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Structured Abstract 107 

INTRODUCTION 108 

The canine transmissible venereal tumour (CTVT) is a sexually transmitted cancer that 109 

manifests as genital tumours in dogs. This cancer first arose in an individual ‘founder dog’ 110 

several thousand years ago, and has since survived by transfer of living cancer cells to new 111 

hosts during coitus. Today, CTVT affects dogs around the world and is the oldest and most 112 

prolific known cancer lineage. CTVT thus provides a unique opportunity to explore the 113 

evolution of cancer over the long-term, and to track the unusual biological transition from 114 

multicellular organism to obligate conspecific asexual parasite. Furthermore, the CTVT 115 

genome, acting as a living biomarker, has recorded the changing mutagenic environments 116 

experienced by this cancer throughout millennia and across continents. 117 

RATIONALE 118 

To capture the genetic diversity of the CTVT lineage, we analysed somatic mutations 119 

extracted from the protein-coding genomes (exomes) of 546 globally distributed CTVT 120 

tumours. We inferred a time-resolved phylogenetic tree for the clone and used this to trace 121 

the worldwide spread of the disease and to select subsets of mutations acquired at known 122 

geographical locations and time-periods. Computational methods were applied to extract 123 

mutational signatures and to measure their exposures across time and space. In addition, we 124 

assessed the activity of selection using ratios of non-synonymous and synonymous variants. 125 

RESULTS 126 

The CTVT phylogeny reveals that the lineage first arose from its founder dog 4,000–8,500 127 

years ago, likely in Asia, with the most recent common ancestor of modern globally distributed 128 

tumours occurring ~1,900 years ago. CTVT underwent a rapid global expansion within the last 129 

500 years, likely aided by intensification of human maritime travel. We identify a highly specific 130 

mutational signature dominated by C>T mutations at GTCCA pentanucleotide contexts which 131 

operated in CTVT up until ~1,000 years ago. The number of mutations caused by ultraviolet 132 

light exposure is correlated with latitude of tumour collection, and we identify CTVTs with 133 

heritable hyperactivity of an endogenous mutational process. Several ‘driver’ mutation 134 

candidates are identified in the basal trunk of the CTVT tree, but there is little evidence for 135 

ongoing positive selection. Although negative selection is detectable, its effect is largely 136 

confined to genes with known essential functions, thus implying that CTVT predominantly 137 

evolves via neutral processes. 138 

CONCLUSION 139 

We have traced the evolution of a transmissible cancer over several thousand years, tracking 140 

its spread across continents and contrasting the mutational processes and selective forces 141 

that moulded its genome with those described in human cancers. The identification of a highly 142 

context-specific mutational process that operated in the past but subsequently vanished, as 143 
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well as correlation of ultraviolet light-induced DNA damage with latitude, highlight the potential 144 

for long-lived, widespread clonal organisms to act as biomarkers for mutagenic exposures. 145 

Our results suggest that neutral genetic drift is the dominant evolutionary force operating on 146 

cancer over the long-term, in contrast to the ongoing positive selection which is often observed 147 

in short-lived human cancers. The weakness of negative selection in this asexual lineage may 148 

be expected to lead to the progressive accumulation of deleterious mutations, invoking 149 

Muller’s Ratchet and raising the possibility that CTVT may be declining in fitness despite its 150 

global success. 151 

 152 

Abstract 153 

The canine transmissible venereal tumour (CTVT) is a cancer lineage that arose several 154 

millennia ago and survives by ‘metastasising’ between hosts via cell transfer. The somatic 155 

mutations in this cancer record its phylogeography and evolutionary history. We constructed 156 

a time-resolved phylogeny from 546 CTVT exomes and describe the lineage’s worldwide 157 

expansion. Examining variation in mutational exposure, we identify a highly context-specific 158 

mutational process that operated early but subsequently vanished, correlate ultraviolet-light 159 

