. the imaginary part is nonzero,
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all the eigenvalues of the real matrix L(G) appear in the form of conjugate pairs.

Without loss of generality, let λ3 = e+jd and λ4 = e−jd be a pair of conjugate

eigenvalues. Noticing, ∀λ ∈ C,315

∣∣∣∣∣∣
λIn − (A− eBK) −dBK

dBK λIn − (A− eBK)

∣∣∣∣∣∣
= |λIn − (A− λ3BK)| · |λIn − (A− λ4BK)| ,

Since the eigenvalues of A−λ3BK and A−λ4BK are all in the unit circle, the

eigenvalues of


 A− eBK dBK

−dBK A− eBK


 lie in the unit circle, further organi-

zation is

 A− eBK dBK

−dBK A− eBK


 =


 A 0

0 A


+


 B 0

0 B





 −eK dK

−dK −eK


 ,

which implies that




 A 0

0 A


 ,


 B 0

0 B




 is stabilizable. Meanwhile,

Rank


 sIn −A 0 B 0

0 sIn −A 0 B


 = 2n, ∀s ∈ C, |s| ≥ 1,

is equivalent to Rank(sIn − A B) = n, ∀s ∈ C, |s| ≥ 1. Therefore, (A, B) is320

stabilizable. This completes the proof.

4. Simulated Example

In this section, some numerical simulated examples are presented to describe

the effectiveness of the above theoretical results.

Consider a NMAS (1) composed of four agents, where N = 2, M = 2,325

`1 = {1, 2}, `2 = {3, 4}. The communication delay is shown in Fig. 1, which

implies that α = −1, β = −1. The adjacency matrix A(G) of the network (G,x)
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Figure 1: The Communication Topology of NMAS.

is as follows:

A(G) =




0 0 1 −2

4 0 −2 1

−2 1 0 7

1 −2 0 0



.

The Laplacian matrices of the sub-network (G1, χ1) and (G2, χ2) are

L(G1) =


 0 0

−4 4


 , L(G2) =


 7 −7

0 0


 ,

Ω(G1) =


 −1 2

2 −1


 , Ω(G2) =


 2 −1

−1 2


 .

The dynamics of the ith agent is assumed to be:330

xi(t+ 1) = Axi(t) +Bui(t)

yi(t) = Cxi(t), i = 1, . . . , 4,

where

A =


 0.8869 0

0 0.9418


 , B =


 0.0377

0.0388


 , C =

[
1 1

]
.

The initial state of the system (1) is x1(0) = [ 12 10 ]T , x2(0) = [ − 5 −

1.4 ]T , x3(0) = [ 15 −3 ]T , x4(0) = [ 8 −15 ]T . The initial state of the observer
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(5) is x̂1(0) = [ 0 0 ]T , x̂2(0) = [ 0 0 ]T , x̂3(0) = [ 0 0 ]T , x̂4(0) = [ 0 0 ]T . Using

the pole-placement technique, the observer gain matrix L is determined as

L =


 −2.5412

3.0899


 ,

where the desired poles of the observer are set to be [ 0.64+0.28i 0.64− 0.28i ],

Choose the control gain matrix K as

K =
[
1 1

]
,

and calculate Υ as follows:

Υ =




0.7361 −0.1508 0.1131 0.1131

−0.1553 0.7865 0.1165 0.1165

−0.1131 −0.1131 0.6231 −0.2639

−0.1165 −0.1165 −0.2718 0.6700



.

All the eigenvalues of Υ lie in the unit circle, i.e. λ1 = 0.4924 + 0.1981i, λ2 =

0.4924−0.1981i, λ3 = 0.9154+0.0007i, λ4 = 0.9154−0.0007i, respectively. The

above analysis shows that the NMAS (1) can satisfy time-delay group consensus

conditions.

In order to describe the effect of network delay on group consensus of the335

NMAS and verify the performance of the proposed group consensus protocol,

two simulation cases are presented as follows:

(1) Group consensus control for the NMASs (1) without time delay compensa-

tion. In this simulation case, the network parameters are set to be τ = 5,

that is, there exists five-step communication delays between NMASs (1).340

By using delayed information state observer directly, the group consensus
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controller is designed as

ui(t) =















































































K

(

∑

vj∈N1i

aij

(

x̂j(t− 5|t− 6)− x̂i(t− 5|t− 6)
)

+
∑

vj∈N2i

aij x̂j(t− 5|t− 6)

)

, ∀ i ∈ `1,

K

(

∑

vj∈N2i

aij

(

x̂j(t− 5|t− 6)− x̂i(t− 5|t− 6)
)

+
∑

vj∈N1i

aij x̂j(t− 5|t− 6)

)

, ∀ i ∈ `2.

The experimental results from Figure 2 show that state vectors xi1(t) and

xi2(t) tend to diverge, that is, the NMAS can not reach group consensus.345

(2) Group consensus control of the NMAS using time delay compensation

scheme. In this simulation, the parameter settings of network character-

istics are the same to the case (1). To overcome the time delay, the group

consensus protocol (7) based on time delay compensation scheme is adopt-

ed. Figure 3 shows the state trajectory curve of networked multi-agent350

systems, which demonstrates that the NMAS can achieve group consensus

asymptotically on the basis of time delay compensation.

5. Conclusion

This paper has addressed group consensus problems in networked multi-

agent systems (NMAS) with communication delays. Based on the proposed355

time delay scheme, the group consensus control protocol is designed to com-

pensate the communication delay actively. In light of algebraic graph theories

and matrix theories, necessary and(or) sufficient conditions of group consensus

with respect to a given admissible control set are obtained for the NMAS with

communication delays under mild assumptions. Finally, simulations are worked360

out to demonstrate the efficacy of the theoretical results.
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(a) xi1(t)

(b) xi2(t)

Figure 2: state trajectory
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(a) xi1(t)

(b) xi2(t)

Figure 3: state trajectory
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