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12.1. Introduction 

 

This chapter discusses methodological issues relating to keyness analysis, and addresses a 

number of this volume’s interconnected themes. It raises awareness of relevant 

methodological choices and their implications, and addresses related misconceptions and 

resulting practices, particularly regarding the selection of linguistic units, appropriate metrics, 

and thresholds of frequency, effect-size, and statistical significance. It also discusses the 

pervasive partiality (Marchi & Taylor, this volume) in keyness analysis, as the vast majority 

of keyness studies focus on difference, at the expense of similarity. Finally, it discusses the 

tension between objectivity and subjectivity in relation to methodological choices, and 

problematizes the frequent conflation of quantitative analysis and objectivity. In order to 

better understand and evaluate the current state of keyness research, however, we need to 

contextualise current views and practices. Therefore, the chapter will start with a critical 

overview of the brief history of keyness analysis.  

 

The notion of keyness, as it is understood in corpus linguistics,
1
 was introduced in the mid-to-

late 1990s, and the procedure of keyness analysis was first incorporated in Wordsmith Tools 

(Scott, 1996). Scott (1997) introduced the term ‘key word’, defined as ‘a word which occurs 

with unusual frequency in a given text […] by comparison with a reference corpus of some 

kind’ (ibid.: 236). The focus of Scott (1997) was establishing words in a corpus, which, when 

grouped together in ‘culturally significant ways’, would ‘provide a representation of socially 

important concepts’ (ibid: 233). It seems, then, that from its very introduction keyness 

analysis was used to examine issues that are at the heart of current corpus approaches to 

discourse studies. The notion of keyness is closely related to the notion of aboutness, that is, 

the understanding of the main concepts, topics or attitudes discussed in a text or corpus 

(Phillips, 1989: 7-10, 26, 53-54).
2
 Phillips (1989: 7) argues that ‘aboutness stems from the 

reader’s appreciation of the large-scale organisation of text’. The notion of aboutness informs 

work on keyness (e.g. Scott, 2001: 110) and may have influenced its development, in that a 

keyness analysis is a way to establish aboutness (Scott, 1998: 71).
3
 However, in Phillips 

(1989), aboutness was not established on the basis of frequency differences between (sub-

)corpora, but on the examination of collocation patterns within a (sub-)corpus. Despite this 

difference, the two techniques share a core characteristic: the automated analysis does not 

usually take into account the meaning of the linguistic forms in focus (but see Rayson, 2008); 

rather, considerations of meaning are introduced in the interpretation of results (Phillips, 

1989: 21).  

 

                                                             
1 See Stubbs (2010) for a discussion of different conceptions of the term keyword and, indirectly, the notion of 

keyness. 
2 However, a keyness analysis can also be used to establish (differences in) style (Scott, 1998: 71). 
3 For other statistical approaches to establishing topics, see Gabrielatos, et al. (2012), Jaworska & Nanda (2016), 

Riddell (2014). 
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During the same period (mid-to-late 1990s), the notions of keyness and aboutness (although 

not described using these terms) were also extensively investigated by Kilgarriff (1996a, 

1996b, 1997) within the framework of research on corpus similarity. Kilgarriff (1997: 233) 

posited that ‘any difference in the linguistic character of two corpora will leave its trace in 

differences between their word frequency lists’, and that, in such an approach, ‘the individual 

meanings of texts are taken out of focus, to be replaced by the character of the whole’ (ibid.: 

232). The former statement can be seen as a justification for carrying out a keyness analysis, 

whereas the latter statement can be seen as describing the aboutness of a corpus. Of course, a 

keyness analysis on word-forms in two raw corpora (as is usually the case in corpus-based 

discourse studies) is ‘a fairly blunt instrument’ (Gabrielatos & Baker, 2008: 28), as it does 

not cater for a host of linguistic features, most notably homography, polysemy, part of 

speech, multi-word units, and syntactic relations. However, even in this case, the results can 

be expected to be useful, as, for example, the different senses of a word-form can be expected 

to have different sets of collocates, at least some of which can be expected to be key. This can 

be shown through Kilgarriff’s (1997) example of the word-form bank. Let us assume that the 

corpora compared have similar frequencies of this word form as a noun, but different 

frequencies of its two senses (related to money and rivers). Even if the word-form itself is not 

key, the difference in content is expected to be revealed ‘because the one corpus will use 

money, account and Barclays more, the other, river and grassy’ (Kilgarriff, 1997: 233). 

 

At this point, we need to take into account that corpus linguistics research had been carrying 

out frequency comparisons between corpora long before the notion of keyness was 

introduced. For example, Aarts (1971/2004) used a sub-corpus from the Survey of English 

Usage to compare the frequency of different types of noun phrase (e.g. containing a pronoun 

or noun) in different syntactic positions (e.g. Subject or Object). Closer to the nature of 

keyness analysis as it is currently understood in corpus linguistics, Krogvig & Johansson 

(1985) compared the frequencies of the modal verbs will, would, shall and should in two 

general corpora of American and British English (Brown and LOB, respectively). In a study 

that can be seen as the first to use a corpus-based approach to discourse studies, and the first 

such study to employ keyness analysis (although without using this term), Leech & Fallon 

(1992) compared the frequencies of all the word-forms in the Brown and LOB corpora to 

study ‘social, institutional, linguistic, and other factors which distinguish one culture from 

another’ (1992: 31).  

 

The last two studies above also exemplify two broad approaches to frequency comparisons, 

which will be termed focused and exploratory, respectively (see also Gries, 2010a: 285; 

Partington, 2009: 286). In Krogvig & Johansson (1985), the comparison focused on the 

frequency of particular language items in the two corpora, whereas in Leech & Fallon (1992), 

the frequencies of all words in the two corpora were compared. Focused frequency 

comparisons are carried out when the researchers have already decided on the linguistic 

item(s) to be examined, and have already formulated hypotheses or research questions, which 

the results of the pairwise frequency comparisons are expected to help address. In a focused 

approach, there is no limit to the selection of the unit of analysis, as such studies usually 

examine random samples of manageable sizes, which can be manually annotated for 

particular lexical groups, grammatical constructions, lexicogrammatical patterns, or 

semantic/pragmatic meanings. In this way, a study can establish whether, for example, a 

particular modal sense or grammatical construction is much more frequent in one of the two 

compared corpora. Exploratory frequency comparisons are not motivated by particular 

hypotheses, and any research questions that motivate them are expected to be quite general 

(e.g. What topics are mentioned more frequently in the two corpora?). Rather, in an 
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exploratory approach, frequency comparisons are used as ‘a way in to texts’; as a technique 

for identifying linguistic items (usually words) that can indicate aboutness or style, and 

‘repay further study’ (Archer, 2009: 4-5), or generate hypotheses (Gries, 2010a: 285). 

Exploratory studies use automated techniques for both the frequency comparisons and the 

corpus tagging/annotation (if required). Once the unit of analysis is selected (e.g. word-forms, 

n-grams), the frequencies of all such units are compared (see also 12.2). It would seem, then, 

that keyness analysis, particularly as it is usually used in corpus-based discourse studies, is an 

exploratory approach. However, exploratory and focused approaches are not entirely discrete, 

but can be combined, as shown in the two examples below.  

 

 Example 1: The research starts with an exploratory approach, by deriving a list of key 

items ranked according to the value of the keyness metric used in the study. At this 

point, the researcher may switch to a targeted approach and select particular types of 

items for concordance analysis according to explicit criteria, such as their normalised or 

raw frequency, part of speech, core sense, or relation to a particular topic.  

 Example 2: The research starts with a targeted approach, by specifying items to be 

included in, or excluded from, the analysis (as in the second stage in example 1 above). 

Members of the resulting key item list are then selected according to explicit criteria.   

 

In light of the above, a keyness analysis is essentially a comparison of frequencies. As it is 

currently practised, it usually aims to identify large differences between the frequency of 

word-forms in two corpora (usually referred to as the study and reference corpus) – although 

there is increasing interest in using keyness analysis to establish similarity (Taylor, 2013, this 

volume), or absence (Partington, 2014; Partington & Duguid, this volume), which can be 

seen as an extreme case of frequency difference (see also 12.3.2, 12.4.1 and 12.5). 

Unfortunately, the influence of practices in other quantitative disciplines, and contradicting 

definitions of keyness, have led to the adoption of inappropriate metrics, which, in turn, have 

led to a number of misconceptions relating to a) the nature of keyness and keyness analysis, 

b) the kinds of linguistic units that can be the focus of a keyness analysis, c) the metrics that 

are appropriate for measuring keyness, and d) the attributes of the corpora to be compared.  

 

Of course, a study employing keyness analysis does not stop at the identification of key 

items; rather, this is only the first stage, as a manual analysis is required to establish the use 

of the items in context (e.g. Baker, 2006, Baker et al., 2008, 2013; Duguid, 2010; Partington 

et al., 2013). However, the accurate and principled identification of key items is crucial, as 

their selection will greatly influence the conclusions of such a study. That is, even when the 

manual analysis is thorough and context-informed, if the selection of key items is flawed, so 

are the results and conclusions. As the identification of key items, and the selection of those 

to be included in the manual analysis, is multifaceted and, currently, influenced by a number 

of misconceptions, it merits a detailed examination here, while, due to space limitations, 

discussion of the stage of manual analysis must fall beyond the scope of this chapter. The 

remainder of this chapter will first discuss the nature of keyness and keyness analysis, the 

definitions of which will then inform the discussion of the possible linguistic units that can be 

the focus of a keyness analysis, and the selection of appropriate metrics for establishing 

keyness. This section will also offer a brief historical overview of the notion of keyness and, 

more generally, the use of frequency comparisons in corpus linguistics. The chapter will then 

move on to consider principled techniques for selecting the key items to be included in the 

manual analysis, and issues relating to the selection of the corpora to be compared, and will 

conclude with an example case study.  
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12.2. Definitions and related issues  

 

This section will focus on the definition of the terms keyness, keyness analysis, and key item, 

and will distinguish between the nature of keyness and the ways that keyness is measured. 

