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Synthetic CpG islands reveal DNA 
sequence determinants of chromatin 
structure
Elisabeth Wachter1, Timo Quante1, Cara Merusi1, Aleksandra Arczewska1,  
Francis Stewart2, Shaun Webb1, Adrian Bird1*
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Abstract The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from 
the bulk genome by being rich in G + C and the dinucleotide CpG. CGIs often include transcription 
initiation sites and display ‘active’ histone marks, notably histone H3 lysine 4 methylation. In 
embryonic stem cells (ESCs) some CGIs adopt a ‘bivalent’ chromatin state bearing simultaneous 
‘active’ and ‘inactive’ chromatin marks. To determine whether CGI chromatin is developmentally 
programmed at specific genes or is imposed by shared features of CGI DNA, we integrated artificial 
CGI-like DNA sequences into the ESC genome. We found that bivalency is the default chromatin 
structure for CpG-rich, G + C-rich DNA. A high CpG density alone is not sufficient for this effect, as 
A + T-rich sequence settings invariably provoke de novo DNA methylation leading to loss of CGI 
signature chromatin. We conclude that both CpG-richness and G + C-richness are required for 
induction of signature chromatin structures at CGIs.
DOI: 10.7554/eLife.03397.001

Introduction
CpG islands (CGIs) are stretches of atypical genomic DNA sequences that mark most gene promot-
ers (Bird, 1986; Deaton and Bird, 2011). Though individually unique in nucleotide sequence, mam-
malian CGIs share two features that often correlate but can vary independently: a G + C-rich base 
composition (65% vs 40% for the bulk genome) and high density of the dinucleotide CpG (5–10-fold 
higher than the bulk genome). Whereas bulk genomic DNA is globally methylated, CGIs associated 
with promoters invariably lack DNA methylation. It has been proposed that CGIs function as generic 
platforms for gene regulation, probably via proteins that bind to CpG and influence chromatin mod-
ification (Blackledge and Klose, 2011; Deaton and Bird, 2011). This hypothesis has gained cre-
dence due to accumulating evidence that enrichment or depletion of specific chromatin marks at 
CGIs is linked to proteins that bind to unmethylated CpG. So far, all such proteins possess CXXC 
zinc finger domains that bind specifically to the CpG dyad in duplex DNA (Lee et al., 2001). Cfp1, 
for example, is a CXXC domain-containing component of the Set1/COMPASS complex (Lee and 
Skalnik, 2005), which generates H3K4 methylation, a signature chromatin mark at non-methylated 
CGIs (Bernstein et al., 2006; Guenther et al., 2007). Accordingly, Cfp1 is concentrated at CGIs as 
determined by chromatin immunoprecipitation (ChIP) and its absence is associated with reduced 
H3K4 methylation at many CGIs (Thomson et al., 2010; Clouaire et al., 2012). The H3K4 methyl-
transferases Mll1 and Mll2 are also CXXC proteins and each is found at CGIs in mouse embryonic 
stem cells (ESCs) as determined by ChIP-Seq (Hu et al., 2013; Denissov et al., 2014). Similarly the 
CXXC domain-containing proteins Kdm2a and Kdm2b are enriched at CGIs. Kdm2a is an H3K36 
demethylase that contributes to depletion of H3K36me at CGI promoters (Blackledge et al., 2010), 
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whereas Kdm2b facilitates recruitment of the PRC1 complex to transcriptionally silent CGIs (Farcas 
et al., 2012; Wu et al., 2013).

Previous studies have shown that CGI-like DNA sequences can impose an altered chromatin state 
in ESCs. Promoter-less CGI-like DNA sequences of invertebrate origin in mouse ES cells were initially 
shown to cause local enrichment of trimethylation of lysine 4 of histone H3 (H3K4me3) and to recruit 
the CpG binding protein Cfp1 (Thomson et al., 2010). Similar experiments using G + C-rich DNA 
derived from bacteria created chromatin marked by both H3K27me3 and H3K4me3 (Mendenhall 
et al., 2010). Whereas H3K4me3 is characteristic of active promoters, H3K27me3 is associated with 
transcriptional repression via the polycomb complex. The coincidence of these two marks in so-called 
‘bivalent’ chromatin is thought to be a feature of genes that are poised to become either active or 
silent during early development (Azuara et al., 2006; Bernstein et al., 2006; Voigt et al., 2013). 
Many native CGIs in ESCs adopt a ‘bivalent’ chromatin structure when transcriptionally silent.

Despite evidence that CXXC proteins play a role at CGIs, the hypothesis that CpG density is the 
critical determinant of CGI function has not been directly tested. Here we vary the DNA sequence 
composition of artificial promoter-less CGIs to assess the relative importance of G + C-richness and 
high CpG density. Our assay relies upon chromosomal integration of artificial CGI-like sequences into 
the genome of ESCs. We show that a bivalent chromatin configuration and absence of DNA methyla-
tion represent the default state of biologically inert CGI-like DNA sequences. While a high CpG den-
sity is essential, it is not sufficient to guarantee the bivalent chromatin structure, as CpG-rich DNA 
sequences with a G + C-poor average base composition do not acquire this chromatin signature. In 
fact A + T-rich, G + C poor insertions with a CpG frequency matching that of CGIs consistently become 

eLife digest The building blocks of DNA are four molecules commonly named ‘A’, ‘T’, ‘C’ and 
‘G’. The order of these DNA letters in a gene contains the instructions to make specific proteins or 
other molecules. Other stretches of DNA contain codes that direct the cell's machinery to genes 
that need to be switched on or switched off. The start of a gene, for example, has a stretch of DNA 
called a promoter, which is where the molecular machinery that switches on the gene is assembled.

A human cell can contain over two and half metres of DNA. To get this length to fit inside the 
cell, the DNA is wrapped tightly around proteins to form a structure called chromatin. However, 
this packing can make it difficult to access the right gene at the right time. As such, chromatin is 
often marked with small chemical tags that earmark which genes should be either activated or 
inactivated, and/or that cause the DNA to unpack.

Most gene promoters contain a sequence of DNA with many Cs and Gs found one after the 
other, called a CpG island. Researchers have previously shown that the chromatin of CpG islands 
has two types of chemical markings—one that normally marks active genes, and another that often 
marks inactive genes. It was suggested that having both kinds of markings allows CpG islands to 
prime nearby genes, so that they are ready to be quickly switched on or off as the cell develops. 
However, the features of the DNA sequence in these CpG islands that are important for this 
process had not been directly tested.

Wachter et al. have now inserted an artificial DNA sequence that included a CpG island into 
mouse stem cells. The chromatin around these CpG islands was readily marked with both activating 
and inactivating chemical marks. Furthermore, by changing the sequence of the artificial DNA, 
Wachter et al. revealed that these chemical marks were only added when the DNA sequences 
contained a lot of Cs followed by Gs. Other artificial sequences with lots of Cs and Gs, but where 
Gs were rarely found immediately after the Cs, had neither of the two chemical marks on the 
chromatin. This suggests that nearby genes would be harder to locate and activate as the cell grows 
and develops. On the other hand, when the DNA contained a lot of As and Ts, the chemical marks 
were added directly to the DNA (rather than to the chromatin)—and this prevented both the 
activating and the inactivating chemical marks being added to the chromatin.

