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Abstract 

Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell 

functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for 

the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided 

into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue 

remodeling. The dynamic interplay between ECM and resident cells exerts its critical role  in many 

aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix 

degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding 

microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in 

regulating ECM composition during wound healing and dermal regeneration.Their expression is 

associated with the distinct phases of wound healing, and they serveas target biomarkers and targets for 

systematic regulation of wound repair. In this article we critically present the importance of epigenetics 

with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and 

matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as  

well as the delivery strategies designed for clinical applications are also presented and discussed. 



 

 
 
 

Extracellular matrix: a dynamic regulatory network 

Extracellular matrix (ECM) is the non-cellular highly organized three-dimensional meshwork that is 

formed by a variety of interconnected matrix macromolecules ECM vigorously interacts with cells to 

control cellular phenotype and properties [1, 2]. Collagens, fibronectin, elastin, laminins, proteoglycans 

(PGs), hyaluronan (HA), glycoproteins and matricellular proteins are among the major ECM components. 

Two subtypes of ECM named interstitial and pericellular ECMs can be distinguished in regard to their 

localization and structure. Interstitial matrix encompasses cells, whereas pericellular matrix encircles 

cells in close contact, supporting their anchorage. Interstitial matrix is dominated by fibrillar collagens, 

such as collagen I and III, PGs, HA and several matrix glycoproteins [1, 2]. An example of pericellular 

matrix is the basement membrane that underlies epithelial cells, which provides many binding sites to 

mediate their strong docking. It is enriched in collagen IV and laminins, which that form two distinct 

interconnected networks   by several molecular linkers, such as perlecan, a pericellular PG. 

All ECM constituents are produced by several cells resting within this scaffold, such as fibroblasts, 

epithelial, endothelial and immune cells, and their composition and fine structure differs in different 

types of ECM and between tissues. ECMs with different composition of matrix molecules can vary in 

regard to overall structure, matrix mechanical properties, stiffness and viscoelasticity providing tissues 

with distinct functionality [3]. Furthermore, ECM components like PGs are able to bind and store growth 

factors and other bioactive molecules creating a reservoir of such molecules within the ECM [3]. Resting 

cells interact with ECM molecules via binding through specific cell surface receptors such as integrins, 

cell-surface PGs, syndecans and glypicans, discoidin domain receptors (DDRs) and the HA receptor CD44, 

which binds a large variety of matrix components [2, 4-6]. By these interactions, matrix-embedded cells 

integrate mechanical and chemical signals that control cell fate and functions, such as cell phenotype, 

synthesis of matrix microenvironment, cell proliferation, migration, invasion and survival [7]. ECM 

composition and structure is crucial for tissue homeostasis, whereas active ECM remodeling occurs 

under physiological and pathological conditions. ECM degradation is a crucial process in tissue 

remodeling. A huge variety of degrading enzymes is involved in matrix breakdown, such as matrix 

metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), ADAMs with 

thrombospondin motifs (ADAMTs), cathepsins, plasminogen activators, and glycosaminoglycan (GAG) 

degrading enzymes like hyaluronidases and heparanase (HPSE) that cleave HA and heparan sulfate (HS) 

chains, respectively [8-11]. These enzymes not only actively degrade matrix during remodeling by 

creating space for new ECM formation by resident cells, they also liberate bioactive molecules, such as 

growth  factors  stored  within  ECM   as  well  as   proteolytic  fragments  of  matrix  molecules      named 



 

 
 
 

matrikines [8, 12, 13]. In turn, these molecules could bind to cell surface receptors on resident cells and 

regulate their functions and matrix remodeling. Accumulating data on the dynamic interplay between 

ECM and resident cells confirm its critical role in wound healing [1, 2, 8, 13]. For example, recessive 

dystrophic epidermolysis bullosa caused by mutations in the collagen VII α1 chain is associated with 

dysregulated wound healing. Collagen VII is responsible for the anchorage of the epidermis to the 

underlying dermis and patients with this disease suffer from blistering and chronic wounds leading to 

fibrosis and are prone to develop squamous cell carcinoma [14]. In another example, defective epithelial 

basement membrane regeneration after injury associated with abnormal deposition of laminin and 

nidogen is related to corneal fibrosis [15]. Abnormal expression of cell surface PGs such as syndecans is 

also associated with irregular wound healing in animal models. Mice lacking syndecans exhibit  

decreased pro-fibrotic signaling, affected wound healing and increased cardiac rupture upon infarction 

demonstrating a key role for these PGs in tissue repair [16]. 

 

Wound healing phases and the involvement of extracellular matrix 

Wound healing is an essential and highly orchestrated process, necessary to keep the integrity and 

functionality of tissues and organs [8,13,14]. In this well-regulated dynamic process, several cell types 

that cooperate with ECM components in a time- and context-dependent manner contribute to re- 

establish the wounded tissue. This dynamic reciprocity between cells and ECM plays a crucial role in 

many aspects of healing [14]. Although most wounds heal nearly properly and tissues regain the pro- 

wound functionality, abnormal wound healing occurs, resulting in non-healing wounds and the 

development of chronic wounds, or in excessive wound healing and fibrosis. The development of  

chronic wounds is often associated with other comorbidities, such as diabetes and aging. On the other 

hand, excessive healing leads to fibrosis and development of hypertrophic scars and keloids in skin [13- 

15]. 

Wound healing is parsed into four temporally overlapping stages, named hemostatic, inflammatory, 

proliferation and remodeling phases, which occur at different rates across the wound (Figure 1). 

Immediately after tissue injury, the hemostatic phase begins and the coagulation cascade is activated to 

seal the breach and impede infection. This phase is followed by the inflammatory phase where the 

activation of the coagulation cascade induces the production of cytokines and growth factors and the 

recruitment of inflammatory cells. Inflammation induces the migration and proliferation of stromal cells 

within the wound bed, the formation of granulation tissue and neovascularization during the 

proliferation phase. Contraction of newly formed ECM by myofibroblasts and re-epithelialization  occurs 



 

 
 
 

at this phase to restore tissue integrity and reduce wound size. Finally, the remodeling phase is 

characterized by a decrease in the overall number of cells and vessels within wounded bed and the 

replacement of newly produced matrix with a mature ECM with proper mechanical properties. 

The hemostatic phase initiates the coagulation cascade to seal the rupture. Particularly, once the tissue 

is damaged, the initiation of coagulation cascade starts and platelets accumulate in a provisional matrix 

composed of fibrinogen, fibrin, fibronectin and vitronectin. Fibrinogen is a plasma glycoprotein that is 

cleaved by α-thrombin to fibrin monomers that spontaneously form insoluble fibrin polymers. They are 

subsequently cross-linked by factor XIIIα to create a more stable clot that stems blood loss and provides 

a platform for tissue repair [13,14]. Factor XIIIα also facilitates the incorporation of soluble fibronectin 

into the fibrin network. Both fibrin/fibrinogen and fibronectin as well as vitronectin are capable of 

interacting with platelets, immune cells, fibroblasts, endothelial cells, keratinocytes via cell surface 

receptors such as integrins and cell surface PGs regulating cell signaling, adhesion, migration, 

proliferation and differentiation [7, 17-19]. In addition, they bind growth factors, such as platelet  

derived growth factor (PDGF), transforming growth factor beta (TGF-β), fibroblast growth factor (FGF), 

vascular growth factor (VEGF), thus providing a milieu that can control cell fate and functions [17]. 

During this phase, HA accumulates in early granulation tissue Through binding to fibrinogen, it realigns 

the fibrin matrix causing it to swell and rendering it more porous, thus facilitating cell migration [20] 

(Figure 1). The next step, the inflammatory phase, is characterized by recruitment of immune cells into 

the wounded area and it is followed by the subsequent proliferation phase where damaged tissue is 

replaced. In the inflammatory phase, approximately a day post wounding, leukocytes migrate into the 

wound site and the fibrin-rich provisional matrix, attracted by platelet-released PDGF and TGF-β [17]. 

HSPGs on endothelial cells facilitate the infiltration of leukocytes into wound areas [21]. Neutrophils and 

macrophages serve to limit infection and to remove cell debris and foreign material through 

phagocytosis. Leukocytes release proteases to degrade ECM such as neutrophil elastase that break  

down molecules suppressing angiogenesis, and MMPs that degrade several matrix components, such as 

collagen I, thereby facilitating cell migration [22-25]. Furthermore, they release matrix-stored growth 

factors and cytokines as well as matrikines able to regulate multiple cell functions during the 

inflammatory process. Matrix PGs such as decorin and lumican that suppress growth factor induced 

signaling are also displaced in this phase [5]. Infiltrating immune cells secrete several inflammatory 

mediators and growth factors such as PDGF, epidermal growth factor (EGF) and TGF-β to promote 

further the recruitment of inflammatory cells and to attract stromal cells to the wound bed [17] (Figure 

1). In the proliferation phase,         inflammation starts to decrease two to three days post wounding and 



 

 
 
 

stromal cells migrate into the wound area, attracted by growth factors such as FGF secreted by 

inflammatory cells. There, migrated fibroblasts prime the matrix for immigration and proliferation of 

various cellular components under the control of growth factors such as TGF-β released by platelets and 

leukocytes [17]. TGF-β triggers fibroblasts to create a provisional ECM enriched in fibronectin, 

matricellular proteins such as tenascin and thrombospondin, entactin, collagen and PG with both 

adhesive and anti-adhesive properties that promotes the migration of endothelial and epithelial cells, 

keratinocytes and fibroblasts [19, 26-28]. The new matrix production is accompanied by decreased 

synthesis of MMPs and initiation of epithelial cell migration under the control of EGF and TGF-α 

produced by platelets, leukocytes and keratinocytes [29]. As the fibroblasts immigrate and settle in the 

wound bed, they start to produce a fibrous ECM enriched in fibrillar collagen III and I, and non-fibrillar 

collagen IV, VI and VII that interconnect ECM molecules with fibrillar collagens [13, 17]. Fibronectin acts 

as scaffold for collagen deposition and PGs such as decorin and lumican, which are re-expressed at this 

stage, contribute to fibrillar collagen organization creating a collagen-rich matrix that replaces fibrin-rich 

matrix [5, 13, 30, 31]. The small leucine rich PGs (SLRPs) decorin and lumican also limit cell signaling by 

suppressing the activation of numerous growth factor receptors, and by directly binding and blocking 

growth factors to reduce excessive cell proliferation and migration [5]. Fibrillar collagens are responsible 

to provide new matrix with tensile strength, whereas collagen IV is important for attachment of ECM to 

vasculature. In skin, keratinocytes migrate to re-epithelialize the wound are and contact-inhibited 

keratinocytes behind the leading edge participate in the production of laminins and collagen IV that 

reconstitute the basement membrane where they are strongly anchored by hemidesmosomes [13]. 

Finally, the remodeling phase is responsible for wound resolution and restoration of proper functional 

tissue (Figure 1). The aim of this phase that may last up to one or more years is to replace the wounded 

tissue with scar tissue that will be covered by new epithelium. During this phase, the granular tissue is 

replaced by mature ECM. The provisional supportive ECM enriched in matricellular proteins and collagen 

III is substituted by a collagen I-rich matrix with SLRPs playing a role in mature fibril formation [5, 32]. A 

continuous collagen synthesis and degradation occurs and collagen fibers realign, cross-linked and 

increase in diameter to form mature and well-organized fibers with increased tensile strength. Stromal 

cells are triggered by the stiffer matrix and TGF-β to adopt a myofibroblast phenotype. In turn, these 

cells produce more collagen and induce wound contraction [33, 34]. At the same time, apoptosis of 

excess cell populations increases, that is accompanied by completion of new vessel formation. The end 

of the wound healing process results in a scar tissue with overly aligned collagen fibers that regain 

almost 80% of the original tissue strength and functionality [13]. 



 

 
 
 
 

Extracellular matrix components and their roles in would healing 

Proteins/glycoproteins 

The collagen superfamily consists of 28 different collagen types with collagen type I and III being the two 

major types found in all interstitial ECMs [2]. Although collagen fibers provide appropriate strength in 

wounded tissue, the excessive production of tight collagen bundles is a factor that contributes to the 

development of hypertrophic scars [32]. It has been shown that the mechanical properties of the ECM 

regulate functional properties of fibroblasts including biosynthesis of ECM components, expression of 

MMPs as well as their differentiation to myofibroblasts even independently of TGF-β signaling [35-38]. 

The expression of different amounts and types of collagens during wound healing is critical. Apart from 

determining matrix stiffness, collagens regulate fibroblast functions relevant to wound repair. It has 

been shown that collagen III regulates collagen I synthesis, and a higher ratio of collagen III to collagen I 

is associated with scarless fetal wound healing in various models, whereas its absence promotes 

myofibroblast differentiation and scar formation [32, 39, 40]. Similarly, the absence of collagen V results 

in abnormal collagen I fibril formation since it is required for proper collagen fibrillogenesis and 

functional matrix deposition [41, 42]. Another collagen that is involved in tissue repair is collagen VI that 

is detected in wounds three days post wounding up to months and inhibits the apoptosis of fibroblasts 

via downregulation of Bax [43]. Collagen VII plays a dual role in wound healing It  facilitates  the 

migration of fibroblasts and regulates the expression of cytokines in macrophages [44]. Furthermore, 

collagen VII is required for re-epithelialization through organization of laminin-332 at the dermal- 

epidermal junction, which in turn promotes the polarized expression of α6β4 integrin in basal 

keratinocytes, thus promoting laminin-332/ α6β4 integrin signaling that guides keratinocyte migration 

[44]. Exogenous addition of collagen VII into skin wounds decreased the expression of fibrogenic TGF-β2 

and increased the expression of anti-fibrogenic TGF-β3, resulting in less collagen deposition and 

prevention of fibrosis [45]. Furthermore, patients with recessive dystrophic epidermolysis bullosa  

caused by mutations that affect the amount or/and the function of collagen VII are characterized by 

chronic non-healing wounds, persistent inflammation, increased TGF-β signaling, elevated number of 

myofibroblasts and development of fibrosis [14]. 

Fibronectin is another ubiquitous component of ECM in the wound bed. It is a glycoprotein consisting of 

two subunits covalently connected with disulfide bonds at their C-termini. Each subunit consists of three 

repeating modules termed type I, type II and type III. Monomers are comprised of twelve type I repeats, 

two type II repeats and 15-17 type III repeats [2, 19]. Due to alternative splicing, fibronectin can exist   in 



 

 
 

multiple variants that can be found in soluble form in plasma or in an insoluble cellular form in the ECM. 

Cellular fibronectin contains two extra type III repeats named extra domain A (EDA) and extra domain B 

(EDB) [19]. Fibronectin is assembled into supermolecular fibers that are interconnected by 

intermolecular non-covalent bonds forming an extended network. Cells produce new fibronectin 

molecules to fibronectin fibers that are incorporated and grow the network. Alternatively, cells can 

assemble soluble plasma fibronectin into insoluble fibers in the wound. Fibronectin is covalently 

connected to fibrin fibers and factor XIII further stabilizes this interaction [2, 19, 32]. Fibronectin 

entrapped within the provisional fibrin-rich matrix undergoes conformational changes that expose (Arg- 

Gly-Asp) RGD cell binding sites for αvβ3 integrins on fibroblasts, thus promoting their migration into the 

wound [32]. Furthermore, fibronectin possess many binding sites for cells and other ECM components, 

creating a provisional matrix that controls cellular properties and matrix deposition. It has been shown 

that a fibronectin matrix is required for deposition of collagen I and III and other matrix components 

such as fibrillin, tenascin-C, fibulin and latent TGF-β binding protein [46-53]. In addition, it controls 

covalent cross-linking of fibrillar collagens and elastin by regulating the proteolytic activation of lysyl 

oxidase [54]. Fibronectin matrix fibers can also bind growth factors, such as PDGF, VEGF, FGF, TGF-β 

members creating a matrix reservoir for these molecules. They can penetrate and bind to fibronectin 

fibers, protected from proteolytic degradation and creating a stable concentration gradient within the 

ECM. They may be liberated upon ECM degradation or may be available to interact with cell surface 

receptors upon cell binding to fibronectin fibers, thus triggering signaling in neighboring or adherent 

cells [19]. Fibronectin accumulation is also associated with abnormal wound healing and fibrosis. 

Expression of a fibronectin splice variant containing EDA (Fn-EDA) is increased during wound healing and 

its level is decreased as myofibroblasts synthesize collagen I-rich matrix and declines almost completely 

in adult tissues [17, 55]. Fn-EDA is abundant in keloids and it has been associated with altered integrin 

binding and development of fibrosis [26, 56]. Fn-EDA is susceptible to mechanical forces that cause 

conformational changes to destabilize the RGD and Pro-His-Ser-Arg-Asn (PHSRN) binding sites, resulting 

in an integrin binding "switch". Binding of α5β1, α3β1 integrins to fibronectin depends on fibronectin 

conformation and is correlated with wound repair, whereas binding of αv integrins is independent of 

fibronectin conformation and is associated with abnormal wound healing and fibrosis [17]. Fibroblasts 

bind to Fn-EDA via α4β7 and α4β1 integrin to promote fibronectin and collagen deposition, a contractile 

phenotype and fibrosis [57, 58]. The role of Fn-EDA in normal and pathologic wound healing has been 

demonstrated  in  Fn-EDA-/-   mice  that  show  a  lack  of  scar  formation  and  re-epithelialization  [59]. In 



 

 
 
 

addition, toll-like receptor 4 (TLR4) binds Fn-EDA, triggering TGF-β production and establishment of a 

vicious cycle of fibrosis [56, 60, 61]. 

Vitronectin is another important ECM molecule related to wound healing. It acts in co-operation with 

fibronectin regulating fibroblastmigration and contraction. In order to contract a wound with full force, 

fibroblasts require to attach sequentially to fibronectin, vitronectin and collagen [62]. In addition, 

vitronectin controls the proliferative and migratory effect of fibronectin on fibroblasts by inducing 

conformational alterations on fibronectin fibrils and concealing RGD sequences. This reduces binding of 

αvβ3 integrins on fibroblasts and balances their fibronectin-induced proliferation and migration , 

exerting a pro-fibrotic effect in early phases of wound healing [32, 63]. 

Elastin fibers provide resilience and elasticity to tissues, which undergo repeated stretching and are 

intertwined with the rigid collagen fibers. Several proteolytic enzymes degrade elastin and liberate 

elastin-derived peptides that promote keratinocyte migration, an angiogenic endothelial cell  angiogenic 

, fibroblast proliferation, induction of MMP expression and deposition of collagen I and tropoelastin  

[64]. Laminins (LAMs) are major components of basement membranes and are large cross-shaped 

heterotrimeric glycoproteins. Each heterotrimer consists of one α, one β and one γ chain. Five α 

(LAMA1-5), three β (LAMB1-3) and three γ chains (LAMC1-3) encoded by individual genes have been 

identified. Two isoforms of the LAMA3 gene produce a short α3A and a longer α3B form. Laminins are 

named according to their chain composition. For example laminin 332 consists of the α3, β3 and γ3 

chain [2, 65]. Laminin molecules self-assemble into higher order networks and interact with other ECM 

molecules and cell surface receptors to organize basement membrane structure and to facilitate cell 

adhesion and migration. Laminins are involved in re-epithelialization and angiogenesis during wound 

repair [2, 65]. The major laminin in epithelial tissues is laminin α3Aβ3γ2 (LM3A32 or LM332), whereas 

minor amounts of other laminins such as LM511, LM3A11, and LM3B32 are also present [65]. LM332 is 

first expressed by keratinocytes in the wound bed, followed by the expression of other basement 

membrane molecules, including LM511/LM521, collagen IV and VII [65-68]. Keratinocytes interact with 

LM332 through α6β4 integrin in the intermediate filament associated hemidesmosome and α3β1 

integrin in the actin filament-based focal adhesion. Both stable and transient interactions are required 

for directional persistence in keratinocyte migration and wound closure [65]. Inherited diseases such as 

junctional epidermolysis bullosa and laryngo-onycho-cutaneous syndrome which are associated with 

mutations in all chains of LM332 and mutations in the α3 chain, respectively, are characterized by 

excessive granulation tissue and chronic, slow-healing cutaneous erosions [69, 70]. Other minor laminins 



 

 
 
 

play also important roles in wound healing. For example, it has been shown that reduced expression of 

LM111 and LM511 in corneal basement membranes of patients with diabetes is associated with delayed 

corneal epithelial wound closure [71]. The α5 laminin chain displays an increased ability to interact with 

cell surface receptors on endothelial cells and keratinocytes. LM511 co-operates with LM332 to support 

directional migration in epithelial cells [65, 72]. Laminins are also involved in blood vessel growth and 

maturation, a major process associated with wound healing. LM411 predominates in endothelial 

basement membranes with LM511 and LM3B11 being minor components in small vessels  [65].  

Although the α4 laminin chain has the lowest affinity for various cell surface receptors, it is critical for 

the proliferation, adhesion and migration of endothelial cells [65, 73, 74]. 

Matricellular proteins form a large class of modular proteins that can be found in the ECM, the inner 

plasma membrane and endoplasmic reticulum and in the nucleus participating in numerous cell 

functions [2, 28]. Matricellular proteins are minor components of adult tissues they exhibit increased 

expression in developing tissues as well as during pathologic processes including cancer, diabetes, 

hypertension, and wound healing [2, 28]. They bind to several matrix components, cell surface  

receptors, growth factors, cytokines and proteases controlling cell-cell and cell-matrix interactions. They 

are upregulated in the wound bed and it is believed that they do not contribute to ECM integrity, but  

are rather involved in the transient regulation of cell signaling, adhesion, migration and matrix 

biosynthesis. Matricellular proteins bind to and modulate signaling of soluble growth factors such as 

VEGF, FGF, and latent TGF-β . Notably, matricellular proteins can trigger growth factor receptor signaling 

both directly and indirectly [28]. For example, tenascin-X activates latent TGF-β via binding to cell  

surface α11β1 integrin and in turn promotes epithelial-to-mesenchymal transition (EMT) in mammary 

epithelial cells [75]. Thrombospondin 1 (TSP1) also activates latent TGF-β in cell-independent manner 

[76]. Matricellular proteins such as osteopontin, CCN2, TSP-1, and SPARC are also involved in 

development of fibrosis in patients suffering from metabolic diseases such as diabetes and obesity [77- 

83]. Osteopontin is involved in dermal fibrosis since it facilitates TGF-β-induced myofibroblast 

differentiation [84, 85]. It also augments fibroblast proliferation and migration and abrogation of its 

expression results in faster wound healing with less granulation tissue and scar formation [86, 87]. The 

matricellular protein CCN2 is also upregulated in the wound bed and its expression is associated with 

hypertrophic scarring and fibrosis [88, 89]. It stimulates the recruitment of differentiation of 

mesenchymal stem cells to fibroblasts in the wound bed. CCN2 also promotes fibroblast adhesion to 

fibronectin, as well as the expression of ECM molecules including collagen I, III, FGF and tissue inhibitors 

of MMPs (TIMPs) [90, 91]. In a recent study it has been shown that CCN2 induces cellular senescence  in 



 

 
 
 

fibroblasts that in turn adopt an anti-fibrotic "senescence-associated secretory phenotype" associated 

with upregulation of MMPs and downregulation of collagen, suggesting an anti-fibrotic role for CCN2 in  

a context-dependent manner [92]. Furthermore, CCN2 is also involved in re-epithelialization by 

promoting keratinocyte migration via interaction with α5β1 integrins [93]. SPARC is another 

matricellular protein upregulated in wounds and it is associated with the development of fibrosis. It 

promotes the biosynthesis of ECM molecules and collagen fibrillogenesis in dermal fibroblasts [94-96]. 

Another matricellular protein associated with fibrosis is periostin, which is accumulated in fibrotic 

dermis. Periostin supports Rho-associated protein kinase-dependent proliferation and myofibroblast 

persistence of hypertrophic scar fibroblasts, but not of normal dermal fibroblasts [97]. Tenascin-C is 

accumulated in wound edges promoting the migration of fibroblasts along fibrin-fibronectin rich 

matrices in early wounds. In contrast, degradation of tenascin-C in later stages of wound healing 

liberates fragments that inhibit the migration of fibroblasts [98, 99]. This dual role of tenascin-C seems 

to buffer fibroblast functions. The association of tenascin-C accumulation with fibrotic disease may be a 

result of persistent expression of tenascin-C, or a failure of its degradation by matrix proteases [100, 

101]. 

 

Proteoglycans and hyaluronan 

PGs are complex macromolecules consisting of a core protein to which one or more GAG chains are 

covalently attached. GAGs are long heteropolysaccharides that contain repeating disaccharide units 

composed of hexuronic acids (D-glucuronic acid or L-iduronic acid) and hexosamines (N-acetyl-D- 

galactosamine or N-acetyl-D-glucosamine) [100,101]. These polymers can carry sulfate groups in various 

positions of uronic acids and hexosamines provid them with high structural heterogeneity and high 

negative charge. There are six types of GAGs named chondroitin sulfate (CS), dermatan sulfate (DS), HS 

and heparin, the non-hexuronic acid-containing keratan sulfate (KS) and HA which is the only GAG 

present in free form not covalently bound onto a PG core protein [102, 103]. PGs are extremely 

heterogeneous in nature since they can carry more than one types of GAG chains and these chains can 

vary in length and fine structure. PGs are capable of interacting with a plethora of ECM molecules, cell 

surface receptors, growth factors and cytokines, either via their GAG chains or through their  core 

protein thus regulating ECM organization, cell signaling, proliferation, adhesion, migration, survival and 

differentiation [102, 103]. According to their localization, PGs are divided to three categories: 

extracellular, cell surface and intracellular ones. Each PG category is then classified in subfamilies 

according to their protein sequence homology and the presence of unique protein modules [5, 103]. PGs 



 

 
 
 

are important molecules that regulate cell-matrix interactions and are actively implicated in the wound 

healing process [5, 103]. 