The definitions will be discussed extensively, as their nature informs the discussion of all 

other aspects, in particular, the selection of appropriate metrics for keyness, and of the 

corpora to be compared.  

 

It needs to be clarified that using ‘keyword’ as a default term to refer to the linguistic unit of 

focus in a keyness analysis is both restricted and restricting. Frequency comparisons can 

involve a host of other types of linguistic units, particularly if the corpus or sample has been 

lemmatised, or annotated for grammatical, syntactic, or semantic categories. For example, 

exploratory keyness studies have been carried out on lemmas (Utka, 2004), n-grams 

(Andersen, 2016), multi-word units (Gerbig, 2010), part of speech tags (Culpeper, 2009), 

lexicogrammatical patterns (Miki, 2011), and semantic fields (Rayson, 2008). Focused 

studies carrying out manual annotation of random samples can focus on any type of linguistic 

unit (form or meaning) or level (e.g. semantic, pragmatic, discoursal). Therefore, it would be 

appropriate to use the term keyword only when the frequency of word-forms is compared, 

and, in general, to adopt the inclusive term key item proposed by Wilson (2013: 3). What also 

emerges from the discussion so far is that the type of keyness analysis typically employed in 

corpus-based discourse studies, that is, one involving the automated comparison of the 

frequency of word-forms in two raw corpora, is only one option among many, and it would 

be restrictive to treat it as the default approach.  

 

Definitions of the terms keyness or keyword have tended to conflate their nature with the 

proposed metric for measuring keyness. Very early on, keywords were defined as ‘words 

whose frequency is unusually high in comparison with some norm’ (Scott, 1996: 53). It is 

straightforward to derive from this definition that a keyword is identified by way of a 

frequency comparison. It should clearly follow, then, that an appropriate metric for keyness 

would reflect the size of the frequency difference, and that the larger the difference, the more 

‘key’ a word would be. However, elaborations on the definition tied the nature of keywords 

to a different type of metric. For example, Scott (1998: 71) adds that ‘a word is said to be 

“key” if [...] its frequency in the text when compared with its frequency in a reference corpus 

is such that the statistical probability as computed by an appropriate procedure is smaller than 

or equal to a p value specified by the user’. In other words, the proposed metric for keyness 

was not the size of a frequency difference itself, but its statistical significance, or, simply put, 

the extent to which we can trust an observed frequency difference, irrespective of its size (see 

12.2.2. and 12.2.3 for details). In adopting a statistical significance score as the indication of 

keyness, WordSmith Tools conformed to contemporary widespread practice in disciplines 

employing quantitative analyses (Ellis, 2010: viii; Ziliak & McCloskey, 2008: xv-xviii, 1-2). 

In fact, it is not unlikely that the wording of the definition of keywords was influenced by (or 

reflected) the choice of the particular statistical significance metric in Wordsmith Tools, log 

likelihood (G
2
, also frequently indicated as LL). Dunning (1993) developed the log likelihood 

test in order to accurately identify the statistical significance of rare events, and the focus on 

rare events seems to be reflected in the wording of early definitions: ‘unusually high 

[frequency]’ (Scott, 1996: 53), ‘unusual frequency’ (Scott, 1997: 236).  

 

However, this is not to say that, at the time (i.e. the mid-1990s), there was consensus among 

corpus linguists regarding the use of G
2
 (or any other test of statistical significance) as a 

metric for frequency differences. Kilgarriff’s work on corpus similarity, based on frequency 
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comparisons, focused on critically examining different types of metrics (e.g. Kilgarriff, 

1996a, 1996b, 1997; Kilgarriff & Rose, 1998) – a clear indication that, at the time, the issue 

of selecting/devising an appropriate metric for frequency comparisons was anything but 

settled within corpus linguistics. This is also suggested by the variety of metrics used in 

corpus studies before 1996. For example, Aarts (1971/2004) used the Chi-Squared test (X
2
), 

which returns the statistical significance of a frequency difference, whereas Krogvig & 

Johansson (1985) used the difference coefficient (Hofland & Johansson, 1982), a metric that 

reflects the size of a frequency difference, whereas Leech & Fallon (1992) combined the 

difference coefficient with the Chi-Squared (X
2
)

 
value – that is, they took into account both 

the size and statistical significance of frequency differences (see 12.3 for a detailed 

discussion of metrics). Soon after 1996, however, due to the availability of an affordable 

corpus tool (WordSmith) that enabled corpus linguists to easily carry out automated 

frequency comparisons, and given that corpus linguistics researchers tend to rely on, and 

trust, corpus tools (Gries, 2010b: 124-125), the G
2
 score (or the associated p-value)

4
 was 

adopted as the metric for keyness by almost all corpus-based studies. Evidence for this comes 

from Pojanapunya & Watson Todd (2016: 3-10), who reviewed thirty studies employing 

keyness analysis published between 2002 and 2013. Out of the twenty studies that specified a 

metric of keyness, all used a statistical significance metric (13 used G
2
, 7 used X

2
). It can also 

be expected that those studies that did not specify a keyness metric also used a statistical 

significance metric, as, when the above studies were carried out, it was the default/only 

keyness metric available in almost all corpus tools (Gries, 2015: 55). It is also interesting to 

note that, at the time when corpus linguistics was about to adopt a statistical significance 

metric to measure frequency differences, researchers in other fields (e.g. STEM, psychology) 

were vocally challenging its use as the main/only metric in their studies (e.g. Thompson, 

1998). This is an important consideration in view of the very recent, and rather sudden, shift 

in corpus linguistics towards the use of effect-size metrics for keyness, and the inclusion of a 

large number of statistical metrics in corpus tools, not all of which measure effect-size, or are 

appropriate for all types of keyness analysis. The next section will discuss the issue of metrics 

and look at the metrics currently offered in corpus tools.  

 

12.3. Identifying key items: Appropriate metrics 

 

A core distinction made in any current introductory book on statistics is between effect-size 

and statistical significance. The effect-size ‘indicates the magnitude of an observed finding’ 

(Rosenfeld & Penrod, 2011: 342), that is, it shows ‘whether the difference or relationship we 

have found is strong or weak’ (Mujis, 2010: 70, see also Ellis, 2010: 3-5). Statistical 

significance indicates ‘the high probability that the difference between two means or other 

finding based on a random sample is not the result of sampling error but reflects the 

characteristics of the population from which the sample was drawn’ (Sirking, 2006: 306). 

Simply put, statistical significance does not reveal the size of a frequency difference, but, 

indirectly, the level of confidence we can have that the difference we have observed 

(however large or small) is dependable (e.g. Andrew, Pederson & McEvoy, 2011: 60; 

Sirking, 2006: 304).  

 

                                                             
4 As readers may be familiar with different statistical significance tests (which may return different values for 

the same significance level), and as the values of every null-hypothesis significance test correspond to a p-value, 

the discussion of statistical significance will refer to p-values; however, the corresponding scores of the most 

commonly used significance test, log likelihood (G2), will also be indicated. For reviews of different statistical 

significance tests, see Gries (2006, 2010a, 2010b, 2015), Hoffmann et al. (2008: 149-158), Kilgarriff (1996a, 

1996b, 1997, 2005), Kilgarriff & Rose (1998), Paquot & Bestgen (2009), Rayson et al. (2004). 
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Statistical significance tests examine the null hypothesis (H0); in the case of frequency 

comparisons, the null hypothesis would be that there is no real frequency difference, 

irrespective of the size of the observed difference. The values returned by significance tests 

correspond to particular p-values. Wilson (2013: 4) explains that ‘the p-value tells us the 

probability of obtaining an equal or more extreme result, given the null hypothesis […] If the 

p-value is very small, then one conventionally infers that either (a) a very rare event has 

occurred or (b) the null hypothesis is unlikely to be true’, i.e. that it is unlikely that there is no 

frequency difference. The relationship between p-values and the level of statistical 

significance they indicate is an inverse one: the lower the p-value, the higher the statistical 

significance. Instead, the relationship between the value returned by the statistical 

significance test and the statistical significance level it indicates is direct: the higher the value 

returned, the higher the significance level. Wilson (2013: 4) also stresses that the p-value 

should not be understood ‘as being the actual probability that an observed difference in 

proportional frequencies between two texts or corpora has occurred by chance’ (see also 

Ellis, 2010: 17). For example, if p=0.01, this should not be interpreted as meaning that the 

frequency difference we have observed has a 1% probability of having occurred by chance, 

or, conversely, that we can be 99% confident that the observed frequency difference is real. 

Rather, it should be interpreted as meaning that there is a 1% chance that we would get the 

same or a larger frequency difference when, in reality, no such difference exists.  

 

In view of the above, statistical significance is not an appropriate metric for keyness; rather, 

keyness needs to be established via an effect-size metric (see also Gabrielatos & Marchi, 

2011; Gries, 2010a: 284-285; Kilgarriff, 2001). Consequently, effect-size and statistical 

significance metrics are not alternative measures of keyness, even though the size of a 

frequency difference is indirectly taken into account in statistical significance tests. Simply 

put, the two metrics measure different aspects of a frequency difference. Kilgarriff (2005: 

264) observed that there are ‘papers in the empirical linguistics literature where researchers 

[…] used the confidence with which H0 could be rejected as a measure of salience, whereas 

in fact they were merely testing whether they had enough data to reject H0 with confidence’. 

In fact, there are clear indications that this is the practice in almost all keyness studies 

(Pojanapunya & Watson Todd, 2016: 3-10). In addition to being an inappropriate method for 

measuring frequency differences, statistical significance tests exhibit a number of other 

limitations, which are discussed below.  

