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Abstract. Deep Learning (DL) networks are composed of multiple processing 

layers that learn data representations with multiple levels of abstraction. In re-

cent years, DL networks have significantly improved the state-of-the-art across 

different domains, including speech processing, text mining, pattern recogni-

tion, object detection, robotics and big data analytics. Generally, a researcher or 

practitioner who is planning to use DL networks for the first time faces difficul-

ties in selecting suitable software tools. The present article provides a compre-

hensive list and taxonomy of current programming languages and software 

tools that can be utilized for implementation of DL networks. The motivation of 

this article is hence to create awareness among researchers, especially begin-

ners, regarding the various languages and interfaces that are available to im-

plement deep learning, and to provide a simplified ontological basis for select-

ing between them. 

Keywords: Deep Learning, Deep Learning Libraries, Machine Learning, Deep 

Belief Network.  

1 Introduction  

 Stochastic (as opposed to symbolic) Machine Learning (ML) techniques have at-

tracted considerable research attention over recent years; however, the performance of 

traditional stochastic ML is limited by the implicit disconnect between feature-

representation and classification, a distinction that is not evident in human informa-

tion processing (e.g. speech and vision). To overcome this, deep hierarchical struc-

tures of human speech perception and production were proposed in late 20
th

 century. 

Hinton et al. [1] suggested the deep structured programming architecture referred to 

as the Deep Belief Network (DBN) which provided a breakthrough instance in Deep 

Learning (DL).  (DL methods were originated from the study of 3-layer Artificial 

Neural Networks (ANNs) [6], an active research domain over several decades [7] [8] 

[9]). DL algorithms have gone on to demonstrate significant impact across various 

fields of science and engineering, providing a step-change improvement in human-

level artificial intelligence [3] [4] [5]. DL methods have, in particular, made substan-

tial progress in big data analytics, speech recognition, natural language processing, 
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machine vision, pattern recognition, health informatics, image processing and finan-

cial analysis  

Creation of a standard Neural Network (NN) requires neurons producing real val-

ued activations in relation to inputs which are trained by adjusting connection weights 

until the network as a whole shows the desired behaviour.  Hinton et al. [4] suggested 

a new training method, Layered Wise Greedy Learning, (LWGL) in order to over-

come difficulties associated with back-propagation learning of >3 layer networks, 

thereby marking the birth of DL networks. LWGL proposed following the idea: “un-

supervised learning method should be utilized before the layer-by-layer training to 

determine reduced data dimension and a compact representation prior to the export 

of features to the next layer, leading to creation of a fine-tuned network with labelled 

data” [10]. Other techniques were subsequently developed to enable learning to take 

place over a large number of layers, all of which are termed DL. In pragmatic terms, 

DL attracted the attention of the researchers for two key reasons:  better handling of 

data over fitting and better guarantees of convergence (DL techniques often apply 

pre-training of data using unsupervised learning [10]).  

Various programming languages and tools have been proposed to create and im-

plement DL networks. But, for the beginner, the key question is: “how to select an 

appropriate programming language and software tool to implement DL network ac-

cording to the problem type and complexity?”.  

The objective of this paper is to explore and classify various software tools used 

for DL networks. This research serves the researchers, practitioners and educators 

who are interested in DL with emphasis on the answering the aforementioned ques-

tion i.e. selection of an appropriate programming languages and software tool to im-

plement DL concepts.  

The remaining of this paper is organized as follows: Section 2 presents rational and 

motivation of conducting this research. Section 3 shows the basics of DL, illustrates 

layered structure of hardware and software used for DL network and briefly describes 

the software tools used for DL networks. Classification of DL software tools is given 

in Section 4. Finally, we draw the conclusions of this paper in Section 5.  

2 Rational and Motivation  

Since 2007, DL has been successfully utilized across domains including image 

processing, computer vision, speech recognition, natural language processing, robot-

ics etc. DL achieves it successes through its representational ability in relation to 

training data (input data) through multiple layers of artificial neurons [18]. DL algo-

rithms have been effectively parallelised and implemented on GPU, which signifi-

cantly reduces training time [19].  Various open-source DL toolkits are available 

which have been used to improve the efficiency of DL methods. Some of the popular 

toolkits are: Caffe [20], CNTK [21], TensorFlow [22], Torch [23], MXNet [24], 

Theano [25], and PaddlePaddle [26] etc. These tools support multi-core CPUs and 

many-core GPU’s. A key objective of DL is to learn a number of weights in layered 

manner of NNs.  These weights are implemented either by vectors or matrix opera-
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tions. Tensorflow utilizes Eigen [27] to speed up matrix operation library. On the 

other hand, Caffe, CNTK, MXNET and Torch incorporate OpenBLAS [28], Intel MKL 

[29] or cuBLAS [30] to accelerate matrix operations. A key point to note is that all of 

these DL software libraries import cuDNN – a GPU accelerated DL library for NNs 

[31]. The aforementioned software libraries are used for DL, but they exhibit different 

running performance even when training the same NN on the same hardware plat-

form. This variation is due to the difference of optimization methods employed (by 

vendors). In addition, the running performance of these software libraries varies when 

training different types of NNs or utilizing different kinds of hardware.  