Versican belongs to a subfamily of matrix secreted PGs named hyalectans. It can interact with HA and 

other matrix components and cell surface receptors creating large complexes that retain large amounts 

of water creating a viscous ECM. It is a versatile molecule that regulates cell signaling and motility [18, 

103, 104]. Versican accumulates in hypertrophic burn scars and is produced in high amounts by deep 

dermal fibroblasts that are involved in the development of hypertrophic scars [105, 106]. Suppression of 

versican leads to a less aggressive growth of dermal papilla fibroblasts [107]. Furthermore, elevated 

levels of versican are associated with enhanced fibroblast migration and wound healing [108]. 

Another subfamily of matrix PGs are SLRPs. Decorin, biglycan and lumican are members of  this  

subfamily and it has been shown to be involved in wound healing. Decorin, biglycan and fibromodulin 

are accumulated in the wound bed and their levels are modified during wound healing [109]. Biglycan is 

highly expressed in hypertrophic burn scars, whereas the levels of decorin and fibromodulin were 

significantly lower in hypertrophic scars compared to normal skin [105, 110]. Decorin is expressed late 

during wound healing in burn scars [111]. In vivo experiments in decorin knockout mice demonstrated 

that decorin is important for cutaneous wound healing and its loss is associated with delayed wound 

healing [112], whereas decorin deficient fibroblasts demonstrate increased adhesion to collagen and 

fibronectin and enhanced rates of proliferation and migration [113]. It has been also shown in tendon 

injury that biglycan and decorin are critical for proper healing at younger ages. In aged mice, the 

presence of both molecules is beneficial only in early-stage healing and is inadequate to promote late- 

stage healing [114]. Decorin binds TGF-β acting as a natural inhibitor for this growth factor, thus 

buffering its function during wound healing and preventing fibrosis. Decorin transfection decreased the 

TGF-β-induced expression levels of profibrogenic genes such as fibronectin, collagen type I, III, and IV in 

corneal fibroblasts as well as their differentiation to myofibroblasts. Furthermore, SLRPs as decorin, 

lumican and fibromodulin play a critical role in collagen fibrillogenesis and proper architecture of 

collagen fibers [5, 103]. Their levels may be essential for proper organization of collagen fibers during 

normal wound healing whereas disturbance of their amounts may result in a less organized and fibrotic 

ECM observed in keloid tissue and hypertrophic burn scars [105, 115]. Lumican promotes fibroblast 

activation and contraction in an integrin α2-dependent mechanism [116]. Lumican-deficient mice exhibit 

delayed corneal and skin wound healing, abnormal collagen fibrils and fragile skin [117, 118]. The 

absence of lumican leads to decreased apoptosis of fibroblasts and keratocytes, reduced recruitment of 

macrophages and neutrophils and modulation of Fas-FasL signaling suggesting a role for lumican in 



 

 
 
 

fibrotic healing [117]. In addition, SLRPs can bind directly to various growth factors receptors such as 

EGFR, VEGFR2, IGF-IR and innate immune system receptors like TLRs modulating cell signaling, evoking 

autophagy and promoting the secretion of pro-inflammatory mediators involved in wound healing [119, 

120]. All these functions may differentially regulate excessive angiogenesis, cell proliferation and ECM 

production in the wound bed. 

Cell surface PGs are categorized mainly into two major subfamilies named syndecans and glypicans. 

Syndecans consist of four members and they are transmembrane PGs carrying mainly HS chains [119]. 

Through their HS chains, they can bind numerous ECM components, soluble ligands including 

interleukins, FGF, VEGF, TGF-β, Hedgehog and Wnt and may interact laterally with other receptors such 

as FGFR, EGFR, integrins and stretch-activated calcium channels of the TRPC family. So, syndecans can 

act as co-receptors for growth factors and ECM molecules promoting signaling and regulating a plethora 

of cell functions [6, 121, 122]. Syndecans are upregulated during tissue injury and play crucial roles in 

wound healing. Syndecan-1 and -4 are upregulated in skin wounds and are involved in re- 

epithelialization [123]. Syndecan-1 deficiency is associated with compromised adhesion, migration and 

differentiation of keratinocytes and delayed re-epithelialization [124, 125]. On the other hand, over- 

expression of syndecan-1 delays epidermal wound healing due to increased proteolytic shedding of 

syndecan-1 ectodomain that in turn inhibits cell proliferation [126]. Similarly, knockout of syndecan-4 

leads to delayed skin repair affecting fibroblasts migration, granulation tissue and angiogenesis, but also 

reduces the ability to exert tension on the ECM [127, 128]. Syndecans also regulate growth factor 

activities to promote wound healing. For example, when syndecan-4 is activated by FGF-2 augments 

wound healing by activating dermal fibroblasts adhesion and producing ECM [127]. Syndecan-4 binds 

tenascin-C and fibronectin, promoting wound healing in fibroblasts [129]. Both syndecan-2 and -4 co- 

operate with integrin α5β1 to bind a transglutaminase-fibronectin rich matrix and to induce cell 

adhesion and fibronectin deposition during epidermal wound healing [130]. Syndecan-1, via interaction 

with αvβ3 and αvβ5, promotes smooth muscle and endothelial cell activation and vasculature 

regeneration [131, 132]. Syndecan-1 and -4 knockout mice show functionally adverse infarct healing in 

the heart and syndecan deficiency is associated with less organized collagen fibers susceptible to MMP 

degradation, hampered granulation, attenuated myofibroblasts differentiation and contractility, that 

ultimately lead to cardiac dilatation and rupture [133, 134]. Both syndecan-1 and -4 are involved in the 

activation of pro-fibrotic signaling to cardiac fibroblasts inducing ECM production, matrix contraction, 

differentiation to myofibroblasts and heart fibrosis [16]. Activation of the renin-angiotensin-aldosterone 

system and production of angiotensin II is a potent pro-fibrotic signal that requires the presence of 



 

 
 
 

syndecan-1 to stimulate cardiac fibrosis by enhancing TGF-β signaling, biosynthesis of collagens and 

secretion of CCN2 [135]. On the other hand, the pro-fibrotic role of syndecan-4 is mediated by binding  

to calcineurin via its cytoplasmic domain and activation of calcineurin-nuclear factor of the activated T- 

cells (NFAT) signaling pathway to promote myofibroblast differentiation, collagen production and 

myocardial stiffness [136]. Syndecan-4 can also regulate the pro-fibrotic events in fibroblasts through 

inhibition of calcium influx via the transient receptor potential canonical (TRPC) 7 cell membrane 

channel. Syndecan-4 induces protein kinase Cα (PKCα) to phosphorylate TRPC7, thus controlling 

cytosolic calcium levels and myofibroblasts differentiation as well as keratinocytes adhesion and 

differentiation [137]. In contrast to its full-length form, syndecan-4 fragments shed from the cell surface 

upon the action of matrix-degrading enzymes inhibit the proliferation of cardiac fibroblasts, reduce the 

expression of collagen I and III and upregulate the ratio of MMPs to TIMPs to favor matrix degradation 

[138]. 

Serglycin represents the only characterized intracellular PG so far. Serglycin is localized into secretory 

granules of inflammatory cells and platelets, is secreted by dermal fibroblasts upon UVB exposure and is 

involved in tissue repair [139]. It is co-localized into α-granules of platelets with bioactive molecules 

including fibronectin, PDGF, CXCL7, CXCL4, RANTES/CCL5 and CCL3 and is essential for their storage and 

effective platelet aggregation and leukocyte activation [139, 140]. Apart from binding to inflammatory 

mediators and directing their bioavailability and functions within ECM, serglycin is also capable  of 

directly interacting with ECM molecules. It binds to collagen I and collagen-like structures of other 

proteins affecting cell functions and immune system response [141, 142]. This implies that serglycin is 

strongly implicated in the inflammatory phase of wound healing process, as well as in the tissue 

remodeling phase, since it mediates endothelial cells’ functions [143, 144]. 

HA is is synthesized by three HA synthases (HAS1-3) at the cytosolic part of the cell membrane in 

mammals [145]. HA has a dual role and is involved in both fibrotic and regenerative wound healing. For 

example, oral fibroblasts that promote rapid and scarless wound healing don't express HAS and have 

decreased pericellular HA amounts [146]. In contrast, fetal scarless wound healing is associated with 

increased amounts of HA, and in vitro treatment of adult wounds with amniotic fluid enriched in HA 

markedly improved re-epithelialization [147, 148]. It has been shown that HA of different size has 

opposite effects in various cellular functions and wound healing. Large molecular-weight HA is 

correlated with decreased inflammation, increased expression of collagen III and TGF-β3 activity that  

has anti-fibrotic action, whereas low molecular weight HA exhibits increased inflammation, collagen I 

synthesis,  increased  proliferation  of  fibroblasts  and  differentiation  to  myofibroblasts,  promoting   a 



 

 
 
 

fibrotic cell phenotype [149, 150]. Actually, at sites of inflammation low molecular weight HA binds to 

TLR2/4 and activates signaling cascades that promote the release of the pro-inflammatory cytokines 

interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β, that in turn stimulate HA production in 

various cell types [27, 151]. Accumulation of HA is observed in fibrosis and the failure to remove HA 

fragments by CD44 and TLRs contributes to persistence of inflammation and destruction observed in 

tissue fibrosis [152, 153]. Although HA binds to CD44 and RHAMM and signals through them, HA also 

seems to be essential for TGF-β-induced fibroblast differentiation into myofibroblasts [154-156]. It is 

suggested that HA regulates TGF-β signaling by inducing a co-localization and interaction of the 

receptors CD44 and EGFR within lipid rafts [157, 158]. HAS2 is also involved in the development of lung 

fibrosis. Deletion of HAS2 abrogated the invasive fibroblast phenotype, impeded myofibroblast 

accumulation, and inhibited the development of lung fibrosis in a CD44-dependent manner [159]. In 

another study, it has been shown that HAS2 is important for TGF-β-induced mesenchymal  

differentiation and migration of NMuMG mammary epithelial cells in a CD44- and HA-independent 

manner [160]. 

 

Matrix Proteases 

Several proteolytic enzymes are involved in wound healing. MMPs belong to the metzincin family of 

metalloproteinase that present a zinc-binding motif at their active site. Plasminogen activators such as 

urokinase-type plasminogen activator (uPA) and tissue-type urokinase activator (tPA) are serine 

proteases. They are involved in the activation of plasminogen to plasmin and cleavage of fibrin polymers 

as well as degradation of various ECM components and activation of MMPs [2, 9]. MMPs are central 

players of healing process in the wound bed and are differentially expressed by all cell types in a time- 

and context-dependent manner. Apart from regulating ECM turnover, they control inflammation, cell 

migration and angiogenesis by acting on growth factors, cytokines, and cell surface receptors [161]. 

MMPs activity on various ECM components liberates active fragments called matrikines that regulate 

various cell functions during wound healing [12]. MMPs are involved in all phases of wound healing and 

their abnormal expression and functions are involved in dysfunctional wound repair and the 

development of chronic wounds or fibrosis, hypertrophic scars and keloids in skin. Scarless fetal wounds 

have a greater expression ratio of MMPs to TIMPs, which favors cell migration and ECM turnover 

compared to scarring wounds [162]. Chronic ulcers also exhibit increased activity of MMPs and other 

proteases [163]. It has been shown in a type 2 diabetic rat model that elevated MMPs expression is 

associated   with   delayed   wound   healing   and   development   of   diabetic   chronic   wounds    [164]. 



 

 
 
 

Hypertrophic scars are also characterized by constant MMPs activity [161]. For example, elevated MMP- 

9, and MMP-13 gene expression is observed in fibroblasts isolated from the margins of the original 

keloid wound and their expression is markedly downregulated upon treatment with decorin [165]. 

MMP-9 is recruited to the surface of fibroblasts and activates TGF-β signaling that in co-operation with 

other ECM signals promotes fibroblasts contraction, fibronectin expression and myofibroblast 

differentiation [166, 167]. On the other hand, the levels of MMP-1 are decreased in hypertrophic scar 

tissue and stimulation of MMP-1 expression reduces fibrosis and hypertrophic scars [168-171]. Wound 

closure is severely affected in mice deficient in MMP-8, and it is associated with a delay of neutrophil 

infiltration during the first days and a persistent inflammation at later time points [172]. MMP-8 acts as 

an anti-fibrotic protease due to the degradation of pro-inflammatory cytokines. Likewise, MMP-9 null 

mice display delayed wound healing associated with compromised re-epithelialization,  reduced 

clearance of fibrin clots and abnormal matrix deposition [173]. MMPs are important for re- 

epithelialization of various tissues in a tissue-dependent manner. For example, MMP-1 and MMP-7 are 

important for re-epithelialization in skin and mucosal epithelia, respectively, via different mechanisms 

involving integrin α2β1 [161]. Keratinocytes bind to collagen I in the dermis via integrin α2β1 upon 

basement membrane disruption in the wound bed. MMP-1 is induced in keratinocytes at the wound 

edge and cleaves collagen I. As a consequence, the collagen triple helix partially unwinds and reduces 

the avidity of integrin α2β1 ligation. This drives keratinocytes to interact via integrin α2β1 with intact 

collagen I within the open wound bed thus promoting keratinocyte migration [161, 174-176]. MMP-7 

expression is critical for re-epithelialization in mucosal epithelia. MMP-7 sheds syndecan-1 from 

epithelial cells, and this process attenuates the activation of integrin α2β1, thus decreasing its 

interaction with ECM components and facilitating cell migration [161, 177, 178]. 

 

Epigenetic reprogramming during wound healing 

In recent years, a large number of publications has focused on the area of epigenetic therapy, which is 

not surprising since it links alterations in chromatin structure to the cell phenotype and numerous 

functions of a given biological system [179, 180]. It is of fundamental and of great clinical relevance to 

perceive how these changes are orchestrated. Epigenetic regulation is an important driver of the wound 

healing response; however, many mechanistic details remain to be elucidated. Common and highly 

interdependent epigenetic mechanisms that are closely associated with gene expression include DNA 

methylation, post-transcriptional histone modifications and regulatory non-coding RNAs (ncRNAs) [181- 

185]. The dynamic interplay among these epigenetic mechanisms regulates chromatin remodeling and 



 

 
 
 

consequently can alter the expression status of large numbers of transcription factors and signal 

transduction molecules [182, 186, 187]. In this review, we focus our attention on the most extensively 

characterized subfamily of ncRNAs, named microRNAs, since they have been thoroughly studied among 

epigenome components in the context of wound healing and regenerative medicine [188]. They are 

endogenous small ncRNAs molecules, 17-25 nucleotides long, which have an important role in post- 

transcriptional regulation of a wide range of cellular processes [189]. Interestingly, more than 60% of 

protein-coding mRNAs may be targets of miRNAs as indicated by bioinformatics predictions, thus 

participating in various signal transduction pathways both in physiological and pathological conditions 

[190, 191]. The miRNA processing pathway has long been viewed as linear and universal to all 

mammalian miRNAs. As illustrated in Figure 2, this canonical maturation cascade includes the 

production of the 70-nucleotide primary miRNA (pri-miRNA) transcript, its cleavage to the precursor 

hairpin (pre-miRNA), transfer to the cytoplasm and finally the cleavage of the pre-miRNA to its mature 

length. The functional strand of the mature miRNA is loaded together with Argonaute proteins into the 

RNA-induced silencing complex (RISC), where it guides RISC to target mRNAs [192-195]. Depending on 

the complementarity, miRNAs can induce mRNA degradation via the RNA-induced silencing complex, 

translational repression, or total inhibition of mRNA translation [196, 197]. 

Epigenetic regulators appear to be involved in the wound healing and skin repair processes, thus 

dynamically regulating dermal regeneration. More specifically, wound healing and fibrosis are evidently 

regulated by a wide range of miRNAs, either in a direct or indirect way (Table 1). Individual miRNAs have 

been associated with distinct phases of wound healing, including inflammation, cell proliferation and 

tissue regeneration, serving themselves as target biomarkers for systematic regulation of wound repair 

and fibrosis [186]. For instance, miR-21 is the principal regulator of fibroblast migration and it inhibits 

the epithelialization in skin wound [198]. Moreover, it mediates fibroblast activation in pulmonary 

fibrosis, therefore it is characterized as a pro-fibrotic factor [199]. Self-limited and rigorously regulated 

inflammation is an initial step for proper wound repair, since chronic inflammatory responses may lead 

to overacting wound healing and loss of the regeneration process. Emerging evidence has shown that 

miRNAs may regulate inflammation through distinct mechanisms. For example, miR-146a abolishes the 

activation of the nuclear factor κB (NF-κB) pathway, which is the central signal transduction pathway of 

inflammation [200, 201]. Moreover, miR-146a induces the expression of the pro-inflammatory cytokine 

IL-10 and modulates the IL-1β signaling pathway [202, 203]. Recent reports indicate that miR-142-5p  

and miR-130a-3p may act as pro-fibrotic modulators by regulating macrophage functions via IL-4 and IL- 

3 expression [204]. Another interesting example is miR-29, which is linked to the pathogenesis of fibrosis 



 

 
 
 

by regulating ECM production and deposition and EMT. Its decreased expression in cardiac, renal, 

pulmonary and liver fibrosis, is followed by the upregulation of collagen type I and IV expression levels, 

affecting the severity of fibrosis in numerous organs [205-208]. Serum miR-29 levels are much lower in 

patients with advanced liver fibrosis compared to healthy controls [209]. Notably, the estradiol- 

stimulated miR-29 overexpression in liver cells of a mouse model may answer the question whether 

women are more susceptible to alcohol-induced liver fibrosis than men [210]. These findings suggest 

that miR-29 may act as an anti-fibrotic epigenetic modulator (Table 1), serving as a prognostic and 

potential therapeutic biomarker. Moreover, critical for the recovery of cells during wound healing is the 

cell proliferative phase, since it is necessary to rapidly restore an organ function. It has been reported 

that miR-203 may act as a pro-proliferative and pro-migratory factor in cutaneous wound healing and 

miR-483-3p controls keratinocyte proliferation during the re-epithelialization of wound healing process 

[211, 212]. To summarize, evidence suggests that miRNAs participate and regulate all phases of wound 

healing. Therefore, understanding the molecular context of their functions could be advantageous for 

tissue regeneration applications. 

 

Extracellular matrix regulation by miRNAs 

Considering the mechanism of miRNA function, which is based on the post-transcriptional regulation of 

RNA expression and translation (Figure 2), it is not surprising that they have been implicated in the 

regulation of ECM protein and glycan expression. Different modes of regulation have been described, 

including a direct targeting of ECM mRNAs, indirect regulation of ECM constituents via miRNA- 

dependent targeting of transcriptional activators and repressors, epigenetic regulation of ECM-targeting 

miRNAs, and co-regulation of miRNAs with ECM receptors (Figure 3) [247]. In addition, the pattern of 

miRNA expression within a given tissue and cell type can be regulated by via the 3′ UTR of selected ECM 

mRNAs, such as versican and CD44, and by matrix-mediated signaling processes [247-249]. In this 

section, these modes of regulation using selected examples of miRNA-dependent ECM molecules with 

relevance for wound repair are presented and critically discussed. 

Among the miRNAs directly regulating gene expression via induction of mRNA degradation through their 

3’UTR (Figure 2), the miR-29 family represents an important member targeting multiple ECM molecules. 

miR-29c downregulates two fibrillary collagens with particular importance for wound repair [216], 

collagen type I and type III [250-253], resulting in effects on cell motility and a modulation of cardiac 

fibrosis in different experimental models. miR-29 also plays a role in the regulation of proteolytic factors 

which are relevant during the phase of collagen remodeling and angiogenesis of skin wound repair. Both 



 

 
 
 

‘sheddases’ capable of releasing the extracellular domain of syndecans [126, 254] and MMPs processing 

fibrillary collagens, such as collagen I and collagen III, are of importance in this context. miR-29 is  

capable of directly targeting MMP-2 mRNA [122], whereas an indirect mode of MMP regulation by this 

miRNA has been described for aortic smooth muscle cells. Treatment of these cells with oxidized LDL 

resulted in miR-29b-mediated downregulation of DNA methyltransferase 3b [231]. The resulting 

epigenetic changes at lead to a differential regulation of MMP-2 and MMP-9. Finally, miR-29a/b/c co- 

regulates laminin LAMC2 and integrin α6 in head and neck squamous cell carcinoma [255], representing 

an example for a regulation of an ECM compound and its receptor by a miRNA [65, 256]. 

An additional multifunctional miRNA with relevance for ECM function is miR-10b. miR-10b mediates 

downregulation of the transcription factor HOXD10, resulting in an indirect upregulation of MMP-14 and 

uPA activator receptor (uPAR) in breast cancer and glioma cells [257, 258], thus influencing the 

proteolytic milieu. In addition, upregulation of miR-10b in breast cancer and endometriotic cells resulted 

in a direct targeting and downregulation of syndecan-1 as demonstrated by 3’ UTR luciferase reporter 

assays, qPCR, flow cytometry and immunofluorescence microscopy [259, 260]. In both cases, cell 

motility and invasive growth of the syndecan-1 depleted cells were affected, which could be attributed 

to a multitude of effects, including altered signaling via receptor tyrosine kinase, focal adhesion 

kinase/Rho and IL-6 signaling pathways as well as alterations in the proteolytic milieu that were due to 

reduced expression of this multifunctional co-receptor. miR-10b-dependent targeting of syndecan-1  

may be relevant to wound repair, as it regulates angiogenesis, wound re-epithelialization and 

recruitment of inflammatory cells during skin wound healing and cardiac repair [124, 126, 134]. 

Syndecans are also regulated by miR-143 and miR-145. Indeed, these miRNAs are thought to be 

functionally linked and co-regulated in a bicistronic manner [261]. miR-143 and miR-145 target 

syndecan-1, resulting in a reduction of cell growth in melanoma, urothelial carcinoma and ovarian 

cancer, respectively [262-264]. TGF-β-inducible miR-143 was also shown to target additional syndecan 

family members, including syndecan-4, involved in modulating fibroblast function during skin wound 

repair [127], and versican in a zebrafish model, where it had an impact on the glomerular filtration 

barrier [265]. Moreover, miR-143 and miR-145 have an impact on the proteolytic milieu, as evidenced  

by the regulation of MMP-13 [224] and the inhibitor PAI-1 [231], respectively. Syndecan-1 is a good 

example of a matrix receptor that can influence the expression of miRNAs and their respective targets. It 

acts upstream of some microRNAs, resulting in their altered expression. This was demonstrated in the 

case of prostate cancer cells, in which syndecan-1 silencing induced downregulation of the miRNA 

processing enzyme Dicer. The associated change in the levels of mature miR-331-3p and its targets 



 

 
 
 

resulted in the induction of EMT [266]. Moreover, aberrant syndecan-1 expression has been linked to 

the expression of miR-126 and in prostate cancer, with an impact on cell proliferation [267]. Finally, 

syndecan-1 has been identified as part of a regulatory loop comprised of MMP-9 and miR-494, which 

regulated irradiation-induced angiogenesis in medulloblastoma [268]. As recent reports indicate that 

syndecan-1 and the syndecan-processing enzyme, HPSE, are mechanistically involved in the biogenesis  

of exosomes [269, 270], it is tempting to speculate that this PG may also effect secretion of a multitude 

of miRNAs via this process. 

Collagens of the dermis play important roles by providing structural support for resident cells and for 

inflammatory and accessory cells during the remodeling phase of wound repair [271, 272]. Among the 

various collagen types found in vertebrates, the fibrillary collagens type I and type III play prominent 

roles during wound repair [272]. For example, direct regulation of collagen type I expression via binding 

of the miRNA seed sequence to the 3′ UTR of mRNAs encoding one of the three chains of these triple- 

helical structural proteins was demonstrated for let-7g (COL1A2), miR-29c (COL1A1, COL1A2) and miR- 

133a (COL1A1) [250-253], resulting in effects on cell motility and a modulation of cardiac fibrosis in 

different experimental models. Blood-derived fibrin and fibronectin form a provisional ECM in the initial 

stage of skin wound healing [272]. While a quantitative regulatory effect of miRNAs on these molecules 

at this stage appears unlikely considering the large quantities of blood-derived matrix proteins, miRNA- 

mediated modulation of fibronectin expression may be of importance at later stages of repair, affecting 

the migratory behavior of cells in the granulation tissue and wound edges. Indeed, several miRNAs have 

been shown to directly target fibronectin, resulting in altered cell survival and migration, including  miR- 

17 in a transgenic mouse model [273], miR-146a in diabetic animals [274], and miR-206 in 

bronchopulmonary dysplasia [275]. In several cases, the mesenchymal marker fibronectin is indirectly 

regulated via microRNAs affecting the process of EMT, as exemplified by the case of miR-200b in renal 

fibrosis [276] and miR-7 in breast cancer [277]. 