 

12.3.1 Comparing effect-size and statistical significance 

 

Focused studies involving the manual examination of frequency differences of particular sets 

of words (Gabrielatos 2007; Gabrielatos & McEnery, 2005) have revealed large discrepancies 

in the ranking between, on the one hand, values of frequency difference and, on the other, 

values of statistical significance. Using an exploratory approach, Gabrielatos & Marchi 

(2011) carried out frequency comparisons between specialised corpora of different sizes, and 

compared the ranking of scores derived from an effect-size metric (the percent difference 

between the two normalised frequencies, %DIFF)
5
 and a statistical significance one (log 

likelihood, LL), with a cut-off p-value of 0.01 (G
2
=6.63). They used two large corpora, SiBol 

1993 (96 million words) and SiBol 2005 (156 million words), each comprising all articles 

published in British broadsheets in 1993 and 2005 respectively, and two small corpora, 

comprising different sections from the Guardian in 2005: the media section (1 million words) 

and the home news section (6 million words). Gabrielatos & Marchi (2012) added three 

                                                             
5 See Section 12.3.2 for details on this metric. 
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further comparisons, using a small specialized corpus (Hutton Enquiry, 1 million words) and 

two general corpora, one small (FLOB, 1 million words) and one large (BNC, 100 million 

words). If the two types of metric were alternatives, then they should have returned the same 

rankings of keywords -- for example, the fiftieth keyword according to effect-size should also 

be the fiftieth keyword according to statistical significance. In other words, the two rankings 

would fully correlate. Also, even if the two rankings did not fully correlate, the extent to 

which they did would provide useful indications regarding their similarity in identifying 

keyness. The correlations of the ranking returned by the effect-size and statistical significance 

metrics were measured using Spearman’s Rank Correlation (rs), a metric used when values 

‘are measured on a ranked scale’ (Ellis, 2010: 11): a value of ‘1’ indicates full positive 

correlation (i.e. the two metrics produce identical rankings); a value of ‘0’ indicates no 

correlation; a value of ‘-1’ indicates full inverse correlation (i.e. the two metrics produce 

exactly opposite rankings) (ibid.). The analysis of the rankings by effect-size and statistical 

significance revealed extremely weak correlations in all the keyness comparisons, with rs 

scores ranging from 0.010 to 0.122 (i.e. all close to no correlation). For example, in the 

comparison between the Hutton Enquiry and the BNC, the word pound ranked at position 12 

according to LL, but at position 10744 according to %DIFF. That is, it would appear to be a 

strong candidate for analysis if statistical significance were used as a metric, but not on the 

basis of the actual frequency difference shown by the effect-size metric. On the contrary, the 

rankings according to %DIFF and another effect-size metric (Ratio, Kilgarriff, 2001)
6
 were 

identical for all keywords. 

 

Gabrielatos & Marchi (2012) also considered the possibility that the extremely low 

correlations between rankings might mask very small ranking differences among the top-N 

keywords. For example, a word might rank in position 10 according to one metric and 

position 20 according to the other – which would mean that both words would be selected for 

analysis even if a small sub-set were chosen. To investigate that, they compared the overlap 

in the top 100 keywords returned by both metrics in all comparisons (see 12.4). Again, there 

was very little overlap (Table 12.1).  

 

Table 12.1. Overlap in top-100 keywords returned by the two metrics 

Compared corpora 
Shared in  

top-100 

SiBol 1993  vs. SiBol 2005 3 

Guardian 2005: Media vs. Home 0 

Hutton vs. BNC 2 

Hutton vs. FLOB 8 

FLOB vs. BNC 22 

 

These results clearly indicate that the statistical significance score does not accurately reflect 

the size of a frequency difference. Gabrielatos & Marchi (2011, 2012) concluded that 

statistical significance values are an unreliable and misleading measure of keyness, as 

selecting key items on the basis of statistical significance is very likely to exclude true key 

items from the analysis and/or result in treating low-level key items as high-level ones. More 

precisely, they noted the following cases: 

 A very large frequency difference may have very low statistical significance. 

 A very small frequency difference (even one so small that it could be deemed to show 

similarity rather than difference) may have very high statistical significance. 

                                                             
6 See section 12.3.2 for details. 



8 
 

 

 Two very similar frequency differences may have very different levels of statistical 

significance. 

 Two very different frequency differences may have very similar levels of statistical 

significance. 

 

These observations can also be explained in the light of another aspect of statistical 

significance metrics. Statistical significance scores are sensitive to the size of the sample: the 

larger the sample, the higher the statistical significance of all effect-sizes, however small they 

may be (Ellis, 2010: 5; Rosenfeld & Penrod, 2011: 84). Owen & Jones (1977: 359, cited in 

Kilgarriff, 1997: 237) point out that ‘if we increase the sample […] we would ultimately 

reach the point where all null hypotheses would be rejected’. In a keyness analysis, this 

sensitivity is related not only to the size of the corpora compared, but also to the corpus 

frequencies of an item. That is, given a frequency difference, the higher the raw frequencies 

of an item in the two corpora and/or the larger the two corpora, the higher the statistical 

significance value will be. The corollary of this sensitivity to frequency is that statistical 

significance scores are not comparable across different keyness analyses. An item may show 

the same effect-size in two different comparisons, but, because of different corpus 

frequencies and/or corpus sizes, the same effect-size may have different levels of statistical 

significance in each comparison. It also follows that statistical significance metrics cannot be 

used to pinpoint frequency similarities between corpora, whereas effect-size metrics can. 

Finally, the sensitivity of statistical significance values to the size of one or both of the 

compared corpora entails that the larger the corpora compared, the higher the number of 

frequency differences that will be statistically significant. This characteristic has led to two 

related misconceptions: a) that there is an ideal range of corpus sizes, which returns an 

optimum number of key items, and b) that the reference corpus must be larger than the study 

corpus (e.g. Berber-Sardinha, 2000). Of course, the smaller the corpora, the smaller the 

number of frequency differences that can be expected to cross the threshold of statistical 

significance. However, the objective of a keyness analysis is not to maximise, or minimize, 

the number of key items, but to derive as true a picture as possible of the differences and 

similarities of item frequencies between two corpora. Corpus size is not as important as the 

representativeness and principled selection of the corpora compared, as well as the 

examination of keyness in appropriate sub-corpora to establish the dispersion of key items 

(e.g. Paquot & Bestgen, 2009).  

 

Kilgarrif (1996b, 2005) argues against the use of null-hypothesis testing in corpus linguistics 

for two reasons. The first is that ‘language is never random, so the null hypothesis is never 

true’ (Kilgarriff, 2005: 273). The second reason is related to the sensitivity of statistical 

significance values to corpus sizes: 
 

[H]ypothesis testing has been used to reach conclusions, where the difficulty in 

reaching the conclusion is caused by sparsity of data. But language data, in this age 

of information glut, is available in vast quantities. A better strategy will generally be 

to use more data. Then the difference between the motivated and the arbitrary will 

be evident without the use of compromised hypothesis testing.  

(Kilgarriff, 2005: 273) 
 

This should not however be taken to imply that statistical significance metrics are useless in 

keyness analysis – quite the contrary, provided that we understand the nature and extent of 

the contribution of statistical significance to establishing keyness. In fact, Kilgarriff’s (2005: 

273) second argument can be seen to point towards the utility of using statistical significance 

testing when the corpora are small (e.g. when data collection is difficult/costly, or the focus 
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of the corpus is restricted). Also, Kilgarriff (2001: 239) states that G
2
 ‘gives an accurate 

measure of how surprising an event is even where it has occurred only once’ and that ‘early 

indications are that, at least for low and medium frequency words […] it corresponds 

reasonably well to human judgements of distinctiveness’. In light of the above, statistical 

significance testing seems particularly useful in cases of small corpora and/or items with low 

raw frequency – when even large frequency differences may be unreliable. In such cases, 

statistical significance scores can indicate whether an observed large frequency difference is 

also dependable enough to merit incorporating the item in the subsequent manual analysis 

(Gabrielatos & Marchi, 2011, Gries, 2010b: 130).  

 

12.3.2 Effect-size metrics 

 

This section will examine the effect-size metrics currently available in the most widely used 

corpus tools: AntConc (Anthony, 2017),
7
 CQPweb (Hardie, 2012), Sketch Engine (Kilgarriff 

et al., 2014), WordSmith Tools 7 (Scott, 2016), and Wmatrix 3 (Rayson, 2003, 2009). To 

these we add the Excel document developed by Paul Rayson, which allows for both manual 

entry of raw frequencies and corpus sizes (useful for targeted keyness studies), as well as the 

copy-pasting of frequency lists derived in other corpus tools (useful for exploratory studies).
8
 

At this point, we need to recognise that the term effect-size may be a misnomer as far as 

keyness analysis is concerned. The choice of the term effect seems to have been motivated by 

the use of such metrics in studies that aimed to measure some kind of cause-effect 

relationship (e.g. the effect of a medical treatment or a teaching technique), or a 

correlation/association between two variables (e.g. between the use of a particular linguistic 

item and sociolinguistic factors, such as age and gender) (Everitt, 2002: 20).
9
 However, in a 

keyness analysis, as used in corpus-based discourse studies, no effect is measured; that is, the 

frequency of an item in one corpus is not expected to influence the frequency of, or interact 

with, the same item in another corpus. Therefore, measures of association (e.g. Dice 

Coefficient)
10

 do not seem appropriate for a keyness analysis, unless, of course, what is 

compared is not the frequencies of items, but their ranking according to frequency in each 

corpus (e.g. Forsyth & Lam, 2009). Also, some effect-size metrics focus on the difference of 

means in the compared datasets (e.g. Cohen’s d, Phi Coefficient). Again, this is irrelevant in a 

keyness analysis, as what is compared is not means of groups of frequencies, but two distinct 

frequencies.
11

 Finally, some metrics that are presented as measuring effect-size in some 

corpus tools either measure statistical significance (e.g. Bayes Factor), or are ‘hybrid’ metrics 

(Hoffmann et al., 2008: 151; see also Ellis, 2010: 10; Everitt, 2002: 285-286; Kilgarriff, 

1996a: 35), as their formulas contain the value of a statistical significance metric (e.g. 

Cramer’s V, Phi Coefficient, t-test). In this light, such metrics are not appropriate for keyness 

analysis (but see 12.4.2).  