mutagenesis with tumour latitude, and describe tumours with heritable hyperactivity of an 160 

endogenous mutational process. CTVT displays little evidence of ongoing positive selection, 161 

and negative selection is detectable only in essential genes. We illustrate how long-lived clonal 162 

organisms capture changing mutagenic environments, and reveal that neutral drift is the 163 

dominant feature of long-term cancer evolution. 164 

 165 

Introduction 166 

Transmissible cancers are malignant somatic cell clones that spread between individuals via 167 

direct transfer of living cancer cells. Analogous to the metastasis of cancer to distant tissues 168 

within a single body, transmissible cancers ‘metastasise’ as allogeneic grafts between 169 

individuals within a population (1). Such clones have been observed only eight times in nature, 170 

suggesting that they arise rarely; however, once established, transmissible cancers can 171 

spread rapidly and widely and persist through time (1, 2). Such cancers provide a unique 172 

opportunity to explore the evolution of cancer over the long-term, and to track the unusual 173 

biological transition from multicellular organism to obligate conspecific asexual parasite. 174 

 175 

The canine transmissible venereal tumour (CTVT) is the oldest and most prolific known 176 

contagious cancer (2, 3). It is a sexually transmitted clone that manifests as genital tumours 177 

in dogs. This cancer first arose from the somatic cells of an individual ‘founder dog’ that lived 178 

several thousand years ago (2). The cancer survived beyond the death of this original host by 179 

transfer of cancer cells to new hosts. Subsequently, this cancer has spread around the world, 180 
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and is a common disease in dog populations globally, although it declined and largely 181 

disappeared from many Western countries during the twentieth century due to the 182 

management and removal of free-roaming dogs (4). 183 

 184 

Similar to cancers that remain in a single individual, CTVT accumulates somatic mutations. 185 

These result from the activities of endogenous and exogenous mutational processes, and 186 

genetically imprint a cancer’s history of mutagenic exposures (5). Thus, the CTVT genome 187 

can be considered a living biomarker that records the changing mutagenic environments 188 

experienced by this cancer throughout millennia and across continents. Although most 189 

somatic mutations in cancer have no functional effect and are considered neutral ‘passenger’ 190 

mutations, a subset of mutations are positively selected ‘driver’ mutations that confer the 191 

proliferation and survival advantages that spur cancer growth (6). Ordinary cancers, which 192 

remain in a single host, often acquire additional driver mutations during tumour progression 193 

(7); however, it is unknown whether transmissible cancers that survive for hundreds or 194 

thousands of years similarly continue to adapt. It seems possible that the evolution of long-195 

lived cancers such as CTVT may instead be dominated by negative selection acting to remove 196 

deleterious mutations. Finally, in addition to recording a history of exposures and signatures 197 

of selection, somatic mutations provide a tool for tracing CTVT phylogeography, potentially 198 

revealing how dogs, together with humans, moved around the world over the last centuries. 199 

Here, we use somatic mutations extracted from the protein-coding genomes (exomes) of 546 200 

globally distributed CTVT tumours to trace the history, spread, diversity, mutational exposures 201 

and evolution of the CTVT clone. 202 

 203 

CTVT phylogeny 204 

We sequenced the exomes (43.6 megabases, Mb; mean sequencing depth ~132×) of 546 205 

CTVT tumours collected between 2003 and 2016 from 43 countries across all inhabited 206 

continents (Data sets S1 and S2). Candidate somatic mutations were defined as single 207 

nucleotide variants (SNVs) or short insertions and deletions (indels) identified in one or more 208 

CTVT tumours, but not found in 495 normal dog exomes from the CTVT tumours’ matched 209 

hosts. This approach yielded 160,207 variants (148,030 SNVs, 3,392 per Mb; 12,177 indels, 210 