As a final example for regulatory modes exerted by ECM compounds and their receptors, the concept of 

competing endogenous RNAs, or ceRNAs is also discussed here. As a prime example, the 3’ UTR of 

versican mRNA acts as an endogenous microRNA sponge, thus sequestering miRNAs and neutralizing 

their activity. This has been shown by over-expression of versican 3’ UTR in diverse systems, resulting in 

a neutralization and target suppression of the microRNAs miR-199a [278] (regulating versican and 

fibronectin), miR-133a, miR-144 and miR-431 [279]. Of particular relevance for wound repair were 

experiments by Yang and Yee [108], who demonstrated enhanced wound closure and fibroblast 

migration in cells and transgenic mice expressing versican 3’ UTR. This phenotype was apparently due to 



 

 
 
 

binding of numerous miRNAs to the ceRNA, including miR-185, miR-203, miR-690, miR-680 and miR-434- 

3p, resulting in an upregulation of versican itself and of the Wnt signaling effector beta-catenin. Another 

example for a ceRNA is CD44. Interactions between this transmembrane receptor and its ligand HA 

regulate several aspects of wound repair, including chemotaxis and cell migration, collagen secretion, 

inflammation and angiogenesis [271]. CD44 mRNA acts as a ceRNA capable of neutralizing miRNAs, as 

has been shown miR-216a, miR-328, miR-330, miR-491, miR-512-3p, miR-608 and miR-671. As a 

consequence, the 3′ UTR of CD44 upregulated not only the expression of CD44 itself, but also of 

fibronectin and COL1A1, with possible relevance for wound repair [280, 281]. Moreover, CD44 is also 

directly targeted by several miRNAs including miR-34, miR-199a-3p, miR-328, miR-373 and miR-520c 

[282-285], resulting in effects on cell migration, proliferation and stem cell phenotype. Since it is a 

carbohydrate, expression of HA is not directly modulated by miRNAs, but via regulation of their 

biosynthetic enzymes, the HASes [286]. In breast and cervical cancer cells, inhibition of the miRNA let-7 

resulted in a suppression of its target HAS2, with an impact on cell survival, adhesion and invasive 

behavior [287]. Moreover, the targeting of HAS2 by miR-26b resulted in increased ovarian granulosa cell 

apoptosis [288], whereas targeting of HAS2 by miR-23a-3p caused cellular senescence, with possible 

implication for skin aging and repair [289]. Finally, the interaction of HA with CD44v3 in head and neck 

squamous cell carcinoma has been shown to have an indirect regulatory impact on the expression of 

miR-302 via pluripotency-associated transcription factor induction [290], providing another example for 

matrix-dependent signaling processes that regulate miRNA expression patterns. 

 

MicroRNA - ECM interactions in wound healing 

As mentioned above, wound repair is characterized by several successive phases, during which  

individual matrix molecules and miRNAs play distinct roles [291, 292] (Table 1, Figure 1). The earliest 

stage is characterized by hemostasis and inflammation. While it is unlikely that miRNAs play a role in 

regulating the amount of these largely blood-derived ECM molecules during the  hemostasis stage, it  

can be envisaged that the presence of these matrix constituents can influence the miRNA expression 

pattern in cells recruited to the wound (Figure 3). For example, the presence of thrombospondin-1 

affects the miRNA expression profile of vascular smooth muscle cells [293]. Platelet activation and 

degranulation subsequently trigger the recruitment of different classes of leukocytes as part of an early 

inflammatory response. A recent study on Staphylococcus aureus clearance at skin wound sites has 

revealed a role for miR-142-3p in neutrophil recruitment [294]. Using miR-142-3p-deficient mice, the 

authors   could   demonstrate   that   targeting   of   cytoskeletal   elements   and   Rho-GTPase    signaling 



 

 
 
 

compounds affected leukocyte recruitment. While not explored in this study, a targeting of integrin αν 

by this miRNA may impede recruitment of epithelial cells during wound repair by hindering cellular 

interactions with the ECM, including vitronectin, fibronectin and thrombospondin in the provisional 

wound matrix [295]. Likewise, altered expression of miR-223, which is upregulated in the inflammatory 

phase in human skin [296] could potentially affect β1 integrin expression and cell motility [297, 298], as 

well as myeloid-derived suppressor cell differentiation [299]. Another microRNA which is upregulated 

during early skin wound repair both in mouse models and humans is miR-155 [300, 301]. Apparently, an 

inhibition of miR-155 has beneficial effects on wound repair, as application of a miR-155-inhibitor 

reduced inflammatory cell recruitment into the wound and improved the structural quality of the 

regenerated tissue [302]. Likewise, miR-155-deficient mice showed more rapid and qualitatively 

improved wound repair, as evidenced by increased collagen I deposition [301]. In contrast, another 

study employing a miR-155 expression plasmid during cutaneous wound repair reported an acceleration 

of keratinocyte migration, which was attributed to an inverse regulation of MMP-2 and TIMP-1 [303]. 

The context-dependent effects may be due to the mode of experimental miR-155 modulation. In 

addition, additional targets of miR-155 may have contributed to the phenotype. Importantly, HPSE was 

shown to be regulated by a miR-155-based artificial miRNA, resulting in an inhibition of melanoma cell 

adhesion, migration and invasiveness [304]. Moreover, miR-155 regulates additional MMPs, which may 

have differentially affected wound repair in the partially conflicting studies [305]. 

At the late inflammatory stage of wound repair, inflammation needs to resolve, and several miRNAs 

contribute to this process (Figure 1). Notably, miR-21 is upregulated by macrophages upon phagocytosis 

of apoptotic neutrophils and contributes to the resolution of inflammation via the upregulation of anti- 

inflammatory cytokines such as IL-10 [306]. Expression of miR-21 is modulated by decorin during 

inflammation [307] and it has been shown to target the HS editing enzyme HSulf1, with a possible  

impact on HS-dependent signaling processes during wound repair [308]. Indeed, as pointed out before, 

both syndecans and decorin play a prominent role in wound repair and transgenic and knockout mouse 

models that display a wound healing phenotype [112, 124, 126, 127, 134]. Another miRNA involved in 

the resolution of inflammation during wound repair is miR-132, which is upregulated in several  

leukocyte subsets during the inflammatory phase of wound repair. While it primarily attenuates 

inflammation by promoting M2 polarization of macrophages and by preventing the overshooting 

production of pro-inflammatory cytokines [309, 310], the targeting of MMPs, such as MMP-9 and MT3- 

MMP/MMP-16 that was demonstrated in different experimental systems [311, 312], may additionally 

contribute to the resolution of inflammation in the context of wound repair. Since expression of  miR-99 



 

 
 
 

family members has been linked to the activity of several integrin subtypes, including β4 and ανβ3 

integrin [313, 314], it may be worth evaluating whether downregulation of miR-99a, miR-99b and miR- 

100 during the inflammatory phase is linked to altered integrin-ECM interactions [315]. Moreover, miR- 

146a, which is also downregulated during this phase of skin wound repair [316], may contribute to the 

resolution of inflammation as a negative regulator of several compounds of the proinflammatory NF-κB- 

pathway in keratinocytes and macrophages [317, 318]. miR-146a has also been described as a regulator 

of the PG aggrecan [319], reported to contribute to a block of dermal repair in ADAMTS-5-deficient mice 

via an effect of fibroblast differentiation from progenitor [320]. However, the relevance of this finding in 

the context of the inflammatory phase of wound repair is unclear. 

The shift in the cytokine profile linked to the differentiation of macrophages to a more reparative 

phenotype affects the proliferation of fibroblasts in the granulation tissue, the ECM production by these 

cells, and the induction of angiogenesis [291, 292]. Several miRNAs are upregulated during the phase of 

proliferation and re-epithelialization in skin wound repair (Figure 1). For example, miR-21 is upregulated 

in keratinocytes and mesenchymal cells of the wound edge, where it promotes cell migration [321, 322]. 

While it remains to be shown whether decorin, which has been linked to this miRNA [247] play a role in 

this process, it has been demonstrated that miR-21 inhibition does not only delay re-epithelialization 

and hinders contraction of the wound, but also affects collagen deposition, thus promoting cell adhesion 

and migration [321]. Another miRNA that is upregulated in proliferating keratinocytes is miR-31. While 

its mechanism of action involves a targeting of epithelial membrane protein-1 [323], it is noteworthy  

that miR-31 has been shown to target several integrin α subunits (α2-, α5, αν-) and β1-integrin in  

diverse experimental systems [324]. This suggests that integrin dysregulation may have additionally 

contributed to altered matrix-dependent cell spreading, collagen adhesion and proliferation. Likewise, 

downregulation of miR-99 family members may not only stimulate keratinocyte proliferation via 

upregulation of the miR-99-repressed signaling compounds Akt and mTOR [315], but also of several 

integrins [313, 314]. 

Angiogenesis is a pivotal aspect of the proliferative phase of wound repair, as it ensures a supply of 

nutrients for proliferating keratinocytes, fibroblasts and immune cells. ECM compounds such as pro- 

angiogenic integrins, MMPs and PGs such as versican, decorin and syndecans are important modulators 

of angiogenesis [112, 126, 325]. During skin wound repair, miR-199a-5p is downregulated in the dermis 

and endothelium, and it was shown that this miRNA inhibits angiogenesis via negative regulation of the 

transcription factor ETS1 [326], which is a known inducer of ECM proteins in fibroblasts, including 

collagen   I   α2,   TGF-β    induced   protein,   lumican   and   decorin    [327].   Moreover,       miR-199a-5p 



 

 
 
 

downregulation exerts a proangiogenic effect during wound repair via upregulation of MMP-1 [326].  

Like miR-199-5p, miR-200b targets ETS1 in addition to VEGFR2 [328]. As  miR-200b  also  regulates 

decorin [329] and fibronectin [276, 330] in other experimental systems, dysregulation of these ECM 

compounds may additionally contribute to the angiogenic process and wound re-epithelialization. 

Probably the most profound changes in miRNA-regulated ECM deposition are observed in the final 

remodeling phase of wound repair, during which collagen III is replaced by the structurally more stable 

collagen I under the influence of growth factors, such as TGF-β, which promote ECM synthesis [272, 

291]. A prominent miRNA involved in this process is miR-29b, which targets Col3α1, Col4α1, Col4α2 and 

Col5α1 [191, 331-333]. The relevance of miR-29b for wound repair become also apparent in a rodent 

wound model, were therapeutic application of this miRNA in a collagen scaffold increased the ration of 

collagens III and I. This was associated with a reduction of wound contraction and an overall 

improvement of remodeling [333]. Notably, miR-29b is known to target TGF-β, the integrin subunits α6 

and β1 and the MMPs MMP-2 and MMP-9, which may have additionally contributed to altered 

remodeling [255, 332, 334, 335]. An indirect impact of a miRNA on remodeling has been uncovered for 

miR-1908, which targets the protein SKI, a regulator of collagen synthesis [336]. miR-1908 increased 

scar-derived fibroblast proliferation and production of TGF-β and collagen I [337] and reduced scar 

formation in a rat model of wound repair [336]. In addition, application of miR-1908 inhibitors to burn- 

wound scars in rats reduced their size and fibrosis [337], suggesting that miR-1908 as a promising 

potential therapeutic target and tool in wound repair. 

The dysregulation of miRNAs’ expression and their ECM targets has been linked to wound healing 

complications, such as hypertrophic scarring, keloid formation, and chronic non-healing wounds [338]. 

The aforementioned miRNA miR-29b is one of 92 miRNAs which are differentially regulated between 

hyperplastic scars and normal skin [339]. In vitro data suggest an anti-fibrotic effect of this miRNA, as its 

upregulation in primary human endometrial stroma cells reduced expression of Col1α1 and αSMA, thus 

contributing to an apoptosis-induction and inhibition of myofibroblast-like cell proliferation [340]. 

Importantly, in a murine thermal injury model, it was downregulated in thermal injury tissue, whereas 

miR-29b treatment promoted wound repair and inhibited scar formation. At the molecular level, this 

improvement could be linked to inhibition of the TGF-β-SMAD-CTGF signaling pathway, resulting in a 

suppression of collagen deposition [341]. As discussed above, a targeting of integrins, LOX and MMPs 

may have additionally contributed to preventing overshooting repair and fibrosis in this context. The 

TGF-β-inducible miRNA, miR-145, is upregulated in hypertrophic scars compared to healthy skin [342]. 

miR-145 is known to influence the proteolytic milieu by downregulating PAI-1, ADAM-17 and the HSPG 



 

 
 
 

syndecan-1 [263, 343-345], and has been shown to influence ECM biosynthesis in cartilage by targeting 

the master regulator SOX9 [346]. In the context of hypertrophic scarring, the inhibition of collagen 

biosynthesis by PPARγ agonists is apparently due to a targeting of the TGF-β signaling mediator SMAD3 

by miR-145 [347]. Moreover, myofibroblasts subjected to miR-145 inhibition were characterized by a 

reduced expression of TGF-β1 and collagen I and decreased contractility and migration [342]. Another 

miRNA linked to altered TGF-β expression and hypertrophic scarring is miR-200b, an important 

modulator of EMT [348, 349]. miR-200b was shown to be downregulated in hypertrophic scar tissues 

and human hypertrophic scar fibroblasts and its downregulation in fibroblasts occurs in a TGF-β- 

dependent manner [330, 350]. Functional in vitro analysis revealed that this miRNA regulated apoptosis 

and proliferation of human hypertrophic scar fibroblasts by altering collagen I and III as well as 

fibronectin expression in a TGF-β-dependent manner [330]. Similarly, miR-143-3p expression is 

downregulated in hypertrophic scar tissues, and its upregulation in hypertrophic scar fibroblasts is 

associated with a reduction in collagen I, III and αSMA, due to CTGF targeting [351]. Another miRNA 

downregulated in hypertrophic scars is miR-185. Following bioinformatics target prediction analysis, 

miR-185 could indeed downregulate expression of TGF-β and collagen I in fibroblasts, affecting cell 

proliferation and apoptosis [352]. The proteolytic modulation of collagen function is regulated my 

miRNAs miR-10a and miR-181c, which affect this process in hypertrophic scar fibroblasts by targeting 

PAI-1 and uPA and increasing MMP-1 levels [353]. Hypertrophic scars exhibit a lower expression of the 

PG decorin compared to healthy tissue [354] and it has been shown that decorin reduces hypertrophic 

scarring by modulating TGF-β functions [355, 356]. Notably, miR-181b, a miRNA that is upregulated in 

hypertrophic scars, was shown to target decorin. The authors demonstrated that miR-181b inhibition in 

hypertrophic scar fibroblasts reversed not only TGF-β-mediated downregulation of decorin, but also 

myofibroblastic differentiation [357]. 

Keloids represent another form of excessive scarring, and miRNA-mediated dysregulation of ECM 

molecules has been shown to be involved in keloid formation [358]. Being defined as benign dermal 

scars capable of invading adjacent healthy tissue, their formation is due to aberrant production of ECM 

by fibroblasts [359]. Among the miRNAs involved in the regulation of collagen production are miR-7, 

miR-29a and miR-196a, which are downregulated in keloid fibroblasts and modulate collagen type I and 

III production [227]. Notably, inhibition of miR-7, which is also regulating fibronectin expression in other 

experimental systems [277], leads to increased collagen type I alpha 2 expression in dermal fibroblasts 

[360]. While the decorin-modulated miRNA miR-21 promotes keloid fibroblast proliferation [361, 362], 

miR-199-5p,  a  miRNA  targeting  MMPs  and  DDR1  [363],  inhibit  this  process.  Interestingly,  the 



 

 
 
 

upregulation of miR-21 in keloid keratinocytes resulted in the induction of an EMT-like process and an 

enhanced stem cell phenotype, which could be partially linked to an upregulation of the HA receptor 

CD44 [364]. Consequently, migration, invasion and sphere-forming abilities of keloid keratinocytes were 

enhanced, which suggests that aberrant expression of miR-21 may account for the invasion and 

recurrence of keloids. Overall, these data provide strong evidence for a role of dysregulated miRNA 

expression in overshooting collagen production in keloids. 

Another form of aberrant wound healing is associated with diabetes, as diabetic patients frequently 

suffer from impaired wound repair [365]. Indeed, the miRNA expression pattern in wound tissue of 

diabetic rats subjected to cutaneous wounding differs from their normal counterparts [366]. Among the 

differentially regulated miRNAs, miR-26a was shown to target the TGF-β signaling pathway compound 

SMAD1 [367], with an impact on the cell cycle and a potential impact on ECM biosynthesis. 

Consequently, miR-26a inhibition resulted in improved wound repair, including increased granulation 

tissue formation and angiogenesis. Interestingly, miR-26a also contributes to the progression of diabetic 

nephropathy in humans and mouse models through enhanced TGF-β/CTGF signaling, which results in 

altered collagen synthesis [368]. Similar to miR-26a, an angiogenesis-modulating effect was also 

observed in the case of miR-200b, which is upregulated in an TNF-α-dependent manner in diabetic mice, 

resulting in impaired angiogenesis [369], and possibly also altered expression of fibrillary collagens and 

fibronectin, as discussed above. Moreover, miR-155, is induced in wounds of diabetic mice, and its 

deficiency resulted in improved wound closure in knockout mice [301]. Apart from the identified targets 

BCL6, FIZZ1, RhoA, and SHIP1 it is noteworthy that miR-155 has also been linked to heparanase function 

[304], and is known to influence the proteolytic milieu via regulation of MMP-2 and TIMP-1 [303], which 

may have additionally influenced wound repair. Moreover, members of the miR-99 family are 

downregulated in diabetic wounds and may contribute to delayed repair via altering expression of 

several integrins or the PI3K/Akt signaling pathway, as discussed above [313-315]. Finally, inhibition of 

miR-146a in cultured human diabetic corneas was shown to have a beneficial effect on wound repair 

[236], however, it remains to be shown that its property of inhibiting fibronectin expression in tissues of 

diabetic animals [274] is linked to this phenomenon. miR-27b has been shown to target the matricellular 

proteins thrombospondin-1 and thrombospondin-2, which are important modulators of angiogenesis 

[370, 371]. In the context of diabetic wound repair and angiogenesis, it was shown that miR-27b 

upregulation in bone marrow-derived angiogenic cells promotes proliferation and survival, as well as 

tube formation, whereas therapeutic delivery of such miR-27b overexpressing into the wounds of 

diabetic mice  improved wound repair  [371]. Overall,  these  data  confirm a  role  for ECM-targeting   of 



 

 
 
 

miRNAs in diabetic wound repair complications, however, several potential targets with known 

functions in repair still need to be experimentally confirmed. 

Another area of tissue repair for which aberrant ECM regulation is a contributing factor is cardiac repair. 

Indeed, aberrant expression of syndecans, thrombospondins and MMPs, as well as altered fibrogenesis 

play major roles on this complex process [16, 134, 372]. With respect to altered miRNA dependent ECM 

regulation in myocardial infarction, both a direct impact on ECM synthesis and on proteolytic  

remodeling have been observed. Following the observation that the miR-29 family is dysregulated in 

myocardial infarction and targets numerous mRNAs encoding ECM proteins involved in cardiac fibrosis, 

van Rooij and coworkers demonstrated that miR-29 downregulation with anti-miRs in vitro and in vivo 

induces the expression of multiple collagens, whereas its over-expression in fibroblasts had the opposite 

effect [373]. Another miRNA, miR-24, was downregulated upon myocardial infarction in a rodent model, 

and its expression change was closely related to ECM remodeling [374]. Notably, in this study, lentivirus- 

mediated intramyocardial delivery of miR-24 improved heart function and attenuated fibrosis in the 

infarct border zone in vivo, which was ascribed to a targeting of the TGF-β processing enzyme furin, 

which in turn affected TGF-β-mediated ECM biosynthesis. Another in vivo study demonstrated that TGF- 

β1 and miR-21 were upregulated, whereas the inhibitor of TGF-β1-signaling, TGFβRIII was  

downregulated in the border zone of mouse hearts in response to myocardial infarction [375]. 

Importantly, miR-21 transfection into cardiac fibroblasts reduced TGF-βRIII expression and consequently 

increased collagen content. The authors demonstrated the presence of a reciprocal loop between miR- 

21 and TGF-βRIII in cardiac fibrosis in mice, and suggested targeting of this pathway as a novel new 

strategy for the prevention and treatment of myocardial remodeling [375]. 

Apart from regulating collagen expression, modulation of the proteolytic environment by miRNAs plays  

a role in cardiac remodeling. For example, in an ischemia-reperfusion model, miR-21 was shown to  

affect cardiac remodeling via upregulation of MMP-2 in a PTEN-dependent manner [376]. An increase in 

MMP-2 and MMP-9 activity was also observed in a mouse model, in which HMGB1 was injected in the 

peri-infarcted region of mouse failing hearts following coronary artery ligation. Notably, the authors 

found that HMGB1 upregulated miR-206, which in turn targeted the endogenous protease inhibitor 

TIMP-3, resulting in increased collagenolytic activity, enhanced left ventricular function and attenuated 

remodeling. Likewise, miR-17 was found to be upregulated in hearts of rodents subjected to myocardial 

infarction, and shown to 3' UTR of TIMP-2 and the protein-coding region of TIMP-1, thus promoting 

proteolysis in the infarcted tissue [377]. In a preclinical therapeutic approach, the authors could 

demonstrate  that  in  vivo  antago-miR  treatment  inhibiting  miR-17   enhanced  TIMP-1   and     TIMP-2 



 

 
 
 

expression, decreased MMP9 activity, reduced infarct size and improved cardiac function, suggesting 

miR-17 inhibition as a promising ECM-targeted approach for cardiac repair. Finally, miR-214 exerts a 

beneficial effect on cardiac remodeling, as it was shown that this miRNA increased the expression of 

collagen type I and III, of TGF-β1 and TIMP-1, whereas MMP-1 expression was decreased in cardiac 

fibroblasts subjected to AngII treatment [378]. These findings were corroborated in an in vivo model 

utilizing adenovirus-mediated delivery of miR-214. In summary, we conclude that there is strong 

evidence for a functional role of miRNA-mediated ECM remodeling in cardiac repair, and data in 

preclinical models show the therapeutic potential of miRNA and anti-miR-delivery in this setting. 

 

Novel therapeutic approaches: miRNA delivery strategies 

It is well established that miRNAs directly or indirectly regulate the expression and activity of ECM 

components. Recent data from our research group revealed that estrogen receptor β (ERβ) inversely 

regulates miR-10b and miR-145 expression in breast cancer cells. These miRNAs are critical modulators 

of the basic functional properties and the expression of ECM components in ERβ suppressed MDA-MB- 

231 breast cancer cells [379, 380]. These data imply that the efforts of miRNA targeting through ECM 

regulation must be more intense in order to manipulate the progression of various diseases. Recent 

advances in nanomedicine applied in several diseases contribute to overcome the limitations of the 

current therapeutic approaches. The markedly increased surface area of nanoparticles (NPs) in relation 

to their mass, surface reactivity and insolubility, the ability to agglomerate or change size in different 

media and enhanced endurance over conventional-scale substances, are some of their properties that 

make them attractive systems for several applications [381-384]. Since miRNAs have been identified as 

powerful mediators of wound healing , they are attractive candidates for a broad set of novel 

therapeutic strategies [385]. 

Depending on the mRNA-target miRNAs act either as gene suppressors or as inducers of miRNA 

expression. Therefore, in order to manipulate miRNA functions two targeting mechanisms have been 

developed: the pharmacologically active and synthetic double-strand miRNA mimics that restore miRNA 

expression and the oligonucleotide inhibitors or antago-miRs (known as anti-miRNAs) [386, 387]. Some 

of miRNAs characteristics include their small size, the known and conserved nucleotide sequence and 

the fact that one miRNA targets several mRNAs of a signaling pathway resulting in gene expression 

changes of its downstream targets in several biological processes. By this way, miRNAs act either as 

therapeutic agents or as therapeutic targets [388]. During their covalent conjugation with their carrier 

the cargo is released in the target cell through hydrolysis or reduction. This delivery system is very stable 



 

 
 
 

and can protect the miRNA in the bloodstream. The greatest advantage of miRNA therapy is the high 

biological half-lives of miRNA mimics or anti-miRs inside the cells, providing their functions even when 

they are absent for the plasma [389, 390]. These advantages of miRNA applications led to the definition 

of a new class of drug targets and introduced miRNA therapy as the future challenge for clinical 

applications. Viral vehicles show higher efficiency to of incorporating miRNAs, since they have been 

designed to provide improved transfection efficiency miRNA-mimics or anti-miRNAs. However, they are 

characterized by increased cytotoxicity and immune response [391]. On the other hand, non-viral miRNA 

delivery systems are characterized by lower toxicity and immunogenicity, increased cellular uptake, 

water solubility, resistance to endonucleases, and phagocytosis [385, 387]. Several non-viral delivery 

strategies, including lipid-based, polymer-based and inorganic miRNA vesicles, have been designed and 

are widely used in targeting approaches [392]. 

Polymer-based delivery systems have been extensively utilized as miRNA carrier and are based on the 

conjugation of the miRNA phosphate groups with the amine groups of cationic polymers, therefore 

protecting nucleic acids from degradation. Synthetic polymeric carriers include poly(lactic-co-glycolic 

acid) (PLGA), cell-penetrating peptide (CPP), poly (amidoamine) (PAMAM), polyethylenimine (PEI) and 

chitosan as delivery vectors [392, 393]. Conjugation with hydrophilic polyethylene glycol (PEG) could 

increase the conjugation efficacy and improve the half-live of the vehicle in serum [394]. Targeted 

delivery of anti-miR-21 and anti-miR-10b PLGA-PEG polymer NPs reduced tumor growth in a breast 

cancer cell model in vivo [395]. Moreover, PLGA-based polyplexes, encapsulated miR-26a with improved 

efficiency, which significantly increased the bone-healing capacity in an osteoporosis model [396], 

implying the importance of this nanocarrier in tissue engineering applications. miR-146 PEI-NPs inhibited 

the expression of pro-fibrotic and inflammatory signaling molecules, thus attenuating renal fibrosis in 

vivo [397]. Moreover, HA-based PLGA/PEI miR-145 nanocarrier facilitates cellular uptake and enhance 

miR-145 expression in colon cancer cells that was followed by a reduction of tumor progression in vitro 

[398]. 