Now that the common features of CpG islands that influence chromatin are known, the next step 
is to find out how this is achieved. Further work will be needed to uncover which proteins in a cell 
interpret these DNA sequence such that nearby genes can be switched on or off.
DOI: 10.7554/eLife.03397.002
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DNA methylated in ESCs, although the bivalent configuration can be restored if the dominant DNA 
methylation is removed. Our findings demonstrate that CpG-richness is essential for the formation of 
bivalent chromatin, whereas G + C-richness is required to exclude DNA methylation, which when pre-
sent is dominant over the other chromatin marks.

Results
Formation of a novel bivalent domain at artificial CGI-like sequences
Comparison between CGIs and an equivalent number of sequences from the bulk genome shows that 
both CpG frequency and G + C richness are distinct in CGIs compared with bulk genomic DNA of 
mouse (Figure 1A). A previous study showed that bacterial DNA with CGI-like features organised 
bivalent chromatin in ESCs (Mendenhall et al., 2010). In order to verify and extend this result we 
introduced CGI-like DNA sequences of ∼1000 nucleotide pairs (the average length of native CGIs) into 
a bacterial artificial chromosome (BAC) containing a human ‘gene desert’ using recombineering (See 
Figure 1—figure supplement 1). A computer-generated CGI-like sequence (Artificial CGI 1) was 
designed with a CpG frequency of one per ∼10 base pairs and a base composition of 65% G + C 
(Figure 1A, Figure 1—figure supplement 2 and Figure 1—source data 1). A second CGI-like 
sequence (PuroGFP; Figure 1A, Figure 1—figure supplement 2 and Figure 1—source data 1) was 
of prokaryotic origin, being derived from a promoter-less bacterial puromycin gene adjacent to codon-
optimised green fluorescent protein coding sequence (Thomson et al., 2010). All constructs lack a 
promoter, allowing us to focus on the interaction between DNA sequence and chromatin modification 
without the complicating involvement of transcription. The gene desert regions flanking CGI-like 
sequences are intended to insulate against effects of the genomic and chromatin environment at dif-
ferent BAC integrations sites.

Three independently transfected stable ESC lines with low copy number random integrations of the 
BAC containing Artificial CGI 1 and one cell line with the PuroGFP CGI were selected for ChIP analysis 
(See Figure 1—figure supplement 1). As controls we monitored active genes (Sox2 and Gapdh), 
which are marked by H3K4me3, an endogenous bivalent gene (Hoxc8), which carries both H3K27me3 
and H3K4me3, and an inter-genic region of chromosome 15 (m15), which bears neither mark. The 
CGI-like insertions consistently generated a bivalent chromatin structure marked by H3K4me3 and 
H3K27me3 (Figure 1B,C and Figure 1—figure supplement 1). We refer to DNA sequence domains 
as bivalent using the convention that H3K4me3 and H3K27me3 marks coincide at a single integration 
site. It is possible that some cells in the population harbour an integrant marked by only one of these 
marks whereas other cells possess only the other mark. This configuration has not been detected at 
the few ESC bivalent domains tested so far. More likely is that the two marks are interspersed at a 
given bivalent sequence domain, though we did not test this experimentally (See Voigt et al., 2013). 
The levels of H3K4me3 at the artificial CGI were similar to those at the endogenous bivalent gene 
Hoxc8, whereas H3K4me3 levels in the DNA sequences flanking the CGI were unaffected by the inser-
tion. H3K27me3 was less discrete, spreading variably into flanking regions of the human BAC, but 
Suz12, a component of the PRC2 complex that deposits the H3K27me3 mark, was tightly localised to 
the CGI-like sequence in each case. We tested an unrelated artificial CGI-like sequence with similar 
overall sequence properties (Artificial CGI 2; Figure 1—figure supplement 1), this time integrated at 
a recombination cassette within the beta globin locus of mouse ESCs (Lienert et al., 2011). Independent 
replicate stable transformant cell lines again showed consistent presence of a bivalent chromatin 
structure (data not shown). The DNA methylation status of the integrated artificial CGIs was investi-
gated by bisulfite sequencing. This showed that all the insertions reproducibly maintained a low level 
of DNA methylation (Figure 1D; Figure 1—figure supplement 1). DNA methylation levels at CGI-like 
sequences inserted into the gene desert (∼10%) were consistently somewhat higher than in the cas-
sette exchange system (0.5%) and were somewhat higher than an endogenous control CGI in the same 
DNA samples (Dlx5; ∼4–5%, data not shown). Despite this variability, it is evident that all of these 
artificial DNA sequences maintain a largely non-methylated status.

H3K4me3 at an artificial CGI is independent of Cfp1 and RNA 
polymerase II
To test whether these promoter-less artificial DNA sequences were transcriptionally inert, we performed 
ChIP with antibodies recognising three differentially phosphorylated forms of RNA polymerase II in 

http://dx.doi.org/10.7554/eLife.03397
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Figure 1. A novel bivalent chromatin domain is formed at promoter-less artificial CGI-like sequences integrated 
within a gene desert in mouse ESCs. (A) CpG frequency and G + C content of CGIs in the mouse genome (blue 
circles) and an equivalent number of equal-sized (1000 base pair) random fragments of bulk genomic DNA (red 
circles). (B) Map of human gene desert 2 (grey bars; Chr1:81,106,616-81,153,886) showing the integration site of the 
Figure 1. Continued on next page

http://dx.doi.org/10.7554/eLife.03397
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replicate cell lines. None displayed a peak over the insert, whereas control active genes were RNA 
polymerase-positive as expected (Figure 2A and Figure 2—figure supplement 1). Consistent with the 
absence of RNA polymerase, we did not detect significant peaks of histone acetylation over the CGI-like 
insertions (Figure 2B). In summary, data derived from three distinct promoter-less CGI-like sequences 
indicate that bivalent chromatin is the default state for transcriptionally inert CGI-like DNA in ESCs.

We next asked whether the CXXC protein Cfp1 is enriched at the CGI-like sequences. To facilitate 
detection of Cfp1, we introduced the BAC containing the artificial CGI into a transgenic cell line 
expressing a Cfp1-GFP fusion protein (Denissov et al., 2014). Having verified that a bivalent domain 
was formed at the artificial CGI in these cells (data not shown), ChIP was performed on three inde-
pendent cell lines using an anti-GFP antibody. We consistently observed discrete enrichment of Cfp1 
at the CGI-like insertion (Figure 2C). To determine whether the formation of a bivalent domain at the 
inserted artificial CGI-like sequence was dependent on Cfp1, the artificial CGI was introduced into 
Cfp1−/− mouse ES cells (Carlone and Skalnik, 2001) and three independent lines were analysed by 
ChIP. H3K4me3 levels at the artificial CGI were clearly detectable in the Cfp1−/− cells, indicating that 
Cfp1 is not required for the formation of H3K4me3 levels at the bivalent domain (Figure 2D). Depletion 
of Cfp1 was previously reported to preferentially cause a decrease of H3K4me3 at active genes with-
out affecting non-productive genes (Clouaire et al., 2012). In agreement with this finding, we observed 
reduced H3K4me3 at the active control gene Sox2 compared to wildtype cells (Compare Figures 2D 
and 1C). We also followed the fate of chromatin modifications during differentiation of ESCs to neu-
ronal progenitor cells (Figure 2—figure supplement 1B) and found a consistent drop in H3K4me3 
accompanied by persistent or increased H3K27me3 (Figure 2—figure supplement 1). This transition 
from bivalency to H3K27me3 marking alone matches that at native CGI-associated genes that remain 
transcriptionally silent during differentiation (Bernstein et al., 2006).