279 per Mb; Table S1). The features of this set, including its variant allele fraction distribution, 211 

phylogenetic structure, comparison with the distribution of private germline variants in the dog 212 

population, mutational signature composition, and non-synonymous to synonymous mutation 213 

ratio (details in (8)), suggest that it is very highly enriched for somatic mutations. However, 214 

some minimal germline variation may remain, possibly including rare germline variants from 215 

the founder dog and residual contaminating alleles from matched hosts. 216 

 217 
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We identified the subset of the candidate somatic mutations belonging to a clock-like 218 

mutational process (specifically, cytosine-to-thymine (C>T) substitutions at CpG sites (8, 9)), 219 

and used these to construct a time-resolved phylogenetic tree for the CTVT lineage (Fig. 1A). 220 

The mutation rate was inferred by applying a Bayesian Poisson model to previously 221 

ascertained empirical observations (10), and was estimated as 6.87×10–7 C>T mutations per 222 

CpG site per year (8). The topology of the CTVT phylogenetic tree reveals a long basal trunk 223 

(Fig. 1A), representing the chain of CTVT transmissions from its origin ~6,220 years ago (95% 224 

highest posterior density interval, HPDI, 4,148–8,508 years ago) to the earliest detected node 225 

~1,938 years ago (95% HPDI 993–3,055 years ago). This node splits a set of five tumours 226 

collected in India from the remaining population (groups labelled 57 and 58; Fig. 1A). The 227 

second and third most basal nodes (respectively ~1,004 years ago, 95% HPDI 497–1,570 228 

years ago, and ~829 years ago, 95% HPDI 424–1,310 years ago) separate sixteen tumours 229 

from Eastern Europe and the Black Sea region, and three tumours from Northern India, from 230 

the remaining set, respectively (groups labelled 54–56 and 1; Fig. 1A). Together with evidence 231 

that the founder dog shared ancestry with ancient dog remains recovered in North-East 232 

Siberia and North America (10), the CTVT phylogeny supports a model whereby CTVT 233 

originated ~4,000–8,500 years ago in Central or Northern Asia, and remained within the area 234 

for the subsequent 2,000–6,000 years. Starting less than ~2,000 years ago, CTVT escaped 235 

from its founding population, perhaps due to contact between previously isolated dog groups, 236 

and spread to several locations in Asia and Europe (Fig. 1B). 237 

 238 

The more recent history of CTVT is marked by rapid global expansion (11) (Figs. 1C and S1). 239 

CTVT was introduced to the Americas with early colonial contact (~500 years ago, 95% HPDI 240 

284–888 years ago), probably initially to Central America, and further into North and South 241 

America (red sublineage 1; Fig. 1, A and C). About 300 years ago, this sublineage spread out 242 

of the Americas in an almost polytomous global sweep which brought CTVT into Africa at least 243 

five times and re-introduced the disease to Europe and Asia (black sublineage 1; Fig. 1, A and 244 

C). In parallel, a second tumour sublineage spread out of Asia or Europe into Australia and 245 

the Pacific (sublineage 2; Fig. 1, A and D). This second sublineage is also detected in North 246 

America, and its tumours were introduced to Africa on at least two occasions. By ~100 years 247 

ago, CTVT was present in dog populations worldwide, establishing local lineages that have 248 

since remained largely in situ. The CTVT phylogeny thus suggests that dogs, together with 249 

their neoplastic parasites, were extensively transported around the world in the fifteenth to 250 

early twentieth centuries, probably via sea travel. 251 

 252 

Mutational processes in CTVT 253 
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The CTVT mutational spectrum, a representation of the six substitution types together with 254 

their immediate 5' and 3' base contexts, is dominated by C>T mutations, as previously 255 

described (12, 13) (Fig. 2A). Applying Markov chain Monte Carlo sampling on a Bayesian 256 

model of mutational signatures (8, 14), we extracted signatures of five mutational processes 257 

from the CTVT mutation load. These include three signatures that closely resemble COSMIC 258 