We thus present a comprehensive classification of software libraries used for DL 

with the belief that it might be useful to the end users in the selection of an appropri-

ate software tool for DL tasks.  

3 Deep Learning and Layered Structure 

DL is a set of ML methods that utilizes NNs with multiple hidden layers to accom-

plish specific tasks [12] [13] with a  range of applications across domains such as 

image classification (Google Photo and Facebook), speech recognition, language 

learning, online and mobile service (voice recognition and dialog system of Siri). 

Furthermore, DL has been used in automotive industry for computer vision (autono-

mous cars driving and robotics), optimizations (monitoring of quality issues and tasks 

scheduling) and others. Due to its high level of applicability of DL the landscape of 

infrastructure, programming languages and tools for training and deploying the DL 

networks is evolving rapidly.  

 

Fig. 1. Hardware and software layers of commercial deep learning systems 

Training and scaling of Deep Neural Networks (DNNs) is challenging with regard 

to large data sizes and multiple layers. In contrast to simpler models (e.g. K-means, 

Support Vector Mechanism (SVMs) and logistic regression), DL involves millions 

rather than just hundreds of parameters for a typical convolution NN, requiring larger 

datasets of e.g. video, images and text to train a network. Training DL networks re-

quires distributed processing, scalable storage (e.g. HDFS), computing capabilities 

and accelerators (GPU, FPGAs).  Deployment of a DL model is thus a challenging 

task requiring billions of operations for a single inference. 
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Fig.1 illustrates the layered structure of hardware and software of a DL system. 

GPUs have been widely used to scale NNs with several DL libraries extant that rely 

on GPUs to optimize and train NNs [15] on different platforms e.g. NVIDIA’s 

cuDNN [16] and Intel’s MKL [17].  On top of these DL libraries, several frameworks 

have been constructed, providing e.g. integrated support for distributed training, 

whilst others utilize different distributed runtime engines. 

4 Deep Learning Software Libraries Classification  

Various programming languages such as Python, MATLAB, Java, Java Script, 

.Net, C++ etc. are used to implement DL methods. Several DL libraries for different 

programming languages and interfaces have emerged over the last few years. Some of 

the popular DL libraries are listed in Table 1.  All these software frameworks have 

ability to customize training and model their parameters. But they differ from each 

other in relation to certain key design decisions: 

• Software tools that focus on a high-level and easy-to-use abstraction of DL (e.g. 

Theano and caffe). 

• Software tools that provide low-level primitives (e.g. Tensorflow). 

• Software tools that provide unified abstraction of the backend (e.g. Keras, 

Theano, Tensorflow and Lasagne). 

Table 1 presents a classification metric of various DL software libraries. We have 

classified the DL software libraries based on the following parameters: Interface,  

Platform (A1), Open Source (A2), Pre-Trained Model (A3), Recurrent nets (A4), 

Convolution nets (A5), Restricted Boltzmann Machine (A6), Deep Belief Network 

(A7), OpenMP (A8), OpenCL (A9), CUDA (A10), Parallel Execution (A11).  

Table 1 is thus intended to be of use to the end-user in identifying an appropriate 

DL software library to use based on their answers to the following questions: Type of 

network (Recurrent, convolution, restricted Boltzmann and deep belief network)?, 

Type of environment (OPEN CL, OPEN MP and CUDA) required for executing a 

program?, Type of processing (Parallel and distributive) supported by the software 

library?. A classification of DL libraries based on their features is presented in Table 

2. We tried to explore DL libraries sufficiently so that a beginner can understand the 

utility of a particular library. Here, our aim is not to decide the superiority of any 

particular DL library over the other DL libraries rather we are intended to present the 

applicability of DL libraries in difference scenarios.    