 

This section will conclude with a discussion of five appropriate effect-size metrics used in 

one or more of the corpus tools mentioned earlier. Their calculation takes into account one or 

                                                             
7 Please note that this relates to a version under development (AntConc 3.5.0); previous versions only offer a 

statistical significance metric. 
8 http://ucrel.lancs.ac.uk/people/paul/SigEff.xlsx (latest version, 4 July 2016). Rayson also maintains a webpage 

offering a statistical significance calculator, as well as information on a large number of metrics: 
http://ucrel.lancs.ac.uk/llwizard.html  
9 For more examples, and a detailed outline, see Ellis (2010: 4, 7-15) 
10 See Rychlý (2008) for a discussion on Dice and LogDice. 
11 Of course, such metrics are appropriate for other types of frequency comparisons: for example, in research on 

learner language, it is often required to compare means of the frequency of particular items or types of errors in 

the output of learners grouped according to their proficiency levels (e.g. Gablasova et al., 2017). 

http://ucrel.lancs.ac.uk/people/paul/SigEff.xlsx
http://ucrel.lancs.ac.uk/llwizard.html
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more of the following: the size of the corpora compared (C1, C2), the raw frequencies of an 

item in the two corpora (RFC1, RFC2), or the normalised frequencies of the item (NFC1, 

NFC2). The discussion focuses on their calculation, the interpretation of values, and any 

particular characteristics or limitations. 

 

Ratio (Kilgarriff, 2009) 

 

Ratio = 
NFC1 

NFC2 

 

This is the simplest of the effect-size metrics, only involving the normalised frequencies of an 

item in the compared corpora. A value of ‘1’ indicates that the item has equal normalised 

frequency in the two corpora, with higher/lower values indicating higher/lower NF in C1. For 

example, a value of ‘4’ indicates that the item is four times more frequent in C1 than C2. It 

must be noted that the values are directional; i.e. they depend on which corpus is used as the 

study corpus. To use the example above, if C1 is the study corpus, then the value is ‘4’, 

whereas, if C2 is the study corpus, then the value is ‘0.25’. Researchers using this metric thus 

need to understand that the two scores (4 and 0.25) indicate the same size of difference, 

examined from two different perspectives.  

 

Odds Ratio (OR) (Everitt, 2002: 271; Pojanapunya & Watson Todd, 2016: 15) 

 

OR = 
RFC1 / (C1 – RFC1) 

RFC2 / (C2 – RFC2) 

 

This metric takes into account raw frequencies, along with the sizes of the compared corpora. 

As in the case of Ratio, its values are directional.  

 

Log Ratio (Hardie, 2014) 

 

Log Ratio = log 
NFC1 

NFC2 

 

This metric is the binary logarithm of the ratio of normalised frequencies. Equal normalised 

frequencies are indicated by a value of ‘0’, whereas an increase of one indicates a doubling of 

the frequency difference. For example, a value of ‘2’ indicates that NFC1 is four times NFC2. 

An advantage of Log Ratio is that, although it is a directional metric, this does not manifest 

itself in different values (as with the other directional metrics), but in the same value being 

positive or negative. For example, if RFC1 is four times RFC2, the Log Ratio value will be 

‘2’ if C1 is the study corpus, and ‘-2’ if C2 is the study corpus. 

 

%DIFF (Gabrielatos & Marchi, 2011) 

 

%DIFF = 
(NFC1-NFC2) * 100 

NFC2 

 

This metric takes into account the normalised frequencies of an item in the two corpora. 

Equal normalised frequencies are indicated by a value of ‘0’. Positive values show higher 

frequency and negative values indicate lower frequency. A value of ‘100’ indicates twice the 
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frequency, and every increase of ‘100’ adds one to the difference – for example a value of 

‘500’ indicates six times higher frequency. It is again a directional metric: if RFC1 is four 

times RFC2, the value is ‘300’ when C1 is the study corpus, but ‘-75’ when C2 is the study 

corpus. In the latter case, the interpretation is that the item has 75% lower frequency in C2 

compared to C1, or, in different terms, that the frequency of the item in C2 is one-quarter of 

its frequency in C1. A limitation of this metric is that while its score has no upper limit, there 

is a lower one: negative scores stop at ‘-100’.  

 

Difference Coefficient (Hofland & Johansson, 1982) 

 

Diff Coefficient = 
NFC1 – NFC2 

NFC1 + NFC2 

 

As with %DIFF, this metric takes account of normalised frequencies. Scores range from ‘1’ 

to ‘-1’, and are interpreted as follows: ‘1’ indicates that the item only exists in C1 (i.e. it has 

zero frequency in C2); ‘0’ indicates that the item has the same normalised frequency in the 

two corpora; ‘-1’ indicates that the item only exists in C2 (i.e. it has zero frequency in C1). 

Although the metric is directional, its values do not create problems of comparison, due to the 

plus/minus sign. However, the interpretation of values is less straightforward. For example, if 

(as in the example above) NFC1 is four times NFC2, the value is ‘0.6’.  

 

These brief discussions underline that when values of directional effect-size metrics are 

reported, it must be made clear which corpus was treated as the study corpus (i.e. which 

corpus was first in the comparison). What is important is that all the above metrics return the 

same ranking of key items. Therefore, the selection of one rather than another hinges on their 

availability in corpus tools, and the extent to which researchers find their values easy to 

interpret.  

 

A limitation of all but one (Difference Coefficient) of the above metrics is that, when an item 

has zero frequency in C2, the calculation cannot be performed, due to division by zero. Three 

techniques to deal with this limitation have been proposed. One technique is to remove items 

with zero frequency from the comparison. However, excluding such instances may well 

remove very useful differences and, more importantly, prohibit the examination of absence. If 

we think it interesting that a corpus has more occurrences of an item compared with another 

corpus, then it is even more interesting that a corpus has no occurrences when another corpus 

has some. This is because the absence of an item can be seen as characteristic not only of the 

corpus with non-zero occurrences, but also the corpus with zero occurrences. The importance 

of zero (and very low) frequencies in a corpus increases with a) the size of the corpus lacking 

the item and b) the frequency of the item in the other corpus. Simply put, the difference 

between nothing and something is potentially salient, and the larger the frequency/corpus, the 

more salient the absence. The second technique, usually termed ‘add 1’ (Kilgarriff, 2009: 2), 

is to add a small number (no more than ‘1’) to the frequency of every item in each corpus. 

However, this technique has two flaws. First, it increases the size of the corpora by the 

number of types in each (or a fraction, if a number smaller than ‘1’ is added). Second, it 

increases frequencies unevenly: the smaller the frequency of an item, the higher the 

proportional increase in frequency resulting from the addition of a fixed number. For 

example, if we add ‘1’ to three items with frequencies of 100, 10, and 1, then the frequency 

of these items increases by 1%, 10%, and 100%, respectively. The resulting increase in 

corpus sizes, and the non-proportionate increase in the frequencies of individual items, is 

likely to skew the results. The third technique is to replace zero frequencies with an 
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infinitesimally small number (0.000000000000000001 – one quadrillionth), which, for 

practical purposes, is an adequate proxy for zero (Gabrielatos & Marchi, 2011). This 

technique results in extremely high values when effect-size metrics without upper limits are 

used (e.g. %DIFF, Log Ratio). However, this can be seen as a strength, as it flags up 

instances of absence.  

 

The next section will discuss the decisions that must be taken after the effect-size and 

statistical significance scores have been calculated. 

 

12.4. Selecting key items for analysis 

 

Unless the corpora compared are very similar, it is unlikely that a study employing an 

exploratory keyness approach can carry out a manual analysis of all key items. For example, 

all the keyness studies reviewed in Pojanapunya & Watson Todd (2016: 3-10) focused on a 

sub-set of key items. It follows then that the technique used to select key items for manual 

analysis is of paramount importance, as it will greatly influence the results of a study. 

Pojanapunya & Watson Todd’s review provides clear indications of the main techniques 

preferred (2016: 3-10):  
 

a) More than half (16) of the studies selected the top N words (between 10 and 1000, 

with the average being about 100). 

b) About one in four (7) specified a statistical significance threshold, usually a very high 

one (with p-values ranging from 0.05 to 0.00000000000001). 

c) A small number of studies (2) combined a corpus frequency threshold with a 

statistical significance threshold.  

d) One in six (5) selected keywords that were deemed to be related to particular topics.  
 

Of course, as the studies above used statistical significance as a measure of keyness, the top-

N items were those with the highest statistical significance (and not necessarily with the 

highest frequency differences). Similarly, the studies that set a very high threshold of corpus 

frequency also derived items with the highest statistical significance (since statistical 

significance scores increase as corpus frequency increases). Therefore, there is little 

difference between approaches (a)-(c), which were employed in the vast majority (25/30) of 

the studies examined.  

 

As argued in section 12.2, the level of keyness of an item needs to be established via the 

combination of two complementary metrics. The effect-size score will enable the items 

returned from an automated frequency comparison to be ranked according to the size of the 

frequency difference. The statistical significance score will provide information regarding the 

level of confidence we can have that the observed frequency difference is dependable – or, to 

look at this issue from a different perspective, whether the item is frequent enough and/or the 

corpora are large enough for the observed differences to be dependable. However, very little 

work has been carried out to establish thresholds for effect-size values in keyness analyses. 

The inclusion of an item in the list returned by an automated frequency comparison does not 

necessarily entail that the item is key, and in this light, it seems wise to initially view the 

items returned by the keyness function of a corpus tool as candidate key items (CKIs).
12

 This 

section will first discuss the issue of threshold values for item frequency and statistical 

significance, and then propose a technique based on effect-size values for selecting key items 

in exploratory keyness studies.  

