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Maize is one of major crop species over the world. With lots of genetic resources and

genomic tools, maize also serves as a model species to understand genetic diversity,

facilitate the development of trait extraction algorithms and map candidate functional

genes. Since the first version of widely used B73 reference genome was released,

independent research groups in the maize community propagated seeds themselves for

further research purposes. However, unexpected or occasional contamination may

happen during this process. The first study in this thesis used public RNA-seq data of B73

from 27 research groups across three countries for calling single nucleotide

polymorphisms (SNP). Those SNPs were applied for investigating the distance of 27

maize B73 samples from the reference genome and three major clades were defined for

determining their original sources. On the other side, maize is a plant with clear plant

architecture. The second study was to employ the high-throughput plant phenotyping to

dissect plant phenotypes using computer vision methods. A total of 32 maize inbreds

distributed from the Genomes to Fields project were captured images in daily by 4 types

of cameras (RGB, Hyperspectral, Fluorescence and Thermal-IR) for approximate 1

month. Differences between computer vision measurements and manual measurements

about the plant fresh biomass were evaluated. Broad-sense heritability was estimated for

extracted measurements from images. The expanded types of plant phenotype from the

perspective of imaging provided a broader range of opportunities for connecting

phenotypic variants with genetic variants. The third study utilized the phenome-wide

variants in maize Goodman-Buckler 282 association panel to scan and associate with



genetic variants of annotated genes along the maize genome. Genes detected by the

proposed model, Genome-Phenome Wide Association Study (GPWAS), are significantly

different from conventional GWAS detected genes. GPWAS genes tend to be more

functionally conserved and more similar as classical maize mutants with known

functions. Results from these researches assist to answer question about the genetic

purity of same maize genotype. Methods developed in this thesis can also provide the

valuable reference for trait discoveries from images and candidate functional gene

identification using a broad set of phenotypes.
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PREFACE

The research discussed in Chapter 2 using RNA-seq data to investigate the genetic

identity of maize inbred B73 has been published in PloS one. (Liang Z and Schnable J.C.,

2016. PloS one, 11(6), p.e0157942)

The high-throughput plant phenotyping experiment and methods for processing

maize images discussed in Chapter 3 has been published in Gigascience. (Liang, Z.,

Pandey, P., Stoerger, V., Xu, Y., Qiu, Y., Ge, Y. and Schnable, J.C., 2017. GigaScience, 7(2),

p.gix117)

The theoretical model of Genome-Phenome Wide Association Study (GPWAS) and

its comparison with conventional Genome-Wide Association Study (GWAS) model

written in Chapter 4 has been published in preprint sever bioRxiv and is under

preparation for publication in official scientific journal. Liang, Z., Qiu, Y. and Schnable,

J.C., 2019. bioRxiv, p.534503)
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1

1:Literature Review

1.1 Introduction

The origins of maize genetics research can be traced back to Rollins A. Emerson in the

1900’s. One of the reasons maize emerged as an early genetic model is that maize

produces separate male and female flowers on separate reproductive structures, which

makes manual controlled crosses much more practical on a large scale than in many

species. As a result, a large number of progeny can be produced from an pair of parents

and complex studies of complementation, epistasis, and quantitative genetics are

particularly feasible in maize. Barbara McClintock, the winner of the 1983 Nobel Prize in

Physiology or Medicine, was recognized by her discovery of transposable elements in

maize.1 However, maize has also served as a model for addressing many other biological

questions, particularly in the fields of genetics, genome biology, selection, and evolution.

The closely evolutionary distances among maize and other grass species result from

shared conserved genomic regions, which enable syntenic analyses.2 Because of an

ancient whole genome duplication in maize, there are generally two co-orthologous

syntenic regions in maize which correspond to single regions in related grass species like

rice, foxtail millet, or sorghum.3–5 With added comparable species, this boosts the

statistical power to detect shared conserved information across species such as syntenic

genes,6 differentially regulated orthologs,7 and conserved non-coding sequences.8 At the

population level, abundant phenotypic and genotypic datasets from maize diversity and

association populations have been collected and stored in diverse public depositories

(PanZea, Cyverse, NCBI, Gramene). For example, in the PanZea
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(https://www.panzea.org/) database, agronomic traits such as grain yield, plant height

and flowering time have been measured and recorded across different environments for

individual genotypes in the maize 282 association panel.9 When combined with

published high density genotypic datasets, these resources enable researchers to connect

phenotype with genotype and determine potentially causal loci for traits of interest using

algorithms such as GWAS (Genome-Wide Association Study). Identifying candidate

loci/genes may narrow down the total annotated genes from∼40,000 to a much smaller

range. However, utilizing these public resources requires grappling with the twin

problems of missing data, and the potential for mislabeling or inconsistent genetics of

the same genetic line in different environments.

The thesis consists of three studies: 1) Using RNA-seq data to investigate the genetic

purity and consistency of the maize inbred B73, which is widely used in maize genetic

studies in many countries; 2) Generation and processing of high-throughput

phenotyping data from maize as a prelude to expanding the number of potential

phenotypes which can be efficiently measured; 3) The description and evaluation of a

new approach, the Genome-Phenome Wide Association Study (GPWAS) which I show

can identify functionally conserved genes.

1.2 Maize is a model species in genetics studies

1.2.1 Reference genome

B73 is the most commonly used variety in the maize community and was first registered

in 1972.10 With more erect leaf architecture and superior performance in grain yield, B73

was broadly used as a parental line for generating new varieties.10 The first version of the

B73 genome assembly was completed in 2009.11 This published genome accelerated

genomics research in maize. Raw sequenced reads could be aligned against this

reference genome to detect polymorphisms or infer gene expression levels in various

maize varieties. Different genetic backgrounds could also produce alignment
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mismatches or gaps. This could due to remaining heterozygous loci, large introgressions

of exotic genome, repetitive regions and distant genetic relationship with reference

genome. The first two issues could be avoided through careful investigation of the

genetic purity of input materials. In the maize genome, around 85% of the genome

consists of repetitive DNA.11 Of these 85% repetitive DNA, more than 75% maize genome

consists of LTR (Long Terminal Repeat) retrotransposons,11 ranging from several

hundreds of base pairs to tens of thousands of base pairs. The first version of maize

genome assembly was completed by Sanger sequencing. To reduce the cost of

sequencing, Illumina sequencing technology was developed to sequence millions of

short fragments in parallel and achieves high-throughput of sequence generation.

However, many genomic regions consist of repetitive sequences. Short reads will lead to

high computational cost to reveal sequences in these regions. The development of single

molecule sequencing extends the length of raw reads to more than 20kb.12 Using single

molecule technologies has produced better and more complete assemblies of

heterochromatic regions as seen in the fourth release of the B73 reference genome based

on PacBio sequencing.13 To increase the alignment rate between sequenced data

generated from diverse maize varieties and the reference genome, de novo genome

assemblies of multiple maize varieties representing different heterotic groups have been

produced14–16 (Table 1.1; Data source: MaizeGDB). Clearly understanding the genetic

distance between known samples and reference genome will boost the accuracy of

downstream analyzes, such as SNP calling, transposonal elements detection and

expression abundance determination per gene. Improved sequencing technologies have

made feasible the genome assembly of the 26 NAM (Nested Association Mapping)

founders feasible (a project currently being conducted by Matthew Hufford, an Associate

Professor working on evolutionary genomics and population genetics at Iowa State

University), seeks to capture as much of the diverse genetic background of maize

varieties as possible. More sequenced genomes will provide opportunities for researchers
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Table 1.1: Common maize inbred lines have been sequenced to date.

Sequenced Inbred Genome Released Time Sequencing Platform Genome
Coverage

B73 (AGPv1)11 2009 Sanger 4x-6x
CML24717 2016 Illumina 130x
PH20714 2016 Illumina 230x

B104
(Unpublished) 2017 Illumina 50x

Mo1715 2017 PacBio
Illumina >120x

B73 (AGPv4)13 2017 PacBio
Illumina 60x

W2216 2018 Illumina 210x

SK18 2019 PacBio
Illumina 166x

to identify high-confidence molecular markers with precise associations to phenotypes.