Table 1. Deep learning software tools classification metric    

Interface Software 

Tool 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

Python Theano C Y Y1 Y Y Y Y Y Y2 Y Y 
Keras MWLX Y Y Y Y Y Y Y3 Y4 Y Y 

Lasagne MWLX Y Y Y Y Y Y ? ? Y Y 

Blocks C Y Y Y Y Y Y Y Y Y Y 
Caffe MWLX Y Y Y Y N N Y UD Y N 

Cafee2 C Y Y Y Y N N Y UD Y Y 

nolearn MWLX Y Y Y Y N Y ? Y Y Y 
Gensim MWLX Y Y Y Y Y ? Y5 Y6 ? ? 
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Chainer MWLX Y Y Y Y Y ? Y Y Y Y 

Hebel C Y Y N Y Y Y ? ? Y Y 

CXXNET MWLX Y Y Y Y N Y Y N Y Y 
DeepPy MWLX Y Y Y Y Y Y ? Y Y Y 

Neon MWLX Y Y Y Y Y Y ? ? Y Y 

H2O MWLX Y Y Y Y Y Y ? Y Y Y 
Tensorflow MWLX Y Y Y Y Y Y N Y Y Y 

MXNet P1 Y Y Y Y Y Y Y N Y Y  

MATLAB ConvNet MWLX Y Y Y Y N N N N Y Y 
DeepLearn-

pLearn-

ToolBox 

MWLX Y Y Y Y N Y ? Y Y Y 

cuda-

convnet 
MWLX Y Y Y Y Y Y Y ? Y Y 

Mat-
ConvNet 

MWLX Y Y Y Y N N N N Y Y 

C++ EBLearn C Y Y Y Y N Y N N Y Y 

SINGA MWLX Y Y Y Y Y Y N Y Y Y 
NVIDIA 

DIGITS 
MWLX Y N Y Y N Y Y Y Y Y 

Intel® 
Deep 

Learning 

Framework 

MWLX Y Y Y Y ? ? Y Y Y Y 

Dlib C Y Y N Y Y Y Y N Y Y 

Microsoft 
Cognitive 

Toolkit 

MWLX Y Y Y Y N N Y N Y Y 

Java ND4J C Y Y Y ? N Y Y Y Y Y 
Deeplearn-

ing4J 
C Y Y Y Y ? Y Y N Y Y 

Encog C Y Y Y Y N Y Y Y Y Y 
RL4J C Y Y Y Y N Y Y N Y Y 

JavaScript Convnet.js MWLX Y Y Y Y N N Y N Y Y 

Lua Torch MWLX Y Y Y Y Y Y Y Y7 Y Y 
Julia Mocha MWLX Y Y ? Y N Y Y Y Y Y 

Lisp Lush MWLX Y ? ? Y Y Y Y ? Y Y 

Haskell DNNGraph MWLX Y Y Y Y ? Y ? ? Y Y 
.NET Ac-

cord.NET 
MWLX Y N N Y N N N N Y Y 

R darch MWLX Y Y Y Y Y Y  ? ? Y Y 

deepnet MWLX Y Y Y Y Y Y ? ? Y Y 
A1: Platform, A2: Open Source, A3: Pre-Trained Model, A4: Recurrent nets, A5: Convolution nets, A6: Restricted Boltzmann 

Machine, A7: Deep Belief Network, A8: OpenMP, A9: OpenCL, A10: CUDA, A11: Parallel Execution, C: Cross platform, 

MWLX :( MAC OS, X, Linux, Windows),  Y: Yes, N: No, Y1: Using Lasagne’s model zoo, Y2: Underdevelopment, Y3: Yes, if 

Theano/MXNet is present in backend, Y4: Only for Theano and Tensorflow, Y5: only for Keras/Theano, Y6: Yes, only for Ten-

sorflow, Y7: Implemented through cltorch or Cheatsheet,  UD: Under Development, P1: ( MACOS, Windows, Linux,  Android, 

IOS, JavaScript), ?: Not known. 

Table 2. Classification of Deep Learning Libraries according to their features  

Software Tool Remarks 

Theano Used to evaluate mathematical expressing and able to handle numerical arrays. 

Keras It is a highly modular NN library, used for optimized tensor manipulation. 
Lasagne It is a lightweight library used to create and train NNs. It works on six principles: simplicity, 

transparency, modularity, pragmatism, restraint and focus. 

Blocks It is framework used to create NN models on top of Theano. Construct parameterized Theano 
operations (known as bricks). It annotates the Theano computational graph and maintains the 

flexibility effectively. 

Caffe It is mainly used in academic research projects and other industrial application. It is also 
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applicable for large scale projects. 

Cafee2 It is used to train large machine learning models. It helps in incorporating artificial intelli-

gence in mobile applications [11]. 
nolearn Unlike any other Deep Neural Network (DNN), nolearn is an abstraction layer on top of 

existing packages such as Theano and lasagna. It can work successfully without Graphics 

Processing Unit (GPU). 
Gensim Designed for large text collections, using data streaming and an efficient incremental learn-

ing. It supports various language processing algorithms. 