A high CpG frequency is necessary for the creation of bivalent domain
Although G + C content and CpG frequency are related features, they can be varied independ-
ently (Figure 1A). To establish the importance of these features for determination of bivalent chro-
matin, we varied CpG frequency and G + C content in 1000 base pair long artificial DNA sequences 
(Figure 1—figure supplement 2 and Figure 1—source data 1). An artificial CGI with a base compo-
sition similar to that of a normal CGI (65% G + C) but with a low density of CpGs, similar to that of 
the bulk genome (1 CpG/100 bp), was designed (Low CpG / High G + C). This Low CpG / High G + C 
sequence failed to create bivalent chromatin as neither H3K4me3 nor H3K27me3 was detected in 
three independent ESC lines (Figure 3A). We note that the relative values of control and experimental 
data points are consistent between experiments although we observe variability in the absolute pre-
cipitation levels due to the use of different antibody suppliers between experiments over an extended 
time period. Our conclusion from this data is that a G + C-rich base composition alone is insufficient 
to recruit either H3K4me3 or H3K27me3.

Artificial CGI-like construct (purple box). Black boxes at the ends indicate bacterial BAC sequences. Black bars 
above indicate the position of Q-PCR amplicons (not to scale). (C) Representative anti-H3K4me3 and H3K27me3 
ChIP profiles (normalized to H3 ChIP) and Suz12 ChIP profiles (% Input; n = 3) for three independently transfected 
cell lines. Shaded box includes primers spanning the Artificial CGI. ChIP control amplicons are derived from the 
TSS of the active genes Sox2 (S) and GAPDH (G); the TSS of bivalent gene Hoxc8 (H) and an inconspicuous 
negative control region on mouse chromosome 15 (−). Error bars indicate the standard deviation of PCR replicates. 
(D) Bisulfite sequencing of the three cell lines shown in (C). In the map above, blue strokes show CpGs in the 
CGI-like insert and the clear box indicates the bisulfite amplicon. Methylated and unmethylated CpGs are depicted 
as filled and open circles, respectively.
DOI: 10.7554/eLife.03397.003
The following source data and figure supplements are available for figure 1:

Source data 1. 
DOI: 10.7554/eLife.03397.004
Figure supplement 1. Bivalent chromatin at artificial CGI-like sequences in mouse ESCs. 
DOI: 10.7554/eLife.03397.005

Figure supplement 2. Synthetic DNA elements with different sequence properties. 
DOI: 10.7554/eLife.03397.006

Figure 1. Continued
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Figure 2. H3K4me3 at a promoter-less artificial CGI forms independently of Cfp1 and RNA polymerase II. (A) Map 
of gene desert 2 with integrated Artificial CGI-like construct labeled as in Figure 1B. Representative ChIP with an 
antibody specific for the N-terminus of RNA polymerase II for three independent cell lines (% Input over IgG;  
n = 2). (B) Representative anti-H3K9/K14 acetylation ChIP profiles for three independently transfected cell lines 
normalized to H3 ChIP (n = 2). (C) Mouse ES cells expressing GFP-tagged Cfp1 were transfected with Artificial 
CGI construct and bound Cpf1 was assayed by ChIP with anti-GFP antibodies in three independent cell lines  
Figure 2. Continued on next page

http://dx.doi.org/10.7554/eLife.03397
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A + T-rich CGIs become reproducibly DNA methylated
This result raised the possibility that CpG frequency alone determines the chromatin state, with G + C 
content playing no role. To test this idea, we generated four different artificial DNA sequences that 
were CpG-rich to the same level as typical CGIs (10 CpGs/100 bp), but relatively A + T-rich in overall 
base composition (three of 40% and one of 50% G + C on average; Figure 1—figure supplement 2 
and Figure 1—source data 1). Contrary to expectation, none of these insertions generated a focus of 
bivalent chromatin in multiple independent cell lines (Figure 4A and Figure 4—figure supplement 1). 
A potential explanation for this finding came from an analysis of DNA methylation status, which 
showed that in replicate cell lines the CGIs had all become densely methylated at CpGs (Figure 4B 
and Figure 4—figure supplement 2). The striking contrast between the consistent methylation-free 
status of three separate G + C-rich, CpG-rich integrants and the reproducible dense methylation of 
four unrelated A + T-rich, CpG-rich sequences of the same length indicates that base composition is 
a strong determinant of DNA methylation status. A plot of G + C-content against percentage CpG 
methylation showed a sharp transition between 50 and 60% G + C (Figure 4D). Interestingly, a CGI-
like insertion with a base composition of 55% G + C (MeCP2-eGFP) studied previously (Thomson 
et al., 2010) showed an intermediate DNA methylation level, suggesting that it lies on the transition 
point for triggering de novo methylation (Figure 4D).

Removal of DNA methylation restores the bivalent domain
The results indicate that DNA methylation is dominant over both H3K4me3 and H3K27me3, as in its 
presence neither chromatin mark is observed at the artificial CGIs. To test this hypothesis, we asked if 
removal of DNA methylation could restore bivalent chromatin at A + T-rich CpG-rich sequences by 
using mutant ESCs lacking the de novo DNA methyltransferases Dnmt 3a and Dnmt 3b (Okano et al., 
1999), which display severe DNA hypomethylation (Figure 4—figure supplement 2). To ensure that 
histone modifying enzyme activities are not disrupted in the Dnmt 3a/3b double knock out cells, we 
generated stable cell lines with the artificial CGI-containing BAC and confirmed that a bivalent domain 
was observed over the insertion (Figure 4—figure supplement 2). When the High CpG /High A + T 
construct was introduced into Dnmt 3a/3b knock out cells it now remained unmethylated, and impor-
tantly, bivalent chromatin was detected at the inserted sequence (Figure 4C). We noticed that 
H3K4me3 was reproducibly weaker than controls in Dnmt 3a/Dnmt 3b double mutant cells, whereas a 
robust H3K27me3 signal was obtained. This may indicate that A + T-rich DNA is less able to recruit 
H3K4me3 despite its high CpG density. The dominance of the polycomb-associated H3K27me3 
mark at A + T-rich CGIs was also seen when DNA methylation was partially reduced by growing cells 
for 10 days in 2i medium, which enhances the pluripotent state. In line with previous reports (Ficz 
et al., 2013; Habibi et al., 2013), we found that the average level of genomic CpG methylation 
was reduced from ∼95% to ∼55% (Figure 4—figure supplement 2). Whereas cells grown in serum-
containing medium lacked both the tested histone marks, 2i-grown cells displayed a strong increase 
in H3K27me3 without the appearance of noticeable H3K4me3 (Figure 4—figure supplement 2). We 
conclude that while CpG frequency is a key feature of CGIs that determines the signature chromatin 
marks at CGIs, A + T-richness confers an intrinsic susceptibility to de novo methylation that is dom-
inant over these chromatin modifications (Figure 4E).