1.2.2 Molecular markers

Prior to the application of molecular markers to identify crop varieties, visible

phenotypes were used as markers to distinguish different plants. The "father of modern

genetics", Gregor Mendel, initially used visible traits such as pod color in garden peas to

discover the genetic basis of inheritance.19 Even in modern agricultural production,

using visible traits to evaluate breeding lines is still the most direct and efficient method

when selecting for straightforward traits. For example, PHW30 (a patent-off inbred) can

be easily distinguished from Mo17 (Non-Stiff Stalk), because of the distinct leaf

architecture.20 However, the genome sequence itself of a specific variety is the most

unique feature distinguishing from other varieties. Markers to dissect maize genotypes

such as RFLP (Restriction Fragment Length Polymorphism), SSR (Simple Sequence

Repeats) or AFLP (Amplified Fragment Length Polymorphism)21 require running a great

number of electrophoresis genes.

A SNP (Single Nucleotide Polymorphism) represents a specific genomic site within

a population where two or more different nucleotides are present in different individuals
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or haplotypes. Genotyping-By-Sequencing (GBS) involves digestion of DNA into small

fragments using restriction enzymes in order to obtain reads covering identical genomic

positions in each sequenced individual in a given population.22 Using GBS technology,

thousands of markers can be detected and imputed (i.e. LinkImpute,23 Beagle24) in each

inbred line in a given population. Genotypes of F1 hybrids can also be inferred using

genotypes from parental lines.25 Combined with recorded agronomic data, methods like

genomic selection (GS) can be employed to speed up the breeding and selection process.

However, the low coverage of GBS sequencing data limits its use in detecting variations

along the genome (i.e. gene regions, regulation regions) as well as structural variation.

Whole Genome Sequencing (WGS) provides much deeper coverage for studied samples.

For example, in maize, the recently completed Hapmap3 project gathered more than

1,200 individuals and performed resequencing which lead to the identification and

scoring of over 83 million polymorphisms along the chromosomes of maize.26 This

abundant resource of polymorphic markers in maize can be used in studies of

phenomena such as genotype-phenotype associations and the identification of

evolutionarily conserved sites in the genome.

1.2.3 Genetic sources

Maize is widely grown across various geographical locations and more than 13% of the

world’s total cropland is planted with maize.27 Maize lines are often grouped into

different categories such as NSS (Non-Stiff Stalk), SS (Stiff Stalk), TS (Tropical or

Semitropical), sweet corn and popcorn.28, 29 To utilize this diversity a large number of

populations have been generated by different research groups. To understand

associations between genetic loci and investigated traits, one of several widely used

approaches is to create bi-parental populations. Because of the segregation of large

blocks of parental haplotypes into progeny and the high frequently of the parental

haplotypes in the resulting population RIL populations are powerful to detect
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co-segregation signals with investigated phenotypes. In general, a single cross is

performed between two selected parental lines to produce F1 seeds. The segregation will

then occur after self-pollinating the F1. The Single Seed Descent (SSD) method is used to

propagate each single seed from F1 plants for the generation of RIL (Recombinant

Inbred Line) populations. However, this biparental population has a limited number of

generations for informative recombinations to occur and it can be hard to use these

populations for mapping a source of phenotypic variation to a precise genomic region.

This is where we stopped editing In order to break large haplotypes in a single line of RIL

population, the IBM (Intermated B73 x Mo17) population was generated by randomly

crossing F2 individuals with no prior phenotype targets.30 However, the biparental

population contains limited genetic variations and therefore only can map genes to a

certain number of traits. The effort spent on natural genetic resources collection brings

the opportunity of linking genomic variations with phenotypic variations at the single

nucleotide level. Since the first version of the B73 reference genome was published, a

broad set of applications of GWAS in maize has accelerated the process of revealing the

genetic architectures in a wide range of traits.17, 31–33 However, individuals in a GWAS

population share genetic relatedness. Many subpopulations are both genetically distinct

(i.e. have different allele frequencies for many markers) and have different average

values for a wide range of traits. Failing to control for the population structure will lead

to many false discoveries which actually associates with the population structure rather

than the studied trait (Figure 1.1A, B). The Nested Association Mapping (NAM)

population was designed to select 26 representative founders and produced 25 RILs

(Recombination Inbred Lines) with B73 after generations of propagation for dissecting

the genetic architecture of complex traits.34 However, to generate and maintain this

population, it requires a lot of effort. The progeny of each RIL shares pedigree from

parental lines but still produces sub-population structure in the NAM population. To

address the sub-population issue, the Multiple-parent Advanced-Generation Inter-Cross
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(MAGIC) was developed to create higher chances of recombination through genomes

using a multi-parental intermating strategy.35 With different research purposes, there

are a broad set of populations being generated. They are well maintained and stored by

organizations such as USDA, CIMMYT and Scuola Superiore Sant Anna (IT). These

materials can facilitate researches in the maize community.

1.3 Plant phenotyping

Plant genomes can be generated more efficiently than ever before. The number of

different maize lines with complete resequencing data is expanding expontentially and

the number of different maizde lines with independently assembled and annotated

reference genomes is beginning to follow the same trajectory. As a result, the number of

phenotypic measurements which can be realistically obtained is emerging as the new

limitation for plant biologists when they seek to explain the function, if any, of specific

genomic variants. Massive amounts of effort are invested in breeding new varieties

mainly targeted at specific traits like grain yield, plant height, flowering time or stress

resistance. However measuring these traits are time consuming and significant variance

can be present in measurements of individual plants or plots, necessitating large

replicated experiments with thousands or tens of thousands of individual

measurements. Using an unified criterion for measuring a specific phenotype of plants

is needed to standardize this process. On the other side, ways of defining and measuring

phenotypes have been generally accepted by the community for a long time. Given that

only around 1% of annotated genes have been functionally characterized in maize,36 it is

likely the way that we define a phenotype still has room for improvement. Other than

traditional phenotypes, the integration of interdisciplinary technologies and

collaborations bring opportunities to investigate phenotypic measurements, such as

intermediate phenotypes across plant development of stages, plant images captured by

broader wavelengths (i.e. hyperspectral cameras, infrared cameras), the same phenotype
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measured in different environments (GxE interactions or plasticity37, 38 contributes the

variation of the same trait for one genotype) and phenotypes at the molecular level (i.e.

gene expression, metabolites, nutrient content). Accurate measurements of these traits

provide a way to inspect genes having not only large effects but also subtle effects on the

investigated trait. Thus, there is potential to discover previously unknown gene

functions.

1.3.1 Automated and high-throughput plant phenotyping

High-throughput phenotyping (HTP) platforms are being developed to accurately

measure dynamic phenotypes not easily measured manually before. These include

traditional phenotypes such as seedling vigor, days to flowering time, and terminal plant

height. In addition to being relatively straightforward to define and measure, these traits

also have clear links to overall yield and plant performance. Given a population,

QTL-mapping or GWAS is widely adapted to explain these phenotypic variations.39–41 The

development of HTP is represented in both controlled environments and field

conditions. The utility of HTP can expand to phenotypes in higher dimensions. In

controlled environments, these expanded dimensions are mainly represented in three

aspects, 1) The single plant can be imaged from multiple side views, as well as the top

view. The combination of images for these angles can evaluate plant phenotypes from

3-D dimensions, which is helpful to get a more accurate estimation of traits such as

biomass; 2) HTP provides the way to trace plant development and capture images in

time-lapse;42, 43 3) Except for images taken by visible wavelengths, hyperspectral,

multispectral or infrared cameras can capture plant images from invisible bands.44

Overall, high-resolution cameras can generate a single image with summed pixels from

several millions of pixels to tens of thousands of pixels.45 The basic pipeline to process

these images is to extract plant pixels from background, then to perform binarization

and segmentation. To provide this pipeline, several kinds of software were developed
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(Table 1.2). These software process images to provide measured traits such as plant

height,46 root architecture,47 and ear length.48 From original measurements, potential

"traits" could also be derived through mathematical transformations (i.e. ratio between

traits,49 principal components50). The increase in the number of potential traits open

possibilities to investigate the limited number of variations of genetic markers, and

therefore understanding underlying functions of annotated genes. Also, different from

2D images, reconstructed 3D images can better reflect the volume of plant architecture

and therefore are more like real plants. Complex traits extracted from 3D images

demonstrated trait measurements, like leaf growth tracking,51 surface areas,52 whole

plant skeletonization53 and whole system architecture of the root.54 In field

environments, sensors installed on unmanned systems (i.e. unmanned aerial vehicle,

field based phenotyping robot) can score traits in a block of dozens of plants

simultaneously55 and give an average value.56 This technology can save labor during field

season and provide more accurate numeric values for phenotypic diversity

investigations. Many systems use RGB cameras which capture three sets of light

intensities per pixel to approximate the the way humans visually perceive the world.