                                                             
12 The term is influenced by the use of ‘candidate collocates’ in Sketch Engine (Kilgarriff et al., 2014). 
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12.4.1 Frequency thresholds 

 

As was shown in Pojanapunya & Watson Todd (2016: 3-10), the majority of keyness studies 

tend to set frequency thresholds, removing low-frequency items from the comparison either 

directly, or indirectly by setting high statistical significance thresholds. However, this may 

have unintended consequences. For example, if C1 contains some items with a very low 

frequency while C2 contains these items with a (relatively) higher frequency, then these items 

can be expected to register high effect-size values. Applying a low-frequency threshold may 

remove potentially important items, which may index very pronounced differences (e.g. of 

topics, attitudes). In the same vein, removing items with zero frequency in one of the 

compared corpora will prevent the examination of absence (Partington, 2014; Partington & 

Duguid, this volume). Equally problematic is setting high-frequency thresholds to filter out 

function words, as these can point towards particular attitudinal differences between the 

compared corpora (e.g. Duguid, 2008; McEnery, 2006). In his work on swearing, McEnery 

(2006: 147) found that syntactic co-ordinators, in particular the word and, demonstrated ‘the 

important function of linking objects of offence to form networks of offence’. McEnery 

(2006: 148) concluded that ‘it is a brave, or rather foolish, analyst who assumes that, in any 

given data set, the words are so unlikely to be key that they can be safely ignored from the 

very start’. Therefore, it seems wise to avoid setting frequency thresholds, but to generate 

lists of CKIs which include all items (i.e. all types in both corpora). Researchers can then 

make principled decisions as to which items to examine, taking into account both the effect-

size and statistical significance of CKIs (see 12.4.2, 12.4.3 and 12.5 below), as well as the 

particular foci of the study. However, if frequency thresholds are to be set, then they should 

be specified in terms of normalised frequencies (e.g. per million words; pmw), not raw 

frequencies. This is because in corpora of uneven sizes, the same raw frequency may 

correspond to very uneven normalised frequencies: a raw frequency of 5 in a corpus of 10 

million words translates into a normalised frequency of 0.5 pmw, whereas in a corpus of 

100,000 words it translates into 50 pmw. 

 

12.4.2 Statistical significance thresholds 

 

Before examining the utility of using statistical significance thresholds, we must consider that 

such thresholds are arbitrary (Hoffmann et al., 2008: 88) and vary between disciplines. For 

example, in most of the social sciences the usual threshold is p=0.05 (Wilson, 2013: 8), 

whereas in corpus linguistics the threshold is usually p=0.01 at the most. However, as 

keyness analyses (particularly of large corpora) tend to return too many CKIs for researchers 

to examine manually, the usual practice (as indicated in Pojanapunya & Watson Todd, 2016) 

is to set a much lower p-value (e.g. 0.000000001), partly in order to reduce the CKIs, and 

partly because of the misconception of the p-value as a measure of keyness – that is, setting a 

very low p-value threshold is supposed to return the items with the highest keyness. In light 

of the discussion so far, we need to examine two interrelated issues: a) the p-value that can be 

seen as low enough for the corresponding frequency difference to be deemed dependable, and 

b) the wisdom of setting extremely low p-value thresholds to reduce the number of CKIs 

returned by the automated frequency comparison. 

 

It was clarified in section 12.2, that the p-value does not directly indicate the probability that 

an observed frequency difference is due to chance. However, this is not to say that this 

probability cannot be calculated; rather, a different statistical measure is needed. Wilson 

(2013: 5-6) proposes using the approximate Bayes Factor (BIC), the value of which provides 

an estimate of ‘the degree of evidence against the null hypothesis’ (H0). For the purposes of 
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keyness analysis, BIC is calculated using a) the log-likelihood (LL) value of the frequency 

difference and b) the combined size of the compared corpora (N), as follows:  BIC ≈ LL – 

log(N).
13

 The resulting value is interpreted as indicating the amount of evidence against H0, 

as shown in Table 12.2 below (Raftery, 1999: 420; Wilson, 2013: 6). 

 

Table 12.2. BIC values and their interpretation 

BIC Degree of evidence against H0 

<0 No evidence – favours H0 

0-2 Not worth more than a bare mention 

2-6 Positive evidence against H0 

6-10 Strong evidence against H0 

>10 Very strong evidence against H0 

 

An example frequency comparison carried out by Wilson (2013: 6-8) between two small 

corpora (approximately 10000 and 150000 words) yielded the correspondence between p-

values and BIC values shown in Table 12.3.
14

 As Wilson (2013: 8) points out, the BIC values 

in Table 12.3 suggest that the usual threshold of p=0.01 (G
2
=6.63) provides considerably less 

than positive evidence. These values also put in perspective the threshold of p=0.0001 

(G
2
=15.13) proposed by Rayson, Beridge & Francis (2004), which seems to provide evidence 

which is at least positive, given Wilson’s results. 

 

Table 12.3. Correspondence between p-values and degrees of evidence 

BIC Degree of evidence against H0 p-value G
2
 

2-6 Positive evidence against H0 0.00018 13.98 

6-10 Strong evidence against H0 0.000014 18.81 

>10 Very strong evidence against H0 0.0000024 22.22 

 
However, as BIC takes into account the sizes of the compared corpora, ‘there will not always 

be a direct correspondence’ between G
2
 and BIC values (Wilson 2013: 7), and given the 

sensitivity of G
2 

values to corpus sizes, it would seem advisable to set statistical significance 

thresholds in terms of BIC values instead of p-values (Wilson, 2013: 8).  Currently, however, 

BIC is only included in Wmatrix 3 and Paul Rayson’s Excel sheet, and until it is included in 

other corpus tools, two approaches are possible. One is to treat the correspondences in Table 

12.3 as general guidelines for selecting a p-value threshold. A more reliable approach is to a) 

set the corpus tool threshold to the highest acceptable p-value in corpus linguistics (i.e. 

p=0.01), b) copy-paste the tool’s output to Rayson’s Excel sheet, and c) filter out CKIs with 

BIC values below 2 (see 12.5 for examples).  

 

In the light of the above, would it be reasonable to argue that the lower the p-value the better? 

The short answer is, no: this will privilege items with very high corpus frequency, which may 

not show very high frequency differences (effect-sizes), and may well filter out key items 

with very high effect-sizes simply because these items do not have very high corpus 

frequencies. Another limitation is that if large effect-sizes are filtered out, the researcher will 

not even be aware of their existence. As a result, this practice is likely to remove useful key 

items, and reduce the scope for identifying groups of CKIs, which could help the analysis to 

more accurately identify patterns of use, and corresponding semantic preferences and 

discourse prosodies (see Baker, 2004; Leech & Fallon, 1992: 31). More precisely, given the 

                                                             
13 The symbol ‘≈’ indicates that the value is approximate. 
14 Please note that p-values are rounded up. 
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p-value indicating the threshold for very strong evidence in Wilson’s (2013) study (Table 

12.3), it would seem that a p-value threshold below 0.0000001 (i.e. a G
2
 score of above 

28.38)
15

 would be inadvisable, as it could remove very large effect-sizes from consideration, 

particularly if the items do not have extremely high corpus frequencies, or the corpora are not 

particularly large. Hoffmann et al. (2008: 88) suggest an alternative approach: ‘instead of 

using pre-defined thresholds, you […] can simply decide whether you are willing to take the 

risk indicated by the p-value’. This approach allows researchers to have a clear view of CKIs 

and decide on the items to be included in the manual analysis after examining the range of 

effect-size values, and the corresponding range of statistical significance levels, or, better 

still, levels of evidence against H0 (via BIC scores). Such an approach is particularly useful 

when small corpora are compared (i.e. when even very high frequency differences can be 

expected to have low statistical significance). In such cases, the researcher can accept lower 

significance values than those in Table 12.3, and mitigate the corresponding discussion 

accordingly.  

 

It must be clarified that such an approach is suitable only when differences are sought. If the 

study aims to identify similarities, then statistical significance thresholds should not be used, 

as they remove items with similar frequencies (which have low statistical significance 

scores); that is, they remove the very items that the study seeks to identify. Since corpus tools 

always have default statistical significance thresholds, it follows that before carrying out a 

keyness analysis aiming to identify similarities, the maximum p-value must be set at ‘1’: that 

is, the output of the frequency comparison must contain the effect-size and statistical 

significance values of all the types in the corpora compared (see 12.4.3).  

 

12.4.3 Effect-size thresholds 

 

As the range of effect-size values may vary according to the level of difference or similarity 

between the two corpora, effect-size thresholds can be expected to be comparison-specific 

(Gabrielatos & Marchi, 2011). Even with a high threshold of statistical significance, 

frequency comparisons are expected to return a wide range of effect-sizes, some of which 

will be too small, at least compared to items higher up the list, and may even be small enough 

to effectively signal similarity. For example, a difference of 100% is comparatively very high 

if the majority of differences are below 50%, but comparatively very low if the majority is 

above 100%. In this light, the practice of selecting the top-N CKIs has two important 

limitations. First, it does not consider the proportion of key items that the top-N represent; for 

example, the top 100 represent 50% of key items if the total is 200, but only 10% if the total 

is 1000. Second, it does not consider whether there are items below rank position 100 which 

have only marginally lower scores than the 100
th
 item; for example, it does not make sense to 

include the 100
th

 item with a difference of 100%, but exclude the 101
st
 item with a difference 

of 99.5%. Therefore, neither selecting the top-N CKIs nor setting a universal threshold would 

seem advisable.  

 

The approach proposed here is adapted from Gabrielatos (2009, 2010: 52-54, 205-221) and 

Gries (2010a: 285-288): CKIs are clustered according to their respective effect-size scores. 

The clustering method suggested is hierarchical cluster analysis: a family of statistical 

techniques used in assigning objects (in this case, CKIs) to groups according to their degree 

of similarity/dissimilarity in relation to one or more variables (in this case, the effect-size 

score) (Everitt, 1993: 1, 6-7; Gan et al., 2007: 3-5, Romesburg, 1984: 2). More precisely, the 

                                                             
15 This p-value is derived by rounding down the value of p=0.0000024 in Table 12.3. 
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agglomerative method is suggested, which initially treats each CKI as a separate cluster, and 

then combines CKIs into clusters according to the (dis)similarity of their effect-size scores 

(Everitt, 1993: 55-57; Gan et al., 2007: 9). The degree of (dis)similarity is measured using the 

Euclidian distance, which computes the square root of the sum of the squares of the pairwise 

differences in the effect-size scores (Gan et al., 2007: 326). The distance between clusters, or 

between already established clusters and CKIs not yet assigned to a cluster, is calculated 

using average group linkage: the average of the distances between all the scores in each 

cluster (Sneath & Sokal, 1973: 222). This determines the allocation of CKIs to clusters, as 

well as the conflation of existing clusters into more inclusive ones, a method which has been 

shown to consistently produce clear and useful classifications (Adamson & Bawden, 1981: 

208).  