Status of endogenous DNA domains with atypical CpG or G + C 
composition
Our study assessed the role of G + C-richness vs CpG-richness on chromatin structure by experimen-
tally varying these sequence parameters individually in synthetic DNA domains. The question arises: 

(n = 2). (D) Representative anti-H3K3me3 ChIP for three independent Cfp1−/− mouse ES cells transfected with the 
Artificial CGI construct (n = 2). Control ChIP amplicons are as in Figure 1C. Error bars indicate standard deviation 
of PCR replicates.
DOI: 10.7554/eLife.03397.007
The following figure supplement is available for figure 2:

Figure supplement 1. H3K4me3 at an artificial CGI independent of Cfp1 and RNA polymerase II. 
DOI: 10.7554/eLife.03397.008

Figure 2. Continued

http://dx.doi.org/10.7554/eLife.03397
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do equivalent atypical sequences exist naturally in the mouse genome and if so what is their chromatin 
modification status? We searched first for G + C-rich (≥61%), CpG deficient (≤1/100 bp) sequences 
of ≥500 bp in length and identified 1954 examples. None of these coincided with bivalent chromatin 
in ESCs, in agreement with our results using synthetic DNA. To determine if A + T-rich, CpG-rich 
sequences also exist naturally in mice, we divided the genome into windows of 100 bp and calcu-
lated the G + C content and CpG density of each. To ensure that we selected regions with profiles 

Figure 3. High G + C content is not sufficient to create a bivalent chromatin domain. Map of gene desert 2 showing the integration site of the Low  
CpG / High G + C (L-CpG / H-G + C) construct labeled as in Figure 1B. Representative anti-H3K3me3 and H3K27me3 ChIP profiles (normalized to H3) 
and Suz12 ChIP profiles (% Input; n = 3) are shown for three independent transfected cell lines. Shaded bar includes primers spanning the Low  
CpG / High G + C construct. Control ChIP amplicons are as in Figure 1C. Error bars indicate standard deviation of PCR replicates.
DOI: 10.7554/eLife.03397.009

http://dx.doi.org/10.7554/eLife.03397
http://dx.doi.org/10.7554/eLife.03397.009
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Figure 4. CpG-rich DNA sequences on an A + T-rich background fail to form bivalent chromatin and reproducibly 
acquire DNA methylation. (A) Above: Map of gene desert 2 indicating the integration site of the High CpG / Low  
G + C 1 (H-CpG / L-G + C 1) construct as in Figure 1B. Representative anti-H3K4me3, H3K27me3 and Suz12 ChIPs 
shown (n = 3) for each of two independently transfected cell lines (Third line not shown). The shaded bar includes 
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.03397
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consistently above the thresholds (as is the case for our artificial constructs) rather than short CpG 
dense regions flanked by AT rich DNA, we subtracted windows with ≥50% GC content or <5 CpGs and 
searched for blocks of adjoining windows. Uniformly A + T-rich and CpG-rich DNA sequences of this 
kind were absent in the mouse genome. Even when the criteria were relaxed to include sequences 
of only 500 base pairs in length (the approximate minimum size of CGIs), we found no examples. As 
A + T-rich regions are consistently DNA methylated, it seems likely that, in the absence of strong 
selection, the high mutation rate of 5-methylcytosine effectively resists CpG accumulation at these 
domains over evolutionary time.

Discussion
Epigenetic marks are often considered to be sensitive to both developmental and environmental sig-
nals. Our data reinforce the complementary view that the underlying genetic information, independent 
of nurture or developmental history, plays an important role in setting up CGI chromatin structures. In 
ESCs at least, each of the major CGI chromatin configurations is informed by DNA sequence. We find 
that the non-methylated state of CGIs depends on G + C-rich base composition and that both the 
signature histone marks H3K4me3 and H3K27me3 depend on a high density of the non-methylated 
CpG dyad. The importance of primary DNA sequence in determining bulk features of the epigenome 
have been suggested elsewhere. For example, DNA sequence motifs that are recognised by transcrip-
tion factors strongly influence DNA methylation patterns (Lienert et al., 2011; Stadler et al., 2011) 
and inter-individual variation in other epigenomic features maps to sites of human DNA sequence 
heterogeneity that are probably causal (Kasowski et al., 2013; Kilpinen et al., 2013; McVicker et al., 
2013). Our data show that even gross features of genomic DNA, such as base composition and the 
frequency of the 2-base pair sequence CpG, influence the epigenome.

Do our findings reflect the relationship between naturally occurring DNA sequences and chromatin 
modification? Almost all native CGIs in mouse ESCs are non-methylated at the DNA level and coincide 
with peaks of H3K4me3, which is often seen as the signature histone mark of CGIs (Bernstein et al., 
2006; Thomson et al., 2010). About one third of the H3K4me3-marked CGIs in mouse ES cells also 
carry H3K27me3 and are therefore defined as bivalent (Ku et al., 2008). H3K27me3 is usually relatively 
dispersed compared with the discrete localisation of components of the PRC2 complex, which deposit 
this mark. It is estimated that at least 97% of peaks corresponding to the PRC2 component Ezh2 

primers spanning the High CpG / Low G + C 1 construct. (B) Bisulfite sequence analysis of the two cell lines shown 
in (A). Clear box indicates bisulfite amplicon. In the map above, blue strokes show CpGs in the CGI-like insert and 
the clear box indicates the bisulfite amplicon. Methylated and unmethylated CpGs are depicted as filled and open 
circles, respectively. (C) The High CpG / Low G + C construct was integrated into Dnmt 3a−/− Dnmt 3b−/− double 
mutant mouse ES cells. Representative H3K4me3, H3K27me3 and Suz12 ChIPs are shown (n = 3). Upper right panel 
shows bisulfite sequence analysis of a cell line containing the High CpG / Low G + C construct in Dnmt 3a/b −/− cells, 
presented as in panel (B). (D) The relationship between G + C content of constructs analysed in this study and  
their DNA methylation status. Data for Mecp2-eGFP and Nanog-PuroGFP refer to cell lines reported previously 
(Thomson et al., 2010), but reanalyzed for this study. (E) Diagrams depicting the influence of CGI sequence 
composition on chromatin structure. Upper panel: Sequences with high CpG frequency and high C + G content 
attract both H3K4 and H3K27 methyltransferase to establish bivalent chromatin domains and they remain unmeth-
ylated. SET1A/1B and MLL1/2 complexes contain CXXC domains that may target H3K4me3 to CGIs. The mechan-
ism by which the PRC2 complex is targeted is unknown. Middle panel: Without CpGs, H3K4 and K27 
methyltransferases are not recruited even when the DNA is G + C-rich. Lower panel: A + T-rich DNA fails to form a 
bivalent chromatin structure, even when the CpG density is high and is consistently subject to de novo methylation.
DOI: 10.7554/eLife.03397.010
The following figure supplements are available for figure 4:

Figure supplement 1. CpG-rich, A + T-rich DNA sequences do not form bivalent chromatin.s. 
DOI: 10.7554/eLife.03397.011

Figure supplement 2. DNA methylation at CpG-rich, A + T-rich DNA sequences blocks bivalent chromatin. 
DOI: 10.7554/eLife.03397.012

Figure supplement 3. CpG density and CGI length at bivalent CGIs correlate positively with H3K4me3 and 
H3K27me3 levels in mouse ESCs. 
DOI: 10.7554/eLife.03397.013

Figure 4. Continued

http://dx.doi.org/10.7554/eLife.03397
http://dx.doi.org/10.7554/eLife.03397.010
http://dx.doi.org/10.7554/eLife.03397.011
http://dx.doi.org/10.7554/eLife.03397.012
http://dx.doi.org/10.7554/eLife.03397.013


Genes and chromosomes

Wachter et al. eLife 2014;3:e03397. DOI: 10.7554/eLife.03397 11 of 16

Research article

coincide with CGIs (Ku et al., 2008). This has led to the suggestion that polycomb is targeted to 
G + C-rich or CpG-rich DNA (Tanay et al., 2007; Mendenhall et al., 2010; Lynch et al., 2012; Long 
et al., 2013). It was shown previously that CpG density within the non-methylated CGI fraction as a 
whole is proportional to the H3K4me3 ChIP-seq signal in both mouse and human cells (Illingworth 
et al., 2010). We asked whether the same relationship holds true for bivalent CGIs and whether it also 
applies to H3K27me3. Within a set of 2547 exclusively bivalent promoters from mouse ESCs (Marks 
et al., 2012; Denissov et al., 2014), we found that 92% coincide with CGIs. Within this bivalent group, 
CGI length and CpG density both correlate positively with H3K4me3 and also H3K27me3 levels 
(Figure 4—figure supplement 3). In contrast to typical CGI-like sequences, endogenous G + C-rich, 
CpG-poor sequences do not display a bivalent chromatin structure. A + T-rich, CpG-rich domains of 
CGI-like dimensions, however, are effectively absent from the mouse genome. The sum of available 
data argues strongly that a high abundance of the dinucleotide CpG is a key precondition for the for-
mation of bivalent chromatin.