(15) signatures 1, 5 and 7 (Fig. 2B). These signatures, which have previously been described 259 

in CTVT (12), reflect endogenous mutational processes (signatures 1 and 5) and exposure to 260 

ultraviolet light (UV, signature 7) (5). A fourth signature displaying some similarity (cosine 261 

similarity 0.81) to COSMIC signature 2, which is associated with activity of APOBEC enzymes 262 

(5), was also detected (labelled signature 2*, Fig. 2B). 263 

 264 

The fifth signature extracted from CTVT does not resemble any previously described 265 

mutational pattern. This signature, which we designate signature A, is characterised by C>T 266 

mutations at NCC contexts and shows striking pentanucleotide sequence preference for 267 

GTCCA (TGGAC on the complementary strand; Figs. 2, B and C, and S2). This extended 268 

sequence preference is markedly more pronounced than previously reported pentanucleotide 269 

context biases, such as those associated with UV light or DNA polymerase epsilon deficiency 270 

(Fig. 2C) (16-18), and is not explained by the sequence composition of the canine exome (Fig. 271 

S3). It is possible that signature A’s causative mutagen is highly context-specific, or, 272 

alternatively, that this signature’s associated repair processes are ineffective at certain 273 

sequence contexts (‘repair shielding’) (19). In addition, signature A displays strong 274 

transcriptional strand bias, with more mutations of guanine on the untranscribed compared to 275 

the transcribed strand of genes, indicating that its causative lesion is likely a guanine adduct 276 

subject to transcription-coupled repair (TCR). Interestingly, the guanine-directed 277 

transcriptional strand bias of signature A at TCC contexts counteracts the cytosine-directed 278 

transcriptional strand bias of signature 7 at TCC, such that no overall transcriptional strand 279 

bias is observed at this context in the CTVT mutational spectrum (Fig. 2A).  280 

 281 

Using the CTVT phylogenetic tree to isolate subsets of mutations, we explored variation in 282 

mutational signature exposure across time and space (Figs. S4 and S5, and Data set S3). 283 

Remarkably, this revealed that signature A was highly active prior to ~2,000 years ago 284 

(causing ~35% of mutations in the basal trunk of the tree, branch A1), and persisted in parallel 285 

at lower levels in the two basal branches after the first node (~12% and ~9% of mutations in 286 

branches A2 and A3, respectively), but then abruptly vanished (Figs. 2C and S5). Importantly, 287 

signature A is not detectable within the germline of a global population of 495 dogs (Fig. S6). 288 

It is possible that signature A reflects the activity of an exogenous mutagen that was uniquely 289 

present in the environment that CTVT inhabited prior to its escape from its founding 290 
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population. Alternatively, it is plausible that signature A may result from an endogenous DNA-291 

damaging agent that occurred in CTVT cells early during the lineage’s history, but which 292 

ceased to accumulate from ~1,000 years ago, perhaps due to a cellular metabolic change. 293 

Although the nature of such a change is unknown, the replacement of possibly defective 294 

mitochondrial DNA by horizontal transfer, which likely occurred in parallel in branches A2 and 295 

A3 within the last ~1,690 years (11), may have altered the metabolic environment within CTVT 296 

cells. 297 

 298 

Although CTVT usually occurs within the internal genital tract, it may sometimes protrude from 299 

the genital orifice or spread to perineal skin, resulting in sporadic exposure to solar UV 300 

radiation (12, 13). The amount of UV radiation reaching the Earth, however, varies significantly 301 

across global environments (20). We investigated whether latitude influenced the degree of 302 

UV exposure in CTVT tumours by estimating signature 7 contribution within subsets of 303 

mutations acquired at known latitudes. Indeed, qualitative assessment of mutational spectra 304 

of location-specific CTVT mutation subsets suggests substantial variation in UV exposure; for 305 

example, the mutational spectra of tumours collected in Mauritius show considerably more 306 

evidence of signature 7 compared with those of tumours collected in Russia (Fig. S4). Using 307 