 

In order to accommodate the usual restriction in the number of CKIs that can be examined 

manually, the number of clusters can be predetermined. The number of predetermined 

clusters will vary according to a) the number of CKIs and b) the number of key items that can 

be examined manually in the particular study (MEKIs). As a rule of thumb, the number of 

clusters should be the number of CKIs divided by the number of MEKIs (number of clusters 

= CKIs/MEKIs). For example, if a keyness analysis returns 1000 CKIs, but only about 50 can 

be examined manually, then twenty clusters should be specified. Of course, as will be seen in 

section 12.5, CKIs are not necessarily grouped neatly in clusters of equal sizes. However, this 

calculation allows researchers to start from the cluster with the highest effect-size scores (if 

the focus is differences) or the lowest ones (if the focus is similarity), and, if the cluster does 

not contain enough CKIs, to then move to the adjacent lower/higher cluster. Another option is 

to determine the same number of clusters for both CKI lists: whatever the number of clusters, 

this approach results in a continuum of clustered CKIs ranked from the highest to the lowest 

frequency difference (i.e. from difference to similarity). What needs to be stressed is that, as 

CKIs are clustered according to the proximity of their effect-sizes, once one item in a cluster 

has been selected for manual analysis, all other items in the cluster must also be selected.  

 

So far, the discussion has been predominantly concerned with issues relating to establishing 

frequency differences, which is understandable given the definition of keyness and the focus 

of almost all keyness studies. However, in order to avoid the partiality discussed in Marchi & 

Taylor (this volume), it would be useful to expand the notion of keyness, and distinguish 

between two types: keyness-D, relating to difference (and its extreme case, absence), and 

keyness-S, relating to similarity. That is, items may be key (i.e. potentially useful) because 

their large frequency differences (key-D items) or their similar/identical frequencies (key-S 

items) in two (sub-)corpora potentially index differences or similarities (respectively) in 

content or attitudes. The distinction is also related to methodological issues: keyness-D needs 

to be established via the combination of effect-size and statistical significance, whereas 

keyness-S is established via effect-size only. The next section brings together the various 

aspects discussed so far, and exemplifies the suggested procedures through a case study. 

 

12.5. Selecting key items: a case study  

 

12.5.1 Aims, data and methodology 

 

This section presents a case study of keyness analysis which examines both differences and 

similarities, and demonstrates different alternatives for the principled selection of CKIs for 

further manual analysis. As clarified in 12.1 above, the case study does not aim to carry out a 
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manual analysis of CKIs: it is instead used as a springboard for discussion of the 

methodological options and issues discussed so far.  

 

The corpora to be compared are the 2017 UK election manifestos of the Conservative 

(CM2017; 29,954 words) and Labour (LM2017; 23,691 words) parties. The largest frequency 

differences are expected to index aspects of content characterising each manifesto (as 

compared to the other), whereas the smallest differences are expected to index similarities. In 

other words, each corpus alternated acting as the study and reference corpus. It will be shown 

that, even with such small corpora and fairly strict thresholds of statistical significance, the 

automated analysis returned a good number of CKIs that can be usefully included in the 

manual analysis. The texts were downloaded from Paul Rayson’s Wmatrix webpage
16

 

(Rayson, 2003, 2009). They had been converted to plain text from the original PDFs and 

automatically cleaned by Rayson, but further manual cleaning was deemed necessary in order 

to (fully) remove page numbers, chapter/section numbers; headers and footers, and characters 

indicating bullet points (&bull;) and quotation marks (&bquo;, &equo;).
17

  

 

Two corpus tools were combined: WordSmith 7 (Scott, 2016) and Paul Rayson’s Excel 

document. WordSmith 7 was used to derive frequency lists and lists of CKIs, from which 

only the raw frequencies of CKIs were retained and copy-pasted to the Excel document. All 

other calculations were carried out using the Excel document, as it offers more effect-size 

metrics and, more importantly, both G
2
 and BIC scores. For simplicity, the focus of the 

analysis was word-forms, although possessives were treated as separate items. In order to 

avoid removing items from consideration, the following settings were selected:  

 The minimum word frequency was set to ‘1’.  

 The maximum p-value was set to ‘1’; that is, initially, statistical significance was 

ignored. 

This allowed the calculation of an effect-size score for all types in the corpora, and the 

identification of similarities as well as differences, resulting in 2,316 CKIs in CM2017 and 

2,657 CKIs in LM2017. Effect-size was measured by %DIFF, with zeros replaced by 

0.000000000000000001; statistical significance was established via G
2
 and BIC. The cluster 

analysis was carried out using SPSS 22 (for settings, see 12.4.3).
18

 Procedures of KI selection 

differed according to whether the focus was keyness-D (difference) or keyness-S (similarity). 

 

12.5.2 Keyness-D: identifying differences 

 

Keyness-D: alternative 1 

 

This approach filters out all differences with BIC<2, that is, only differences that show at 

least positive evidence against H0 are retained. In the particular comparisons, a BIC value of 

‘2’ corresponded to G
2
 scores of about 13 (p<0.001), which is similar to the G

2
 score (13.98) 

corresponding to BIC=2 in Wilson (2013: 8).
19

 Due to the small size of the corpora, this 

leaves a very manageable number of KIs for both comparisons: 31 for CM2017 (Table 12.5) 

                                                             
16 http://ucrel.lancs.ac.uk/wmatrix/ukmanifestos2017. 
17 The corpus sizes reported here differ slightly from those reported in Wmatrix (28,799 for CM and 23,217 for 

LM; http://ucrel.lancs.ac.uk/wmatrix/ukmanifestos2017), because of a) the additional cleaning carried out here 

and b) the fact that the corpora loaded in Wmatrix have been processed to identify MWUs as a single item.  
18 Note that, in SPSS, ‘average group linkage’ is referred to as ‘between-groups linkage’. 
19 In CM2017, BIC=2.28 corresponded to G2=13.17; in LM2017, BIC=2.19 corresponded to G2=13.08. 
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and 34 for LM2017 (Table 12.4). Frequencies are normalised per thousand words (ptw);
20

 

CKIs are ranked according to effect-size.
21

  

 

A first observation is that, in both comparisons, some CKIs have zero frequencies in the other 

corpus (5 in CM2017, 14 in LM2017), with all differences being statistically significant 

(BIC≥2) despite the small item frequencies and corpus sizes. This supports the inclusion of 

zero-frequency items in keyness comparisons, as their exclusion would prevent pinpointing 

potentially useful absences. For example universities and United Kingdom do not appear at 

all in LM2017, whereas equality and LGBT are not mentioned at all in CM2017. Another 

interesting observation is that Labour and Conservative are CKIs in LM2017, but not in 

CM2017. 

 

Table 12.4. Differences: CKIs in CM2017 (BIC≥2). RF = raw frequency, NF = normalised 

frequency (per thousand words) 

CKIs in CM2017 
RF 

CM2017 

RF 

LM2017 

NF (ptw) 

CM2017 

NF (ptw) 

LM2017 
%DIFF G

2
 BIC 

UNITED 63 0 2.10 0 2.10E+17 73.42 62.53 

KINGDOM 45 0 1.50 0 1.50E+17 52.45 41.56 

UNIVERSITIES 16 0 0.53 0 5.34E+16 18.65 7.76 

SHALL 15 0 0.50 0 5.01E+16 17.48 6.59 

SHALE 12 0 0.40 0 4.01E+16 13.99 3.10 

STABLE 20 1 0.67 0.04 1481.83 16.90 6.01 

DATA 33 2 1.10 0.08 1205.01 26.40 15.51 

BELIEVE 37 3 1.24 0.13 875.46 26.71 15.82 

GENERATIONS 20 2 0.67 0.08 690.91 13.17 2.28 

GO 20 2 0.67 0.08 690.91 13.17 2.28 

ONLINE 26 3 0.87 0.13 585.46 15.92 5.02 

IF 57 7 1.90 0.30 544.03 33.69 22.80 

INSTITUTIONS 24 3 0.80 0.13 532.73 14.04 3.15 

LEADERSHIP 24 3 0.80 0.13 532.73 14.04 3.15 

TECHNICAL 24 3 0.80 0.13 532.73 14.04 3.15 

OPPORTUNITY 24 3 0.80 0.13 532.73 14.04 3.15 

TECHNOLOGY 30 4 1.00 0.17 493.18 16.87 5.98 

DIGITAL 59 9 1.97 0.38 418.49 30.32 19.43 

GREAT 39 6 1.30 0.25 414.09 19.92 9.03 

STRONG 51 9 1.70 0.38 348.18 23.42 12.53 

BETTER 45 9 1.50 0.38 295.46 18.50 7.61 

WANT 40 8 1.34 0.34 295.46 16.44 5.55 

HELP 79 17 2.64 0.72 267.54 30.21 19.32 

UNION 47 11 1.57 0.46 237.94 16.41 5.52 

WORLD 106 27 3.54 1.14 210.51 33.46 22.57 

                                                             
20 The usual normalisation per million words is not appropriate, as it does not make sense to normalise to a 

corpus size larger than the ones examined. 
21 In the %DIFF column of all tables in this section, very large numbers follow the notation used in Excel: the 

number before ‘E+’ is multiplied by ‘1’ followed by as many zeros are specified after ‘E+’. For example, 

2.10E+17 indicates ‘2.1 x 100,000,000,000,000,000’, i.e. the number 210,000,000,000,000,000. 
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CKIs in CM2017 
RF 

CM2017 

RF 

LM2017 

NF (ptw) 

CM2017 

NF (ptw) 