A possible mechanism for recruitment of H3K4me3 involves DNA binding by H3K4 methyltrans-
ferases, each of which is associated with a CpG-binding CXXC domain. In Mll1 and Mll2 the DNA 
binding domains are within the SET-containing protein themselves (Allen et al., 2006; Cierpicki et al., 
2010), whereas in the case of Set1/COMPASS the CXXC domain resides in the Cfp1 protein compo-
nent of the multi-subunit complex (Lee and Skalnik, 2005). The H3K4me3 component of bivalent 
CGIs in ESCs depends on Mll2 (Hu et al., 2013; Denissov et al., 2014). Accordingly, we have found 
that bivalent CGIs form normally in Cfp1−/− ES cells. Since the binding of the CXXC domain to CpG 
is abolished by methylation of the cytosine moiety (Lee et al., 2001), this may explain why DNA 
methylation prevents the formation of H3K4me3 even in the presence of high CpG densities. The 
mechanism responsible for recruiting PRC2, which is the complex responsible for the establishment 
of H3K27me3, remains uncertain, as no CpG binding component of PRC2 has yet been detected. 
(Thomson et al., 2010; Hu et al., 2013; Wu et al., 2013). A recent study, however, indicates that the 
CXXC-domain protein KDM2B can target the PRC1 complex to CGIs and recruit PRC2 secondarily, 
which would accord with our findings (Blackledge et al., 2014).

Bivalent chromatin has attracted attention due to the proposal that it represents a poised tran-
scriptional state in pluripotent cells (Bernstein et al., 2006; Voigt et al., 2013). It is suggested that 
the poised state is resolved during differentiation as the affected gene becomes either transcription-
ally activated or repressed. Recent evidence has clearly established that H3K27me and H3K4me can 
be present on the same nucleosome, albeit on different histone tails (Voigt et al., 2012). The biolog-
ical significance of bivalent chromatin has recently become less certain, however. Whereas silent CGI 
promoters in ESCs grown in serum usually exhibit a bivalent chromatin structure, this chromatin con-
figuration is significantly reduced in 2i medium, which discourages differentiation and is thought to 
induce a more pronounced pluripotent state (Marks et al., 2012). Also, cells in which the histone 
methyltransferase Mll2 is depleted lose H3K4me3 at hitherto bivalent CGIs, but this has no detectable 
effect on the induction kinetics of the associated genes upon differentiation (Hu et al., 2013). The 
evidence remains inconclusive, but it raises the possibility that bivalency is not an essential precondi-
tion for gene activation during differentiation. Here we find that bivalency is not confined to poised 
developmental genes but is a default response to any CpG-rich DNA sequences, even when these are 
completely artificial. It is apparent from this that the bivalent chromatin structure is not reserved for 
developmentally important genes, but is a response to general features of local DNA sequence.

Bulk mammalian DNA has a base composition of 40% G + C and is globally methylated at CpGs 
to an average level of ∼65%, whereas G + C-rich CGIs are usually DNA methylation-free. The transfec-
tion experiments reported here recapitulate this distinction as G + C-rich CGI-like DNA reproducibly 
resisted DNA methylation, whereas A + T-rich DNA reliably became densely methylated. Our findings 
raise the possibility that this broadly binary pattern of global DNA methylation may be determined by 
base composition. CpG density did not affect this susceptibility to methylation, which occurred even 
when CpG occurred at densities typical of endogenous CGIs. Two simple alternative explanations 
are possible: either A + T-rich DNA attracts de novo methylation, or G + C-richness excludes it, leav-
ing the bulk genome to be methylated by default. Both Dnmt 3L and Dnmt 3A have the potential to 
be repelled by H3K4me3 (Jia et al., 2007; Ooi et al., 2007), suggesting that recruitment of H3K4 
methyltransferases with CpG-binding CXXC domains protects CGIs against de novo methylation. We 
find, however, that A + T-rich CpG-rich sequences are reproducibly DNA methylated despite their 
ability to attract H3K4me3 when DNA methylation is absent. Since these sequences were initially 
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non-methylated when transfected into cells, it may be that H3K4me3 alone is not sufficient to exclude 
CpG methylation from these regions. This would accord with our previous observation that a moder-
ately G + C-rich artificial CGI when inserted into ES cells was extensively methylated despite the 
presence of H3K4me3 on non-methylated copies (Thomson et al., 2010). Alternatively, A + T-rich 
CpG-rich sequences may attract H3K4me3 less robustly than G + C-rich CGIs, thereby allowing access 
to de novo DNA methyltransferases.

The CGI phenomenon is conserved throughout the vertebrate lineage, but interestingly the  
G + C-richness characteristic of mammalian and bird CGIs is not seen in some vertebrate groups (Long 
et al., 2013). Fish for example have non-methylated CGI-like sequences at promoters, but these are 
not markedly G + C-rich compared with the bulk genome (Cross et al., 1991; Long et al., 2013). Since 
A + T-rich sequences are susceptible to de novo DNA methylation in mammals, it follows that some 
vertebrate groups may rely on a different set of mechanisms to prevent methylation at G + C-poor 
CGIs. Identifying potential components that discriminate between mammalian CGIs and the bulk 
genome is a priority for future work.

Materials and methods
Mouse ES cell lines
ES cells were grown in gelatinized dishes in Glasgow MEM (Gibco, UK) supplemented with 15% fetal 
bovine serum (Hyclone; Fisher Scientific, UK), 1% sodium pyruvate, 1% non-essential amino acids, 
0.1% β-mercaptoethanol, 100U/ml penicillin, 100 μg/ml streptomycin and leukemia inhibitory factor 
(LIF). E14TG2a ES cells were used as wild-type ES cells. Cfp1−/− cells were a gift from David Skalnik 
and have been described previously (Carlone et al., 2005). Dnmt 3a/3b double knock out mouse 
ESC (DKOs) were as described (Okano et al., 1999). TC1-mES cells (a gift from Dr Ann Dean) with 
the hygromycin/thymidine kinase cassette in the β-globin locus (Lienert et al., 2011) were used for 
recombination-mediated cassette exchange. Cfp1-GFP tagged mouse ES cells have been described 
(Denissov et al., 2014). This integrated BAC contains the whole Cfp1 gene with regulatory elements 
and GFP fused to the last codon of to create a C-terminal GFP tag.