Synthetic cationic liposomes are lipid-based nucleic acid delivery vehicles, widely used as carriers due to 

the encapsulation and intracellular dissolution of the miRNA cargo with increased efficiency and  

reduced off-target effects. The anionic miRNAs conjugated with the cationic liposome generates a net 

charge that can easily penetrate the cell membrane via endocytosis, allowing the miRNA mimic or anti- 

miRNA to target several mRNAs and manipulate their expression, thus achieving efficient cellular uptake 

[399]. For instance, miR-126 that promotes angiogenesis in vitro, has been loaded to polyethylene 

glycol-modified  liposomes  forming  the  so  called  bubble  liposomes,  and  its  systemic  delivery  to an 



 

 
 
 

ischemic fibrosis model resulted in the induction of the angiogenic factor VEGF and the improvement of 

blood flow [400]. A broad set of cationic lipososome miRNA nanocarriers have been designed and are 

extensively utilized in clinical applications. These include Lipofectamine (Invitrogen), DharmaFECT 

(Dharmacon), RNAi-MAX (Invitrogen), SilentFECT (Bio-Rad) and SiPORT (Invitrogen). The significance of 

their use is that these liposome formulations are biodegradable, bio-compatible, they have increased 

affinity to the cell surface and are non-pathogenic and non-immunogenic. The miRNA is released in the 

cytoplasm following intracellular dissolution of the particle [401]. 

Inorganic systems for delivering miRNAs have been developed since they exert high stability in vivo, 

antimicrobial properties, biocompatibility and low levels of cytotoxicity. These include gold NPs (AuNPs), 

silica NPs and Fe3O4-based NPs. An interesting example of AuNPs in a tissue regeneration application is 

their conjugation with the negatively-charged miR-29b, which resulted in improved efficiency of miR- 

29b to enter the cytoplasm and regulate osteogenesis, in low doses [402]. Another approach involves 

the conjugation of a nucleic acid to the Fab fragments of a cell-specific antibody. Antibodies are 

attractive vehicles for targeted delivery of miRNAs in vivo, since they exert high affinity and binding 

specificity [403, 404]. Nonetheless, in order to design a safe and efficient miRNA nanocarrier some 

concerns must be considered [403]. The most important issue is the anatomy of the targeted organ, 

however, the therapeutic dose, the tissue microenvironment and the ECM composition of each cell type 

must be evaluated in order to improve the therapeutic potential of the mimic miRNA or the anti-miRNA. 

Several miRNA nanocarriers for targeted therapy of fibrotic diseases have reached clinical development 

[386, 405]. The first miRNA nanocarrier that entered phase I clinical trials was a miR-34 mimic 

conjugated to liposomes (MRX34) for the treatment of multiple solid tumors (NCT01829971). EDVTM 

nanocells constitutes a novel delivery system for malignant pleural mesothelioma and non-small cell 

lung cancer treatment, which includes the intravenously administered EGFR (Vectibix® Sequence)- 

Targeted EnGeneIC Dream Vectors Containing miR-16 mimic (NCT02766699). Regarding wound healing 

in diabetic patients, the role miR-200b and miR-21 mimics will be evaluated in clinical trials 

(NCT02581098). The role of anti-miR-122 in chronic hepatic fibrosis (hepatitis C) is currently evaluated in 

different phase II clinical trials (NCT01646489, NCT01200420, NCT01872936, NCT02031133, 

NCT02508090). Finally, the impact of GalNAc-conjugated antimiR-103/107 on patients with type 2 

diabetes and non-alcoholic fatty liver diseases is evaluated in ongoing clinical trials (NCT02612662, 

NCT02826525). 

The novel nanosystems for miRNA delivery and the subsequent ECM manipulation are a  major  

challenge for novel therapeutic approaches and they  may improve the design and development of  safe 



 

 
 
 

and efficient miRNA carriers, which will serve in the diagnosis and therapeutic strategies to attenuate 

the progression of various diseases, including wound healing. 

 

Concluding remarks 

ECM is a highly orchestrated, dynamic network of non-cellular macromolecules that provide tissues and 

organs with structural stability and functionality. Apart from its role as scaffold of cells, ECM  

components dynamically interact to maintain cellular phenotype, thus serving as critical modulators of 

basic functional properties, such as proliferation, migration, angiogenesis and differentiation. Wound 

healing is an essential process of the proper tissue functioning and it is consisted of four distinct phases 

including hemostatic, inflammatory, proliferative and tissue remodeling phase. Despite the fact that 

wound healing is a strictly structured process, its de-regulation may result in the development of chronic 

wounds often associated with other comorbidities, including diabetes and the development of fibrosis 

and hypertrophic scars. An abundance of evidence has shown that epigenetic modifications participate 

in the regulation of this complex and systematic response. miRNAs are implicated in all wound healing 

phases through their direct or indirect interactions with ECM components, therefore they could be 

considered as mediators of this response. In recent years, several attempts for targeting miRNAs have 

been conducted in order to systematically deliver miRNAs in specific cell types and tissues. miRNA 

delivery via viral vehicles, synthetic polymer carriers, synthetic cationic liposomes and inorganic 

nanocarriers has yielded promising results in preclinical disease models, and several clinical trials for 

miRNA delivery have been initiated. The development of these delivery concepts may further develop 

the established clinical applications for patient management as well as the diagnosis and treatment of 

several diseases. 

 
 

Acknowledgements 

This work was supported by the EU Horizon 2020 project RISE-2014, action No. 645756 “GLYCANC – 

Matrix glycans as multifunctional pathogenesis factors and therapeutic targets in cancer”. Z.P. was 

supported by the DAAD agency, grant No. 91607321. 

 

Declaration of interest 

The authors state no conflict of interest. 
 
 

References 



 

 
 
 

[1] C. Frantz, K.M. Stewart, V.M. Weaver, The extracellular matrix at a glance, J Cell Sci, 123 (2010) 4195- 
4200. 
[2] A.D. Theocharis, S.S. Skandalis, C. Gialeli, N.K. Karamanos, Extracellular matrix structure, Adv Drug 
Deliv Rev, 97 (2016) 4-27. 
[3] T. Rozario, D.W. DeSimone, The extracellular matrix in development and morphogenesis: a dynamic 
view, Developmental biology, 341 (2010) 126-140. 
[4] N.A. Afratis, D. Nikitovic, H.A. Multhaupt, A.D. Theocharis, J.R. Couchman, N.K. Karamanos, 
Syndecans - key regulators of cell signaling and biological functions, The FEBS journal, 284 (2017) 27-41. 
[5] R.V. Iozzo, L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of 
proteoglycans, Matrix Biol, 42 (2015) 11-55. 
[6] H.A. Multhaupt, B. Leitinger, D. Gullberg, J.R. Couchman, Extracellular matrix component signaling in 
cancer, Advanced drug delivery reviews, 97 (2016) 28-40. 
[7] P. Ringer, G. Colo, R. Fassler, C. Grashoff, Sensing the mechano-chemical properties of the 
extracellular matrix, Matrix biology : journal of the International Society for Matrix Biology, (2017). 
[8] C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease, 
Nature reviews. Molecular cell biology, 15 (2014) 786-801. 
[9] C. Gialeli, A.D. Theocharis, N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression 
and their pharmacological targeting, FEBS J, 278 (2011) 16-27. 
[10] R.D. Sanderson, M. Elkin, A.C. Rapraeger, N. Ilan, I. Vlodavsky, Heparanase regulation of cancer, 
autophagy and inflammation: new mechanisms and targets for therapy, The FEBS journal, 284 (2017) 
42-55. 
[11] A.D. Theocharis, C. Gialeli, P. Bouris, E. Giannopoulou, S.S. Skandalis, A.J. Aletras, R.V. Iozzo, N.K. 
Karamanos, Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological 
targeting in cancer, FEBS J, 281 (2014) 5023-5042. 
[12] S. Ricard-Blum, S.D. Vallet, Proteases decode the extracellular matrix cryptome, Biochimie, 122 
(2016) 300-313. 
[13] A. Wells, A. Nuschke, C.C. Yates, Skin tissue repair: Matrix microenvironmental influences, Matrix 
biology : journal of the International Society for Matrix Biology, 49 (2016) 25-36. 
[14] L. Guerra, T. Odorisio, G. Zambruno, D. Castiglia, Stromal microenvironment in type VII collagen- 
deficient skin: The ground for squamous cell carcinoma development, Matrix Biol, (2017). 
[15] S.E. Wilson, G.K. Marino, A.A.M. Torricelli, C.S. Medeiros, Injury and defective regeneration of the 
epithelial basement membrane in corneal fibrosis: A paradigm for fibrosis in other organs?, Matrix Biol, 
(2017). 
[16] I.G. Lunde, K.M. Herum, C.C. Carlson, G. Christensen, Syndecans in heart fibrosis, Cell Tissue Res, 
365 (2016) 539-552. 
[17] D. Chester, A.C. Brown, The role of biophysical properties of provisional matrix proteins in wound 
repair, Matrix biology : journal of the International Society for Matrix Biology, 60-61 (2017) 124-140. 
[18] A.D. Theocharis, S.S. Skandalis, T. Neill, H.A. Multhaupt, M. Hubo, H. Frey, S. Gopal, A. Gomes, N. 
Afratis, H.C. Lim, J.R. Couchman, J. Filmus, R.D. Sanderson, L. Schaefer, R.V. Iozzo, N.K. Karamanos, 
Insights into the key roles of proteoglycans in breast cancer biology and translational medicine, Biochim 
Biophys Acta, 1855 (2015) 276-300. 
[19] A.J. Zollinger, M.L. Smith, Fibronectin, the extracellular glue, Matrix biology : journal of the 
International Society for Matrix Biology, 60-61 (2017) 27-37. 
[20] K.L. Aya, R. Stern, Hyaluronan in wound healing: rediscovering a major player, Wound repair and 
regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair 
Society, 22 (2014) 579-593. 



 

 
 
 

[21] L. Wang, M. Fuster, P. Sriramarao, J.D. Esko, Endothelial heparan sulfate deficiency impairs L- 
selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses, Nature 
immunology, 6 (2005) 902-910. 
[22] F.D. Allen, C.F. Asnes, P. Chang, E.L. Elson, D.A. Lauffenburger, A. Wells, Epidermal growth factor 
induces acute matrix contraction and subsequent calpain-modulated relaxation, Wound repair and 
regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair 
Society, 10 (2002) 67-76. 
[23] K.N. Cowan, P.L. Jones, M. Rabinovitch, Elastase and matrix metalloproteinase inhibitors induce 
regression, and tenascin-C antisense prevents progression, of vascular disease, The Journal of clinical 
investigation, 105 (2000) 21-34. 
[24] D.Y. Li, B. Brooke, E.C. Davis, R.P. Mecham, L.K. Sorensen, B.B. Boak, E. Eichwald, M.T. Keating, 
Elastin is an essential determinant of arterial morphogenesis, Nature, 393 (1998) 276-280. 
[25] K.D. Smith, A. Wells, D.A. Lauffenburger, Multiple signaling pathways mediate compaction of 
collagen matrices by EGF-stimulated fibroblasts, Experimental cell research, 312 (2006) 1970-1982. 
[26] J.P. Andrews, J. Marttala, E. Macarak, J. Rosenbloom, J. Uitto, Keloids: The paradigm of skin fibrosis 
- Pathomechanisms and treatment, Matrix biology : journal of the International Society for Matrix 
Biology, 51 (2016) 37-46. 
[27] S. Ghatak, E.V. Maytin, J.A. Mack, V.C. Hascall, I. Atanelishvili, R. Moreno Rodriguez, R.R. Markwald, 
S. Misra, Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis, International 
journal of cell biology, 2015 (2015) 834893. 
[28] J.E. Murphy-Ullrich, E.H. Sage, Revisiting the matricellular concept, Matrix biology : journal of the 
International Society for Matrix Biology, 37 (2014) 1-14. 
[29] G. Schultz, D.S. Rotatori, W. Clark, EGF and TGF-alpha in wound healing and repair, Journal of 
cellular biochemistry, 45 (1991) 346-352. 
[30] M.A. Gubbiotti, S.D. Vallet, S. Ricard-Blum, R.V. Iozzo, Decorin interacting network: A 
comprehensive analysis of decorin-binding partners and their versatile functions, Matrix biology : 
journal of the International Society for Matrix Biology, 55 (2016) 7-21. 
[31] K.E. Kadler, A. Hill, E.G. Canty-Laird, Collagen fibrillogenesis: fibronectin, integrins, and minor 
collagens as organizers and nucleators, Current opinion in cell biology, 20 (2008) 495-501. 
[32] L.E. Tracy, R.A. Minasian, E.J. Caterson, Extracellular Matrix and Dermal Fibroblast Function in the 
Healing Wound, Advances in wound care, 5 (2016) 119-136. 
[33] B. Hinz, The role of myofibroblasts in wound healing, Current research in translational medicine, 64 
(2016) 171-177. 
[34] P.J. Wipff, D.B. Rifkin, J.J. Meister, B. Hinz, Myofibroblast contraction activates latent TGF-beta1 
from the extracellular matrix, The Journal of cell biology, 179 (2007) 1311-1323. 
[35] X. Huang, N. Yang, V.F. Fiore, T.H. Barker, Y. Sun, S.W. Morris, Q. Ding, V.J. Thannickal, Y. Zhou, 
Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction, 
American journal of respiratory cell and molecular biology, 47 (2012) 340-348. 
[36] D. Karamichos, R.A. Brown, V. Mudera, Collagen stiffness regulates cellular contraction and matrix 
remodeling gene expression, Journal of biomedical materials research. Part A, 83 (2007) 887-894. 
[37] J.L. Leight, M.A. Wozniak, S. Chen, M.L. Lynch, C.S. Chen, Matrix rigidity regulates a switch between 
TGF-beta1-induced apoptosis and epithelial-mesenchymal transition, Molecular biology of the cell, 23 
(2012) 781-791. 
[38] M. Prager-Khoutorsky, A. Lichtenstein, R. Krishnan, K. Rajendran, A. Mayo, Z. Kam, B. Geiger, A.D. 
Bershadsky, Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion 
mechanosensing, Nature cell biology, 13 (2011) 1457-1465. 



 

 
 
 

[39] X. Liu, H. Wu, M. Byrne, S. Krane, R. Jaenisch, Type III collagen is crucial for collagen I fibrillogenesis 
and for normal cardiovascular development, Proceedings of the National Academy of Sciences of the 
United States of America, 94 (1997) 1852-1856. 
[40] S.W. Volk, Y. Wang, E.A. Mauldin, K.W. Liechty, S.L. Adams, Diminished type III collagen promotes 
myofibroblast differentiation and increases scar deposition in cutaneous wound healing, Cells, tissues, 
organs, 194 (2011) 25-37. 
[41] H. Chanut-Delalande, C. Bonod-Bidaud, S. Cogne, M. Malbouyres, F. Ramirez, A. Fichard, F. 
Ruggiero, Development of a functional skin matrix requires deposition of collagen V heterotrimers, 
Molecular and cellular biology, 24 (2004) 6049-6057. 
[42] R.J. Wenstrup, J.B. Florer, E.W. Brunskill, S.M. Bell, I. Chervoneva, D.E. Birk, Type V collagen controls 
the initiation of collagen fibril assembly, The Journal of biological chemistry, 279 (2004) 53331-53337. 
[43] M. Ruhl, E. Sahin, M. Johannsen, R. Somasundaram, D. Manski, E.O. Riecken, D. Schuppan, Soluble 
collagen VI drives serum-starved fibroblasts through S phase and prevents apoptosis via down- 
regulation of Bax, The Journal of biological chemistry, 274 (1999) 34361-34368. 
[44] A. Nystrom, D. Velati, V.R. Mittapalli, A. Fritsch, J.S. Kern, L. Bruckner-Tuderman, Collagen VII plays a 
dual role in wound healing, The Journal of clinical investigation, 123 (2013) 3498-3509. 
[45] X. Wang, P. Ghasri, M. Amir, B. Hwang, Y. Hou, M. Khilili, A. Lin, D. Keene, J. Uitto, D.T. Woodley, M. 
Chen, Topical Application of Recombinant Type VII Collagen Incorporates Into the Dermal-Epidermal 
Junction and Promotes Wound Closure, Molecular therapy : the journal of the American Society of Gene 
Therapy, 21 (2013) 1335-1344. 
[46] C.Y. Chung, H.P. Erickson, Glycosaminoglycans modulate fibronectin matrix assembly and are 
essential for matrix incorporation of tenascin-C, Journal of cell science, 110 ( Pt 12) (1997) 1413-1419. 
[47] S.L. Dallas, P. Sivakumar, C.J. Jones, Q. Chen, D.M. Peters, D.F. Mosher, M.J. Humphries, C.M. Kielty, 
Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly 
of latent TGF beta-binding protein-1, The Journal of biological chemistry, 280 (2005) 18871-18880. 
[48] S. Godyna, D.M. Mann, W.S. Argraves, A quantitative analysis of the incorporation of fibulin-1 into 
extracellular matrix indicates that fibronectin assembly is required, Matrix biology : journal of the 
International Society for Matrix Biology, 14 (1995) 467-477. 
[49] J.A. McDonald, D.G. Kelley, T.J. Broekelmann, Role of fibronectin in collagen deposition: Fab' to the 
gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast 
extracellular matrix, The Journal of cell biology, 92 (1982) 485-492. 
[50] M. Pereira, B.J. Rybarczyk, T.M. Odrljin, D.C. Hocking, J. Sottile, P.J. Simpson-Haidaris, The 
incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin 
matrix, Journal of cell science, 115 (2002) 609-617. 
[51] L. Sabatier, D. Chen, C. Fagotto-Kaufmann, D. Hubmacher, M.D. McKee, D.S. Annis, D.F. Mosher, 
D.P. Reinhardt, Fibrillin assembly requires fibronectin, Molecular biology of the cell, 20 (2009) 846-858. 
[52] J. Sottile, D.C. Hocking, Fibronectin polymerization regulates the composition and stability of 
extracellular matrix fibrils and cell-matrix adhesions, Molecular biology of the cell, 13 (2002) 3546-3559. 
[53] T. Velling, J. Risteli, K. Wennerberg, D.F. Mosher, S. Johansson, Polymerization of type I and III 
collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1, The 
Journal of biological chemistry, 277 (2002) 37377-37381. 
[54] B. Fogelgren, N. Polgar, K.M. Szauter, Z. Ujfaludi, R. Laczko, K.S. Fong, K. Csiszar, Cellular fibronectin 
binds to lysyl oxidase with high affinity and is critical for its proteolytic activation, The Journal of 
biological chemistry, 280 (2005) 24690-24697. 
[55] G. Serini, M.L. Bochaton-Piallat, P. Ropraz, A. Geinoz, L. Borsi, L. Zardi, G. Gabbiani, The fibronectin 
domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1, 
The Journal of cell biology, 142 (1998) 873-881. 



 

 
 
 

[56] J.P. Andrews, J. Marttala, E. Macarak, J. Rosenbloom, J. Uitto, Keloid Pathogenesis: Potential Role of 
Cellular Fibronectin with the EDA Domain, The Journal of investigative dermatology, 135 (2015) 1921- 
1924. 
[57] M. Kohan, A.F. Muro, E.S. White, N. Berkman, EDA-containing cellular fibronectin induces fibroblast 
differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent 
signaling, FASEB journal : official publication of the Federation of American Societies for Experimental 
Biology, 24 (2010) 4503-4512. 
[58] A.V. Shinde, R. Kelsh, J.H. Peters, K. Sekiguchi, L. Van De Water, P.J. McKeown-Longo, The 
alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal 
fibroblasts, Matrix biology : journal of the International Society for Matrix Biology, 41 (2015) 26-35. 
[59] A.F. Muro, A.K. Chauhan, S. Gajovic, A. Iaconcig, F. Porro, G. Stanta, F.E. Baralle, Regulated splicing 
of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan, The Journal 
of cell biology, 162 (2003) 149-160. 
[60] S. Bhattacharyya, Z. Tamaki, W. Wang, M. Hinchcliff, P. Hoover, S. Getsios, E.S. White, J. Varga, 
FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling, Science 
translational medicine, 6 (2014) 232ra250. 
[61] R. Kelsh, R. You, C. Horzempa, M. Zheng, P.J. McKeown-Longo, Regulation of the innate immune 
response by fibronectin: synergism between the III-1 and EDA domains, PloS one, 9 (2014) e102974. 
[62] K.K. Sethi, I.V. Yannas, V. Mudera, M. Eastwood, C. McFarland, R.A. Brown, Evidence for sequential 
utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction, 
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European 
Tissue Repair Society, 10 (2002) 397-408. 
[63] C.D. Gildner, D.C. Roy, C.S. Farrar, D.C. Hocking, Opposing effects of collagen I and vitronectin on 
fibronectin fibril structure and function, Matrix biology : journal of the International Society for Matrix 
Biology, 34 (2014) 33-45. 
[64] F. Antonicelli, G. Bellon, S. Lorimier, W. Hornebeck, Role of the elastin receptor complex (S- 
Gal/Cath-A/Neu-1) in skin repair and regeneration, Wound repair and regeneration : official publication 
of the Wound Healing Society [and] the European Tissue Repair Society, 17 (2009) 631-638. 
[65] V. Iorio, L.D. Troughton, K.J. Hamill, Laminins: Roles and Utility in Wound Repair, Advances in 
wound care, 4 (2015) 250-263. 
[66] B.P. Nguyen, S.G. Gil, W.G. Carter, Deposition of laminin 5 by keratinocytes regulates integrin 
adhesion and signaling, The Journal of biological chemistry, 275 (2000) 31896-31907. 
[67] B.P. Nguyen, M.C. Ryan, S.G. Gil, W.G. Carter, Deposition of laminin 5 in epidermal wounds 
regulates integrin signaling and adhesion, Current opinion in cell biology, 12 (2000) 554-562. 
[68] M.C. Ryan, R. Tizard, D.R. VanDevanter, W.G. Carter, Cloning of the LamA3 gene encoding the alpha 
3 chain of the adhesive ligand epiligrin. Expression in wound repair, The Journal of biological chemistry, 
269 (1994) 22779-22787. 
[69] D. Kiritsi, C. Has, L. Bruckner-Tuderman, Laminin 332 in junctional epidermolysis bullosa, Cell 
adhesion & migration, 7 (2013) 135-141. 
[70] W.H. McLean, A.D. Irvine, K.J. Hamill, N.V. Whittock, C.M. Coleman-Campbell, J.E. Mellerio, G.S. 
Ashton, P.J. Dopping-Hepenstal, R.A. Eady, T. Jamil, R. Phillips, S.G. Shabbir, T.S. Haroon, K. Khurshid, J.E. 
Moore, B. Page, J. Darling, D.J. Atherton, M.A. Van Steensel, C.S. Munro, F.J. Smith, J.A. McGrath, An 
unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue 
disorder laryngo-onycho-cutaneous syndrome, Human molecular genetics, 12 (2003) 2395-2409. 
[71] A.V. Ljubimov, Z.S. Huang, G.H. Huang, R.E. Burgeson, D. Gullberg, J.H. Miner, Y. Ninomiya, Y. Sado, 
M.C. Kenney, Human corneal epithelial basement membrane and integrin alterations in diabetes and 
diabetic retinopathy, The journal of histochemistry and cytochemistry : official journal of the 
Histochemistry Society, 46 (1998) 1033-1041. 



 

 
 
 

[72] P.G. Greciano, J.V. Moyano, M.M. Buschmann, J. Tang, Y. Lu, J. Rudnicki, A. Manninen, K.S. Matlin, 
Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney 
epithelial cells, Molecular biology of the cell, 23 (2012) 121-136. 
[73] K.C. DeHahn, M. Gonzales, A.M. Gonzalez, S.B. Hopkinson, N.S. Chandel, J.K. Brunelle, J.C. Jones, 
The alpha4 laminin subunit regulates endothelial cell survival, Experimental cell research, 294 (2004) 
281-289. 
[74] A.M. Gonzalez, M. Gonzales, G.S. Herron, U. Nagavarapu, S.B. Hopkinson, D. Tsuruta, J.C. Jones, 
Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell 
behavior in vitro and angiogenesis in vivo, Proceedings of the National Academy of Sciences of the 
United States of America, 99 (2002) 16075-16080. 
[75] L.B. Alcaraz, J.Y. Exposito, N. Chuvin, R.M. Pommier, C. Cluzel, S. Martel, S. Sentis, L. Bartholin, C. 
Lethias, U. Valcourt, Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF- 
beta, The Journal of cell biology, 205 (2014) 409-428. 
[76] S. Schultz-Cherry, J.E. Murphy-Ullrich, Thrombospondin causes activation of latent transforming 
growth factor-beta secreted by endothelial cells by a novel mechanism, The Journal of cell biology, 122 
(1993) 923-932. 
[77] S. Belmadani, J. Bernal, C.C. Wei, M.A. Pallero, L. Dell'italia, J.E. Murphy-Ullrich, K.H. Berecek, A 
thrombospondin-1 antagonist of transforming growth factor-beta activation blocks cardiomyopathy in 
rats with diabetes and elevated angiotensin II, The American journal of pathology, 171 (2007) 777-789. 
[78] C. Daniel, K. Schaub, K. Amann, J. Lawler, C. Hugo, Thrombospondin-1 is an endogenous activator of 
TGF-beta in experimental diabetic nephropathy in vivo, Diabetes, 56 (2007) 2982-2989. 
[79] A. Lu, M. Miao, T.R. Schoeb, A. Agarwal, J.E. Murphy-Ullrich, Blockade of TSP1-dependent TGF-beta 
activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy, The American 
journal of pathology, 178 (2011) 2573-2586. 
[80] R.M. Mason, Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. 
What does it do? How does it do it?, Journal of cell communication and signaling, 3 (2009) 95-104. 
[81] C.M. Sorenson, S. Wang, R. Gendron, H. Paradis, N. Sheibani, Thrombospondin-1 Deficiency 
Exacerbates the Pathogenesis of Diabetic Retinopathy, Journal of diabetes & metabolism, Suppl 12 
(2013). 
[82] S. Taneda, J.W. Pippin, E.H. Sage, K.L. Hudkins, Y. Takeuchi, W.G. Couser, C.E. Alpers, Amelioration 
of diabetic nephropathy in SPARC-null mice, Journal of the American Society of Nephrology : JASN, 14 
(2003) 968-980. 
[83] S. Yoshida, K. Ishikawa, R. Asato, M. Arima, Y. Sassa, A. Yoshida, H. Yoshikawa, K. Narukawa, S. 
Obika, J. Ono, S. Ohta, K. Izuhara, T. Kono, T. Ishibashi, Increased expression of periostin in vitreous and 
fibrovascular membranes obtained from patients with proliferative diabetic retinopathy, Investigative 
ophthalmology & visual science, 52 (2011) 5670-5678. 
[84] Y. Lenga, A. Koh, A.S. Perera, C.A. McCulloch, J. Sodek, R. Zohar, Osteopontin expression is required 
for myofibroblast differentiation, Circulation research, 102 (2008) 319-327. 
[85] M. Wu, D.J. Schneider, M.D. Mayes, S. Assassi, F.C. Arnett, F.K. Tan, M.R. Blackburn, S.K. Agarwal, 
Osteopontin in systemic sclerosis and its role in dermal fibrosis, The Journal of investigative 
dermatology, 132 (2012) 1605-1614. 
[86] C. Hunter, J. Bond, P.C. Kuo, M.A. Selim, H. Levinson, The role of osteopontin and osteopontin 
aptamer (OPN-R3) in fibroblast activity, The Journal of surgical research, 176 (2012) 348-358. 
[87] R. Mori, T.J. Shaw, P. Martin, Molecular mechanisms linking wound inflammation and fibrosis: 
knockdown of osteopontin leads to rapid repair and reduced scarring, The Journal of experimental 
medicine, 205 (2008) 43-51. 