CC>TT dinucleotide mutations (21) as a proxy for signature 7 (Fig. S7), we identified a non-308 

linear association between latitude and UV exposure (Spearman’s correlation –0.40, 95% 309 

HPDI [–0.65, –0.14]; Fig. 2D). By fitting CC>TT mutations observed in the basal trunk of the 310 

CTVT tree to this curve, we estimated the latitude of the CTVT founder population (Fig. 2, D 311 

and E) (8). 312 

 313 

Examining the contribution of signature 5 across the CTVT lineage, we observed three 314 

independent phylogenetic groups of tumours that appear to have acquired signature 5-315 

hyperactivity phenotypes (groups labelled 12–16, 20 and 40; Figs. 2, F and G, S4 and S5). In 316 

one case, involving tumours collected in several South and Central American countries 317 

(groups 12–16), the phenotype has been maintained for ~150 years. This phenotype is likely 318 

to result from signature 5, and not from the double-strand DNA repair deficiency-mediated 319 

COSMIC signature 3, which presents a similar mutational profile (5, 22), as we failed to 320 

observe the enrichment for indels which co-occurs with signature 3 (22, 23). It is, however, 321 

possible that these tumours were exposed to another, as yet undescribed, mutational process. 322 

Signature 5 is widespread in cancer and normal tissues and has unknown aetiology, although 323 

it may be partly associated with endogenously generated adducts subject to nucleotide 324 

excision repair (5, 9, 18). We annotated non-synonymous mutations occurring in the three 325 

groups’ respective clonal ancestors, providing a catalogue of genes which may play a role in 326 

generation or suppression of signature 5 (Data set S4).  327 
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 328 

CTVT mutations and gene expression 329 

The prevalence of substitution mutations in CTVT decreases with increasing gene expression, 330 

likely reflecting the activity of TCR operating on DNA damage associated with signatures 7 331 

and A, as well as a signature 1 preference for genes with lower expression (16, 24, 25) (Fig. 332 

S8, A and B). We observed that exons have a higher substitution prevalence than introns, 333 

possibly due to sequence context (Figs. S8A and S9). The prevalence of indels is positively 334 

correlated with increasing gene expression, as has been observed in human cancers, and 335 

may reflect transcription-associated damage (26) (Fig. S8A). 336 

 337 

We assessed the contribution of TCR in two temporally distinct subsets of mutations: those 338 

acquired prior to the earliest detectable node in the phylogenetic tree (~8,500–2,000 years 339 

ago; branch A1 in Fig. 1A), and those acquired subsequent to this node (~2,000 years ago to 340 

present). Interestingly, although C>T mutations acquired at TCC contexts in highly expressed 341 

genes in branch A1 have little strand bias, likely due to the opposing transcriptional strand 342 

preferences of signatures 7 and A at this context, those genes with very low expression 343 

predominantly show the transcriptional strand bias associated with signature A (Fig. S8C). 344 

Assuming that the transcriptional strand bias observed in these low-expressed genes reflects 345 

earlier expression and subsequent silencing of genes, this suggests that there may have been 346 

an early period in CTVT evolution when the lineage was exposed to signature A more intensely 347 

than it was to signature 7. This may reflect variation in the climate or environment to which 348 

CTVT was exposed early in its history. 349 

 350 

Selection in CTVT 351 

CTVT has a massive mutation burden, which exceeds that observed in even the most highly 352 

mutated human cancer types (Fig. 3A). Each CTVT tumour carries on average 37,800 SNVs 353 

across its predominantly diploid (12) exome (~2 million SNVs genome-wide; Table S2). 354 

Indeed, the tally of somatic mutations that have accumulated in CTVT since it departed its 355 

original host is comparable with the number of germline variants that distinguish some pairs 356 

of outbred dogs (Fig. S10). Within the set of 546 tumours, 14,412 (~73%) protein-coding genes 357 

carry at least one non-synonymous mutation, and 5,704 (~29%) have mutations predicted to 358 

cause protein truncation (Fig. 3B). 359 

 360 

We searched for evidence of positive selection in CTVT. The driver mutations which initially 361 

caused CTVT, and which promoted its transmissible phenotype, will have occurred in the 362 

basal trunk of the CTVT tree. SETD2, CDKN2A, MYC (previously described (12)), PTEN and 363 