However, other types of cameras or sensors are also used which can either more precisely

capture differences in light which would appear identical to the human eye or an RGB

camera and/or capture and measure light from wavelengths outside of the range

perceived by humans and RGB cameras (generally (380nm-740nm)). Values extracted

from hyperspectral images, a type of camera which measurement the intensity of many

more wavelengths of light than the human eye or an RGB camera can be used to

accurately predict the nutrient and water content of plants.57 In general, the

physiological changes of plants are not easily quantified. Based upon specific wavelength

signatures, level of responses to environmental stress could be more accurately

quantified44, 58 and associated with genetic variants. These nondestructive methods can

monitor dynamic changes of a single plant over time in a more efficient way.



10

Table 1.2: Examples of software developed for processing plant images

Software Implemented
Language Measured Organs/Task

PlantCV59 Python Whole above-ground plant traits
DIRT47 Python Root architecture

phytomorph48 MatLab Maize ear, cob and kernel
DeepPlantPhenomics60 Python Mutant classification, Leaf counting

3D modelling code51 R Tracking leaf growth
IAP50, 61 Java, R Plant morphological traits

1.3.2 Molecular phenotyping

Plant phenotypes are not limited to traits that can be measured visibly. The abundance of

expressed transcripts and metabolite compounds often act as intermediates between

genetic sequence variants and visible plant phenotypes. These invisible pathways can

change and potentially produce visible phenotypic changes. Understanding molecular

phenotypes prior to observations of conventional phenotypes could be used for

monitoring early response of plants to external stimuli or plant organ determinations.

Large-scale gene expression data could be collected from three aspects. The first is to

measure as many tissues as possible for a given genotype, like maize B73.62, 63 This type of

data could serve as a standard for evaluating gene expression levels comprehensively for

a given species. Second is to measure gene expressions of selected tissues in a large

number of diverse varieties. A recently published result in maize generated RNA-seq

data of 255 varieties in seven tissues.64 Produced expression levels of each individual

gene could be considered as a molecular trait and associated with genomic variants,

where introduced variants in transcription to better explain phenotypic consequences.

Thirdly, with the precise dissection of changes over time with a resolution of days or even

hours profiling transcript abundance in the same tissues at different time points aid in

understanding dynamic processes that occur during development or response to stress.

Yi et al.65 split maize seed development during first the six days into every four hours and

sequenced RNA samples, which provides higher resolution for gene functional
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classification based on time-course data. With applications of flow cytometry and

laser-capture microdissection, it becomes possible to isolate single cells from a tissue

and then perform single cell sequencing. Other than the traditional sequencing with

mixed cells in the analyzed tissue, single cell sequencing can distinguish information of

individual cells from a mixture. These more precise results generated from single cell

sequencing technology could monitor the dynamic and developmental changes of gene

expression, methylation modification and open chromatin.66, 67 Similar to sequencing

data, metabolic compounds are measured in comparable ways in maize.68 The rich set of

invisible phenotypic data at molecular levels expands possibilities to explain underlying

biological pathways in maize.

1.4 Genotype-phenotype association models

1.4.1 Early explorations in genotype-phenotype associations

Bridging gaps between genotypes and phenotypes is a consistent topic for plant

biologists to reveal underlying complex genetic mechanisms affecting observed

phenotypes. Francis Crick described the nbow well-known central dogma of biology in

1957.69 Proteins are encoded by genes. These proteins can form complex structures (i.e.

transcription factors, enzymes, hormones) and are involved in cellular processes in

various tissues that ultimately determine phenotype. This suggests that observed

phenotypes and genotypes are associated with each other. The initial approach to test

associations between individual molecular markers and individual qualitative phenotype

(i.e. root hair, seed color) is based on the chi-squared test of independence to access how

genotypes can co-segregate with these binary phenotypes.70 However, phenotypes in the

real world can also include traits which are best represented by continuous values, which

causes the problem of testing for association to be more complex. To dissect the genetic

architecture of quantitative traits, a set of genetic markers could be used to construct a

linkage map based on the genetic linkage between markers. As genes physically located
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close to each other on chromosomes will tend to be inherited together from parents,

linkage analysis uses this to detect co-segregation signals with investigated

phenotypes.71 Although linkage analysis can detect markers with large effects associated

with the phenotype, the low resolution of this analysis is an obvious limitation.

1.4.2 Genome Wide Association Study

The diverse genetic background of maize mapping population contains enough variation

to associate with phenotypic variants statistically using Genome Wide Association Study

(GWAS). Based on the linkage disequilibrium (LD) decay in a certain population,

candidate genes could be sought in the LD decay surrounding ranges of detected SNP

positions. However, in many cases divisity panels can exhibit population structure where

some individuals tend to share both common alleles and common phenotypic values as a

result of either reproductive isolation, selection, or recent common ancestors (Figure 1.1).

If there is no control for this, a large number of detected SNPs are likely to be

co-segregated with common ancestors which are considered as false positives. To

ameliorate this issue, the General Linear Model (GLM) (using principal components as

additional covariates in fixed effects, also called Q model72) or Mixed Linear Model

(MLM) (using kinship matrix as additional covariates in random effects, also known as K

model, or plus principal components as additional covariates, which is called as Q+K

model73) was developed to control false positives. However, if genetic markers are truly

co-segregated with the studied phenotype in two sub-populations, over-correcting

population structure will lead to false negatives. The ideal trait in a GWAS population

should be segregated without the strong influence of population structure (Figure 1.1C).

Nevertheless, in the past several years in the maize community, GWAS assists

researchers on narrowing down candidate genes. Genes/QTLs may control traits

including morphology (i.e. leaf architecture,74 shoot development75), metabolites

biosysnthesis (i.e. seed oil synthesis33), stress resistance (i.e. drought resistance,76 head
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smut resistance77) or flowering time.40 Although GWAS can generate lots of

genotype-phenotype associations, failed validations from some of these associations

when they are tested in individual experiments not surprising. On one side, theoretical

algorithms of many developed GWAS models still can yield false positives in situations

with a relatively high detection power. In these cases, false discoveries can still happen in

detected signals from GWAS.78, 79 On the other side, association does not mean causation

(Ziegler and Van Steen, Brazil 2010). Many confounding variables, such as

environmental factors and many regulators, could be involved in the underlying genetic

architecture of the investigated trait, which could potentially play a role in determining

the phenotype. One of disadvantages in GWAS that is debated a lot is the missing

heritability issue. Signals in GWAS will almost never fully explain the phenotypic

variation observed in a population, whether because of rare alleles, less representative

populations, epigenetic effects, the limitations of additive genetic models or other

factors.80 To improve the detection power of association signals and deal with missing

heritability issues, the multivariate GWAS model81 and multi-locus GWAS model82 were

proposed, which show stronger powers than a simple univariate trait model. To validate

detected association signals for some traits from other aspects, transcriptomic level

association83 or selective sweeps were applied to investigate co-detected signals.84

Generating precise genotype data and expanding the dimensionality of phenotypic

data through measuring more traits in more environments at more timepoints enables

the investigation of associations between genotypes and phenotypes in ways never

before possible. This new methods in turn provide new opportunities to identify a subset

of potentially functional genes among the total set of all annotated gene models. This

thesis will demonstrate the importance of using new methods to confirm the identity of

maize genotypes used in association studies using a case study of samples of the inbred

B73 grown at different locations around the world, high-throughput phenotyping, and

illustrate a new statistical method for using phenome-wide data to uncover functionally
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Figure 1.1: Population structure in GWAS study. (A) Two populations are separated by
genetic markers via PCA analysis. Each dot represents an individual which owns unique
values on first two PCs; (B) Individuals in the same two populations with observed binary
traits are separated in the same way as owned population structure. Each color represents
for one of binary traits; (C) Individuals in the same two populations with observed binary
traits are separated without influence of population structure. Each color represents one
value of a binary trait.

conserved genes in maize.
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2:RNA-Seq Based Analysis of Population Structure within the Maize Inbred B73

2.1 Introduction

A great deal of biological research depends on reference genotypes that allow researchers

around the world on work with material that is genetically identical or nearly identical.