 

 
 
 

[88] A. Leask, Transcriptional profiling of the scleroderma fibroblast reveals a potential role for 
connective tissue growth factor (CTGF) in pathological fibrosis, The Keio journal of medicine, 53 (2004) 
74-77. 
[89] W. Xia, W. Kong, Z. Wang, T.T. Phan, I.J. Lim, M.T. Longaker, G.P. Yang, Increased CCN2 transcription 
in keloid fibroblasts requires cooperativity between AP-1 and SMAD binding sites, Annals of surgery, 246 
(2007) 886-895. 
[90] Y. Chen, D.J. Abraham, X. Shi-Wen, J.D. Pearson, C.M. Black, K.M. Lyons, A. Leask, CCN2 (connective 
tissue growth factor) promotes fibroblast adhesion to fibronectin, Molecular biology of the cell, 15 
(2004) 5635-5646. 
[91] J.F. Wang, M.E. Olson, D.K. Ball, D.R. Brigstock, D.A. Hart, Recombinant connective tissue growth 
factor modulates porcine skin fibroblast gene expression, Wound repair and regeneration : official 
publication of the Wound Healing Society [and] the European Tissue Repair Society, 11 (2003) 220-229. 
[92] J.I. Jun, L.F. Lau, CCN2 induces cellular senescence in fibroblasts, Journal of cell communication and 
signaling, 11 (2017) 15-23. 
[93] E. Kiwanuka, L. Andersson, E.J. Caterson, J.P. Junker, B. Gerdin, E. Eriksson, CCN2 promotes 
keratinocyte adhesion and migration via integrin alpha5beta1, Experimental cell research, 319 (2013) 
2938-2946. 
[94] T.J. Rentz, F. Poobalarahi, P. Bornstein, E.H. Sage, A.D. Bradshaw, SPARC regulates processing of 
procollagen I and collagen fibrillogenesis in dermal fibroblasts, The Journal of biological chemistry, 282 
(2007) 22062-22071. 
[95] J.C. Wang, S. Lai, X. Guo, X. Zhang, B. de Crombrugghe, S. Sonnylal, F.C. Arnett, X. Zhou, Attenuation 
of fibrosis in vitro and in vivo with SPARC siRNA, Arthritis research & therapy, 12 (2010) R60. 
[96] X. Zhou, F.K. Tan, X. Guo, F.C. Arnett, Attenuation of collagen production with small interfering RNA 
of SPARC in cultured fibroblasts from the skin of patients with scleroderma, Arthritis and rheumatism, 
54 (2006) 2626-2631. 
[97] J. Crawford, K. Nygard, B.S. Gan, D.B. O'Gorman, Periostin induces fibroblast proliferation and 
myofibroblast persistence in hypertrophic scarring, Experimental dermatology, 24 (2015) 120-126. 
[98] G. Orend, W. Huang, M.A. Olayioye, N.E. Hynes, R. Chiquet-Ehrismann, Tenascin-C blocks cell-cycle 
progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4, 
Oncogene, 22 (2003) 3917-3926. 
[99] A. Trebaul, E.K. Chan, K.S. Midwood, Regulation of fibroblast migration by tenascin-C, Biochemical 
Society transactions, 35 (2007) 695-697. 
[100] A. Dalkowski, D. Schuppan, C.E. Orfanos, C.C. Zouboulis, Increased expression of tenascin C by 
keloids in vivo and in vitro, The British journal of dermatology, 141 (1999) 50-56. 
[101] W. Filsell, S. Rudman, G. Jenkins, M.R. Green, Coordinate upregulation of tenascin C expression 
with degree of photodamage in human skin, The British journal of dermatology, 140 (1999) 592-599. 
[102] N. Afratis, C. Gialeli, D. Nikitovic, T. Tsegenidis, E. Karousou, A.D. Theocharis, M.S. Pavao, G.N. 
Tzanakakis, N.K. Karamanos, Glycosaminoglycans: key players in cancer cell biology and treatment, FEBS 
J, 279 (2012) 1177-1197. 
[103] A.D. Theocharis, S.S. Skandalis, G.N. Tzanakakis, N.K. Karamanos, Proteoglycans in health and 
disease: novel roles for proteoglycans in malignancy and their pharmacological targeting, FEBS J, 277 
(2010) 3904-3923. 
[104] A.D. Theocharis, Versican in health and disease, Connective tissue research, 49 (2008) 230-234. 
[105] P.G. Scott, C.M. Dodd, E.E. Tredget, A. Ghahary, F. Rahemtulla, Immunohistochemical localization 
of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post- 
burn hypertrophic and mature scars, Histopathology, 26 (1995) 423-431. 



 

 
 
 

[106] J. Wang, C. Dodd, H.A. Shankowsky, P.G. Scott, E.E. Tredget, G. Wound Healing Research, Deep 
dermal fibroblasts contribute to hypertrophic scarring, Laboratory investigation; a journal of technical 
methods and pathology, 88 (2008) 1278-1290. 
[107] M. Feng, G. Yang, J. Wu, Versican targeting by RNA interference suppresses aggregative growth of 
dermal papilla cells, Clinical and experimental dermatology, 36 (2011) 77-84. 
[108] W. Yang, A.J. Yee, Versican 3'-untranslated region (3'UTR) promotes dermal wound repair and 
fibroblast migration by regulating miRNA activity, Biochimica et biophysica acta, 1843 (2014) 1373-1385. 
[109] D. Honardoust, A. Eslami, H. Larjava, L. Hakkinen, Localization of small leucine-rich proteoglycans 
and transforming growth factor-beta in human oral mucosal wound healing, Wound repair and 
regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair 
Society, 16 (2008) 814-823. 
[110] D. Honardoust, M. Varkey, K. Hori, J. Ding, H.A. Shankowsky, E.E. Tredget, Small leucine-rich 
proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar, Wound repair and 
regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair 
Society, 19 (2011) 368-378. 
[111] K. Sayani, C.M. Dodd, B. Nedelec, Y.J. Shen, A. Ghahary, E.E. Tredget, P.G. Scott, Delayed 
appearance of decorin in healing burn scars, Histopathology, 36 (2000) 262-272. 
[112] H. Jarvelainen, P. Puolakkainen, S. Pakkanen, E.L. Brown, M. Hook, R.V. Iozzo, E.H. Sage, T.N. 
Wight, A role for decorin in cutaneous wound healing and angiogenesis, Wound repair and regeneration 
: official publication of the Wound Healing Society [and] the European Tissue Repair Society, 14 (2006) 
443-452. 
[113] Z. Ferdous, S.B. Peterson, H. Tseng, D.K. Anderson, R.V. Iozzo, K.J. Grande-Allen, A role for decorin 
in controlling proliferation, adhesion, and migration of murine embryonic fibroblasts, Journal of 
biomedical materials research. Part A, 93 (2010) 419-428. 
[114] A.A. Dunkman, M.R. Buckley, M.J. Mienaltowski, S.M. Adams, S.J. Thomas, A. Kumar, D.P. Beason, 
R.V. Iozzo, D.E. Birk, L.J. Soslowsky, The injury response of aged tendons in the absence of biglycan and 
decorin, Matrix biology : journal of the International Society for Matrix Biology, 35 (2014) 232-238. 
[115] J. Meenakshi, S. Vidyameenakshi, D. Ananthram, K.M. Ramakrishnan, V. Jayaraman, M. Babu, Low 
decorin expression along with inherent activation of ERK1,2 in ear lobe keloids, Burns : journal of the 
International Society for Burn Injuries, 35 (2009) 519-526. 
[116] X.J. Liu, F.Z. Kong, Y.H. Wang, J.H. Zheng, W.D. Wan, C.L. Deng, G.Y. Mao, J. Li, X.M. Yang, Y.L. 
Zhang, X.L. Zhang, S.L. Yang, Z.G. Zhang, Lumican Accelerates Wound Healing by Enhancing alpha2beta1 
Integrin-Mediated Fibroblast Contractility, PloS one, 8 (2013) e67124. 
[117] N. Vij, L. Roberts, S. Joyce, S. Chakravarti, Lumican suppresses cell proliferation and aids Fas-Fas 
ligand mediated apoptosis: implications in the cornea, Experimental eye research, 78 (2004) 957-971. 
[118] J.T. Yeh, L.K. Yeh, S.M. Jung, T.J. Chang, H.H. Wu, T.F. Shiu, C.Y. Liu, W.W. Kao, P.H. Chu, Impaired 
skin wound healing in lumican-null mice, The British journal of dermatology, 163 (2010) 1174-1180. 
[119] J. Frikeche, G. Maiti, S. Chakravarti, Small leucine-rich repeat proteoglycans in corneal 
inflammation and wound healing, Experimental eye research, 151 (2016) 142-149. 
[120] L. Schaefer, C. Tredup, M.A. Gubbiotti, R.V. Iozzo, Proteoglycan neofunctions: regulation of 
inflammation and autophagy in cancer biology, FEBS J, 284 (2017) 10-26. 
[121] H. Chung, H.A. Multhaupt, E.S. Oh, J.R. Couchman, Minireview: Syndecans and their crucial roles 
during tissue regeneration, FEBS letters, 590 (2016) 2408-2417. 
[122] Z. Piperigkou, B. Mohr, N. Karamanos, M. Gotte, Shed proteoglycans in tumor stroma, Cell Tissue 
Res, (2016). 
[123] R. Gallo, C. Kim, R. Kokenyesi, N.S. Adzick, M. Bernfield, Syndecans-1 and -4 are induced during 
wound repair of neonatal but not fetal skin, The Journal of investigative dermatology, 107 (1996) 676- 
683. 



 

 
 
 

[124] M.A. Stepp, H.E. Gibson, P.H. Gala, D.D. Iglesia, A. Pajoohesh-Ganji, S. Pal-Ghosh, M. Brown, C. 
Aquino, A.M. Schwartz, O. Goldberger, M.T. Hinkes, M. Bernfield, Defects in keratinocyte activation 
during wound healing in the syndecan-1-deficient mouse, J Cell Sci, 115 (2002) 4517-4531. 
[125] M.A. Stepp, Y. Liu, S. Pal-Ghosh, R.A. Jurjus, G. Tadvalkar, A. Sekaran, K. Losicco, L. Jiang, M. Larsen, 
L. Li, S.H. Yuspa, Reduced migration, altered matrix and enhanced TGFbeta1 signaling are signatures of 
mouse keratinocytes lacking Sdc1, Journal of cell science, 120 (2007) 2851-2863. 
[126] V. Elenius, M. Gotte, O. Reizes, K. Elenius, M. Bernfield, Inhibition by the soluble syndecan-1 
ectodomains delays wound repair in mice overexpressing syndecan-1, The Journal of biological 
chemistry, 279 (2004) 41928-41935. 
[127] F. Echtermeyer, M. Streit, S. Wilcox-Adelman, S. Saoncella, F. Denhez, M. Detmar, P. Goetinck, 
Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4, The Journal of clinical 
investigation, 107 (2001) R9-R14. 
[128] S. Gopal, H.A.B. Multhaupt, R. Pocock, J.R. Couchman, Cell-extracellular matrix and cell-cell 
adhesion are linked by syndecan-4, Matrix biology : journal of the International Society for Matrix 
Biology, 60-61 (2017) 57-69. 
[129] K.S. Midwood, L.V. Valenick, H.C. Hsia, J.E. Schwarzbauer, Coregulation of fibronectin signaling and 
matrix contraction by tenascin-C and syndecan-4, Molecular biology of the cell, 15 (2004) 5670-5677. 
[130] Z. Wang, R.J. Collighan, S.R. Gross, E.H. Danen, G. Orend, D. Telci, M. Griffin, RGD-independent cell 
adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and 
requires syndecan-4/2 alpha5beta1 integrin co-signaling, The Journal of biological chemistry, 285 (2010) 
40212-40229. 
[131] D.M. Beauvais, B.J. Ell, A.R. McWhorter, A.C. Rapraeger, Syndecan-1 regulates alphavbeta3 and 
alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide 
inhibitor, The Journal of experimental medicine, 206 (2009) 691-705. 
[132] S. Chaterji, C.H. Lam, D.S. Ho, D.C. Proske, A.B. Baker, Syndecan-1 regulates vascular smooth 
muscle cell phenotype, PloS one, 9 (2014) e89824. 
[133] Y. Matsui, M. Ikesue, K. Danzaki, J. Morimoto, M. Sato, S. Tanaka, T. Kojima, H. Tsutsui, T. Uede, 
Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction, Circulation research, 
108 (2011) 1328-1339. 
[134] D. Vanhoutte, M.W. Schellings, M. Gotte, M. Swinnen, V. Herias, M.K. Wild, D. Vestweber, E. 
Chorianopoulos, V. Cortes, A. Rigotti, M.A. Stepp, F. Van de Werf, P. Carmeliet, Y.M. Pinto, S. Heymans, 
Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial 
infarction, Circulation, 115 (2007) 475-482. 
[135] M.W. Schellings, D. Vanhoutte, G.C. van Almen, M. Swinnen, J.J. Leenders, N. Kubben, R.E. van 
Leeuwen, L. Hofstra, S. Heymans, Y.M. Pinto, Syndecan-1 amplifies angiotensin II-induced cardiac 
fibrosis, Hypertension, 55 (2010) 249-256. 
[136] K.M. Herum, I.G. Lunde, B. Skrbic, G. Florholmen, D. Behmen, I. Sjaastad, C.R. Carlson, M.F. Gomez, 
G. Christensen, Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac 
myofibroblast differentiation in response to mechanical stress, Journal of molecular and cellular 
cardiology, 54 (2013) 73-81. 
[137] S. Gopal, P. Sogaard, H.A. Multhaupt, C. Pataki, E. Okina, X. Xian, M.E. Pedersen, T. Stevens, O. 
Griesbeck, P.W. Park, R. Pocock, J.R. Couchman, Transmembrane proteoglycans control stretch- 
activated channels to set cytosolic calcium levels, The Journal of cell biology, 210 (2015) 1199-1211. 
[138] M.E. Strand, J.M. Aronsen, B. Braathen, I. Sjaastad, H. Kvaloy, T. Tonnessen, G. Christensen, I.G. 
Lunde, Shedding of syndecan-4 promotes immune cell recruitment and mitigates cardiac dysfunction 
after lipopolysaccharide challenge in mice, Journal of molecular and cellular cardiology, 88 (2015) 133- 
144. 



 

 
 
 

[139] A. Korpetinou, S.S. Skandalis, V.T. Labropoulou, G. Smirlaki, A. Noulas, N.K. Karamanos, A.D. 
Theocharis, Serglycin: at the crossroad of inflammation and malignancy, Front Oncol, 3 (2014) 327. 
[140] D.S. Woulfe, J.K. Lilliendahl, S. August, L. Rauova, M.A. Kowalska, M. Abrink, G. Pejler, J.G. White, 
B.P. Schick, Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus 
formation in mice, Blood, 111 (2008) 3458-3467. 
[141] A. Skliris, K.E. Happonen, E. Terpos, V. Labropoulou, M. Borset, D. Heinegard, A.M. Blom, A.D. 
Theocharis, Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan 
chains: implications for multiple myeloma, European journal of immunology, 41 (2011) 437-449. 
[142] A. Skliris, V.T. Labropoulou, D.J. Papachristou, A. Aletras, N.K. Karamanos, A.D. Theocharis, Cell- 
surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of 
matrix metalloproteinases, The FEBS journal, 280 (2013) 2342-2352. 
[143] T.M. Reine, T.T. Vuong, A. Rutkovskiy, A.J. Meen, J. Vaage, T.G. Jenssen, S.O. Kolset, Serglycin in 
Quiescent and Proliferating Primary Endothelial Cells, PLoS One, 10 (2015) e0145584. 
[144] A.J. Meen, I. Oynebraten, T.M. Reine, A. Duelli, K. Svennevig, G. Pejler, T. Jenssen, S.O. Kolset, 
Serglycin is a major proteoglycan in polarized human endothelial cells and is implicated in the secretion 
of the chemokine GROalpha/CXCL1, The Journal of biological chemistry, 286 (2011) 2636-2647. 
[145] S.S. Skandalis, C. Gialeli, A.D. Theocharis, N.K. Karamanos, Advances and advantages of 
nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer, 
Advances in cancer research, 123 (2014) 277-317. 
[146] S. Meran, D. Thomas, P. Stephens, J. Martin, T. Bowen, A. Phillips, R. Steadman, Involvement of 
hyaluronan in regulation of fibroblast phenotype, The Journal of biological chemistry, 282 (2007) 25687- 
25697. 
[147] R.L. DePalma, T.M. Krummel, L.A. Durham, 3rd, B.A. Michna, B.L. Thomas, J.M. Nelson, R.F. 
Diegelmann, Characterization and quantitation of wound matrix in the fetal rabbit, Matrix, 9 (1989) 224- 
231. 
[148] E. Nyman, F. Huss, T. Nyman, J. Junker, G. Kratz, Hyaluronic acid, an important factor in the wound 
healing properties of amniotic fluid: in vitro studies of re-epithelialisation in human skin wounds, Journal 
of plastic surgery and hand surgery, 47 (2013) 89-92. 
[149] M. David-Raoudi, F. Tranchepain, B. Deschrevel, J.C. Vincent, P. Bogdanowicz, K. Boumediene, J.P. 
Pujol, Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing, 
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European 
Tissue Repair Society, 16 (2008) 274-287. 
[150] C. Tolg, S.R. Hamilton, E. Zalinska, L. McCulloch, R. Amin, N. Akentieva, F. Winnik, R. Savani, D.J. 
Bagli, L.G. Luyt, M.K. Cowman, J.B. McCarthy, E.A. Turley, A RHAMM mimetic peptide blocks hyaluronan 
signaling and reduces inflammation and fibrogenesis in excisional skin wounds, The American journal of 
pathology, 181 (2012) 1250-1270. 
[151] G.M. Campo, A. Avenoso, S. Campo, A. D'Ascola, G. Nastasi, A. Calatroni, Molecular size 
hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse 
chondrocytes, Biochimie, 92 (2010) 204-215. 
[152] D. Jiang, J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, G.D. Prestwich, M.M. Mascarenhas, H.G. Garg, D.A. 
Quinn, R.J. Homer, D.R. Goldstein, R. Bucala, P.J. Lee, R. Medzhitov, P.W. Noble, Regulation of lung injury 
and repair by Toll-like receptors and hyaluronan, Nature medicine, 11 (2005) 1173-1179. 
[153] E. Pure, C.A. Cuff, A crucial role for CD44 in inflammation, Trends in molecular medicine, 7 (2001) 
213-221. 
[154] J. Webber, R.H. Jenkins, S. Meran, A. Phillips, R. Steadman, Modulation of TGFbeta1-dependent 
myofibroblast differentiation by hyaluronan, The American journal of pathology, 175 (2009) 148-160. 



 

 
 
 

[155] J. Webber, S. Meran, R. Steadman, A. Phillips, Hyaluronan orchestrates transforming growth 
factor-beta1-dependent maintenance of myofibroblast phenotype, The Journal of biological chemistry, 
284 (2009) 9083-9092. 
[156] S. Meran, D.W. Thomas, P. Stephens, S. Enoch, J. Martin, R. Steadman, A.O. Phillips, Hyaluronan 
facilitates transforming growth factor-beta1-mediated fibroblast proliferation, The Journal of biological 
chemistry, 283 (2008) 6530-6545. 
[157] S. Meran, D.D. Luo, R. Simpson, J. Martin, A. Wells, R. Steadman, A.O. Phillips, Hyaluronan 
facilitates transforming growth factor-beta1-dependent proliferation via CD44 and epidermal growth 
factor receptor interaction, The Journal of biological chemistry, 286 (2011) 17618-17630. 
[158] A.C. Midgley, M. Rogers, M.B. Hallett, A. Clayton, T. Bowen, A.O. Phillips, R. Steadman, 
Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is 
mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co- 
localization in lipid rafts, The Journal of biological chemistry, 288 (2013) 14824-14838. 
[159] Y. Li, D. Jiang, J. Liang, E.B. Meltzer, A. Gray, R. Miura, L. Wogensen, Y. Yamaguchi, P.W. Noble, 
Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44, The 
Journal of experimental medicine, 208 (2011) 1459-1471. 
[160] H. Porsch, B. Bernert, M. Mehic, A.D. Theocharis, C.H. Heldin, P. Heldin, Efficient TGFbeta-induced 
epithelial-mesenchymal transition depends on hyaluronan synthase HAS2, Oncogene, 32 (2013) 4355- 
4365. 
[161] M.G. Rohani, W.C. Parks, Matrix remodeling by MMPs during wound repair, Matrix biology : 
journal of the International Society for Matrix Biology, 44-46 (2015) 113-121. 
[162] C.M. Dang, S.R. Beanes, H. Lee, X. Zhang, C. Soo, K. Ting, Scarless fetal wounds are associated with 
an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio, Plastic and 
reconstructive surgery, 111 (2003) 2273-2285. 
[163] J.D. Raffetto, Dermal pathology, cellular biology, and inflammation in chronic venous disease, 
Thrombosis research, 123 Suppl 4 (2009) S66-71. 
[164] P. Yang, Q. Pei, T. Yu, Q. Chang, D. Wang, M. Gao, X. Zhang, Y. Liu, Compromised Wound Healing in 
Ischemic Type 2 Diabetic Rats, PloS one, 11 (2016) e0152068. 
[165] L. Zhang, F. Zhou, A. Garcia de Vinuesa, E.M. de Kruijf, W.E. Mesker, L. Hui, Y. Drabsch, Y. Li, A. 
Bauer, A. Rousseau, K.A. Sheppard, C. Mickanin, P.J. Kuppen, C.X. Lu, P. Ten Dijke, TRAF4 promotes TGF- 
beta receptor signaling and drives breast cancer metastasis, Molecular cell, 51 (2013) 559-572. 
[166] C. Dayer, I. Stamenkovic, Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast 
Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-beta (TGF-beta) 
Activation and Fibroblast Differentiation, The Journal of biological chemistry, 290 (2015) 13763-13778. 
[167] T. Kobayashi, H. Kim, X. Liu, H. Sugiura, T. Kohyama, Q. Fang, F.Q. Wen, S. Abe, X. Wang, J.J. 
Atkinson, J.M. Shipley, R.M. Senior, S.I. Rennard, Matrix metalloproteinase-9 activates TGF-beta and 
stimulates fibroblast contraction of collagen gels, American journal of physiology. Lung cellular and 
molecular physiology, 306 (2014) L1006-1015. 
[168] H. Eto, H. Suga, N. Aoi, H. Kato, K. Doi, S. Kuno, Y. Tabata, K. Yoshimura, Therapeutic potential of 
fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression, 
Laboratory investigation; a journal of technical methods and pathology, 92 (2012) 214-223. 
[169] R.F. Foronjy, J. Sun, V. Lemaitre, J.M. D'Armiento, Transgenic expression of matrix 
metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure 
overload mouse model, Hypertension research : official journal of the Japanese Society of Hypertension, 
31 (2008) 725-735. 
[170] J.L. Kaar, Y. Li, H.C. Blair, G. Asche, R.R. Koepsel, J. Huard, A.J. Russell, Matrix metalloproteinase-1 
treatment of muscle fibrosis, Acta biomaterialia, 4 (2008) 1411-1420. 