Recombineering
Custom Perl scripts were used to create random sequences with specific frequencies of CpG, G + C 
content and length (https://github.com/swebb1/cpg_tools). Supplementary file 1 lists the CGI-like 
sequences used in this study. Artificial DNAs were synthesised (GeneArt; Life Technologies, UK) and 
cloned into a plasmid containing a selection cassette and homology arms for recombineering. 
CGI-constructs were introduced into human gene desert BACs by recombineering using the Red/ET 
system by Gene Bridges (Germany). Briefly, bacteria containing the gene desert BAC of interest (gene 
desert 1 mChr1:81,106,616-81,153,886 or gene desert 2 mChr18:36,042,881-36,175,341) were culti-
vated in LB medium plus chloramphenicol at 37°C o/n. On the next day 40 ng Red/ET plasmid were 
electroporated (1350 V, 10 μF, 600 Ohms) into the cells containing the BAC and incubated in LB con-
taining chloramphenicol and tetracycline at 30°C for at least 15hr. Next day 50 μl of 10% L-arabinose 
were added to induce the expression of the Red/ET recombination proteins and samples were 
incubated at 37°C for 1h. Cells were electroporated with 200–300 ng of linearized DNA containing 
the CGI-like sequence, a kanamycin selection cassette and homology arms. Cells were re-suspended 
in 1 ml of SOC medium and recovered for 1–2h at 37°C. Cells were plated on plates containing 
chloramphenicol and kanamycin. Plates were incubated at 37°C o/n. Colonies were screened by colony 
PCR and control digests for successful recombination. The linearized BAC containing the CGI-like 
constructs and a selection cassette was used for transfection of mESCs.

ES cell transfection
Linearized BAC DNA (0.5–2 μg) containing the CGI-like sequences and a selection cassette flanked by 
Frt sites was used to transfect 60% confluent mouse ESC growing in a 6-well plate using Lipofectamine 
LTX Plus (Invitrogen, UK). DNA was made up with OptiMem (Gibco, UK) to 500 μl, 2.5 μl PLUS reagent 
were added and incubated for 5 min at RT. Afterwards 6.25 μl Lipofectamine were added, incubated 
for 30 min at RT and added to the ES cells. Cells were split in a range of different ratios (10–0.1% 
of transfected cells) 24hr after transfection and plated onto 10 cm2 dishes. Next day, selection medium 
containing the appropriate antibiotic (G418 250 μg/ml or Blasticidin 3 μg/ml) was added and cells 
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were grown until colonies were ready to be picked. Clones were analysed for incorporation of the 
constructs by PCR and 2–3 independent clones with low copy number integration were selected for 
the excision of the selection cassette. Circular plasmid (50 μg) containing a eukaryotic expression cas-
sette for Flp or Dre were added to 2 × 107 cells and electroporated at 250 V and 500 μF using a BioRad 
electroporator (GenePulser Xcell; Biorad, UK). Cells were left to recover for 20 min at RT and seeded at 
different dilutions. Next day 0.8 μg/ml puromycin were added for 48hr and cells were cultured until 
colonies were big enough for picking. Successful excision was confirmed by Southern blotting. Artificial 
CGIs for insertion into the beta-Globin locus via recombination mediated cassette exchange were 
synthesised (GeneArt) with flanking inverted loxp sites and cloned into pBSIISK+ and electroporated 
into TC-1 ES cells carrying a Hygromycin/Thymidine Kinase double selection cassette in the beta-
Globin locus (Lienert et al., 2011). Cells (4 × 106) were pre-selected with hygromycin for 10 days, 
electroporated with 25 µg L1-artificial CGI-1L construct and 20 µg pCAGGS-Cre and selection for 
positive clones with 3 µm Ganciclovir was started 2 days after electroporation and continued for 8–10 days. 
Clones were tested for successful insertion of artificial CGIs by PCR screen and Southern Blot. For 
differentiation of mESC into neural precursors cells were plated (4 × 106 cells/dish) in 15 ml EB medium 
(ES cell medium with 10% FBS and no LIF). After 4 days in EB medium trans-retinoic acid (Sigma, UK) 
was added to start neuronal differentiation. Medium was changed every 2 days. On day 8 EBs were 
disrupted, trypsinized and used for formaldehyde crosslinking.

Chromatin immunoprecipitation
Chemical crosslink of chromatin was performed for 10 min at room temperature by addition of form-
aldehyde to a final concentration of 1%. Crosslinking was stopped by addition of glycine to a final 
concentration of 0.125 mM. After 5 min incubation cells were washed twice with ice-cold 1× PBS. 
If acetylation was examined, sodium butyrate was added to the PBS. Cells were centrifuged for 5 min 
at 330×g at 4°C and washed once in wash buffer A (0.25% Triton X-100, 10 mM EDTA pH 8.0, 0.5 mM 
EGTA pH 7.5, 10 mM, HEPES pH 7.5) and B (0.2M NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 7.5, 
10 mM HEPES pH 7.5). Each buffer contained PMSF to a final concentration of 1 μg/ml, 1× Proteinase 
Inhibitor Complete Mix (Roche, UK) and 10 mM sodium butyrate. Cells were re-suspended in lysis 
buffer (20% SDS, 0.5 M EDTA, 1 M Tris pH 8.1, 1× complete protease inhibitors, 1 μg/ml PMSF, 10 mM 
sodium butyrate). Chromatin was sheared to 400–600 base pair fragments by sonication of the cell 
lysate using a twin Bioruptor (Diagenode, Belgium) for 15 cycles, 30 s on, 30 s off on high setting. 
The lysate was centrifuged for 10 min at 16,000×g at 4°C to collect cellular debris. Chromatin concen-
tration was measured on a Nanodrop spectrophotometer. Chromatin (30 μg or 100 μg) was used for 
ChIP with antibodies against histone modifications or other proteins. For the ChIP, chromatin was 
made up to 100 μl with lysis buffer and 900 μl of dilution buffer (20 mM Tris–HCl, pH 8, 150 mM 
NaCl, 1% Triton X-100, 1 mM EDTA) were added. Antibodies were added as specified and samples 
were incubated o/n at 4°C on a rotating wheel. The next day debris was removed by centrifugation for 
5 min at 16,000×g and 50 μl dynabeads protein G (Life Technologies, UK) were added to the supernatant 
of the IPs and samples were incubated on a rotating wheel for 2 hr at 4°C. IPs were washed 3× with 
1 ml ice-cold wash buffer 1 (20 mM Tris–HCl, pH 8, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 
0.1% SDS), 2× with ice-cold wash buffer 2 (20 mM Tris–HCl, pH 8, 500 mM NaCl, 1% Triton X-100, 
1 mM EDTA, 0.1% SDS) and 1× with ice-cold TE. 100 μl or 50 μl of freshly prepared 10% Chelex 
100 Resin (100–200 mesh, BioRad) were added to samples or input respectively. Samples were 
boiled for 12 min, cooled to RT. Proteinase K (2 μl of 20 mg/ml) was added and incubated at 55°C 
for 30 min while shaking. After heating to 100°C, samples were spun down and 60 μl supernatant 
were transferred to fresh tubes. Each sample was made up to 300 μl total volume with 10 mM Tris 
pH 8, 0.1 mM EDTA and assayed by q-PCR.

qPCR
Supplementary file 1 lists the qPCR primers used in this study. qPCR was used to assess enrichment 
of specific regions in ChIP samples and to determine the copy number of BAC DNA inserted into the 
mouse genome. qPCR reactions (10 μl) contained SYBR Green SensiMix (Bioline, UK), 250 nM primers 
and 3 µl ChIP DNA or 100 ng DNA for the determination of copy numbers. PCR was carried out using 
a Roche Lightcycler and cycling conditions were as follows; initial denaturation at 94°C for 10 min followed 
by 45 cycles of denaturation at 94°C for 10 s, primer annealing for 10 s and primer extension at 72°C 
for 15 s. Using the Roche Lightcycler software, SYBR Green fluorescence measurements were plotted 
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relative to cycle number and the 2nd derivative maximum method was used to determine the cycle 
threshold values (Ct) for each sample. Values for duplicate of triplicate ChIP samples were calculated 
as %-input and copy number of artificial CGIs was assessed relative to Sox2 qPCR signal.