For many decades, assessing whether samples labeled as coming from genetically

identical sources truly were identical was a costly, time consuming, and often

inconclusive process.85, 86 However, recent advances in genotyping and sequencing

technology have revealed a number of cases where sample names and sequence

information significantly different stories. One study of human cell cultures found that

18% of cell lines were either contaminated or something entirely different from what they

were labeled as87 with the widely used HeLa cell line being one of the most frequent

offenders.88 Among plants, a recent resequencing study of Arabidopsis demonstrated that

a line believed to carry a mutation for the ABP1 gene in an otherwise Col-0 background

actually contained a wide range of other nonsense and missense mutations as well as a

large region on chromosome 3 which came from a different arabidopsis accession.89 In

soybean (Glycine max), segregating variation covering ~3.1% of the soybean genome

assembly was observed between two sources of the reference genotype used in the

construction of the soybean reference genome.90 Resequencing of multiple plants from a

single batch of Columbia-0 seed in Arabidopsis identified multiple haplotypes present in

areas that summed up to ~20% of the total reference genome.91 The problem of

contaminated or mislabeled samples is a very real one in plant biology, and can invalidate

the results of experiments in which substantial time and resources have been invested.92
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Here we set out to quantify how severely these issues of divergence among samples

labeled as belonging to the same genetic background impact maize (Zea mays), a

preeminent model for plant genetics over the past century. Unlike soybean and

Arabidopsis, maize is a naturally outcrossing species, so reference genotypes must be

maintained by manually controlled self-pollination in each generation. Previous studies

using small sets of individually scored markers have identified genetic variation between

different sources of the same maize inbred.85 This study focuses specifically on the maize

reference genotype B73, which was developed in Iowa and first registered in 1972,10

widely used in commercial hybrid seed production across the United States for much of

the 1970s and 1980s93 and is represented in the parentage of many elite lines even today.94

B73 has also been widely used by plant biologists conducting basic genetic research in

maize, and was employed in the sequencing and assembly of the first maize reference

genome.11

2.2 Materials and Methods

2.2.1 Data sources

A search of NCBI’s sequence read archive identified 25 Illumina RNA-seq data sets

deposited by 19 independent research group in three countries (Table 1). Two additional

RNA-seq data sets were constructed from B73 seed requested from Iowa State and the

USDA’s Germplasm Resources Information Network (Control 1 and Control 2

respectively). For these two samples RNA was extracted from 10-day old B73 seedlings

grown at the University of Nebraska-Lincoln (Table 1). In four cases where the total

amount of data per run was limited (USA 6, USA 8, USA 9 and USA 17), data from

multiple sequencing runs labeled as coming from the same sample were grouped

together for analysis. In one case, SRR514100, the total quantity of data was excessive, so

only 1/10th of the total data set was employed.
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2.2.2 Alignment and initial SNP calling

Low quality sequences were removed using Trimmomatic-0.33 with settings LEADING:3,

TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:36.95 Trimmed reads were aligned to the

repeat masked version of the maize reference genome (version B73 RefGen v3)11

downloaded from Ensemble

(ftp : //ftp.ensemblgenomes.org/pub/plants/release− 22/fasta/zeamays/dna/)

using GSNAP in version 2014-12-29 (with parameters -N 1,-n 2,-Q).96 Output files were

converted from SAM to BAM format, sorted, and indexed using SAMtools.97 SNPs were

called in parallel along ten chromosomes of the maize version 3 using SAMtools mpileup

(-I -F 0.01) and bcftools call (-mv -Vindels -Ob).

2.2.3 SNP list generation

The view function of Bcftools was combined with in-house Python scripts to extract the

content of bcf files and classify SNPs based on the number of reference and

non-references alleles on every screened SNP locus. In detail, if the total number of reads

covering a particular SNP in a particular sample was below 5, then the site was treated as

missing data. When 99% reads on the locus of a sample were from the non-reference

allele the sample was coded as homozygous non-reference allele. The same criteria were

used for calling a site as homozygous reference allele. When the reads containing

reference and non-reference alleles totaled more than 90% of all reads and each allele was

represented by more than 20% of aligned reads the site was coded as heterozygous. If

two or more alleles were present at>1% of aligned reads but the above criteria were not

satisfied, the site was also coded as missing data. To reduce the prevalence of false SNPs

resulting from the alignment of reads from multiple paralogous loci to a single position

in the reference genome, sites which were scored as heterozygous in more than 20% of

all genotyped individuals were discarded. In total, 13,360 SNPs were used in downstream

analysis. For each of these SNPs, the impact of the SNP on gene function was estimated
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using SnpEff v4.1 and SnpEff databases (AGPv3.26).98

2.2.4 Population structure analysis

The distribution of the three possible genotypes (homozygous reference allele,

homozygous non-referenece allele and heterozygous allele) over each of the ten

chromosomes of maize was visualized using matplotlib. PhyML 3.099 was used to

construct a phylogenetic tree with 100 bootstrap replicates, and 13,360 SNPs in total of 27

data sets. The maximum parsimony tree was constructed using Phylip-3.696100 and the

full set of 13,360 SNPs with missing data imputed by LinkImpute.23

2.2.5 Expression bias test

Individual FPKM (Frequency per kilobase of exon per million reads) value for each gene

in each data set was calculated using Cufflinks v2.2.1.101 Expression values were averaged

across all China and USA South samples (excluded USA 12 sample that contained a

unique introgressed region) separately. Only genes with average FPKM values>= 10 in

both groups were retained for testing expression bias. The remaining genes were sorted

into two groups: genes located in the 7 chromosome intervals where USA South and

China showed different haplotypes and genes outside these intervals. The median gene

expression value on behalf of each group was used to be compared.

2.2.6 Origins of haplotype blocks

The origins of haplotype blocks observed in some B73 accessions but not in the published

reference genome were investigated using data from diverse maize lines in the

HapMap2 project.102 In order to make comparisons to these data, alignments and SNP

calling were performed a second time as above using B73 RefGen v2. All of samples in

China or USA North clade were combined to generate a consensus sets of SNP calls with

reduced missing data. In examining region c2r2, sample USA 12 was used individually in
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addition to the combined China and USA North sequences. In the analysis of region c5r2,

USA 10, USA 14 and USA 15 were combined to generate a consensus set of SNP calls for

the UC-Berkeley clade. The resulting SNP sets were employed for phylogenetic analysis

as described above, with the alteration that the an approximate likelihood ratio test

(aLRT) method with SH-like was employed. The resulting trees were visualized using

FigTree v1.4.2 (http : //tree.bio.ed.ac.uk/software/figtree/).