 

 
 
 

[171] Y. Li, R.T. Kilani, E. Rahmani-Neishaboor, R.B. Jalili, A. Ghahary, Kynurenine increases matrix 
metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo, The 
Journal of investigative dermatology, 134 (2014) 643-650. 
[172] A. Gutierrez-Fernandez, M. Inada, M. Balbin, A. Fueyo, A.S. Pitiot, A. Astudillo, K. Hirose, M. Hirata, 
S.D. Shapiro, A. Noel, Z. Werb, S.M. Krane, C. Lopez-Otin, X.S. Puente, Increased inflammation delays 
wound healing in mice deficient in collagenase-2 (MMP-8), FASEB journal : official publication of the 
Federation of American Societies for Experimental Biology, 21 (2007) 2580-2591. 
[173] T.R. Kyriakides, D. Wulsin, E.A. Skokos, P. Fleckman, A. Pirrone, J.M. Shipley, R.M. Senior, P. 
Bornstein, Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with 
delayed reepithelization and disordered collagen fibrillogenesis, Matrix biology : journal of the 
International Society for Matrix Biology, 28 (2009) 65-73. 
[174] J.A. Dumin, S.K. Dickeson, T.P. Stricker, M. Bhattacharyya-Pakrasi, J.D. Roby, S.A. Santoro, W.C. 
Parks, Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2)beta(1) integrin upon release 
from keratinocytes migrating on type I collagen, The Journal of biological chemistry, 276 (2001) 29368- 
29374. 
[175] B.K. Pilcher, J.A. Dumin, B.D. Sudbeck, S.M. Krane, H.G. Welgus, W.C. Parks, The activity of 
collagenase-1 is required for keratinocyte migration on a type I collagen matrix, The Journal of cell 
biology, 137 (1997) 1445-1457. 
[176] U.K. Saarialho-Kere, S.O. Kovacs, A.P. Pentland, J.E. Olerud, H.G. Welgus, W.C. Parks, Cell-matrix 
interactions modulate interstitial collagenase expression by human keratinocytes actively involved in 
wound healing, The Journal of clinical investigation, 92 (1993) 2858-2866. 
[177] W.A. Altemeier, S.Y. Schlesinger, C.A. Buell, R. Brauer, A.C. Rapraeger, W.C. Parks, P. Chen, 
Transmembrane and extracellular domains of syndecan-1 have distinct functions in regulating lung 
epithelial migration and adhesion, The Journal of biological chemistry, 287 (2012) 34927-34935. 
[178] W.A. Altemeier, S.Y. Schlesinger, C.A. Buell, W.C. Parks, P. Chen, Syndecan-1 controls cell migration 
by activating Rap1 to regulate focal adhesion disassembly, Journal of cell science, 125 (2012) 5188-5195. 
[179] K. Shinjo, Y. Kondo, Targeting cancer epigenetics: Linking basic biology to clinical medicine, Adv 
Drug Deliv Rev, 95 (2015) 56-64. 
[180] M. Zeybel, D.A. Mann, J. Mann, Epigenetic modifications as new targets for liver disease therapies, 
Journal of hepatology, 59 (2013) 1349-1353. 
[181] C.J. Lewis, A.N. Mardaryev, A.A. Sharov, M.Y. Fessing, V.A. Botchkarev, The Epigenetic Regulation 
of Wound Healing, Advances in wound care, 3 (2014) 468-475. 
[182] J. Mann, D.A. Mann, Epigenetic regulation of wound healing and fibrosis, Current opinion in 
rheumatology, 25 (2013) 101-107. 
[183] A.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications, Cell research, 21 
(2011) 381-395. 
[184] T. Kouzarides, Chromatin modifications and their function, Cell, 128 (2007) 693-705. 
[185] C. Bergmann, J.H. Distler, Epigenetic factors as drivers of fibrosis in systemic sclerosis, 
Epigenomics, 9 (2017) 463-477. 
[186] E. Moran-Salvador, J. Mann, Epigenetics and Liver Fibrosis, Cellular and molecular 
gastroenterology and hepatology, 4 (2017) 125-134. 
[187] T. Shaw, P. Martin, Epigenetic reprogramming during wound healing: loss of polycomb-mediated 
silencing may enable upregulation of repair genes, EMBO reports, 10 (2009) 881-886. 
[188] B. Peng, Y. Chen, K.W. Leong, MicroRNA delivery for regenerative medicine, Adv Drug Deliv Rev, 88 
(2015) 108-122. 
[189] D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116 (2004) 281-297. 
[190] T.R. Leonardo, H.L. Schultheisz, J.F. Loring, L.C. Laurent, The functions of microRNAs in 
pluripotency and reprogramming, Nat Cell Biol, 14 (2012) 1114-1121. 



 

 
 
 

[191] A. Rodriguez, E. Vigorito, S. Clare, M.V. Warren, P. Couttet, D.R. Soond, S. van Dongen, R.J. 
Grocock, P.P. Das, E.A. Miska, D. Vetrie, K. Okkenhaug, A.J. Enright, G. Dougan, M. Turner, A. Bradley, 
Requirement of bic/microRNA-155 for normal immune function, Science, 316 (2007) 608-611. 
[192] R. Yi, Y. Qin, I.G. Macara, B.R. Cullen, Exportin-5 mediates the nuclear export of pre-microRNAs 
and short hairpin RNAs, Genes & development, 17 (2003) 3011-3016. 
[193] E. Lund, S. Guttinger, A. Calado, J.E. Dahlberg, U. Kutay, Nuclear export of microRNA precursors, 
Science, 303 (2004) 95-98. 
[194] H. Guo, N.T. Ingolia, J.S. Weissman, D.P. Bartel, Mammalian microRNAs predominantly act to 
decrease target mRNA levels, Nature, 466 (2010) 835-840. 
[195] V.K. Velu, R. Ramesh, A.R. Srinivasan, Circulating MicroRNAs as Biomarkers in Health and Disease, 
Journal of clinical and diagnostic research : JCDR, 6 (2012) 1791-1795. 
[196] J. Winter, S. Jung, S. Keller, R.I. Gregory, S. Diederichs, Many roads to maturity: microRNA 
biogenesis pathways and their regulation, Nat Cell Biol, 11 (2009) 228-234. 
[197] D. Baek, J. Villen, C. Shin, F.D. Camargo, S.P. Gygi, D.P. Bartel, The impact of microRNAs on protein 
output, Nature, 455 (2008) 64-71. 
[198] I. Pastar, A.A. Khan, O. Stojadinovic, E.A. Lebrun, M.C. Medina, H. Brem, R.S. Kirsner, J.J. Jimenez, 
C. Leslie, M. Tomic-Canic, Induction of specific microRNAs inhibits cutaneous wound healing, The Journal 
of biological chemistry, 287 (2012) 29324-29335. 
[199] G. Liu, A. Friggeri, Y. Yang, J. Milosevic, Q. Ding, V.J. Thannickal, N. Kaminski, E. Abraham, miR-21 
mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis, The Journal of experimental 
medicine, 207 (2010) 1589-1597. 
[200] J. Ghose, M. Sinha, E. Das, N.R. Jana, N.P. Bhattacharyya, Regulation of miR-146a by RelA/NFkB 
and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease, PLoS One, 6 (2011) 
e23837. 
[201] J.H. Paik, J.Y. Jang, Y.K. Jeon, W.Y. Kim, T.M. Kim, D.S. Heo, C.W. Kim, MicroRNA-146a 
downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong 
prognostic implications in NK/T cell lymphoma, Clin Cancer Res, 17 (2011) 4761-4771. 
[202] H.M. Larner-Svensson, A.E. Williams, E. Tsitsiou, M.M. Perry, X. Jiang, K.F. Chung, M.A. Lindsay, 
Pharmacological studies of the mechanism and function of interleukin-1beta-induced miRNA-146a 
expression in primary human airway smooth muscle, Respiratory research, 11 (2010) 68. 
[203] X. Luo, M. Han, J. Liu, Y. Wang, X. Luo, J. Zheng, S. Wang, Z. Liu, D. Liu, P.C. Yang, H. Li, Epithelial 
cell-derived micro RNA-146a generates interleukin-10-producing monocytes to inhibit nasal allergy, 
Scientific reports, 5 (2015) 15937. 
[204] S. Su, Q. Zhao, C. He, D. Huang, J. Liu, F. Chen, J. Chen, J.Y. Liao, X. Cui, Y. Zeng, H. Yao, F. Su, Q. Liu, 
S. Jiang, E. Song, miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic 
macrophage program, Nature communications, 6 (2015) 8523. 
[205] L. Cushing, P. Kuang, J. Lu, The role of miR-29 in pulmonary fibrosis, Biochemistry and cell biology = 
Biochimie et biologie cellulaire, 93 (2015) 109-118. 
[206] B. Wang, R. Komers, R. Carew, C.E. Winbanks, B. Xu, M. Herman-Edelstein, P. Koh, M. Thomas, K. 
Jandeleit-Dahm, P. Gregorevic, M.E. Cooper, P. Kantharidis, Suppression of microRNA-29 expression by 
TGF-beta1 promotes collagen expression and renal fibrosis, Journal of the American Society of 
Nephrology : JASN, 23 (2012) 252-265. 
[207] R.L. Montgomery, G. Yu, P.A. Latimer, C. Stack, K. Robinson, C.M. Dalby, N. Kaminski, E. van Rooij, 
MicroRNA mimicry blocks pulmonary fibrosis, EMBO molecular medicine, 6 (2014) 1347-1356. 
[208] Y. Matsumoto, S. Itami, M. Kuroda, K. Yoshizato, N. Kawada, Y. Murakami, MiR-29a Assists in 
Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice, 
Molecular therapy : the journal of the American Society of Gene Therapy, 24 (2016) 1848-1859. 



 

 
 
 

[209] C. Roderburg, G.W. Urban, K. Bettermann, M. Vucur, H. Zimmermann, S. Schmidt, J. Janssen, C. 
Koppe, P. Knolle, M. Castoldi, F. Tacke, C. Trautwein, T. Luedde, Micro-RNA profiling reveals a role for 
miR-29 in human and murine liver fibrosis, Hepatology, 53 (2011) 209-218. 
[210] Y. Zhang, L. Wu, Y. Wang, M. Zhang, L. Li, D. Zhu, X. Li, H. Gu, C.Y. Zhang, K. Zen, Protective role of 
estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury, The Journal 
of biological chemistry, 287 (2012) 14851-14862. 
[211] T. Bertero, C. Gastaldi, I. Bourget-Ponzio, V. Imbert, A. Loubat, E. Selva, R. Busca, B. Mari, P. 
Hofman, P. Barbry, G. Meneguzzi, G. Ponzio, R. Rezzonico, miR-483-3p controls proliferation in wounded 
epithelial cells, FASEB journal : official publication of the Federation of American Societies for 
Experimental Biology, 25 (2011) 3092-3105. 
[212] G. Viticchie, A.M. Lena, F. Cianfarani, T. Odorisio, M. Annicchiarico-Petruzzelli, G. Melino, E. Candi, 
MicroRNA-203 contributes to skin re-epithelialization, Cell death & disease, 3 (2012) e435. 
[213] K.V. Pandit, D. Corcoran, H. Yousef, M. Yarlagadda, A. Tzouvelekis, K.F. Gibson, K. Konishi, S.A. 
Yousem, M. Singh, D. Handley, T. Richards, M. Selman, S.C. Watkins, A. Pardo, A. Ben-Yehudah, D. 
Bouros, O. Eickelberg, P. Ray, P.V. Benos, N. Kaminski, Inhibition and role of let-7d in idiopathic 
pulmonary fibrosis, American journal of respiratory and critical care medicine, 182 (2010) 220-229. 
[214] L. Huleihel, A. Ben-Yehudah, J. Milosevic, G. Yu, K. Pandit, K. Sakamoto, H. Yousef, M. LeJeune, T.A. 
Coon, C.J. Redinger, L. Chensny, E. Manor, G. Schatten, N. Kaminski, Let-7d microRNA affects 
mesenchymal phenotypic properties of lung fibroblasts, American journal of physiology. Lung cellular 
and molecular physiology, 306 (2014) L534-542. 
[215] https://clinicaltrials.gov/show/NCT00258544. 
[216] L. Fang, A.H. Ellims, X.L. Moore, D.A. White, A.J. Taylor, J. Chin-Dusting, A.M. Dart, Circulating 
microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy, 
Journal of translational medicine, 13 (2015) 314. 
[217] S.M. Riester, D. Arsoy, E.T. Camilleri, A. Dudakovic, C.R. Paradise, J.M. Evans, J. Torres-Mora, M. 
Rizzo, P. Kloen, M.K. Julio, A.J. van Wijnen, S. Kakar, RNA sequencing reveals a depletion of collagen 
targeting microRNAs in Dupuytren's disease, BMC medical genomics, 8 (2015) 59. 
[218] X.J. Liu, Q. Hong, Z. Wang, Y.Y. Yu, X. Zou, L.H. Xu, MicroRNA21 promotes interstitial fibrosis via 
targeting DDAH1: a potential role in renal fibrosis, Molecular and cellular biochemistry, 411 (2016) 181- 
189. 
[219] L. Zhou, L. Wang, L. Lu, P. Jiang, H. Sun, H. Wang, Inhibition of miR-29 by TGF-beta-Smad3 signaling 
through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts, PLoS 
One, 7 (2012) e33766. 
[220] B.C. Melnik, The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA- 
driven type 2 diabetes mellitus, Current diabetes reviews, 11 (2015) 46-62. 
[221] Z. Deng, Y. He, X. Yang, H. Shi, A. Shi, L. Lu, L. He, MicroRNA-29: A Crucial Player in Fibrotic Disease, 
Molecular diagnosis & therapy, 21 (2017) 285-294. 
[222] T. Yang, Y. Liang, Q. Lin, J. Liu, F. Luo, X. Li, H. Zhou, S. Zhuang, H. Zhang, miR-29 mediates 
TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung 
fibroblasts, Journal of cellular biochemistry, 114 (2013) 1336-1342. 
[223] Y. Wang, J. Liu, J. Chen, T. Feng, Q. Guo, MiR-29 mediates TGFbeta 1-induced extracellular matrix 
synthesis through activation of Wnt/beta -catenin pathway in human pulmonary fibroblasts, Technology 
and health care : official journal of the European Society for Engineering and Medicine, 23 Suppl 1 
(2015) S119-125. 
[224] J. Xiao, X.M. Meng, X.R. Huang, A.C. Chung, Y.L. Feng, D.S. Hui, C.M. Yu, J.J. Sung, H.Y. Lan, miR-29 
inhibits bleomycin-induced pulmonary fibrosis in mice, Molecular therapy : the journal of the American 
Society of Gene Therapy, 20 (2012) 1251-1260. 



 

 
 
 

[225] T. Ogawa, M. Iizuka, Y. Sekiya, K. Yoshizato, K. Ikeda, N. Kawada, Suppression of type I collagen 
production by microRNA-29b in cultured human stellate cells, Biochemical and biophysical research 
communications, 391 (2010) 316-321. 
[226] M. Kwiecinski, N. Elfimova, A. Noetel, U. Tox, H.M. Steffen, U. Hacker, R. Nischt, H.P. Dienes, M. 
Odenthal, Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic 
stellate cells is inhibited by miR-29, Laboratory investigation; a journal of technical methods and 
pathology, 92 (2012) 978-987. 
[227] G.Y. Zhang, L.C. Wu, T. Liao, G.C. Chen, Y.H. Chen, Y.X. Zhao, S.Y. Chen, A.Y. Wang, K. Lin, D.M. Lin, 
J.Q. Yang, W.Y. Gao, Q.F. Li, A novel regulatory function for miR-29a in keloid fibrogenesis, Clinical and 
experimental dermatology, 41 (2016) 341-345. 
[228] L. Zhang, Y. Wang, W. Li, P.A. Tsonis, Z. Li, L. Xie, Y. Huang, MicroRNA-30a Regulation of Epithelial- 
Mesenchymal Transition in Diabetic Cataracts Through Targeting SNAI1, Scientific reports, 7 (2017) 
1117. 
[229] S. Zhang, H. Liu, Y. Liu, J. Zhang, H. Li, W. Liu, G. Cao, P. Xv, J. Zhang, C. Lv, X. Song, miR-30a as 
Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in 
Idiopathic Pulmonary Fibrosis, International journal of molecular sciences, 18 (2017). 
[230] Q. Zhou, M. Yang, H. Lan, X. Yu, miR-30a negatively regulates TGF-beta1-induced epithelial- 
mesenchymal transition and peritoneal fibrosis by targeting Snai1, The American journal of pathology, 
183 (2013) 808-819. 
[231] C.T. Yuan, X.X. Li, Q.J. Cheng, Y.H. Wang, J.H. Wang, C.L. Liu, MiR-30a regulates the atrial 
fibrillation-induced myocardial fibrosis by targeting snail 1, International journal of clinical and 
experimental pathology, 8 (2015) 15527-15536. 
[232] G.D. Wang, X.W. Zhao, Y.G. Zhang, Y. Kong, S.S. Niu, L.F. Ma, Y.M. Zhang, Effects of miR-145 on the 
inhibition of chondrocyte proliferation and fibrosis by targeting TNFRSF11B in human osteoarthritis, 
Molecular medicine reports, 15 (2017) 75-80. 
[233] S. Rajasekaran, P. Rajaguru, P.S. Sudhakar Gandhi, MicroRNAs as potential targets for progressive 
pulmonary fibrosis, Frontiers in pharmacology, 6 (2015) 254. 
[234] D. Ratuszny, C. Gras, A. Bajor, A.K. Borger, A. Pielen, M. Borgel, C. Framme, R. Blasczyk, C. 
Figueiredo, miR-145 Is a Promising Therapeutic Target to Prevent Cornea Scarring, Human gene therapy, 
26 (2015) 698-707. 
[235] Q. Xie, W. Wei, J. Ruan, Y. Ding, A. Zhuang, X. Bi, H. Sun, P. Gu, Z. Wang, X. Fan, Effects of miR-146a 
on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration, Scientific 
reports, 7 (2017) 42840. 
[236] M.A. Winkler, C. Dib, A.V. Ljubimov, M. Saghizadeh, Targeting miR-146a to treat delayed wound 
healing in human diabetic organ-cultured corneas, PLoS One, 9 (2014) e114692. 
[237] G. Curtale, M. Mirolo, T.A. Renzi, M. Rossato, F. Bazzoni, M. Locati, Negative regulation of Toll-like 
receptor 4 signaling by IL-10-dependent microRNA-146b, Proceedings of the National Academy of 
Sciences of the United States of America, 110 (2013) 11499-11504. 
[238] Z. Rang, Z.Y. Wang, Q.Y. Pang, Y.W. Wang, G. Yang, F. Cui, MiR-181a Targets PHLPP2 to Augment 
AKT Signaling and Regulate Proliferation and Apoptosis in Human Keloid Fibroblasts, Cellular physiology 
and biochemistry : international journal of experimental cellular physiology, biochemistry, and 
pharmacology, 40 (2016) 796-806. 
[239] Y. Qu, Q. Zhang, X. Cai, F. Li, Z. Ma, M. Xu, L. Lu, Exosomes derived from miR-181-5p-modified 
adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation, Journal of 
cellular and molecular medicine, (2017). 
[240] B. Wang, P. Koh, C. Winbanks, M.T. Coughlan, A. McClelland, A. Watson, K. Jandeleit-Dahm, W.C. 
Burns, M.C. Thomas, M.E. Cooper, P. Kantharidis, miR-200a Prevents renal fibrogenesis through 
repression of TGF-beta2 expression, Diabetes, 60 (2011) 280-287. 



 

 
 
 

[241] I.P. Pogribny, A. Starlard-Davenport, V.P. Tryndyak, T. Han, S.A. Ross, I. Rusyn, F.A. Beland, 
Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated 
with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice, Laboratory 
investigation; a journal of technical methods and pathology, 90 (2010) 1437-1446. 
[242] S. Oba, S. Kumano, E. Suzuki, H. Nishimatsu, M. Takahashi, H. Takamori, M. Kasuya, Y. Ogawa, K. 
Sato, K. Kimura, Y. Homma, Y. Hirata, T. Fujita, miR-200b precursor can ameliorate renal 
tubulointerstitial fibrosis, PLoS One, 5 (2010) e13614. 
[243] L. Zheng, X. Jian, F. Guo, N. Li, C. Jiang, P. Yin, A.J. Min, L. Huang, miR-203 inhibits arecoline- 
induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and 
transmembrane-4 L six family member 1 in oral submucous fibrosis, Oncology reports, 33 (2015) 2753- 
2760. 
[244] L. Chen, A. Charrier, Y. Zhou, R. Chen, B. Yu, K. Agarwal, H. Tsukamoto, L.J. Lee, M.E. Paulaitis, D.R. 
Brigstock, Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in 
exosomes from mouse or human hepatic stellate cells, Hepatology, 59 (2014) 1118-1129. 
[245] M. Iizuka, T. Ogawa, M. Enomoto, H. Motoyama, K. Yoshizato, K. Ikeda, N. Kawada, Induction of 
microRNA-214-5p in human and rodent liver fibrosis, Fibrogenesis & tissue repair, 5 (2012) 12. 
[246] S. Oka, H. Furukawa, K. Shimada, A. Hashimoto, A. Komiya, N. Fukui, N. Tsuchiya, S. Tohma, Plasma 
miRNA expression profiles in rheumatoid arthritis associated interstitial lung disease, BMC 
musculoskeletal disorders, 18 (2017) 21. 
[247] S.A. Ibrahim, H. Hassan, M. Gotte, MicroRNA-dependent targeting of the extracellular matrix as a 
mechanism of regulating cell behavior, Biochim Biophys Acta, 1840 (2014) 2609-2620. 
[248] S.A. Ibrahim, H. Hassan, M. Gotte, MicroRNA regulation of proteoglycan function in cancer, FEBS J, 
281 (2014) 5009-5022. 
[249] Z.J. Rutnam, T.N. Wight, B.B. Yang, miRNAs regulate expression and function of extracellular 
matrix molecules, Matrix Biol, 32 (2013) 74-85. 
[250] J. Ji, L. Zhao, A. Budhu, M. Forgues, H.L. Jia, L.X. Qin, Q.H. Ye, J. Yu, X. Shi, Z.Y. Tang, X.W. Wang, 
Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma, Journal of 
hepatology, 52 (2010) 690-697. 
[251] S. Sengupta, J.A. den Boon, I.H. Chen, M.A. Newton, S.A. Stanhope, Y.J. Cheng, C.J. Chen, A. 
Hildesheim, B. Sugden, P. Ahlquist, MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up- 
regulating mRNAs encoding extracellular matrix proteins, Proceedings of the National Academy of 
Sciences of the United States of America, 105 (2008) 5874-5878. 
[252] Y. Sekiya, T. Ogawa, K. Yoshizato, K. Ikeda, N. Kawada, Suppression of hepatic stellate cell 
activation by microRNA-29b, Biochemical and biophysical research communications, 412 (2011) 74-79. 
[253] G. Castoldi, C.R. Di Gioia, C. Bombardi, D. Catalucci, B. Corradi, M.G. Gualazzi, M. Leopizzi, M. 
Mancini, G. Zerbini, G. Condorelli, A. Stella, MiR-133a regulates collagen 1A1: potential role of miR-133a 
in myocardial fibrosis in angiotensin II-dependent hypertension, Journal of cellular physiology, 227 
(2012) 850-856. 
[254] E.J. Nam, P.W. Park, Shedding of cell membrane-bound proteoglycans, Methods in molecular 
biology, 836 (2012) 291-305. 
[255] T. Kinoshita, N. Nohata, T. Hanazawa, N. Kikkawa, N. Yamamoto, H. Yoshino, T. Itesako, H. Enokida, 
M. Nakagawa, Y. Okamoto, N. Seki, Tumour-suppressive microRNA-29s inhibit cancer cell migration and 
invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma, British 
journal of cancer, 109 (2013) 2636-2645. 
[256] P. Rousselle, K. Beck, Laminin 332 processing impacts cellular behavior, Cell adhesion & migration, 
7 (2013) 122-134. 
[257] L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA- 
10b in breast cancer, Nature, 449 (2007) 682-688. 



 

 
 
 

[258] L. Sun, W. Yan, Y. Wang, G. Sun, H. Luo, J. Zhang, X. Wang, Y. You, Z. Yang, N. Liu, MicroRNA-10b 
induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10, Brain research, 
1389 (2011) 9-18. 
[259] S.A. Ibrahim, G.W. Yip, C. Stock, J.W. Pan, C. Neubauer, M. Poeter, D. Pupjalis, C.Y. Koo, R. Kelsch, 
R. Schule, U. Rescher, L. Kiesel, M. Gotte, Targeting of syndecan-1 by microRNA miR-10b promotes 
breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism, 
Int J Cancer, 131 (2012) E884-896. 
[260] C. Schneider, N. Kassens, B. Greve, H. Hassan, A.N. Schuring, A. Starzinski-Powitz, L. Kiesel, D.G. 
Seidler, M. Gotte, Targeting of syndecan-1 by micro-ribonucleic acid miR-10b modulates invasiveness of 
endometriotic cells via dysregulation of the proteolytic milieu and interleukin-6 secretion, Fertility and 
sterility, 99 (2013) 871-881 e871. 
[261] K.R. Cordes, N.T. Sheehy, M.P. White, E.C. Berry, S.U. Morton, A.N. Muth, T.H. Lee, J.M. Miano, 
K.N. Ivey, D. Srivastava, miR-145 and miR-143 regulate smooth muscle cell fate and plasticity, Nature, 
460 (2009) 705-710. 
[262] R. Li, L. Zhang, L. Jia, Y. Duan, Y. Li, J. Wang, L. Bao, N. Sha, MicroRNA-143 targets Syndecan-1 to 
repress cell growth in melanoma, PloS one, 9 (2014) e94855. 
[263] T. Fujii, K. Shimada, Y. Tatsumi, K. Hatakeyama, C. Obayashi, K. Fujimoto, N. Konishi, microRNA-145 
promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1, BMC 
cancer, 15 (2015) 818. 
[264] T. Guo, W. Yu, S. Lv, C. Zhang, Y. Tian, MiR-302a inhibits the tumorigenicity of ovarian cancer cells 
by suppression of SDC1, International journal of clinical and experimental pathology, 8 (2015) 4869- 
4880. 
[265] J. Muller-Deile, F. Gellrich, H. Schenk, P. Schroder, J. Nystrom, J. Lorenzen, H. Haller, M. Schiffer, 
Overexpression of TGF-beta Inducible microRNA-143 in Zebrafish Leads to Impairment of the Glomerular 
Filtration Barrier by Targeting Proteoglycans, Cellular physiology and biochemistry : international journal 
of experimental cellular physiology, biochemistry, and pharmacology, 40 (2016) 819-830. 
[266] T. Fujii, K. Shimada, Y. Tatsumi, N. Tanaka, K. Fujimoto, N. Konishi, Syndecan-1 up-regulates 
microRNA-331-3p and mediates epithelial-to-mesenchymal transition in prostate cancer, Molecular 
carcinogenesis, 55 (2016) 1378-1386. 
[267] T. Fujii, K. Shimada, Y. Tatsumi, K. Fujimoto, N. Konishi, Syndecan-1 responsive microRNA-126 and 
149 regulate cell proliferation in prostate cancer, Biochemical and biophysical research communications, 
456 (2015) 183-189. 
[268] S. Asuthkar, K.K. Velpula, A.K. Nalla, V.R. Gogineni, C.S. Gondi, J.S. Rao, Irradiation-induced 
angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma 
cells, Oncogene, 33 (2014) 1922-1933. 
[269] M.F. Baietti, Z. Zhang, E. Mortier, A. Melchior, G. Degeest, A. Geeraerts, Y. Ivarsson, F. Depoortere, 
C. Coomans, E. Vermeiren, P. Zimmermann, G. David, Syndecan-syntenin-ALIX regulates the biogenesis 
of exosomes, Nature cell biology, 14 (2012) 677-685. 
[270] C.A. Thompson, A. Purushothaman, V.C. Ramani, I. Vlodavsky, R.D. Sanderson, Heparanase 
regulates secretion, composition, and function of tumor cell-derived exosomes, The Journal of biological 
chemistry, 288 (2013) 10093-10099. 
[271] F.X. Maquart, J.C. Monboisse, Extracellular matrix and wound healing, Pathologie-biologie, 62 
(2014) 91-95. 
[272] M. Xue, C.J. Jackson, Extracellular Matrix Reorganization During Wound Healing and Its Impact on 
Abnormal Scarring, Advances in wound care, 4 (2015) 119-136. 
[273] S.W. Shan, D.Y. Lee, Z. Deng, T. Shatseva, Z. Jeyapalan, W.W. Du, Y. Zhang, J.W. Xuan, S.P. Yee, V. 
Siragam, B.B. Yang, MicroRNA MiR-17 retards tissue growth and represses fibronectin expression, 
Nature cell biology, 11 (2009) 1031-1038. 