Antibodies
α-H3K4me3 (Abcam[UK]-8580), α-H3K4me1(Abcam-8895), α-H3K27me3 (Millipore[UK]-07-449), 
α-H3K9/K14ac (Abcam 12,179), α-H3 (Abcam 1791), α-SUZ12 (Abcam 12,073-100), α-RNA Pol II N20 
(Santa-Cruz[UK] 899), α-RNA Pol II S5P (Abcam 5131), α-RNA Pol II unphosphorylated CTD (Abcam 817), 
α-GFP (Chromotec [Germany] GFP-TRAP-A gta-20), α-IgG (Invitrogen 10500C).

Bisulfite genomic sequencing
Bisulfite conversion of genomic DNA was carried out using the EpiTect Bisulfite Kit from Qiagen (UK). 
The converted DNA was used for PCR amplification of regions of interest, Supplementary file 2 lists 
the CGI-like sequences used in this study. PCR products were gel-purified and cloned using the 
Stratagene blunt end cloning kit. Positive clones were sent for sequencing.

Acknowledgements
We thank Ann Dean, Dirk Schubeler and David Skalnik for sharing cell lines, Sukhdeep Singh for bio-
informatic insights and Martha Koerner, Matt Lyst and Sabine Lagger for critical comments on the 
manuscript. The work was supported by Grants from the Wellcome Trust (WT091580, WT84637, 
WT092076). E.W. was funded by a Wellcome Trust 4 year PhD studentship (WT086659). T.Q. holds a 
Marie Curie fellowship.

Additional information

Funding

Funder Grant reference number Author

Wellcome Trust  WT091580 Elisabeth Wachter, Timo Quante, 
Cara Merusi, Aleksandra Arczewska, 
Shaun Webb, Adrian Bird

Marie Curie Fellowship 627442 ATRUN Timo Quante

Wellcome Trust  WT086659 Elisabeth Wachter

Wellcome Trust  WT092076 Elisabeth Wachter, Timo Quante, 
Cara Merusi, Aleksandra Arczewska, 
Shaun Webb, Adrian Bird

Wellcome Trust  WT84637 Elisabeth Wachter, Timo Quante, 
Cara Merusi, Aleksandra Arczewska

The funders had no role in study design, data collection and interpretation, or the  
decision to submit the work for publication.

Author contributions
EW, TQ, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revis-
ing the article; CM, AA, Acquisition of data, Analysis and interpretation of data, Drafting or revising the 
article; FS, Analysis and interpretation of data, Drafting or revising the article, Contributed unpub-
lished essential data or reagents; SW, AB, Conception and design, Analysis and interpretation of data, 
Drafting or revising the article

Additional files
Supplementary files
• Supplementary file 1. CGI-like DNA sequences.
DOI: 10.7554/eLife.03397.014

• Supplementary file 2. Primers.
DOI: 10.7554/eLife.03397.015

http://dx.doi.org/10.7554/eLife.03397
http://dx.doi.org/10.7554/eLife.03397.014
http://dx.doi.org/10.7554/eLife.03397.015


Genes and chromosomes

Wachter et al. eLife 2014;3:e03397. DOI: 10.7554/eLife.03397 15 of 16

Research article

References
Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM, Freund SM, Bycroft M, Warren AJ. 2006. 

Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone 
methyltransferase. The EMBO Journal 25:4503–4512. doi: 10.1038/sj.emboj.7601340.

Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, 
Merkenschlager M, Fisher AG. 2006. Chromatin signatures of pluripotent cell lines. Nature Cell Biology 
8:532–538. doi: 10.1038/ncb1403.

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, 
Wagschal A, Feil R, Schreiber SL, Lander ES. 2006. A bivalent chromatin structure marks key developmental 
genes in embryonic stem cells. Cell 125:315–326. doi: 10.1016/j.cell.2006.02.041.

Bird AP. 1986. CpG-rich islands and the function of DNA methylation. Nature 321:209–213. doi: 10.1038/321209a0.
Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y, 

Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ. 2014. Variant PRC1 complex-
dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157:1445–1459. 
doi: 10.1016/j.cell.2014.05.004.

Blackledge NP, Klose R. 2011. CpG island chromatin: a platform for gene regulation. Epigenetics 6:147–152. 
doi: 10.4161/epi.6.2.13640.

Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ. 2010. CpG islands recruit a histone  
H3 lysine 36 demethylase. Molecular Cell 38:179–190. doi: 10.1016/j.molcel.2010.04.009.

Carlone DL, Skalnik DG. 2001. CpG binding protein is crucial for early embryonic development. Molecular and 
Cell Biology 21:7601–7606. doi: 10.1128/MCB.21.22.7601-7606.2001.

Carlone DL, Lee JH, Young SR, Dobrota E, Butler JS, Ruiz J, Skalnik DG. 2005. Reduced genomic cytosine 
methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. 
Molecular and Cellular Biology 25:4881–4891. doi: 10.1128/MCB.25.12.4881-4891.2005.

Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M, Shultis DD, Zeleznik-Le NJ, 
Bushweller JH. 2010. Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 
leukemia. Nature Structural & Molecular Biology 17:62–68. doi: 10.1038/nsmb.1714.

Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik D, Bird A. 2012. Cfp1 integrates 
both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes & 
Development 26:1714–1728. doi: 10.1101/gad.194209.112.

Cross S, Kovarik P, Schmidtke J, Bird AP. 1991. Non-methylated islands in fish genomes are GC-poor. Nucleic 
Acids Research 19:1469–1474. doi: 10.1093/nar/19.7.1469.

Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes & Development 25:1010–1022. 
doi: 10.1101/gad.2037511.

Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF. 
2014. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is 
redundant. Development 141:526–537. doi: 10.1242/dev.102681.

Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW, 
Koseki H, Brockdorff N, Ponting CP, Kessler BM, Klose RJ. 2012. KDM2B links the Polycomb Repressive 
Complex 1 (PRC1) to recognition of CpG islands. eLife 1:e00205. doi: 10.7554/eLife.00205.

Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, Cook SJ, Andrews S, 
Branco MR, Reik W. 2013. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the 
epigenetic ground state of pluripotency. Cell Stem Cell 13:351–359. doi: 10.1016/j.stem.2013.06.004.

Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. 2007. A chromatin landmark and transcription 
initiation at most promoters in human cells. Cell 130:77–88. doi: 10.1016/j.cell.2007.05.042.

Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH, Matarese F, Lepikhov K, Gut M, Brun-Heath I, Hubner NC, 
Benedetti R, Altucci L, Jansen JH, Walter J, Gut IG, Marks H, Stunnenberg HG. 2013. Whole-genome bisulfite 
sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 
13:360–369. doi: 10.1016/j.stem.2013.06.002.