RB1, known cancer genes that frequently harbour driver mutations in human cancers (15), 364 
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carry biallelic loss-of-function or potential activating mutations in the trunk and may be early 365 

drivers of CTVT (Fig. 3C and Table S3). To search for late drivers, which may have been 366 

acquired in more recent parallel CTVT lineages, we identified independent mutations that 367 

occurred repeatedly across the tree, and measured the normalised ratio of non-synonymous 368 

to synonymous mutations (dN/dS) per gene after correcting for mutational biases and context 369 

effects (8). This approach only yielded two uncharacterised genes with dN/dS > 1 (q-value < 370 

0.05), predicted to encode a neuroligin precursor and a roundabout homologue (Data set S5). 371 

The potential for these genes to act as late drivers in CTVT cannot be assessed, and it is 372 

possible that local sequence structures may result in higher than expected recurrent mutation 373 

rates at these loci (27). Overall, we find little evidence that CTVT is continuing to adapt to its 374 

environment. 375 

 376 

Negative selection, which acts to remove deleterious mutations, is very weak in human 377 

cancers (17, 28, 29). Human cancers have short life-spans, and their evolution is dominated 378 

by sweeps of strong positive selection, thus reducing the potential for negative selection to act 379 

(17). Given its long life-span, high mutation burden and lack of ongoing positive selection, it is 380 

possible that negative selection may be a more dominant force in CTVT evolution. Further, 381 

unlike in ordinary cancers, in CTVT inter-tumour competition may offer more opportunities for 382 

negative selection to manifest, purging lineages less able to infect new hosts and spread 383 

through the host population. Indeed, negative selection has been detected operating on CTVT 384 

mitochondrial genomes (11). Our analysis of dN/dS in CTVT across all genes, however, 385 

yielded dN/dS ≈ 1 for both missense and nonsense mutations, indicating near-neutral 386 

evolution (Fig. 3D and Data set S5). Similarly, dN/dS did not differ from neutrality in genes 387 

categorised by expression level (Fig. 3D). Negative selection, acting both on missense and 388 

nonsense mutations, could be detected, however, in sets of genes with known essential 389 

functions (Fig. 3D), and was particularly pronounced for nonsense mutations in essential 390 

genes occurring in haploid regions (dN/dS = 0.33, p-value < 10–4). A slight signal of negative 391 

selection acting on nonsense mutations in haploid regions (dN/dS = 0.88, p-value = 0.027) is 392 

explained by 269 essential genes, as negative selection was not detected after removal of 393 

these genes (Fig. 3D and Data set S5). These results imply that CTVT largely evolves via 394 

neutral genetic drift. This may partly reflect functional obsolescence of many mammalian 395 

genes in this relatively simple parasitic cancer, as well as the buffering effect of CTVT’s largely 396 

diploid genome (12). However, it is also likely that transmission bottlenecks between hosts 397 

render weak selection inefficient. This may be expected to lead to the progressive 398 

accumulation of deleterious mutations in the population (Muller’s ratchet) (30), raising the 399 

possibility that CTVT may be declining in fitness despite its global success. 400 