 

 
 
 

[274] B. Feng, S. Chen, K. McArthur, Y. Wu, S. Sen, Q. Ding, R.D. Feldman, S. Chakrabarti, miR-146a- 
Mediated extracellular matrix protein production in chronic diabetes complications, Diabetes, 60 (2011) 
2975-2984. 
[275] X. Zhang, J. Xu, J. Wang, L. Gortner, S. Zhang, X. Wei, J. Song, Y. Zhang, Q. Li, Z. Feng, Reduction of 
microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of 
fibronectin 1, PloS one, 8 (2013) e74750. 
[276] O. Tang, X.M. Chen, S. Shen, M. Hahn, C.A. Pollock, MiRNA-200b represses transforming growth 
factor-beta1-induced EMT and fibronectin expression in kidney proximal tubular cells, American journal 
of physiology. Renal physiology, 304 (2013) F1266-1273. 
[277] X. Kong, G. Li, Y. Yuan, Y. He, X. Wu, W. Zhang, Z. Wu, T. Chen, W. Wu, P.E. Lobie, T. Zhu, 
MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via 
targeting FAK expression, PloS one, 7 (2012) e41523. 
[278] D.Y. Lee, T. Shatseva, Z. Jeyapalan, W.W. Du, Z. Deng, B.B. Yang, A 3'-untranslated region (3'UTR) 
induces organ adhesion by regulating miR-199a* functions, PloS one, 4 (2009) e4527. 
[279] L. Fang, W.W. Du, X. Yang, K. Chen, A. Ghanekar, G. Levy, W. Yang, A.J. Yee, W.Y. Lu, J.W. Xuan, Z. 
Gao, F. Xie, C. He, Z. Deng, B.B. Yang, Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in 
inducing the development of hepatocellular carcinoma by regulating miRNA activity, FASEB journal : 
official publication of the Federation of American Societies for Experimental Biology, 27 (2013) 907-919. 
[280] Z. Jeyapalan, Z. Deng, T. Shatseva, L. Fang, C. He, B.B. Yang, Expression of CD44 3'-untranslated 
region regulates endogenous microRNA functions in tumorigenesis and angiogenesis, Nucleic acids 
research, 39 (2011) 3026-3041. 
[281] Z.J. Rutnam, B.B. Yang, The non-coding 3' UTR of CD44 induces metastasis by regulating 
extracellular matrix functions, Journal of cell science, 125 (2012) 2075-2085. 
[282] C.H. Wang, D.Y. Lee, Z. Deng, Z. Jeyapalan, S.C. Lee, S. Kahai, W.Y. Lu, Y. Zhang, B.B. Yang, 
MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression, PloS one, 3 (2008) 
e2420. 
[283] J.C. Henry, J.K. Park, J. Jiang, J.H. Kim, D.M. Nagorney, L.R. Roberts, S. Banerjee, T.D. Schmittgen, 
miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell 
lines, Biochemical and biophysical research communications, 403 (2010) 120-125. 
[284] Q. Huang, K. Gumireddy, M. Schrier, C. le Sage, R. Nagel, S. Nair, D.A. Egan, A. Li, G. Huang, A.J. 
Klein-Szanto, P.A. Gimotty, D. Katsaros, G. Coukos, L. Zhang, E. Pure, R. Agami, The microRNAs miR-373 
and miR-520c promote tumour invasion and metastasis, Nature cell biology, 10 (2008) 202-210. 
[285] Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. 
Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells, 
PloS one, 4 (2009) e6816. 
[286] E. Karousou, S. Misra, S. Ghatak, K. Dobra, M. Gotte, D. Vigetti, A. Passi, N.K. Karamanos, S.S. 
Skandalis, Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer, Matrix biology : 
journal of the International Society for Matrix Biology, 59 (2017) 3-22. 
[287] X. Yang, Z.J. Rutnam, C. Jiao, D. Wei, Y. Xie, J. Du, L. Zhong, B.B. Yang, An anti-let-7 sponge decoys 
and decays endogenous let-7 functions, Cell cycle, 11 (2012) 3097-3108. 
[288] J. Liu, F. Tu, W. Yao, X. Li, Z. Xie, H. Liu, Q. Li, Z. Pan, Conserved miR-26b enhances ovarian 
granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2, Scientific 
reports, 6 (2016) 21197. 
[289] K. Rock, J. Tigges, S. Sass, A. Schutze, A.M. Florea, A.C. Fender, F.J. Theis, J. Krutmann, F. Boege, E. 
Fritsche, G. Reifenberger, J.W. Fischer, miR-23a-3p causes cellular senescence by targeting hyaluronan 
synthase 2: possible implication for skin aging, The Journal of investigative dermatology, 135 (2015) 369- 
377. 



 

 
 
 

[290] L.Y. Bourguignon, G. Wong, C. Earle, L. Chen, Hyaluronan-CD44v3 interaction with Oct4-Sox2- 
Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance 
in cancer stem cells from head and neck squamous cell carcinoma, The Journal of biological chemistry, 
287 (2012) 32800-32824. 
[291] K.J. Sonnemann, W.M. Bement, Wound repair: toward understanding and integration of single-cell 
and multicellular wound responses, Annual review of cell and developmental biology, 27 (2011) 237- 
263. 
[292] J.M. Reinke, H. Sorg, Wound repair and regeneration, European surgical research. Europaische 
chirurgische Forschung. Recherches chirurgicales europeennes, 49 (2012) 35-43. 
[293] K.G. Maier, B. Ruhle, J.J. Stein, K.L. Gentile, F.A. Middleton, V. Gahtan, Thrombospondin-1 
differentially regulates microRNAs in vascular smooth muscle cells, Molecular and cellular biochemistry, 
412 (2016) 111-117. 
[294] K. Tanaka, S.E. Kim, H. Yano, G. Matsumoto, R. Ohuchida, Y. Ishikura, M. Araki, K. Araki, S. Park, T. 
Komatsu, H. Hayashi, K. Ikematsu, K. Tanaka, A. Hirano, P. Martin, I. Shimokawa, R. Mori, MiR-142 Is 
Required for Staphylococcus aureus Clearance at Skin Wound Sites via Small GTPase-Mediated 
Regulation of the Neutrophil Actin Cytoskeleton, The Journal of investigative dermatology, 137 (2017) 
931-940. 
[295] A. Schwickert, E. Weghake, K. Bruggemann, A. Engbers, B.F. Brinkmann, B. Kemper, J. Seggewiss, C. 
Stock, K. Ebnet, L. Kiesel, C. Riethmuller, M. Gotte, microRNA miR-142-3p Inhibits Breast Cancer Cell 
Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements, 
PLoS One, 10 (2015) e0143993. 
[296] F. Meisgen, N. Xu Landen, C. Bouez, M. Zuccolo, A. Gueniche, M. Stahle, E. Sonkoly, L. Breton, A. 
Pivarcsi, Activation of toll-like receptors alters the microRNA expression profile of keratinocytes, 
Experimental dermatology, 23 (2014) 281-283. 
[297] L. Shi, B. Fisslthaler, N. Zippel, T. Fromel, J. Hu, A. Elgheznawy, H. Heide, R. Popp, I. Fleming, 
MicroRNA-223 antagonizes angiogenesis by targeting beta1 integrin and preventing growth factor 
signaling in endothelial cells, Circulation research, 113 (2013) 1320-1330. 
[298] A. Kurozumi, Y. Goto, R. Matsushita, I. Fukumoto, M. Kato, R. Nishikawa, S. Sakamoto, H. Enokida, 
M. Nakagawa, T. Ichikawa, N. Seki, Tumor-suppressive microRNA-223 inhibits cancer cell migration and 
invasion by targeting ITGA3/ITGB1 signaling in prostate cancer, Cancer science, 107 (2016) 84-94. 
[299] Q. Liu, M. Zhang, X. Jiang, Z. Zhang, L. Dai, S. Min, X. Wu, Q. He, J. Liu, Y. Zhang, Z. Zhang, R. Yang, 
miR-223 suppresses differentiation of tumor-induced CD11b(+) Gr1(+) myeloid-derived suppressor cells 
from bone marrow cells, Int J Cancer, 129 (2011) 2662-2673. 
[300] I. Faraoni, F.R. Antonetti, J. Cardone, E. Bonmassar, miR-155 gene: a typical multifunctional 
microRNA, Biochim Biophys Acta, 1792 (2009) 497-505. 
[301] C. van Solingen, E. Araldi, A. Chamorro-Jorganes, C. Fernandez-Hernando, Y. Suarez, Improved 
repair of dermal wounds in mice lacking microRNA-155, Journal of cellular and molecular medicine, 18 
(2014) 1104-1112. 
[302] L.L. Yang, J.Q. Liu, X.Z. Bai, L. Fan, F. Han, W.B. Jia, L.L. Su, J.H. Shi, C.W. Tang, D.H. Hu, Acute 
downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory 
response, Biochemical and biophysical research communications, 453 (2014) 153-159. 
[303] L. Yang, Z. Zheng, Q. Zhou, X. Bai, L. Fan, C. Yang, L. Su, D. Hu, miR-155 promotes cutaneous wound 
healing through enhanced keratinocytes migration by MMP-2, Journal of molecular histology, 48 (2017) 
147-155. 
[304] X. Liu, H. Fang, H. Chen, X. Jiang, D. Fang, Y. Wang, D. Zhu, An artificial miRNA against HPSE 
suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK 
phosphorylation, PLoS One, 7 (2012) e38659. 



 

 
 
 

[305] J. Liu, A. van Mil, E.N. Aguor, S. Siddiqi, K. Vrijsen, S. Jaksani, C. Metz, J. Zhao, G.J. Strijkers, P.A. 
Doevendans, J.P. Sluijter, MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells 
(hCMPCs) via targeting of MMP-16, Journal of cellular and molecular medicine, 16 (2012) 2379-2386. 
[306] A. Das, K. Ganesh, S. Khanna, C.K. Sen, S. Roy, Engulfment of apoptotic cells by macrophages: a 
role of microRNA-21 in the resolution of wound inflammation, Journal of immunology, 192 (2014) 1120- 
1129. 
[307] R. Merline, K. Moreth, J. Beckmann, M.V. Nastase, J. Zeng-Brouwers, J.G. Tralhao, P. Lemarchand, 
J. Pfeilschifter, R.M. Schaefer, R.V. Iozzo, L. Schaefer, Signaling by the matrix proteoglycan decorin 
controls inflammation and cancer through PDCD4 and MicroRNA-21, Science signaling, 4 (2011) ra75. 
[308] L. Bao, Y. Yan, C. Xu, W. Ji, S. Shen, G. Xu, Y. Zeng, B. Sun, H. Qian, L. Chen, M. Wu, C. Su, J. Chen, 
MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma 
progression through AKT/ERK pathways, Cancer letters, 337 (2013) 226-236. 
[309] K. Essandoh, Y. Li, J. Huo, G.C. Fan, MiRNA-Mediated Macrophage Polarization and its Potential 
Role in the Regulation of Inflammatory Response, Shock, 46 (2016) 122-131. 
[310] F. Liu, Y. Li, R. Jiang, C. Nie, Z. Zeng, N. Zhao, C. Huang, Q. Shao, C. Ding, C. Qing, L. Xia, E. Zeng, K. 
Qian, miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the 
cholinergic anti-inflammatory pathway, Experimental lung research, 41 (2015) 261-269. 
[311] H. Wang, X.T. Li, C. Wu, Z.W. Wu, Y.Y. Li, T.Q. Yang, G.L. Chen, X.S. Xie, Y.L. Huang, Z.W. Du, Y.X. 
Zhou, miR-132 can inhibit glioma cells invasion and migration by target MMP16 in vitro, OncoTargets 
and therapy, 8 (2015) 3211-3218. 
[312] M. Jasinska, J. Milek, I.A. Cymerman, S. Leski, L. Kaczmarek, M. Dziembowska, miR-132 Regulates 
Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA, Molecular 
neurobiology, 53 (2016) 4701-4712. 
[313] F. Leonhardt, S. Grundmann, M. Behe, F. Bluhm, R.A. Dumont, F. Braun, M. Fani, K. Riesner, G. 
Prinz, A.K. Hechinger, U.V. Gerlach, H. Dierbach, O. Penack, A. Schmitt-Graff, J. Finke, W.A. Weber, R. 
Zeiser, Inflammatory neovascularization during graft-versus-host disease is regulated by alphav integrin 
and miR-100, Blood, 121 (2013) 3307-3318. 
[314] K.D. Gerson, V.S. Maddula, B.E. Seligmann, J.R. Shearstone, A. Khan, A.M. Mercurio, Effects of 
beta4 integrin expression on microRNA patterns in breast cancer, Biology open, 1 (2012) 658-666. 
[315] Y. Jin, S.D. Tymen, D. Chen, Z.J. Fang, Y. Zhao, D. Dragas, Y. Dai, P.T. Marucha, X. Zhou, MicroRNA- 
99 family targets AKT/mTOR signaling pathway in dermal wound healing, PloS one, 8 (2013) e64434. 
[316] D. Li, A. Wang, X. Liu, F. Meisgen, J. Grunler, I.R. Botusan, S. Narayanan, E. Erikci, X. Li, L. Blomqvist, 
L. Du, A. Pivarcsi, E. Sonkoly, K. Chowdhury, S.B. Catrina, M. Stahle, N.X. Landen, MicroRNA-132 
enhances transition from inflammation to proliferation during wound healing, The Journal of clinical 
investigation, 125 (2015) 3008-3026. 
[317] J. Hou, P. Wang, L. Lin, X. Liu, F. Ma, H. An, Z. Wang, X. Cao, MicroRNA-146a feedback inhibits RIG- 
I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2, Journal of 
immunology, 183 (2009) 2150-2158. 
[318] F. Meisgen, N. Xu Landen, A. Wang, B. Rethi, C. Bouez, M. Zuccolo, A. Gueniche, M. Stahle, E. 
Sonkoly, L. Breton, A. Pivarcsi, MiR-146a negatively regulates TLR2-induced inflammatory responses in 
keratinocytes, The Journal of investigative dermatology, 134 (2014) 1931-1940. 
[319] X. Li, G. Gibson, J.S. Kim, J. Kroin, S. Xu, A.J. van Wijnen, H.J. Im, MicroRNA-146a is linked to pain- 
related pathophysiology of osteoarthritis, Gene, 480 (2011) 34-41. 
[320] J. Velasco, J. Li, L. DiPietro, M.A. Stepp, J.D. Sandy, A. Plaas, Adamts5 deletion blocks murine 
dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth 
factor beta1 (TGFbeta1) signaling, The Journal of biological chemistry, 286 (2011) 26016-26027. 



 

 
 
 

[321] T. Wang, Y. Feng, H. Sun, L. Zhang, L. Hao, C. Shi, J. Wang, R. Li, X. Ran, Y. Su, Z. Zou, miR-21 
regulates skin wound healing by targeting multiple aspects of the healing process, The American journal 
of pathology, 181 (2012) 1911-1920. 
[322] X. Yang, J. Wang, S.L. Guo, K.J. Fan, J. Li, Y.L. Wang, Y. Teng, X. Yang, miR-21 promotes keratinocyte 
migration and re-epithelialization during wound healing, International journal of biological sciences, 7 
(2011) 685-690. 
[323] D. Li, X. Li, A. Wang, F. Meisgen, A. Pivarcsi, E. Sonkoly, M. Stahle, N.X. Landen, MicroRNA-31 
Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration, The Journal of 
investigative dermatology, 135 (2015) 1676-1685. 
[324] K. Augoff, M. Das, K. Bialkowska, B. McCue, E.F. Plow, K. Sossey-Alaoui, miR-31 is a broad regulator 
of beta1-integrin expression and function in cancer cells, Molecular cancer research : MCR, 9 (2011) 
1500-1508. 
[325] W. Yang, A.J. Yee, Versican V2 isoform enhances angiogenesis by regulating endothelial cell 
activities and fibronectin expression, FEBS letters, 587 (2013) 185-192. 
[326] Y.C. Chan, S. Roy, Y. Huang, S. Khanna, C.K. Sen, The microRNA miR-199a-5p down-regulation 
switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 
1-matrix metalloproteinase-1 pathway, The Journal of biological chemistry, 287 (2012) 41032-41043. 
[327] J.C. Hahne, A.F. Okuducu, T. Fuchs, A. Florin, N. Wernert, Identification of ETS-1 target genes in 
human fibroblasts, Int J Oncol, 38 (2011) 1645-1652. 
[328] Y.C. Chan, S. Khanna, S. Roy, C.K. Sen, miR-200b targets Ets-1 and is down-regulated by hypoxia to 
induce angiogenic response of endothelial cells, The Journal of biological chemistry, 286 (2011) 2047- 
2056. 
[329] R.Y. Tang, Z. Wang, H.Q. Chen, S.B. Zhu, Negative Correlation between miR-200c and Decorin Plays 
an Important Role in the Pathogenesis of Colorectal Carcinoma, BioMed research international, 2017 
(2017) 1038984. 
[330] P. Li, Q.Y. He, C.Q. Luo, Overexpression of miR-200b inhibits the cell proliferation and promotes 
apoptosis of human hypertrophic scar fibroblasts in vitro, The Journal of dermatology, 41 (2014) 903- 
911. 
[331] L. Cushing, P.P. Kuang, J. Qian, F. Shao, J. Wu, F. Little, V.J. Thannickal, W.V. Cardoso, J. Lu, miR-29 
is a major regulator of genes associated with pulmonary fibrosis, American journal of respiratory cell and 
molecular biology, 45 (2011) 287-294. 
[332] Y. Liu, N.E. Taylor, L. Lu, K. Usa, A.W. Cowley, Jr., N.R. Ferreri, N.C. Yeo, M. Liang, Renal medullary 
microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes, 
Hypertension, 55 (2010) 974-982. 
[333] M. Monaghan, S. Browne, K. Schenke-Layland, A. Pandit, A collagen-based scaffold delivering 
exogenous microrna-29B to modulate extracellular matrix remodeling, Molecular therapy : the journal 
of the American Society of Gene Therapy, 22 (2014) 786-796. 
[334] J. Chou, J.H. Lin, A. Brenot, J.W. Kim, S. Provot, Z. Werb, GATA3 suppresses metastasis and 
modulates the tumour microenvironment by regulating microRNA-29b expression, Nat Cell Biol, 15 
(2013) 201-213. 
[335] M. Rossi, M.R. Pitari, N. Amodio, M.T. Di Martino, F. Conforti, E. Leone, C. Botta, F.M. Paolino, T. 
Del Giudice, E. Iuliano, M. Caraglia, M. Ferrarini, A. Giordano, P. Tagliaferri, P. Tassone, miR-29b 
negatively regulates human osteoclastic cell differentiation and function: implications for the treatment 
of multiple myeloma-related bone disease, Journal of cellular physiology, 228 (2013) 1506-1515. 
[336] P. Li, P. Liu, R.P. Xiong, X.Y. Chen, Y. Zhao, W.P. Lu, X. Liu, Y.L. Ning, N. Yang, Y.G. Zhou, Ski, a 
modulator of wound healing and scar formation in the rat skin and rabbit ear, J Pathol, 223 (2011) 659- 
671. 



 

 
 
 

[337] C. Xie, K. Shi, X. Zhang, J. Zhao, J. Yu, MiR-1908 promotes scar formation post-burn wound healing 
by suppressing Ski-mediated inflammation and fibroblast proliferation, Cell Tissue Res, 366 (2016) 371- 
380. 
[338] L. Chen, J. Li, Q. Li, H. Yan, B. Zhou, Y. Gao, J. Li, Non-Coding RNAs: The New Insight on 
Hypertrophic Scar, Journal of cellular biochemistry, 118 (2017) 1965-1968. 
[339] P. Ning, D.W. Liu, Y.G. Mao, Y. Peng, Z.W. Lin, D.M. Liu, [Differential expression profile of 
microRNA between hyperplastic scar and normal skin], Zhonghua yi xue za zhi, 92 (2012) 692-694. 
[340] J. Li, B. Cen, S. Chen, Y. He, MicroRNA-29b inhibits TGF-beta1-induced fibrosis via regulation of the 
TGF-beta1/Smad pathway in primary human endometrial stromal cells, Molecular medicine reports, 13 
(2016) 4229-4237. 
[341] J. Guo, Q. Lin, Y. Shao, L. Rong, D. Zhang, miR-29b promotes skin wound healing and reduces 
excessive scar formation by inhibition of the TGF-beta1/Smad/CTGF signaling pathway, Canadian journal 
of physiology and pharmacology, 95 (2017) 437-442. 
[342] C. Gras, D. Ratuszny, C. Hadamitzky, H. Zhang, R. Blasczyk, C. Figueiredo, miR-145 Contributes to 
Hypertrophic Scarring of the Skin by Inducing Myofibroblast Activity, Molecular medicine, 21 (2015) 296- 
304. 
[343] Y. Liu, C. Wu, Y. Wang, S. Wen, J. Wang, Z. Chen, Q. He, D. Feng, MicroRNA-145 inhibits cell 
proliferation by directly targeting ADAM17 in hepatocellular carcinoma, Oncology reports, 32 (2014) 
1923-1930. 
[344] M. Gotte, C. Mohr, C.Y. Koo, C. Stock, A.K. Vaske, M. Viola, S.A. Ibrahim, S. Peddibhotla, Y.H. Teng, 
J.Y. Low, K. Ebnet, L. Kiesel, G.W. Yip, miR-145-dependent targeting of junctional adhesion molecule A 
and modulation of fascin expression are associated with reduced breast cancer cell motility and 
invasiveness, Oncogene, 29 (2010) 6569-6580. 
[345] M. Adammek, B. Greve, N. Kassens, C. Schneider, K. Bruggemann, A.N. Schuring, A. Starzinski- 
Powitz, L. Kiesel, M. Gotte, MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell 
phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and 
pluripotency factors, Fertility and sterility, 99 (2013) 1346-1355 e1345. 
[346] A. Martinez-Sanchez, K.A. Dudek, C.L. Murphy, Regulation of human chondrocyte function through 
direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145), The Journal of 
biological chemistry, 287 (2012) 916-924. 
[347] H.Y. Zhu, C. Li, Z. Zheng, Q. Zhou, H. Guan, L.L. Su, J.T. Han, X.X. Zhu, S.Y. Wang, J. Li, D.H. Hu, 
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist inhibits collagen synthesis in 
human hypertrophic scar fibroblasts by targeting Smad3 via miR-145, Biochemical and biophysical 
research communications, 459 (2015) 49-53. 
[348] J. Yang, C.Z. Zhou, R. Zhu, H. Fan, X.X. Liu, X.Y. Duan, Q. Tang, Z.X. Shou, D.M. Zuo, Microvesicles 
Shuttled miR-200b attenuate Experimental Colitis associated Intestinal Fibrosis by Inhibiting the 
Development of EMT, Journal of gastroenterology and hepatology, (2017). 
[349] J.C. Eggers, V. Martino, R. Reinbold, S.D. Schafer, L. Kiesel, A. Starzinski-Powitz, A.N. Schuring, B. 
Kemper, B. Greve, M. Gotte, microRNA miR-200b affects proliferation, invasiveness and stemness of 
endometriotic cells by targeting ZEB1, ZEB2 and KLF4, Reprod Biomed Online, 32 (2016) 434-445. 
[350] R. Zhou, Q. Zhang, Y. Zhang, S. Fu, C. Wang, Aberrant miR-21 and miR-200b expression and its pro- 
fibrotic potential in hypertrophic scars, Experimental cell research, 339 (2015) 360-366. 
[351] S. Mu, B. Kang, W. Zeng, Y. Sun, F. Yang, MicroRNA-143-3p inhibits hyperplastic scar formation by 
targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway, Molecular and cellular 
biochemistry, 416 (2016) 99-108. 
[352] K. Xiao, X. Luo, X. Wang, Z. Gao, MicroRNA185 regulates transforming growth factorbeta1 and 
collagen1 in hypertrophic scar fibroblasts, Molecular medicine reports, 15 (2017) 1489-1496. 