2.3 Results

2.3.1 Relationship among accessions labeled as B73

After alignment, SNP calling, and filtering (see Methods), a total of 13,360 high

confidence segregating SNPs were identified among the 27 RNA-seq samples labeled as

B73 employed in this study, substantially lower than the ~64,000 high quality SNPs

identified by RNA-seq in a population segregating for a single non-B73 haplotype.103

Phylogenetic analysis identified three distinct clades of samples separated by long

branches with 100% bootstrap support (Fig 2.1). One clade consisted entirely of Chinese

samples, one clade of samples from US research groups from Minnesota and Wisconsin,

and the final clade encompassed the majority samples from US research groups as well

as all German samples and the published reference genome for B73. We designated these

clades "China", "USA North", and "USA South" respectively. Notably, the USA North clade

is paraphyletic with respect to the China clade, suggesting B73 samples in China are

likely derived from this group while both German samples are clearly part of the USA

South Clade.

The USA South clade was somewhat arbitrarily divided into three subclades with at

least 60% bootstrap support, as well as a number of singleton lineages (USA 1, USA 13,

USA 19). Two of these clades contained control samples generated for this study, one

from B73 seed requested through the USDA Germplasm Resource Network, and one

from B73 seed requested from Iowa State. The subclade containing the known USDA B73
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sample also contained the B73 reference genome sequence, consistent with the reported

seed source for the B73 used in the construction of the reference genome. The final

subclade did not contain any control samples. However, it was notable that four of the

six samples placed in this clade originated in research groups whose PIs had conducted

either PhD or Postdoctoral training with Michael Freeling at UC-Berkeley, and none of

the samples outside of this clade originated in research groups linked to UC-Berkeley.

Based on these, we designated the final USA South subclade "UC-Berkeley". This

accessions has also been described as "Freeling B73".104 In addition, the three major

clades were also recovered in a parallel analysis using a tree generated using maximum

parsimony, however the three subclades within USA South subclades were not fully

recovered with identical membership. The consistency index (CI) and retention index

(RI) for this tree was 0.825 and 0.861 respectively. Gene flow can product significant

amounts of apparent homoplasy when constructing trees from multiple accessions of

the same species. Therefore, these values were relatively higher than expected.

2.3.2 Genomic distribution of within-B73 polymorphisms

The polymorphic SNPs identified in this study could originate from one of several

sources including de novo mutations or the introgression of non-B73 haplotypes in one or

more lineages. SNPs originating from de novo mutations would be expected to show a

distribution approximating that of gene density across the maize chromosomes. SNPs

resulting from introgression of other haplotypes into B73 should be tightly clustered.

When the positions of the SNPs identified in this study were plotted it became clear

that 55.3% SNPs identified in this study fall within a small number of dense genomic

blocks on chromosomes 2, 4, 5, and 6 (Fig 2.2). The distribution of

non-reference-genome-like haplotype blocks is consistent with the clade relationships

identified above. The USA North clade can be defined by a large block of SNPs on

chromosome 2, and smaller blocks on chromosomes 2 and 5, all of which are shared with
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the China B73 clade. In addition to the blocks shared with the USA North B73 clade,

samples from the China B73 clade all share a number of additional

non-reference-genome-like blocks on chromosomes 2, 4, and 6. There are no

non-reference-genome-like blocks shared by all members of the USA South clade,

however a single non-reference-genome-like block on chromosome 5 is shared by the

UC-Berkeley subclade of USA South. This block appears to share one breakpoint but not

both with a block present in the USA North and China samples. Based on the location of

this block, it is likely the same divergent haplotype region identified between the B73

reference genome and the B73 sample used to construct HapMap1.105 The large block

non-reference-genome-like block like SNPs observed only on chromosome 2 on USA 12

can likely be explained by the unique origin of this sample from wild type siblings of

knotted1 mutants backcrossed into B73.106 The remaining USA South samples, including

the USDA GRIN, Iowa State, and German samples do not contain any obvious SNP

blocks.

2.3.3 Functional impact of within-B73 polymorphism

Because the data used here came entirely from RNA-seq studies, our ability to detect

SNPs was limited to genes which were consistently expressed at high enough levels to

provide coverage of target regions. A total of 25,644 genes were expressed at levels>10

FPKM when at least one of data sets analyzed in this study. Of these genes, 633 (2.5%) fell

within regions with non-reference-genome-like SNP blocks in one or more B73 clades.

Using SnpEff, we identified 10 cases where SNPs produced "high impact" change such as

the gain or loss of a stop code or the alteration of a splice donor or splice acceptor site

and 396 cases which produced missense mutations which altered protein sequence. Only

three genes with reported mutant phenotypes (whp1, mop1, and gol1) were in these

regions, which only constituted at 2.7% of 112 classical identified maize genes with

reported mutant phenotypes.36 However, it must be noted that this is likely an
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underestimate of the true number of changes, nonsense mediated decay may reduce or

eliminate the expression of alleles of genes containing high impact SNPs, reducing the

chances these SNPs will be detected from RNA-seq data.

2.3.4 Impact of within-B73 polymorpism on estimated gene expression

Overall, limited correlation was observed between gene expression level and detected

SNP density. The correlation coefficient r between SNP density (number of snps per

1000 bases of exon sequence) and median gene expression across all analyzed datasets

was 0.018 and 0.211 for genes outside and inside of block regions respectively. A previous

study found that alignment rate for RNA-seq data from non-B73 genotypes to the B73

reference genome is approximately 13% lower than the alignment rate of RNA-seq data

generated from B73 plants.107 To test whether the introgression of non-reference genome

like blocks created a bias towards lower estimated expression of genes in those blocks,

for each gene within a block, the the median gene expression value observed across all

datasets containing the block was compared to the median gene expression value across

datasets where the same genomic region matched the reference genome. The

comparison of global patterns across large populations of genes controls for experiment

specific changes in the regulation of individual genes. Genes within introgressed regions

showed a 5.6% reduction on expression relative to a control set of genes outside

introgressed regions in this comparison between B73 USA South and B73 China (see

Methods). This reduction was approximately half as large as would be predicted if the

reduced alignment rate of data from non-B73 samples resulted solely from the increased

difficulty of aligning reads containing SNPs to the reference genome. Potentially, the

other half of the reduced alignment rate for non-B73 samples is the result of reads

originating from transcripts of lineage specific genes, as previously suggested.107



23

2.3.5 Origins of polymorphic regions in B73 accessions

A total of 7 chromosome intervals (referred to here as c2r1, c2r2, c4r1, c5r1, c5r2, c6r1 and

c6r2) containing non-reference genome haplotypes were identified in two or more

samples (Table 2). SNP calls were extracted from individual non-reference-genome-like

blocks using the previous version of the maize reference genome (B73 RefGen v2) and

compared to genotype calls generated from 103 diverse inbreds resequenced by the

Maize HapMap2 project.102 One example, c2r1 is shown in Fig 2.3A. The non-reference

genome haplotype present in this block for the Chinese samples clusters very closely with

W22 (Fig 2.4), an older inbred developed in Wisconsin which has also been widely used in

the maize genetics research community. Analysis of the other six large haplotype blocks

produced longer branch lengths relative to the accessions represented in the Maize

HapMap2 dataset (Table 2). However, in each case the haplotypes generated from each

clade containing a non-reference-genome-like block clustered together, confirming that

these regions did not result from parallel introgressions covering the same regions of the

genome. Consensus SNP calls from the UC-Berkeley, USA North, and China B73 samples

all clustered together with the HapMap2 B73 accession, but not with the B73 reference

genome sequence which suggests that the source of B73 seed used for HapMap2 – like

HapMap 1105 – likely belonged to the UC-Berkeley subclade. Constraining the c2r2 region

to only cover that portion of the genome which contained a block of SNPs in the USA

North clade, the China clade and sample USA 12 revealed that USA North and China

clustered together while USA 12 was placed at a different location on the tree.

Interestingly, the only separation case of B73 RefGen and B73 HapMap2 in the origin tree

of c5r2 indicated B73 seed in HapMap2 came from the UC-Berkeley sub-clade. In

addition, for two cases, c2r1 and c5r2, we validated our haplotype assignments using an

orthogonal analytical method, kmeans analysis. SNP data was first imputed using

Linkimpute,23 and then grouped into two clusters using kmeans function in R with k=2.