Hu D, Garruss AS, Gao X, Morgan MA, Cook M, Smith ER, Shilatifard A. 2013. The Mll2 branch of the COMPASS 
family regulates bivalent promoters in mouse embryonic stem cells. Nature Structural & Molecular Biology 
20:1093–1097. doi: 10.1038/nsmb.2653.

Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, 
Bird AP. 2010. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLOS 
Genetics 6:e1001134. doi: 10.1371/journal.pgen.1001134.

Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. 2007. Structure of Dnmt3a bound to Dnmt3L suggests a 
model for de novo DNA methylation. Nature 449:248–251. doi: 10.1038/nature06146.

Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu Y, Boyle AP, Zhang QC, 
Zakharia F, Spacek DV, Li J, Xie D, Olarerin-George A, Steinmetz LM, Hogenesch JB, Kellis M, Batzoglou S, 
Snyder M. 2013. Extensive variation in chromatin states across humans. Science 342:750–752. doi: 10.1126/
science.1242510.

Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, Migliavacca E, Wiederkehr M, 
Gutierrez-Arcelus M, Panousis NI, Yurovsky A, Lappalainen T, Romano-Palumbo L, Planchon A, Bielser D, 
Bryois J, Padioleau I, Udin G, Thurnheer S, Hacker D, Core LJ, Lis JT, Hernandez N, Reymond A, Deplancke B, 
Dermitzakis ET. 2013. Coordinated effects of sequence variation on DNA binding, chromatin structure, and 
transcription. Science 342:744–747. doi: 10.1126/science.1242463.

http://dx.doi.org/10.7554/eLife.03397
http://dx.doi.org/10.1038/sj.emboj.7601340
http://dx.doi.org/10.1038/ncb1403
http://dx.doi.org/10.1016/j.cell.2006.02.041
http://dx.doi.org/10.1038/321209a0
http://dx.doi.org/10.1016/j.cell.2014.05.004
http://dx.doi.org/10.4161/epi.6.2.13640
http://dx.doi.org/10.1016/j.molcel.2010.04.009
http://dx.doi.org/10.1128/MCB.21.22.7601-7606.2001
http://dx.doi.org/10.1128/MCB.25.12.4881-4891.2005
http://dx.doi.org/10.1038/nsmb.1714
http://dx.doi.org/10.1101/gad.194209.112
http://dx.doi.org/10.1093/nar/19.7.1469
http://dx.doi.org/10.1101/gad.2037511
http://dx.doi.org/10.1242/dev.102681
http://dx.doi.org/10.7554/eLife.00205
http://dx.doi.org/10.1016/j.stem.2013.06.004
http://dx.doi.org/10.1016/j.cell.2007.05.042
http://dx.doi.org/10.1016/j.stem.2013.06.002
http://dx.doi.org/10.1038/nsmb.2653
http://dx.doi.org/10.1371/journal.pgen.1001134
http://dx.doi.org/10.1038/nature06146
http://dx.doi.org/10.1126/science.1242510
http://dx.doi.org/10.1126/science.1242510
http://dx.doi.org/10.1126/science.1242463


Genes and chromosomes

Wachter et al. eLife 2014;3:e03397. DOI: 10.7554/eLife.03397 16 of 16

Research article

Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, 
Adli M, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE. 2008. Genomewide analysis of 
PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLOS Genetics 4:e1000242.  
doi: 10.1371/journal.pgen.1000242.

Lee JH, Skalnik DG. 2005. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 
histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. The Journal of 
Biological Chemistry 280:41725–41731. doi: 10.1074/jbc.M508312200.

Lee JH, Voo KS, Skalnik DG. 2001. Identification and characterization of the DNA binding domain of CpG-
binding protein. The Journal of Biological Chemistry 276:44669–44676. doi: 10.1074/jbc.M107179200.

Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schubeler D. 2011. Identification of genetic elements that 
autonomously determine DNA methylation states. Nature Genetics 43:1091–1097. doi: 10.1038/ng.946.

Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grutzner F, Odom DT, Patient R, Ponting CP, 
Klose RJ. 2013. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA 
profiling in seven vertebrates. eLife 2:e00348. doi: 10.7554/eLife.00348.

Lynch MD, Smith AJ, De Gobbi M, Flenley M, Hughes JR, Vernimmen D, Ayyub H, Sharpe JA, Sloane-Stanley JA, 
Sutherland L, Meek S, Burdon T, Gibbons RJ, Garrick D, Higgs DR. 2012. An interspecies analysis reveals a key 
role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. The EMBO Journal 
31:317–329. doi: 10.1038/emboj.2011.399.

Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A, 
Stunnenberg HG. 2012. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 
149:590–604. doi: 10.1016/j.cell.2012.03.026.

McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, Lewellen N, Myrthil M, Gilad Y, Pritchard JK. 
2013. Identification of genetic variants that affect histone modifications in human cells. Science 342:747–749. 
doi: 10.1126/science.1242429.

Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS, Ku M, Bernstein BE. 2010. GC-rich sequence 
elements recruit PRC2 in mammalian ES cells. PLOS Genetics 6:e1001244. doi: 10.1371/journal.pgen.1001244.

Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo 
methylation and mammalian development. Cell 99:247–257. doi: 10.1016/S0092-8674(00)81656-6.

Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, 
Bestor TH. 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. 
Nature 448:714–717. doi: 10.1038/nature05987.

Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, 
Gaidatzis D, Tiwari VK, Schübeler D. 2011. DNA-binding factors shape the mouse methylome at distal 
regulatory regions. Nature 480:490–495. doi: 10.1038/nature10716.

Tanay A, O'Donnell AH, Damelin M, Bestor TH. 2007. Hyperconserved CpG domains underlie Polycomb-binding 
sites. Proceedings of the National Academy of Sciences of USA 104:5521–5526. doi: 10.1073/pnas.0609746104.

Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner 
DJ, Illingworth R, Bird A. 2010. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. 
Nature 464:1082–1086. doi: 10.1038/nature08924.

Voigt P, LeRoy G, Drury WJ III, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D. 2012. Asymmetrically 
modified nucleosomes. Cell 151:181–193. doi: 10.1016/j.cell.2012.09.002.

Voigt P, Tee WW, Reinberg D. 2013. A double take on bivalent promoters. Genes & Development 27:1318–1338. 
doi: 10.1101/gad.219626.113.

Wu X, Johansen JV, Helin K. 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and 
regulates H2A ubiquitylation. Molecular Cell 49:1134–1146. doi: 10.1016/j.molcel.2013.01.016.

http://dx.doi.org/10.7554/eLife.03397
http://dx.doi.org/10.1371/journal.pgen.1000242
http://dx.doi.org/10.1074/jbc.M508312200
http://dx.doi.org/10.1074/jbc.M107179200
http://dx.doi.org/10.1038/ng.946
http://dx.doi.org/10.7554/eLife.00348
http://dx.doi.org/10.1038/emboj.2011.399
http://dx.doi.org/10.1016/j.cell.2012.03.026
http://dx.doi.org/10.1126/science.1242429
http://dx.doi.org/10.1371/journal.pgen.1001244
http://dx.doi.org/10.1016/S0092-8674(00)81656-6
http://dx.doi.org/10.1038/nature05987
http://dx.doi.org/10.1038/nature10716
http://dx.doi.org/10.1073/pnas.0609746104
http://dx.doi.org/10.1038/nature08924
http://dx.doi.org/10.1016/j.cell.2012.09.002
http://dx.doi.org/10.1101/gad.219626.113
http://dx.doi.org/10.1016/j.molcel.2013.01.016