 

 
 
 

[353] C. Li, H.Y. Zhu, W.D. Bai, L.L. Su, J.Q. Liu, W.X. Cai, B. Zhao, J.X. Gao, S.C. Han, J. Li, D.H. Hu, MiR-10a 
and miR-181c regulate collagen type I generation in hypertrophic scars by targeting PAI-1 and uPA, FEBS 
letters, 589 (2015) 380-389. 
[354] P.G. Scott, C.M. Dodd, A. Ghahary, Y.J. Shen, E.E. Tredget, Fibroblasts from post-burn hypertrophic 
scar tissue synthesize less decorin than normal dermal fibroblasts, Clinical science, 94 (1998) 541-547. 
[355] Z. Zhang, X.J. Li, Y. Liu, X. Zhang, Y.Y. Li, W.S. Xu, Recombinant human decorin inhibits cell 
proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts, Burns : journal 
of the International Society for Burn Injuries, 33 (2007) 634-641. 
[356] P. Wang, X. Liu, P. Xu, J. Lu, R. Wang, W. Mu, Decorin reduces hypertrophic scarring through 
inhibition of the TGF-beta1/Smad signaling pathway in a rat osteomyelitis model, Experimental and 
therapeutic medicine, 12 (2016) 2102-2108. 
[357] P. Kwan, J. Ding, E.E. Tredget, MicroRNA 181b regulates decorin production by dermal fibroblasts 
and may be a potential therapy for hypertrophic scar, PLoS One, 10 (2015) e0123054. 
[358] K. Kashiyama, N. Mitsutake, M. Matsuse, T. Ogi, V.A. Saenko, K. Ujifuku, A. Utani, A. Hirano, S. 
Yamashita, miR-196a downregulation increases the expression of type I and III collagens in keloid 
fibroblasts, The Journal of investigative dermatology, 132 (2012) 1597-1604. 
[359] G.G. Gauglitz, H.C. Korting, T. Pavicic, T. Ruzicka, M.G. Jeschke, Hypertrophic scarring and keloids: 
pathomechanisms and current and emerging treatment strategies, Molecular medicine, 17 (2011) 113- 
125. 
[360] M. Etoh, M. Jinnin, K. Makino, K. Yamane, W. Nakayama, J. Aoi, N. Honda, I. Kajihara, T. Makino, S. 
Fukushima, H. Ihn, microRNA-7 down-regulation mediates excessive collagen expression in localized 
scleroderma, Archives of dermatological research, 305 (2013) 9-15. 
[361] F.K. Sun, Q. Sun, Y.C. Fan, S. Gao, J. Zhao, F. Li, Y.B. Jia, C. Liu, L.Y. Wang, X.Y. Li, X.F. Ji, K. Wang, 
Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma 
after hepatectomy, Journal of gastroenterology and hepatology, 31 (2016) 484-492. 
[362] Y. Liu, X. Wang, D. Yang, Z. Xiao, X. Chen, MicroRNA-21 affects proliferation and apoptosis by 
regulating expression of PTEN in human keloid fibroblasts, Plastic and reconstructive surgery, 134 (2014) 
561e-573e. 
[363] Z.Y. Wu, L. Lu, J. Liang, X.R. Guo, P.H. Zhang, S.J. Luo, Keloid microRNA expression analysis and the 
influence of miR-199a-5p on the proliferation of keloid fibroblasts, Genetics and molecular research : 
GMR, 13 (2014) 2727-2738. 
[364] L. Yan, R. Cao, Y. Liu, L. Wang, B. Pan, X. Lv, H. Jiao, Q. Zhuang, X. Sun, R. Xiao, MiR-21-5p Links 
Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid 
Keratinocytes, Scientific reports, 6 (2016) 28281. 
[365] Y. Zhang, X. Sun, B. Icli, M.W. Feinberg, Emerging Roles for MicroRNAs in Diabetic Microvascular 
Disease: Novel Targets for Therapy, Endocrine reviews, 38 (2017) 145-168. 
[366] Y.F. Liu, M. Ding, D.W. Liu, Y. Liu, Y.G. Mao, Y. Peng, MicroRNA profiling in cutaneous wounds of 
diabetic rats, Genetics and molecular research : GMR, 14 (2015) 9614-9625. 
[367] B. Icli, C.S. Nabzdyk, J. Lujan-Hernandez, M. Cahill, M.E. Auster, A.K. Wara, X. Sun, D. Ozdemir, G. 
Giatsidis, D.P. Orgill, M.W. Feinberg, Regulation of impaired angiogenesis in diabetic dermal wound 
healing by microRNA-26a, Journal of molecular and cellular cardiology, 91 (2016) 151-159. 
[368] K. Koga, H. Yokoi, K. Mori, M. Kasahara, T. Kuwabara, H. Imamaki, A. Ishii, K.P. Mori, Y. Kato, S. 
Ohno, N. Toda, M.A. Saleem, A. Sugawara, K. Nakao, M. Yanagita, M. Mukoyama, MicroRNA-26a inhibits 
TGF-beta-induced extracellular matrix protein expression in podocytes by targeting CTGF and is 
downregulated in diabetic nephropathy, Diabetologia, 58 (2015) 2169-2180. 
[369] Y.C. Chan, S. Roy, S. Khanna, C.K. Sen, Downregulation of endothelial microRNA-200b supports 
cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth 
factor receptor 2, Arteriosclerosis, thrombosis, and vascular biology, 32 (2012) 1372-1382. 



 

 
 
 

[370] T.R. Kyriakides, S. Maclauchlan, The role of thrombospondins in wound healing, ischemia, and the 
foreign body reaction, Journal of cell communication and signaling, 3 (2009) 215-225. 
[371] J.M. Wang, J. Tao, D.D. Chen, J.J. Cai, K. Irani, Q. Wang, H. Yuan, A.F. Chen, MicroRNA miR-27b 
rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes 
mellitus, Arteriosclerosis, thrombosis, and vascular biology, 34 (2014) 99-109. 
[372] M. Rienks, A.P. Papageorgiou, N.G. Frangogiannis, S. Heymans, Myocardial extracellular matrix: an 
ever-changing and diverse entity, Circulation research, 114 (2014) 872-888. 
[373] E. van Rooij, L.B. Sutherland, J.E. Thatcher, J.M. DiMaio, R.H. Naseem, W.S. Marshall, J.A. Hill, E.N. 
Olson, Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac 
fibrosis, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 
13027-13032. 
[374] S.J. Hwang, H.J. Seol, Y.M. Park, K.H. Kim, M. Gorospe, D.H. Nam, H.H. Kim, MicroRNA-146a 
suppresses metastatic activity in brain metastasis, Molecules and cells, 34 (2012) 329-334. 
[375] H. Liang, C. Zhang, T. Ban, Y. Liu, L. Mei, X. Piao, D. Zhao, Y. Lu, W. Chu, B. Yang, A novel reciprocal 
loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis, The international journal of 
biochemistry & cell biology, 44 (2012) 2152-2160. 
[376] S. Roy, S. Khanna, S.R. Hussain, S. Biswas, A. Azad, C. Rink, S. Gnyawali, S. Shilo, G.J. Nuovo, C.K. 
Sen, MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast 
metalloprotease-2 via phosphatase and tensin homologue, Cardiovascular research, 82 (2009) 21-29. 
[377] S.H. Li, J. Guo, J. Wu, Z. Sun, M. Han, S.W. Shan, Z. Deng, B.B. Yang, R.D. Weisel, R.K. Li, miR-17 
targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling, FASEB 
journal : official publication of the Federation of American Societies for Experimental Biology, 27 (2013) 
4254-4265. 
[378] H. Dong, S. Dong, L. Zhang, X. Gao, G. Lv, W. Chen, S. Shao, MicroRNA-214 exerts a Cardio- 
protective effect by inhibition of fibrosis, Anatomical record, 299 (2016) 1348-1357. 
[379] Z. Piperigkou, M. Franchi, M. Gotte, N.K. Karamanos, Estrogen receptor beta as epigenetic 
mediator of miR-10b and miR-145 in mammary cancer, Matrix Biol, (2017). 
[380] Z. Piperigkou, P. Bouris, M. Onisto, M. Franchi, D. Kletsas, A.D. Theocharis, N.K. Karamanos, 
Estrogen receptor beta modulates breast cancer cells functional properties, signaling and expression of 
matrix molecules, Matrix Biol, (2016). 
[381] Z. Piperigkou, K. Karamanou, A.B. Engin, C. Gialeli, A.O. Docea, D.H. Vynios, M.S. Pavao, K.S. 
Golokhvast, M.I. Shtilman, A. Argiris, E. Shishatskaya, A.M. Tsatsakis, Emerging aspects of 
nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics, Food and 
chemical toxicology : an international journal published for the British Industrial Biological Research 
Association, 91 (2016) 42-57. 
[382] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science, 311 (2006) 
622-627. 
[383] Z. Piperigkou, K. Karamanou, N.A. Afratis, P. Bouris, C. Gialeli, C.L. Belmiro, M.S. Pavao, D.H. 
Vynios, A.M. Tsatsakis, Biochemical and toxicological evaluation of nano-heparins in cell functional 
properties, proteasome activation and expression of key matrix molecules, Toxicology letters, 240 
(2016) 32-42. 
[384] N.A. Afratis, K. Karamanou, Z. Piperigkou, D.H. Vynios, A.D. Theocharis, The role of heparins and 
nano-heparins as therapeutic tool in breast cancer, Glycoconjugate journal, (2016). 
[385] J. Banerjee, A.J. Hanson, B. Gadam, A.I. Elegbede, S. Tobwala, B. Ganguly, A.V. Wagh, W.W. 
Muhonen, B. Law, J.B. Shabb, D.K. Srivastava, S. Mallik, Release of liposomal contents by cell-secreted 
matrix metalloproteinase-9, Bioconjugate chemistry, 20 (2009) 1332-1339. 
[386] I. Fernandez-Pineiro, I. Badiola, A. Sanchez, Nanocarriers for microRNA delivery in cancer 
medicine, Biotechnology advances, 35 (2017) 350-360. 



 

 
 
 

[387] H. Wang, Y. Jiang, H. Peng, Y. Chen, P. Zhu, Y. Huang, Recent progress in microRNA delivery for 
cancer therapy by non-viral synthetic vectors, Adv Drug Deliv Rev, 81 (2015) 142-160. 
[388] Y. Chen, D.Y. Gao, L. Huang, In vivo delivery of miRNAs for cancer therapy: challenges and 
strategies, Adv Drug Deliv Rev, 81 (2015) 128-141. 
[389] R.S. Geary, R.Z. Yu, A.A. Levin, Pharmacokinetics of phosphorothioate antisense 
oligodeoxynucleotides, Current opinion in investigational drugs, 2 (2001) 562-573. 
[390] H. Wang, M. Chiu, Z. Xie, M. Chiu, Z. Liu, P. Chen, S. Liu, J.C. Byrd, N. Muthusamy, R. Garzon, C.M. 
Croce, G. Marcucci, K.K. Chan, Synthetic microRNA cassette dosing: pharmacokinetics, tissue distribution 
and bioactivity, Molecular pharmaceutics, 9 (2012) 1638-1644. 
[391] N. Nayerossadat, T. Maedeh, P.A. Ali, Viral and nonviral delivery systems for gene delivery, 
Advanced biomedical research, 1 (2012) 27. 
[392] C. Chakraborty, Z.H. Wen, G. Agoramoorthy, C.S. Lin, Therapeutic microRNA Delivery Strategies 
with Special Emphasis on Cancer Therapy and Tumorigenesis: Current Trends and Future Challenges, 
Current drug metabolism, 17 (2016) 469-477. 
[393] B. Santos-Carballal, L.J. Aaldering, M. Ritzefeld, S. Pereira, N. Sewald, B.M. Moerschbacher, M. 
Gotte, F.M. Goycoolea, Physicochemical and biological characterization of chitosan-microRNA 
nanocomplexes for gene delivery to MCF-7 breast cancer cells, Scientific reports, 5 (2015) 13567. 
[394] M. Bikram, M. Lee, C.W. Chang, M.M. Janat-Amsbury, S.E. Kern, S.W. Kim, Long-circulating DNA- 
complexed biodegradable multiblock copolymers for gene delivery: degradation profiles and evidence of 
dysopsonization, Journal of controlled release : official journal of the Controlled Release Society, 103 
(2005) 221-233. 
[395] R. Devulapally, N.M. Sekar, T.V. Sekar, K. Foygel, T.F. Massoud, J.K. Willmann, R. Paulmurugan, 
Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative 
breast cancer therapy, ACS nano, 9 (2015) 2290-2302. 
[396] X. Zhang, Y. Li, Y.E. Chen, J. Chen, P.X. Ma, Cell-free 3D scaffold with two-stage delivery of miRNA- 
26a to regenerate critical-sized bone defects, Nature communications, 7 (2016) 10376. 
[397] Y. Morishita, T. Imai, H. Yoshizawa, M. Watanabe, K. Ishibashi, S. Muto, D. Nagata, Delivery of 
microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo, International journal 
of nanomedicine, 10 (2015) 3475-3488. 
[398] G. Liang, Y. Zhu, A. Jing, J. Wang, F. Hu, W. Feng, Z. Xiao, B. Chen, Cationic microRNA-delivering 
nanocarriers for efficient treatment of colon carcinoma in xenograft model, Gene therapy, 23 (2016) 
829-838. 
[399] Y.S. Takeda, Q. Xu, Synthetic and nature-derived lipid nanoparticles for neural regeneration, 
Neural regeneration research, 10 (2015) 689-690. 
[400] Y. Endo-Takahashi, Y. Negishi, A. Nakamura, S. Ukai, K. Ooaku, Y. Oda, K. Sugimoto, F. Moriyasu, N. 
Takagi, R. Suzuki, K. Maruyama, Y. Aramaki, Systemic delivery of miR-126 by miRNA-loaded Bubble 
liposomes for the treatment of hindlimb ischemia, Scientific reports, 4 (2014) 3883. 
[401] N. Yang, An overview of viral and nonviral delivery systems for microRNA, International journal of 
pharmaceutical investigation, 5 (2015) 179-181. 
[402] T. Pan, W. Song, H. Gao, T. Li, X. Cao, S. Zhong, Y. Wang, miR-29b-Loaded Gold Nanoparticles 
Targeting to the Endoplasmic Reticulum for Synergistic Promotion of Osteogenic Differentiation, ACS 
applied materials & interfaces, 8 (2016) 19217-19227. 
[403] J. Banerjee, C.K. Sen, microRNA and Wound Healing, Advances in experimental medicine and 
biology, 888 (2015) 291-305. 
[404] Z. Li, T.M. Rana, Therapeutic targeting of microRNAs: current status and future challenges, Nature 
reviews. Drug discovery, 13 (2014) 622-638. 
[405] R. Rupaimoole, F.J. Slack, MicroRNA therapeutics: towards a new era for the management of 
cancer and other diseases, Nature reviews. Drug discovery, 16 (2017) 203-222. 



 

 
 
 
 

Figures Legends 
 

Figure 1. Schematic representation of wound healing phases. In each phase, the participation of ECM 

proteins is essential and its composition, mainly in the connective tissue, alters the hemostatic, 

inflammatory, proliferative and tissue remodeling phases of healing. Fibrin, fibronectin, platelets and HA 

bound to fibrinogen, vitronectin, factor XIIIα and other clotting proteins are major constituents during 

the hemostatic phase of the wound. As leukocytes migrate into the wound site, they release proteases 

to degrade the fibrin-rich ECM. Immune cells secrete a broad range of inflammatory cytokines and 

growth factors to attract stromal cells to migrate into the wound. Several matrix-stored growth factors 

(i.e. PDGF, EGF, TGF-β) and PGs released and secreted from endothelial cells (i.e. syndecans, decorin, 

lumican) are also displaced. In the next phase, stromal fibroblasts migrating into the wound area 

(arrows) produce a provisional ECM characterized by the presence of fibronectin, matricellular proteins, 

decreased protease activity, fibrillar (type I, III) and non-fibrillar (type IV, VI, VII) collagen, and growth 

factors (i.e. EGF, FGF, TGF-β). The secreted matrix PGs (i.e. decorin, lumican) and collagen that are 

associated with mature healing wounds are secreted by keratinocytes and leukocytes to promote 

proliferation and migration of vascular components, endothelial and epithelial cells. During the tissue 

remodeling phase, the stiffer matrix and several growth factors (i.e. TGF-β) trigger stromal cells to 

induce wound contraction by adopting a myofibroblast phenotype. The supportive ECM is enriched in 

matrix PGs, proteases and realigned collagen type I cross-linked fibers. The final step in wound repair 

involves the formation of overly aligned collagen fibers that regain almost 80% of the primary tissue 

functionality. The lower panel demonstrates a summary of the most critical miRNAs that are involved in 

each wound healing phase and manipulate crucial cell functions, such as fibrillogenesis in the connective 

tissue, proliferation, migration, angiogenesis and tissue remodeling. Arrows indicate up- or 

downregulation of miRNA expression. 

 
Figure 2. The canonical mechanism of miRNA biogenesis and post-transcriptional gene silencing. The 

initiation step is the formation of 70-nucleotide pri-miRNA by the RNA polymerase II and III in the 

nucleus. Pri-miRNA is cleaved by the Drosha complex and the resulting pre-miRNA, which has a short 

stem plus a ~2-nucleotide 3' overhang is recognized by the exportin-5 complex and is exported to the 

cytoplasm, where it is cleaved by the Dicer complex to the mature miRNA duplex. The miRNA passenger 

strand is degraded and the mature miRNA strand (17-25 nucleotides), together with Argonaute proteins 

(Ago2)   guides   the   RISC   to   bind   the   3’   UTR   region   of   the   target   mRNA.   Depending   on  the 



 

 
 
 

complementarity of the seed sequence of the miRNA and its cognate mRNA, miRNA binding to the 3’ 

UTR site destabilizes the mRNA-target. This process may result in mRNA degradation, translational 

repression or mRNA deadenylation (not shown). Novel delivery strategies involve the encapsulation of 

miRNA nucleic acids (mimics or anti-miRs) into bio-degradable liposome formations, which are 

characterized by improved stability, high affinity, and low toxicity. These nanocarriers may serve as 

diagnostic tools and therapeutic strategies in several clinical applications. 

 

Figure 3. miRNA-mediated ECM targeting is a critical regulator of basic functional properties, such as cell 

proliferation, differentiation, migration and survival. The production of pri-miRNA in the nucleus is 

followed by its export to the cytoplasm and its further cleavage to the mature miRNA, which targets 

specific mRNAs. Here, representative examples of functional relationship between miRNAs and major 

ECM components participating in wound healing are shown. 



 

 
 

 
 

 

Figure 1 



 

 
MANUSCRIPT 

 

 
 
 

 
 

Figure 2 



 

 
MANUSCRIPT 

 
 
 

 
 

Figure 3 



 
 
 

 
Table 1. Targets and main actions of major miRNAs linked to wound healing and fibrosis in clinical indications. 

 

 
TGFβ/SMAD7 

human skin wounds (skin fibrosis); mediates fibrogenic 
activation (pulmonary fibrosis) 

 
 

miR-29 Collagen      I      &     IV,     PDGF, 
TGFβ1/SMAD2/SMAD3, fibrillin, 
elastin, profibrotic genes, Wnt/ 
Frizzled/ β-catenin, PI3K/AKT, 
αSMA, fibronectin, ITGB1, IGF-I, 
PDGFR-β, TGFβ1/ PI3K/AKT, 

TNF-α/NF-κB 

Antifibrotic function in cardiac fibroblasts (cardiac 
fibrosis); negatively related to the severity of the 
fibrosis in human fetal lung fibroblast (pulmonary 
fibrosis); antifibrinogenic mediator through the 
inhibition of collagen I&ΙV expression, induced by 
TGFβ1, and its deposition in the liver (kidney & hepatic 
fibrosis); high glucose or TGFβ stimulation 
downregulates miR-29 expression and promotes 
collagen formation (renal fibrosis) 

Anti-fibrotic [219-227] 

 
 

miR-30a TET1, Snai1 Decrease in the degree of myocardial  fibrosis (cardiac 
fibrosis); blocks mitochondrial fission (pulmonary 
fibrosis); EMT inhibition in vitro & in vivo (diabetic & 
peritoneal fibrosis) 

Anti-fibrotic [228-231] 

microRNA Predicted Targets Putative Action(s) Effect References 

let-7d HMGA2, TGFβ/SMAD3 Attenuates EMT in vitro & in vivo; reverses fibrotic 
phenotype (pulmonary fibrosis) 

Anti-fibrotic [213-215] 

miR-10b PTEN, HOXD10 Mediates TGF-β-dependent EMT (myocardial & skin 
fibrosis) 

Anti-fibrotic [216, 217] 

miR-21 EGR3, vinculin, LepR, Fibroblast migration; delay in epithelialization in acute Pro-fibrotic [198, 199, 218] 



 
 
 
 
 

 
miR-203 Ran, Raph1 Pro-proliferative and pro-migratory factor in 

cutaneous wound healing; suppresses hepatic fibrosis 
Anti-fibrotic [212, 243] 

miR-130a-3p LepR, PPARγ, Delayed   epithelialization   in   an   acute   human  skin Anti-fibrotic [198, 204] 
  wound model (skin fibrosis); mediator of 

macrophage’s fibrogenesis 

  

miR-142-5p SOCS1/STAT6 Regulates macrophage profibrogenic gene expression 
in chronic inflammation via IL-4/ IL-13 mediation 

Pro-fibrotic [204] 

miR-145 TNFRSF11B, KLF4 Inhibits cell proliferation and fibrosis  (articular 
fibrosis); promotes fibroblast trans-differentiation 
(pulmonary fibrosis); TGF-β1-stimulated myofibroblast 
differentiation & activation (corneal fibrosis) 

Anti-fibrotic [232-234] 

 
miR-146a 

 
αSMA, SMAD4 

 
Represses pro-inflammatory cytokines within the 
wound (corneal fibrosis); negatively regulates the 
osteogenesis and bone regeneration in vitro & in vivo 

 
Anti-fibrotic 

 
[235-237] 

 
miR-181α 

 
PHLPP2 

 
Enhanced keloid fibroblast DNA synthesis and 
proliferation and inhibited apoptosis (skin fibrosis) 

 
Pro-fibrotic 

 
[238] 

miR-181-5p STAT3, Bcl2 Activation of autophagy (liver fibrosis) Anti-fibrotic [239] 

miR-200 TGFβ2, ZEB1/2 Decreases TGF-β signaling and TGF-β-dependent EMT 
(liver & renal fibrosis) 

Anti-fibrotic [240-242] 



 
 
 
 
 

miR-214-5p CTGF, TGFβ Increased MMP2, MMP9 expression levels; hepatitis-C Anti-fibrotic [244-246] 
  induced    liver    fibrosis;    hepatic    remodeling  (liver  
 
 
miR-483-3p 

 
 

Cell proliferation protein MKi76, 

fibrosis) 
 

Control    keratinocyte    proliferation,   growth   arrest Anti-fibrotic 

 
 

[211] 
the kinase MK2 and a 
transcription 

factor YAP1 

during re-epithelialization, promotion of wound 
healing in vitro & in vivo 

 
 
 

 

 
Abbreviations: Bcl2, B-cell lymphoma 2; Col1A1, collagen type I alpha 1; Col3A1, collagen type III alpha 1; Col4A1, collagen type IV alpha 1; EGR, 

early growth response factor; EMT, epithelial-to-mesenchymal transition; HMGA2, high-mobility group AT-hook 2; IGF-I, insulin-like growth 

factor I; ITGB1, integrin β1; KLF4, Kruppel-like factor 4; LepR, leptin receptor; MMP, matrix metalloproteinase; PDGFR, platelet-derived growth 

factor receptor; PHLPP2, PH domain leucine-rich repeat protein phosphatase 2; PI3K, phosphoinositide 3-kinase; PPARγ, peroxisome 

proliferator-activated receptor γ; PTEN, phosphatase and tensin homolog deleted on chromosome 10; Ran, Ras-related Nuclear  protein; 

Raph1, Ras-associated and pleckstrin homology domains-containing protein 1; αSMA, alpha smooth muscle actin; SMAD, mothers against 

decapentaplegic homolog; Snai1, snail family transcriptional repressor 1; SOCS1, suppressor of cytokine signalling 1; STAT6, signal transducer  

and activator of transcription 6; TGF, transforming growth factor; TET1, ten-eleven translocation 1; TNF-α, tumor necrosis factor alpha; 

TNFRSF11B, tumor necrosis factor receptor superfamily member 11b 



 

 
Highlights 

• Extracellular matrix (ECM) plays regulatory roles in cell functions, tissue regeneration and 

remodeling. 

• The interplay between ECM and resident cells exerts its critical role in many aspects of 

wound healing, matrix degradation and biosynthesis. 

• Epigenetic regulatory mechanisms, such as the endogenous non-coding microRNAs 

(miRNAs) drive the wound healing response and dermal regeneration. 

• miRNAs have pivotal roles in ECM composition (matrix proteins, proteoglycans and 

proteases) during wound healing, serving themselves as target biomarkers for systematic 

regulation of wound repair. 

• miRNAs targeting and the delivery strategies designed for clinical applications are emerging 

areas of research with clinical relevance. 
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