For c2r1, the analysis was entirely consistent with the results presented above with
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samples classified as China placed in one cluster with W22 and samples classified as USA

North and South placed in the other. For c5r2, as expected all samples classified as China,

USA North, and UC-Berkeley subclade were placed in a cluster with the B73 sample

resequenced by the Hapmap2 project. In addition, one sample classified as USA South

(USA 19) was placed in this cluster. Manual reexamination determined that USA 19 was

heterozygous from the c5r2 SNP block (Fig 2).

2.4 Discussion

The maize community has long speculated that significant differences exist among B73

from different sources. Several previous studies have confirmed that genetic variation

exists between different sources of the same maize inbreds,85, 105, 108 yet due to constraints

of cost and seed avaliability these comparisons were genrally able to compare only a

small subset of potential seed sources for a given inbred. The avaliability of previously

published RNA-seq data sets from a large number of independent research groups has

made it possible to conduct a broad survey of the diversity among B73 accessions. No

cases of samples which were labeled as originated from B73 but were clearly not B73

based on SNP data were identified in this study. Despite a 40+ generation reproductive

history distributed across at least three continents, this analysis shows that 97.7% of the

gene space of the maize genome is represented by a single consistent haplotype across all

B73 accessions represented here. This compares favorably to approximately 20% of the

genome showing multiple haplotypes in a single seed batch of the reference genotype of

arabidopsis Columbia-0.91 One potential explanation is that maize geneticists, always

aware of the significant risk of pollen contamination, have had to be alert for signs of

hybrid vigor or unexpected phenotypes when propogating inbred lines.92

In soybean, the published reference genome was found to consist of a mosaic of

sequences observed in two separate sources of the reference variety and likely is not

representative of the haplotype present in any individual plant.90 In maize, a number of
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samples classified into the USDA GRIN subclade (Fig 2.1) are largely consistent with the

reference genome suggesting that the maize reference genome sequence likely is

representative of a specific plant.

The interspersed SNPs distributed over ten chromosomes of maize may result from

de novo mutations, segregation of heterozygous loci in the original B73 founder

accession,90 or false positive SNP calling errors. However, the majority of

polymorphisms identified among B73 samples in this study primarily fell into a small

number of dense non-reference-genome-like blocks, consistent with introgression of

non-B73 germplasm into a B73 background. It is important to note that the B73 reference

genome was sequenced relatively recently compared to the total age of the B73 accession.

Therefore, it is not possible to infer whether a given non-reference-genome-like block

originated from introgression into the line in which the non-reference-genome SNPs are

observed or introgression into the B73 lineage which was ultimately employed in the

creation of the B73 reference genome. However, in either case the relatively small size of

these non-reference genome like blocks suggests multiple generations of backcrossing to

the original B73 line, which would not be consistent with an origin as unrecognized

pollen contamination.

Instead we propose a model based on the results from Sample USA 12. USA 12

consists of homozygous wild-type plants selected from family segregating for the

Knotted1.109 Therefore the block on chromosome 2 (~1% of the total maize genome) likely

represents residual sequence from the knotted1 mutant donor parent line and is

consistent with at least 5 generations of backcrossing (expected contribution of the

donor parent = ~1.56%). Similar accidental fixations of unlinked regions may have

occurred during the intentional introgression of other traits into a B73 background, such

as disease resistance genes.110

The monophyletic placement of Chinese B73 datasets suggests that the B73 seed

available in China likely originated from a single transfer from the USA, apparently of
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seed belonging to the USA North clade and is an indicator of current tight controls on

seed import/export which limit the ease with which seed change be exchanged between

collaborators in China and the United States. Samples from Germany did not

consistently form a monophyletic group. The concordance of academic lineages and

genomic relationships in the UC Berkeley subclade acts as a notable positive control.

More extensive sampling of B73 samples from many labs which employ this genotype in

maize genetics research but have not, to date, published RNA-seq datasets may identify

further B73 clades and subclades and additional cases where specific genomic variations

have dispersed across the country as graduate students and postdocs leave a given lab for

faculty positions of their own.

2.5 Conclusions

The existence of genomic variation among samples labeled as belonging to the same

accession creates barriers to reproducbility, one of the core requirements of the scientific

method.92 In this study no examples of sample mislabeling were identified, however the

possibility of ascertainment bias, with samples mislabeled as B73 being identified prior

to publication must be acknowledged. A number of non-reference-genome-like blocks

were identified in B73 samples originating from some sources. These blocks were shown

to contain missense and nonsense mutations and measurably lower estimated

expression values for genes in these regions. The identification of the relationships

among different variants of B73 and the genomic locations of non-reference-genome-like

regions will allow these differences to be controlled for future studies. With the rapid

rise of sequencing-based assays such as RNA-seq, the strategy employed here may be a

good one to apply in any case where one or more reference genotypes are widely

employed in research across institutions, countries, and continents.
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Table 2.1: B73 RNA-seq data sets sources.

Sample
Name

Run Accession Library Layout (bp) Institute

Control 1 SRR3372478 Paired (101) University of Nebraska - Lincoln
Control 2 SRR3371876 Single (51) University of Nebraska - Lincoln
USA 1111 SRR651051 Paired (51) University of Minnesota
USA 2112 SRR1819621 Paired (52) University of Minnesota
USA 3113 SRR404150 Single (76) University of Wisconsin - Madison
USA 4114 SRR514100 Paired (151) University of Wisconsin - Madison
USA 563 SRR940300 Single (101) University of Wisconsin - Madison

USA 6115

SRR395191
SRR395192
SRR395194
SRR395208

Single (40) Iowa State University

USA 7 SRR445245 Paired (102) Iowa State University

USA 8116 SRR039505
SRR039506

Single (35) Danold Danforth Center

USA 9117

SRR755252
SRR762349
SRR762350
SRR762351
SRR764626
SRR764627

Single (35) Danold Danforth Center

USA 10118 SRR1656746 Single (101) University of Nebraska - Lincoln
USA 11119 SRR1567899 Paired (50) Iowa State University
USA 12109 SRR504480 Single (100) University of California - Berkeley
USA 13120 SRR1587038 Single (101) University of Wisconsin - Madison
USA 14121 SRR1231518 Single (100) Cornell University
USA 15122 SRR1272115 Paired (50) DuPont Pioneer
USA 16123 SRR640263 Single (35) Yale University

USA 17124 SRR520998
SRR520999

Paired (51) Cold Spring Harbor Laboratory

USA 18125 SRR536834 Single (76) Virginia Tech
USA 19126 SRR999052 Paired (50) Cold Spring Harbor Laboratory
USA 20127 SRR248565 Paired (81) Stanford University
CHN 1128 SRR491307 Paired (76) China Agricultural University
CHN 2129 SRR1522119 Paired (102) China Agricultural University
CHN 3130 SRR910231 Paired (91) China Academy of Agricultural Sciences
DEU 1131 SRR924107 Single (96) MPIPZ
DEU 2132 SRR1030995 Single (85) University of Bonn

*USA 12 harbors a long introgression on chromosome 2.
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Table 2.2: Relationship of Non-Reference-Genome Like SNP Blocks to Haplotypes Surveyed by
HapMap2.