 401 
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Discussion 402 

Studies of cancer evolution typically focus on how malignant clones alter during the first years, 403 

or perhaps decades, of their existence. We have tracked the evolution of a cancer over several 404 

thousand years, and compared the mutational processes and selective forces that moulded 405 

its genome with those described in short-lived human cancers.  406 

 407 

Our results suggest that neutral genetic drift may be the dominant evolutionary force operating 408 

on cancer over the long-term, in contrast to the ongoing positive selection which is often 409 

observed in human cancers (7, 17). Thus, our results suggest that CTVT may have optimised 410 

its adaptation to the transmissible cancer niche early. Subsequently acquired advantageous 411 

mutations may have offered incremental change of minimal benefit, such that they were 412 

insufficient to overcome the neutral effects of drift. Importantly, since the 1980s, CTVT has 413 

been routinely treated with vincristine, a cytotoxic microtubule inhibitor (31). Despite the strong 414 

selection pressure imposed by vincristine treatment, we find no evidence of convergent 415 

evolution of vincristine resistance mechanisms in CTVT at the level of point mutations or 416 

indels. 417 

 418 

The mechanisms whereby CTVT is tolerated by the host immune system, despite its status 419 

as an allogeneic graft, are poorly understood (32, 33). The weakness of negative selection 420 

beyond genes essential for cell viability implies that there are negligible selective pressures 421 

imposed via immunoediting of somatic neoepitopes at a genome-wide level. This is perhaps 422 

unsurprising, given the massive antigenic burden already presented by allogeneic epitopes. 423 

These findings support evidence that CTVT largely circumvents the adaptive immune system, 424 

at least during its initial stages of progressive tumour growth, perhaps in part via down-425 

regulation of major histocompatibility complex molecules (13, 33-35). 426 

 427 

Our analyses reveal a mutational signature, signature A, which occurred in the past, but 428 

ceased to be active from about 1,000 years ago. Interestingly, a recent study (36) detected 429 

evidence for an excess of C>T mutations at TCC contexts, the mutation type most prevalent 430 

in signature A, accumulating in the human germline between 15,000 and 2,000 years ago. If 431 

this human mutation pulse is due to signature A, it could indicate a shared environmental 432 

exposure which was once widespread, but which has now disappeared. However, we find no 433 

evidence of an excess of C>T mutations at GTCCA pentanucleotides in the dog germline, 434 

suggesting that dogs as a whole were not systemically exposed to signature A in their past. 435 

Further research will be required to elucidate the biological origin of signature A and the 436 

mechanism of its striking pentanucleotide sequence bias; however, this study highlights the 437 
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potential for long-lived, widespread clonal organisms to act as biomarkers for the activity of 438 

mutational processes.  439 

 440 

Genomic instability and ongoing positive selection are often considered key hallmarks of 441 

carcinogenesis (37). CTVT does not have an intrinsically high point mutation rate (‘genomic 442 

instability’), at least at the level of SNVs, and its vast mutation burden simply reflects the 443 

lineage’s age. We find no clear evidence for continued positive selection beyond initial truncal 444 

events. Thus, CTVT illustrates that, once spawned and sufficiently well-adapted to its niche, 445 

neither hallmark is necessary to sustain cancer over the long term. 446 

 447 

CTVT is a remarkable biological entity. It is the oldest, most prolific and most divergent cancer 448 

lineage known in nature; it has spread throughout the globe and has seeded its tumours in 449 

many thousands of dogs. Here, we have traced this cancer’s route through the steppes of 450 

Asia and Europe and as an unwelcome stowaway on global voyages. We have observed the 451 

patterns in its mutational profiles reflecting the dynamics of its exogenous and endogenous 452 

environment. Further, we have shown that CTVT largely evolves via neutral processes, and 453 

that the mutations that it continues to acquire may pose a threat, rather than an advantage, to 454 

its long-term fitness. 455 

 456 
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 668 

Main figure legends 669 

Fig. 1. Phylogeny and geographical expansion of CTVT. (A) Time-resolved phylogenetic 670 

tree inferred from clock-like exonic somatic variation in CTVT. Each tip is a tumour and 671 

sampling locations are labelled. Numbers refer to phylogenetic groups displayed on maps in 672 