LM2017 
%DIFF G

2
 BIC 

DO 66 17 2.20 0.72 207.06 20.54 9.65 

CONTINUE 82 22 2.74 0.93 194.79 24.20 13.31 

BEST 48 13 1.60 0.55 192.03 13.99 3.10 

SO 102 40 3.41 1.69 101.68 15.41 4.52 

CAN 99 40 3.31 1.69 95.75 13.92 3.03 

WE 949 419 31.68 17.69 79.14 105.26 94.37 

 

Table 12.5. Differences: CKIs in LM2017 (BIC≥2) 

CKIs in LM2017 
RF 

LM2017 

RF 

CM2017 

NF (ptw) 

LM2017 

NF (ptw) 

CM2017 
%DIFF G

2
 BIC 

LABOUR'S 21 0 0.89 0 8.86E+16 34.33 23.44 

EQUALITY 19 0 0.80 0 8.02E+16 31.06 20.17 

UNIONS 15 0 0.63 0 6.33E+16 24.52 13.63 

LGBT 12 0 0.51 0 5.07E+16 19.62 8.72 

REINSTATE 11 0 0.46 0 4.64E+16 17.98 7.09 

SCRAP 10 0 0.42 0 4.22E+16 16.35 5.46 

PRIVATISATION 9 0 0.38 0 3.80E+16 14.71 3.82 

BANKS 9 0 0.38 0 3.80E+16 14.71 3.82 

RENTERS 8 0 0.34 0 3.38E+16 13.08 2.19 

WOMEN'S 8 0 0.34 0 3.38E+16 13.08 2.19 

FAILURE 8 0 0.34 0 3.38E+16 13.08 2.19 

ENFORCE 8 0 0.34 0 3.38E+16 13.08 2.19 

EXTENDING 8 0 0.34 0 3.38E+16 13.08 2.19 

CENTRES 8 0 0.34 0 3.38E+16 13.08 2.19 

LABOUR 319 3 13.47 0.10 13344.38 490.90 480.01 

CUTS 24 2 1.01 0.07 1417.23 27.46 16.57 

OFFICERS 12 1 0.51 0.03 1417.23 13.73 2.84 

OWNERSHIP 20 2 0.84 0.07 1164.36 21.62 10.73 

CRISIS 19 2 0.80 0.07 1101.14 20.18 9.29 

GUARANTEE 18 3 0.76 0.10 658.62 15.69 4.80 

REGIONAL 17 3 0.72 0.10 616.47 14.38 3.49 

ARRANGEMENTS 16 3 0.68 0.10 574.33 13.08 2.19 

VITAL 16 3 0.68 0.10 574.33 13.08 2.19 

STAFF 22 5 0.93 0.17 456.32 15.91 5.02 

RIGHTS 66 16 2.79 0.53 421.55 45.59 34.70 

WOULD 22 6 0.93 0.20 363.60 13.86 2.97 

WORKERS 62 17 2.62 0.57 361.12 38.88 27.99 

STANDARDS 40 12 1.69 0.40 321.45 23.19 12.30 

UNDER 35 12 1.48 0.40 268.77 17.79 6.90 

BACK 34 12 1.44 0.40 258.24 16.76 5.87 

CONSERVATIVES 50 19 2.11 0.63 232.73 22.66 11.77 

JOBS 34 14 1.44 0.47 207.06 13.94 3.05 

ALL 100 56 4.22 1.87 125.78 25.04 14.15 
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CKIs in LM2017 
RF 

LM2017 

RF 

CM2017 

NF (ptw) 

LM2017 

NF (ptw) 

CM2017 
%DIFF G

2
 BIC 

ON 215 168 9.08 5.61 61.81 22.06 11.17 

 

Keyness-D: alternative 2 

 

This second approach is appropriate for keyness comparisons returning a large number of 

CKIs, or, irrespective of the number of CKIs, for studies preferring to base selection 

decisions on a fine-grained grouping of CKIs rather than on a simple ranking. It is also 

suggested for studies that prefer to start with a larger pool of CKIs, from which to select or 

remove particular types of items. For example, a study aiming to identify key social actors or 

processes (van Leeuwen, 1996) may focus only on nouns or verbs. In the present case study, 

if a threshold of p≤0.01 (G
2
≥6.63) is selected, about three times the number of CKIs is 

returned (92 for CM2017 and 107 for LM2017) compared to Alternative 1 above. Let us 

assume that a fine-grained grouping of these CKIs is required, with potentially about ten 

CKIs per group. Using the simple formula presented in 12.5.1, these CKIs will need to be 

grouped in ten clusters (see Tables 12.6 and 12.7 – numbers before CKIs indicate their 

ranking position). Clusters should be interpreted (other filtering criteria notwithstanding) as 

follows: a) CKIs in higher clusters are more key than CKIs in lower clusters, b) all CKIs 

sharing a cluster should be treated as equally key. The first observation is that the CKIs do 

not combine neatly into clusters of equal numbers (i.e. ten clusters of ten items each); this is 

because the clustering takes into account the distance between the effect-size scores of 

consecutive CKIs. The results also highlight the limitations of the ‘top-N’ technique: if, for 

example, we decided to manually analyse the top-20 key items, we would select exceptional 

and things from cluster 9 (Table 12.6 below), but we would arbitrarily exclude the remaining 

nine items of that cluster. The second observation is that the two expanded sets of CKIs 

obtained after lowering the statistical significance threshold contain all of the CKIs obtained 

with the higher threshold used in Alternative 1. 

 

Table 12.6. Differences: CKIs in CM2017 (G
2
≤0.01) grouped in ten clusters 

Cluster Difference: CKIs in CM2017 

1 1:UNITED 

2 2:KINGDOM 

3 3:UNIVERSITIES 

4 4:SHALL 

5 5:SHALE 

6 6:YOUNGER; 7:AHEAD; 8:YOUR 

7 9:EASIER; 10:MERITOCRACY 

8 
11:DESIGN; 12:MIGHT ; 13:ELDERLY; 14:COMPETITIVE; 15:DEEP; 16:ACTIVE; 

17:ATTRACT; 18:PUPILS 

9 

19:EXCEPTIONAL; 20:THINGS; 21:LEADERS; 22:WRONG; 23:GLOBE; 

24:EDINBURGH; 25:REGULATORS; 26:EXPLORE; 27:COMBAT; 28:WORRY; 

29:GOVERN 
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Cluster Difference: CKIs in CM2017 

10 

30:STABLE; 31:DATA; 32:PROSPEROUS; 33:DIFFICULT; 34:FRAMEWORK; 
35:BELIEVE; 36:MUCH; 37:GENERATIONS; 38:GO; 39:INFORMATION; 

40:ONLINE; 41:IF; 42:INSTITUTIONS; 43:LEADERSHIP; 44:TECHNICAL; 

45:OPPORTUNITY; 46:TECHNOLOGY; 47:OLD; 48:SIGNIFICANT; 49:POOR; 

50:DIGITAL; 51:GREAT; 52:REMAIN; 53:WORLD'S; 54:STRONG; 
55:PARTNERSHIP; 56:THERESA; 57:BETTER; 58:WANT; 59:MARKETS; 

60:STRONGER; 61:HELP; 62:INTERESTS; 63:PROSPERITY; 64:NATION; 

65:UNION; 66:GREATER; 67:NOW; 68:WORLD; 69:DO; 70:TOGETHER; 
71:LEAVE; 72:SCHOOL; 73:CONTINUE; 74:BEST; 75:EUROPEAN; 76:RIGHT; 

77:SHOULD; 78:ABOUT; 79:USE; 80:AROUND; 81:TAKE; 82:BRITISH; 83:SO; 

84:THOSE; 85:CAN; 86:MAKE; 87:WE; 88:THIS; 89:IT; 90:BRITAIN; 91:PEOPLE; 
92:IN 

 

Table 12.7. Differences: CKIs in LM2017 grouped in ten clusters 

Clusters Difference: CKIs  LM2017 

1 1:LABOUR'S 

2 2:EQUALITY 

3 3:UNIONS 

4 4:LGBT 

5 5:REINSTATE 

6 6:SCRAP 

7 7:PRIVATISATION; 8:BANKS 

8 
9:RENTERS; 10:WOMEN'S; 11:FAILURE; 12:ENFORCE; 13:EXTENDING; 

14:CENTRES; 15:NEGOTIATING; 16:PROBATION; 17:ADULT 

9 

18:PROCUREMENT; 19:INSECURE; 20:WAGES; 21:HIV; 22:TOURISM; 
23:PRIORITISE; 24:REINTRODUCE; 25:PROFIT; 26:YOUTH; 27:TRANSITION; 

28:REVERSE; 29:RESOLUTION; 30:NEGLECT; 31:ABOLISH; 32:PROFITS; 

33:MATERNITY; 34:OPERATIVE; 35:UNLIKE; 36:LIBRARIES; 

37:RECOGNITION; 38:LATE; 39:CONTROLS; 40:HANDS; 41:BALANCE; 
42:MUSIC; 43:DELIVERS; 44:JUDICIAL; 45:OPTIONS; 46:FARES 

10 

47:LABOUR; 48:CUTS; 49:OFFICERS; 50:UN; 51:FAILED; 52:OWNERSHIP; 

53:EQUAL; 54:ECONOMIES; 55:CRISIS; 56:WAR; 57:FORMS; 58:PEACE; 
59:ALLOWANCE; 60:TARGETS; 61:FEES; 62:GUARANTEE; 63:REGIONAL; 

64:LEGISLATION; 65:TRADING; 66:ARRANGEMENTS; 67:VITAL; 68:STAFF; 

69:LED; 70:RANGE; 71:PLANS; 72:RIGHTS; 73:HOURS; 74:TOWARDS; 

75:WOULD; 76:FULLY; 77:OWNED; 78:WORKERS; 79:DISABILITIES; 
80:STANDARDS; 81:DISCRIMINATION; 82:FOOD; 83:UNDER; 84:BACK; 

85:CLIMATE; 86:CONSULT; 87:CUT; 88:CONSERVATIVES; 89:PRIVATE; 

90:JOBS; 91:ENVIRONMENTAL; 92:TRANSPORT; 93:INVEST; 94:WOMEN; 
95:EMPLOYMENT; 96:SECTOR; 97:HOMES; 98:END; 99:MANY; 100:ALL; 