Genomic
blocks

Chr Start (kb) Stop (kb) Closest haplotypes Branch length Present in

c2r1 2 40000 44300 W22 0.00000018 China
c2r2 2 212450 224250 BKN010 0.41156403 China

BKN010 0.41156407 USA North
M162W 0.32027864 USA 12

c4r1 4 169650 191550 CAU178 0.64099035 China
c5r1 5 201200 203000 no single best match - China

no single best match - USA North
c5r2 5 209732 211540 B73 HapMap2 0.00000001 China

B73 HapMap2 0.00000021 USA North
B73 HapMap2 0.00000001 UC Berkeley

c6r1 6 120 8800 CML511 0.59542615 China
c6r2 6 20900 24670 OH7B 0.08905230 China
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Figure 2.1: (A) Distance-scaled branch lengths; (B) Unscaled tree. Only bootstrap values
greater than or equal to 60 are displayed.
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Figure 2.2: Non-reference-like homozygous genotypes are indicated in blue and heterozy-
gous genotypes in red. The sample order from top to bottom on Y-axis in each sub-figure
is the same order displayed as in Fig 1B.
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Figure 2.3: (A) Haplotype region c2r1 on Chromosome 2; (B) Haplotype region c2r2 on
Chromosome 2; (C) Haplotype region c5r2 on Chromosome 5. Non-reference-like ho-
mozygous genotypes are indicated in blue and heterozygous genotypes in red. Named
haplotype regions are those between the green bars.
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Figure 2.4: Relationship of the China B73 version of haplotype region c2r1 to the maize
HapMap2 varieties.
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3:Conventional and hyperspectral time-series imaging of maize lines widely used in field

trials

3.1 Data Description

3.1.1 Background

The green revolution created a significant increase in the yields of several major crops in

the 1960s and 1970s, dramatically reducing the prevalence of hunger and famine around

the world, even as population growth continued. One of the major components of the

green revolution was new varieties of major grain crops produced through conventional

phenotypic selection with higher yield potentially. Since the green revolution, the need

for food has continued to increase, and a great deal of effort in the public and private

sectors is devoted to developing crop varieties with higher yield potential. However, as

the low hanging fruit for increased yield vanish, each new increase in yield requires more

time and resources. Recent studies have demonstrated that yield increases may have

slowed or stopped for some major grain crops in large regions of the world.133 New

approaches to plant breeding must be developed if crop production continues to grow to

meet the needs of an increasing population around the world.

The major bottleneck in modern plant breeding is phenotyping. Phenotyping can be

used in two ways. Firstly, by phenotyping a large set of lines, a plant breeder can identify

those lines with the highest yield potential and/or greatest stress tolerance in a given

environment. Secondly, sufficiently detailed phenotyping measurements from enough

different plants can be combined with genotypic data to identify regions of the genome

of a particular plant species which carry beneficial or deleterious alleles. The breeder can
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then develop new crop varieties which incorporate as many beneficial alleles and exclude

as many deleterious alleles as possible. Phenotyping tends to be expensive and low

throughput, yet as breeders seek to identify larger numbers of alleles each with

individually smaller effects, the amount of phenotyping required to achieve a given

increase in yield potential is growing. High throughput computer vision based

approaches to plant phenotyping have the potential to ameliorate this bottleneck. These

tools can be used to precisely quantify even subtle traits in plants and will tend to

decrease in unit cost with scale, while conventional phenotyping, which remains a

human labor intensive processes, does not.

Several recent pilot studies have applied a range of image-processing techniques to

extract phenotypic measurements from crop plants. RGB (R: Red channel; G: Green

channel; B: Blue channel) camera technology, widely used in the consumer sector, has

also been the most widely used tool in these initial efforts at computer vision based plant

phenotyping.47, 54, 134, 135 Other types of cameras including fluoresence44, 50 and NIR

(near-infrared)46, 50, 136 have also been employed in high throughput plant phenotyping

efforts, primarily in studies of the response of plant to different abiotic stresses.

However, the utility of current studies is limited in two ways. Firstly, current

analysis tools can extract only a small number of different phenotypic measurements

from images of crop plants. Approximately 150 tools for analyzing plant image data are

listed in a field specific database, however the majority of these are either developed

specifically for Arabidopsis thaliana which is a model plant, or are designed specifically to

analyze images of roots.137 Secondly, a great deal of image data is generated in controlled

environments, however, there are comparatively few attempts to link phenotypic

measurements in the greenhouse to performance in the field. However, one recent

report in maize suggested that more than 50% of the total variation in yield under field

conditions could be predicted using traits measured under controlled environments.135

Advances in computational tools for extracting phenotypic measurements of plants
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from image data and statistical models for predicting yield under different field

conditions from such measurements requires suitable training datasets. Here, we

generate and validate such a dataset consisting of high throughput phenotyping data

from 32 distinct maize (Zea mays) accessions drawn primarily from recently off-patent

lines developed by major plant breeding companies. These accessions were selected

specifically because paired data from the same lines exists for a wide range of plant

phenotypes collected in 54 distinct field trials at locations spanning 13 North American

states or provinces over two years.138 This extremely broad set of field sites captures

much of the environmental variation among areas in which maize are cultivated with

total rainfall during the growing season ranging from 133.604 mm to 960.628 mm

(excluding sites with supplemental irrigation) and peak temperatures during the

growing season ranging from 23.5◦C to 34.9◦C. In addition, the same lines have been

genotyped for approximately 200,000 SNP markers using GBS.138 Towards these existing

data, we added RGB, thermal infra-red, fluorescent and hyperspectral images collected

once per day per plant, as well as detailed water-use information (single day, single plant

resolution). At the end of the experiment, 12 different types of ground-truth phenotypes

were measured for individual plants including destructive measurements. A second

experiment focused on interactions between genotype and environmental stress,

collecting the same types of data described above from two maize genotypes under well

watered and water stressed conditions.139 We are releasing this curated dataset of high

throughput plant phenotyping images from accessions where data on both genotypic

variation and agronomic performance under field conditions is already available. All

data was generated using a Lemnatec designed high throughput greenhouse-based

phenotyping system constructed at the University of Nebraska-Lincoln. This system is

distinguished from existing public sector phenotyping systems in North America by both

the ability to grow plants to a height of 2.5 meters and the incorporation of a

hyperspectral camera.46 Given the unique properties described above, this
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comprehensive data set should lower the barriers to the development of new computer

vision approaches or statistical methodologies by independent researchers who do not

have the funding or infrastructure to generate the wide range of different types of data

needed.

3.1.2 Methods

3.1.2.1 Greenhouse Management

All imaged plants were grown in the greenhouse facility of the University of

Nebraska-Lincoln’s Greenhouse Innovation Center (Latitude: 40.83, Longitude: -96.69)

between October 2nd, 2015 to November 10th, 2015. Kernels were sown in 1.5 gallon pots

with Fafard germination mix supplemented with 1 cup (236 mL) of Osmocote plus 15-9-12

and one tablespoon (15 mL) of Micromax Micronutrients per 2.8 cubic feet (80 L) of soil.

The target photoperiod was 14:10 with supplementary light provided by LED growth

lamps from 07:00 to 21:00 each day. The target temperature of the growth facility was

between 24− 26◦C. Pots were weighed once per day and watered back to a target weight

of 5,400 grams from 10-09-2015 to 11-07-2015 and a target weight of 5,500 grams from

11-08-2015 to the termination of the experiment.

3.1.2.2 Experimental Design

A total of 156 plants, representing the 32 genotypes listed in Table 3.1 were grown and

imaged, as well as 4 pots with soil but no plant which serve as controls for the amount of

water lost from soil as a result of non-transpiration mechanisms (e.g. evaporation). The

156 plants plus control pots were arranged in a ten row by sixteen column grid, with 0.235

meter spacing between plants in the same row and 1.5 meters spacing between rows

(Table ??). Sequential pairs of two rows were consisted of a complete replicate with either

31 genotypes and one empty control pot, or 32 genotypes. Within each pair of rows,

genotypes were blocked in groups of eight (one half row), with order randomized within
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blocks between replicates in order to maximize statistical power to analyze

within-greenhouse variation.

Plant Imaging

The plants were imaged daily using four different cameras in separate imaging

chambers. The four types of cameras were thermal infrared, fluorescence, conventional

RGB, and hyperspectral.139 Images were collected in the order that the camera types are

listed in the previous sentence. On each day, plants were imaged sequentially by row,

starting with row 1 column 1 and concluding with row 10, column 16 (Table ??).