Chainer A 2nd generation DL framework. Chainer implements CuPy that allows GPU for faster com-
putation. It is partially compatible with NumPy that effectively supports existing multi-

dimensional array library. 

CXXNET It is developed on MShadow (a Lightweight CPU (or GPU) Tensorflow library) that helps in 
writing expression for ML.  

DeepPy It is developed on top of NumPy with GPU acceleration. It fills the gap between high perfor-

mance NNs and ease of development using Python or NumPy [12]. 
Neon Neon has syntax similar to Theano/Keras. It has feature of Machine Learning Operations 

(MOP) Layer that enables other frameworks to use Neon. It has been ranked as the fastest 

framework over various benchmarks.   
H2O It is fast, memory efficient, based on columnar compression and fine grain MapReduce. It 

reduces the run time and model tuning through model checkpointing.  

TensorFlow Both TensorFlow and Theano provide very similar systems. But, TensorFlow has better 
support for distributed systems.  TensorFlow programs are generally structured in to a con-

struction phase that assembles a computation graph.  

MXNet It provides interface to build various types (Feedforward, Recurrent and Convolution) neural 
network. It works on three main concepts: NDArray (offers matrix and tensor computation), 

Symbol (used to define neural network) and KVStore (used to achieve data synchronization 
among GPUs).  

ConvNet It is MATLAB based convolution neural network toolbox for classification and segmentation, 

can be trained on both CPU and GPU.  
DeepLearn-

ToolBox 

It is open source MATLAB toolbox for deep learning. It is easy to use, but slow (only CPU 

version is available).  

cuda-convnet It provides an efficient implementation of convolution neural network in CUDA. It avoids 
use of temporary memory and it has ability to optimize multiple objectives simultaneously.   

MatConvNet It implements convolution neural networks for MATLAB. It is popular in due to its deep 

integration with MATLAB environment. Unlike Deep Learn Toolbox, MatConvNet support 
both CPU and GPU.   

EBlearn It describes both supervised and unsupervised training methods for probabilistic and non-

probabilistic factor graph. It is composed of two key components: libidx and libeblearn. 
SINGA It provides flexible architecture for distributed training and used in health-care applications.  

NVIDIA 

DIGITS 

It is not a framework but it provides a graphical web interface to other frameworks such as 

Tensorflow, Torch, Caffe etc.  
ND4J It is a distributed deep learning library, can be implemented on CPUs and GPUs and it pro-

vides Java and Scala APIs.  

Deeplearning4J It is domain specific library to configure deep learning networks. Hyperparameters are used 
to determining how neural networks learn.  

Encog It is a framework that provides a GUI based workbench to train machine learning algorithm.  

Convnet.js JavaScript deep learning models for neural network, which entirely based on browser.  
Torch Fast computing framework based on Lua-JIT with strong CPU, CUDA and Tensor library. It 

can support multi-GPU and parallelization.  

Mocha It is JavaScript unittest framework that runs on Node.js and in the browser.   
Lush It provide huge library for numerical, image, graphics and signal processing routines.   

DNNGraph It is a DSL model generation in Haskell that uses lens and fgl graph libaray to specify net-

work layout.  
Accord.NET It is a framework in .NET, divided into libraries, used for wide range of scientific computing.  

darch It provides native implementation of deep neural network with learning algorithms in R. It 

consists of three classes: Net (represents an abstract class), RBM (Restricted Boltzmann 
Machine) - used in pre-training and DArch (represents deep neural networks for pre-training 

and fine tuning).   

deepnet It has 3 3× architecture for deep learning. It is relatively smaller than darch.  
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5 Conclusions  

In this paper, we have set out a classification of different DL software libraries for 

the practice-oriented new-comer to deep-learning. We illustrated the layered structure 

of hardware and software (see Fig. 1) of a DL system which demonstrated the role of 

DL libraries at various level (distributed, High-level and system level) of abstraction.   

The main contribution of this paper is that it presents a comprehensive 

classification of various DL software libraries (Table 1 and 2). We have carried out 

the classifications based on various parameters and features in relation to the answer 

to three key questions (see Section 4): what type of network is to be implemented 

using the software library, which type of environment should the software library 

support and what type of execution environment is required for implementation of 

software libraries. Our intention to conduct this research is not to conclude the 

superiority of a particular DL library over any other DL libraries rather we presented 

the classification according to the applicability of DL libraries. We believe that the 

outcome of this investigation will be potentially useful to the end-user in determining 

which DL software library to use in relation to DL tasks.   
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