B–D. Sublineages 1 and 2, referred to in C and D respectively, are marked. Three groups of 673 

ancestral somatic variation (A1, A2, A3) and their respective numbers of single nucleotide 674 

variants (SNVs) are indicated. The estimated age of the CTVT founder tumour and the earliest 675 

detected node are indicated in years before present (BP), with grey error bars depicting 676 

Bayesian 95% HPDI. (B to D) Maps presenting likely routes of early (prior to ~500 years BP) 677 

and late (from ~500 years BP) expansion of CTVT. Numbered circles indicate the 678 

geographical locations of phylogenetic groups labelled in A; arrows represent inferred 679 

geographical movements. Circle and arrow colours indicate different sets of geographical 680 

movements, as labelled in A. Thin arrows indicate expansion routes for which there is limited 681 

phylogenetic evidence; dots without numbers denote tumours that are not represented in the 682 

tree. C.V., Cape Verde; Gr., Greece; Guat., Guatemala; Hond., Honduras; Ken., Kenya; Rom., 683 

Romania; Tan., Tanzania; Tur., Turkey. 684 

 685 

Fig. 2. Mutational processes in CTVT. (A) Trinucleotide-context mutational spectrum of 686 

somatic SNVs in a single CTVT tumour. Horizontal axis presents 96 mutation types displayed 687 

in pyrimidine context. Relevant trinucleotide mutation contexts are indicated. (B) Trinucleotide-688 

context mutational spectra of extracted mutational signatures 1, 5, 2*, A and 7, with relevant 689 

trinucleotide mutation contexts indicated. (C) Pentanucleotide-context mutational spectra of 690 

signature A (top) and signature 7 (bottom). Horizontal axis presents 256 C>T mutation types 691 

with relevant mutation contexts indicated. The inset tree shows the phylogenetic branches 692 

with exposure to signature A. (D) Bayesian logarithmic regression and Spearman’s correlation 693 

between absolute mean latitude and normalised CC>TT mutations in phylogenetic groups 694 

shown in Fig. 1A. Normalised CC>TT mutations represent the ratio between group-unique 695 
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CC>TT mutations and group-unique C>T changes at CpG dinucleotides. The black line and 696 

shadowed area indicate the regression curve and associated 95% HPDI. The orange dot and 697 

bars represent predicted absolute mean latitude and associated 90% prediction interval for 698 

the basal trunk ancestral variation (group A1). Posterior median and 95% HPDI of the 699 

correlation coefficient are shown. (E) Map showing the latitude range corresponding to the 700 

90% prediction interval for group A1, presented in D, in the northern hemisphere. (F) 701 

Trinucleotide-context mutational spectra of a phylogenetic tumour group showing evidence of 702 

signature 5 hyperactivity (top) and a closely related group without signature 5 hyperactivity 703 

(bottom). (G) Diagram indicating the phylogenetic situation of the tumour groups displaying 704 

signature 5 hyperactivity. 705 

 706 

Fig. 3. Selection in CTVT. (A) Somatic SNV prevalence across six human cancer types and CTVT. 707 

Dots represent individual tumours; red lines indicate median SNV prevalence. ALL, acute 708 

lymphoblastic leukaemia. (B) Bars showing the percentage of protein-coding genes in the CTVT 709 

genome harbouring ≥1 non-synonymous somatic mutation (SNV or indel; 14,412 genes) and ≥1 710 

somatic protein-truncating somatic mutation (5,704 genes). (C) Diagram presenting the putative 711 

driver events found in the set of basal trunk ancestral variants (group A1, Fig. 1A). A description of 712 

each somatic alteration is shown next to the corresponding gene symbol. (D) Exome-wide dN/dS 713 

ratios estimated for somatic SNVs in all protein-coding genes (left) and in sets of genes defined 714 

according to gene essentiality, copy number state and expression level. Estimates of dN/dS are 715 

presented for missense (blue) and nonsense (orange) mutations in each gene group. The dashed 716 

line indicates dN/dS = 1 (neutrality); error bars indicate 95% confidence intervals. 717 
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