101:FUNDING; 102:PROTECT; 103:REVIEW; 104:BEEN; 105:COMMUNITIES; 

106:INTO; 107:ON 

 

12.5.3 Keyness-S: identifying similarities 

 

Assuming that about a hundred CKIs for each corpus could be manually examined, the whole 

set of CKIs (2,315 in CM2017 and 2,656 in LM2017) was grouped into 232 and 266 clusters 

respectively, using the simple formula presented in 12.4.3 above (2315/100 and 2656/100, 

respectively). Clusters are ranked in ascending order of %DIFF scores – i.e. cluster ‘1’ 

contains CKIs with the lowest %DIFF score (Tables 12.8 and 12.9). The smaller the 

frequency difference, the more a CKI can be deemed to index similarity (i.e. topics/issues 
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mentioned in equal frequency in the two manifestos). A first observation is that there is very 

little overlap between the CKIs in Tables 12.8 and 12.9. This is because each set contains 

CKIs with the smallest frequency differences from the perspective of each corpus. Therefore, 

a study focusing on similarity would need to combine the two lists. Looking at CM2017 

(Table 12.8), 92 CKIs show the smallest %DIFF scores, and are grouped in 74 clusters – a 

very fine-grained classification, as quite a large number of clusters was specified  (if this was 

deemed unsatisfactory, a smaller number could have been specified). The %DIFF scores of 

the CKIs range from −.040% to 15.59% in Table 12.8, and from 0.68% to 18.53% in Table 

12.9. BIC scores are between −6.19 and −10.89 in Table 12.8, and between −7.79 and −10.89 

in Table 12.9 – all indicating that H0 (i.e. no difference) is strongly supported. If more CKIs 

can be examined, then CKIs in subsequent clusters can be added. If fewer items are needed, 

items in lower clusters can be removed, or, alternatively, a lower effect-size threshold can be 

set (e.g. %DIFF=5%).  

 

Table 12.8. Similarities: CKIs with lowest %DIFF in CM2017  

Cluster Similarity: CKIs CM2017 

1 1:COMPANIES 

2 2:BUILD 

3 3:HOUSING 

4 4:FOR 

5 5:AND 

6 6:BRITAIN'S 

7 7:TAKING 

8 8:FAIRER 

9 9:RECORD 

10 10:NORTHERN 

11 11:FROM 

12 12:SUPPORT 

13 13:WORKING 

14 14:DEAL 

15 15:TERM 

16 16:BEFORE 

17 17:TACKLE 

18 18:PARENTS 

19 19:SHARE 

20 20:POLICIES 

21 21:DISABILITY 

22 22:RETAIN 

23 23:AGREEMENT 

24 24:GOVERNMENTS 

25 25:GENDER 

26 26:REFORMING 

27 27:LAUNCH 

28 28:PROMISE 

29 29:REQUIRED 

30 30:MEETING 

31 31:RESPOND 

32 32:MEMBERSHIP 

33 33:FISCAL 

34 34:PAYMENTS 

35 35:FORM 
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Cluster Similarity: CKIs CM2017 

36 36:IMPLEMENTATION 

37 37:KIND 

38 38:FOUND 

39 39:INFLATION 

40 40:TARIFF 

41 41:CASES 

42 42:STREET 

43 43:VOTE 

44 44:THING 

45 45:TOP 

46 46:USERS 

47 47:THIRD 

48 48:VETERANS 

49 49:STARTING 

50 50:DOUBLE 

51 51:SEA 

52 52:SCALE 

53 53:DISABLED 

54 54:COUNTER 

55 
55:SPECIFIC; 56:DECENT; 

57:LAW; 58:INCREASE 

56 59:OUR 

57 60:SUSTAINABLE 

58 61:GIVE 

59 
62:BETWEEN; 
63:ADDRESS 

60 64:TO 

61 65:NEEDS 

62 66:THE 

63 67:FUTURE 

64 
68:CHANGES; 

69:RESPONSIBILITY 

65 70:CREATE 

66 71:POWERS; 72:MAKING 

67 73:BUSINESSES 

68 

74:COMMITMENT; 

75:DEBT; 76:CENTRE; 

77:CORPORATE; 78:LOOK 

69 79:ENGLAND 

70 80:HAVE 

71 

81:FUND; 82:KEY; 

83:PLANNING; 
84:STUDENTS; 

85:RECEIVE 

72 
86:PERSONAL; 

87:MARKET 

73 

88:DOMESTIC; 

89:PROVIDING; 

90:COUNCILS; 91:WHOLE 

74 92:ACTION 
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Table 12.9. Similarities: CKIs with lowest %DIFF in LM2017  

Cluster Similarity: CKIs LM2017 

1 1:WHICH 

2 2:WITHIN 

3 3:GIVING 

4 4:CURRENT 

5 5:HOLD 

6 6:BANKING 

7 7:BROADBAND 

8 8:COVERAGE 

9 9:DUE 

10 10:PAYING 

11 11:DIVERSE 

12 12:GOVERNANCE 

13 13:ROYAL 

14 14:DIRECTLY 

15 15:SECOND 

16 16:EMPLOYED 

17 17:SPEND 

18 18:RECENT 

19 19:NON 

20 20:FUEL 

21 21:TURN 

22 22:HEALTHY 

23 23:CAPACITY 

24 24:AVERAGE 

25 25:PRICES 

26 26:CRIME 

27 27:SYSTEM 

28 28:OF 

29 29:RURAL 

30 30:SUCH 

31 31:LEGISLATE 

32 32:IRELAND 

33 33:PENSIONERS 

34 34:IMMEDIATE 

35 35:COMPANY 

36 36:DEVOLUTION 

37 37:TIMES 

38 38:PRINCIPLE 

39 39:MEDICAL 

40 40:UK 

41 41:LOCAL 

42 42:YEARS 

43 43:POLICE 

44 44:US 

45 45:ECONOMY 

46 46:NHS 

47 47:GAP 

48 48:DEVOLVED 

49 49:ARE 
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50 50:GOVERNMENT 

51 51:WILL 

52 52:TOO 

53 53:LIVING 

54 54:PROGRAMME 

55 55:CONSIDER 

56 56:RUN 

57 57:CURRICULUM 

58 58:REPEAL 

59 59:INTEREST 

60 60:APPROPRIATE 

61 61:TEN 

62 62:WEALTH 

63 63:TAKEN 

64 64:FOCUS 

65 65:A 

66 66:ENERGY 

67 67:WHEN 

68 68:ACT 

69 69:PROTECTIONS 

70 70:PROPERLY 

71 71:PREVENT 

72 72:OFFICE 

73 73:LEVELS 

74 74:AT 

75 75:HAS 

76 76:STATE 

77 77:CURRENTLY 

78 78:UK'S 

79 79:HIGH 

80 80:DEVELOPMENT 

81 81:TWO 

82 82:LONDON 

83 83:FOUR 

84 84:FREE 

85 85:FIRST 

86 86:OUT 

87 87:AN 

88 88:HEALTH 

89 89:OR 

90 90:LEAST 

91 91:PROMOTE 

92 92:FACE 

93 93:ENVIRONMENT 

94 94:ESTABLISH 

95 95:BOTH 

96 96:FULL 

97 97:EXISTING 

98 98:ONE 

99 99:ROLE 

100 100:WITH 
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12.6. Conclusion 

 

Keyness analysis can be used to identify difference (keyness-D), and its extreme case, 

absence, as well as similarity (keyness-S). Both types of keyness must be established via an 

effect-size metric, but keyness-D needs to be supplemented by a statistical significance 

metric. However, not all available effect-size metrics are appropriate for keyness analysis, 

particularly as this technique is used in discourse studies. And while statistical significance is 

a useful additional metric, its utility is limited to indicating the level of reliability of a given 

frequency difference: high statistical significance does not necessarily imply keyness-D, nor 

does low statistical significance necessarily imply keyness-S. As p-values are sensitive to 

item frequency and corpus sizes, the same p-value may have different importance in different 

comparisons. A more useful way of establishing the level of confidence in a frequency 

difference is via the BIC score, which also allows for comparisons of statistical significance 

between studies. It is, therefore, recommended that all corpus tools allow for the combination 

of effect-size and statistical significance metrics, and include BIC among the statistical 

significance metrics they make available. 

 

It has also been shown that the reference corpus does not need to be larger than the study 

corpus. If the corpora are too small for an observed frequency difference to be dependable, 

this will be reflected in the BIC score. If the comparison does not yield enough dependable 

frequency differences, then the researchers must either accept that their study requires larger 

corpora, or select a lower statistical significance threshold. However, in the latter case, they 

would be running the risk of including unreliable differences in the discussion. Nor does the 

reference corpus need to be a general one – as was shown in the case study. In fact, the terms 

study corpus and reference corpus can be misleading: there is nothing intrinsic in a corpus 

that renders it a good selection for a ‘study’ or ‘reference’ role. The distinction is just one of 

focus, and the two compared corpora can alternate in the ‘study’ and ‘reference’ roles. Any 

two corpora can be compared, as long as their characteristics (e.g. nature, content, time-

period) help address the particular research questions or hypotheses. 

 

Finally, keyness is not a straightforward attribute. However objectively effect-size and 

statistical significance are calculated, the identification of an item as key depends on a 

multitude of subjective decisions regarding a) thresholds of frequency, effect-size, and 

statistical significance, b) the nature of the linguistic units that are the focus of analysis, and 

c) the attributes of the compared corpora. Simply put, a quantitative analysis does not 

necessarily entail objectivity. It is, therefore, crucial that these decisions are both principled 

and explicitly stated, so that the quantitative analysis can be replicated. More precisely, 

studies need to report and justify any thresholds, the inclusion/exclusion of particular types of 

CKIs, and the proportion of CKIs selected for analysis. Above all, it is imperative that 

researchers using keyness analysis (or any other type of automated analysis) are aware of the 

nature and limitations of the technique and associated metrics, and the settings of the corpus 

tool they use. 
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