Plants were imaged from the side at two angles offset 90 degrees from each other as

well as a top down view. On the first day of imaging or when plants reached the two leaf

stage of development, the pot was rotated so that the major axis of leaf phylotaxy was

parallel to the camera in the PA0 orientation and perpendicular to the camera in the

PA90 orientation. This orientation is consistent for all cameras and was not adjusted

again for the remainder of the experiment. The fluorescence camera captured images

with a resolution of 1038× 1390 pixels and measures emission intensity at wavelengths

between 500-750 nm based on excitation with light at 400-500 nm. Plants were imaged

using the same three perspectives employed for the thermal infrared camera. The RGB

camera captured images with a resolution of 2454× 2056 pixels. Initially the zoom of the

RGB camera in side views was set such that each pixel corresponds to 0.746 mm at the

distance of the pot from the camera. Between 2015-11-05 and 2015-11-10, the zoom level of

the RGB camera was reduced to keep the entire plant in the frame of the image. As a

result of a system error, this same decreased zoom level was also applied to all RGB

images taken on 2015-10-20. At this reduced zoom level, each pixel corresponds to 1.507

mm at the distance of the pot from the camera, an approximate 2x change. Plants were

also imaged using the same three perspectives employed for the thermal infrared

camera. The hyperspectral camera captured images with a resolution of 320 horizontal
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pixels. As a result of the scanning technology employed, vertical resolution ranged from

494 to 499 pixels. Hyperspectral imaging was conducted using illumination from halogen

bulbs (Manufacturer Sylvania, model # ES50 HM UK 240V 35W 25Âř GU10). A total of 243

separate intensity values were captured for each pixel spanning a range of light

wavelengths between 546nm-1700nm. Data from each wavelength was stored as a

separate grayscale image.

Ground Truth Measurement

Ground truth measurements were collected at the termination of data collection on

November 11-12, 2015. Manually collected phenotypes included plant height, total

number of visible leaves, number of total fully extended leaves, stem diameter at the base

of the plant, stem diameter at the collar of the top fully extended leaf, length and width of

top fully extended leaf, and presence/absence visible anthocyanin production in the

stem. After these measurements, total above-ground fresh weight biomass was

measured for four out of five replicates, resulting in the destruction of the plants.

Ground truth data for the drought stressed subset of this dataset was collected following

the procedure previously described in.139

RGB Image Processing

Pixels covering portions of the plant were segmented out of RGB images using a green

index ((2×G)/(R+B)). Pixels with an index value greater than 1.15139 were considered to be

plant pixels. This method produced some false positive plant pixels within the reflective

metal columns at the edge of the image. To reduce the impact of false positives, these

areas were excluded from the analysis. Therefore, when plant leaves cross the reflective

metal frame, some true plant pixels were excluded. If no plant pixels were identified in

the image – often the case in the first several days when the plant had either not

germinated or had not risen above the edge of the pot – the value was recorded as "NA" in
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the output file.

Heritability Analysis

A linear regression model was used to analyze the genotype effect (excluding genotype

ZL22 which lacked replication) and greenhouse position effect on plant traits. The

responses were modeled independently for each day as

yh,ij,t = µh,t + αh,i,t + γh,ν(i,j),t + εh,ij,t, (3.1)

where the subscript h = 1, . . . , 6 denotes the three responses extracted from the images:

plant height, width and size for the two views 0 and 90 degree. The subscripts i, j and t

denote the jth plant in the ith row and day t, respectively, and ν(i, j) stands for the

genotype at this pot. The parameters α and γ denote row effect and genotype effect,

respectively. The error term is εh,ij,t. Let SSα,t, SSγ,t and SSε,t be the sum of squares of the

regression model (3.1) for the row effect, genotype effect and the error at time t,

respectively. Let SSt = SSα,t + SSγ,t + SSε,t be the total sum of squares at time t. The

heritability HRt (3.2) of a given trait within this population was defined as the ratio of the

genotype sum of squares over the sum of genotype and error sum of squares. For the

estimate of the heritability of measurement error, the row effect term was replaced by a

replicate effect (each replicate consisted of two sequential rows) with exclusion of ZL22

as only one plant of this genotype was grown.

HRt =
SSγ,t

SSε,t + SSγ,t
. (3.2)

As the heritability index may change over the growth of the plant, an nonparametric

smoothing method was provided for analyzing the time varying heritability of plants.

The definition in (3.3) excludes the variation brought by the greenhouse row effect, which

can be considered as the percentage of the variation in plant response that can be
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explained by the genotype effect after adjusting the environmental effect. To compare

with this definition of heritability (3.2), the response in the model without considering

the row effect was constructed as

yh,ij,t = µh,t + γh,ν(i,j),t + εh,ij,t, (3.3)

where similarly as (3.1), ν(i, j) is the genotype of the jth plant in the ith row. Let S̃Sγ,t

and S̃St be the genotype sum of squares and total sum of squares under (3.4). The

classical heritability is defined as

H̃Rt =
S̃Sγ,t
S̃St

. (3.4)

Hyperspectral Image Processing

Two methods and thresholds were used to extract plant regions of interest from

hyperspectral images. First, the commonly used NDVI (normalized difference vegetation

index) formula was applied to all pixels using the formula

(R750nm-R705nm)/(R750nm+R705nm), and pixels with a value greater than 0.25 were

classified as originating from the plant.140 Second, based on the difference in reflectance

between stem and leaves at wavelengths of 1056nm and 1151nm, the stem was segmented

from other part of plants by selecting pixels where (R1056nm/R1151nm) produced a value

greater than 1.2. Leaf pixels were defined as pixels identified as plant pixels based on

NDVI but not classified as stem pixels. In addition to the biological variation between

individual plants, overall intensity variation existed both between different plants

imaged on the same day and the same plant on different days as a result of changes in

the performance of the lighting used in the hyperspectral imaging chamber. To calibrate

each individual image and make the results comparable, a python script (hosted on

Github; see code availability section) was used to normalize the intensity values of each
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plant pixel using data from the non-plant pixels in the same image.

In order to visualize variation across 243 separate wavelength measurements across

multiple plant images, we used a PCA (Principal Component Analysis) based approach.

After the normalization described above, PCA analysis of intensity values for individual

pixels was conducted. PCA values of each individual plant pixel per analyzed plant were

translated to intensity values using the formula [x-min(x)]/[max(x)-min(x)]. False color

RGB images were constructed with the values for the first principal component stored in

the red channel, the second principal component in the green channel and the third

principal component stored in the blue channel.

Fluorescence Image Processing

A consistent area of interest was defined for each zoom level to exclude the pot and

non-uniform areas of the imaging chamber backdrop. Within that area, pixels with an

intensity value greater than 70 in the red channel were considered to be plant pixels. The

aggregate fluorescence intensity was defined as the sum of the red channel intensity

values for all pixels classified as plant pixels within the region of interest, and the mean

fluorescence intensity as the aggregate fluorescence intensity value divided by the

number of plant pixels within the region of interest.

Plant Biomass Prediction

Two methods were used to predict plant biomass. The first was a single variable model

based on the number of zoom level adjusted plant pixels identified in the two RGB side

view images on a given day. The second was a multivariate model based upon the sum of

plant pixels identified in the two RGB side views, sum of plant pixels identified in the

two RGB side views plus the RGB top view, aggregate fluorescence intensity in the two

side views, aggregate fluorescence intensity in the two side views plus the top view,

number of plant stem pixels identified in the hyperspectral image and number of plant
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leaf pixels identified in the hyperspectral image. Traits were selected to overlap with

those employed by141 where possible. This multivariate dataset was used to predict plant

biomass using linear modeling as well as MARS, Random Forest and SVM.141 MARS

analysis was performed using the R package earth,142 Random Forest with the R package

randomForest143 and SVM with the R package e1071.144

Data Validation and Quality Control

Validation against ground truth measurements

A total of approximately 500 GB of image data was initially generated by the system

during the course of this experiment consisting of RGB images (51.1%), fluorescence

images (4.3%), and hyperspectral images (44.6%). A subset of the RGB images within this

dataset were previously analyzed in,145 and were made available for download from

http://plantvision.unl.edu/dataset under the terms of the Toronto Agreement. To

validate the dataset and ensure plants had been properly tracked through both the

automated imaging system and ground truth measurements, a simple script was written

to segment images into plant and not-plant pixels (Figure 3.1). Source codes for all

validation analysis are posted online

(https://github.com/shanwai1234/Maize_Phenotype_Map).

Based on the segmentation of the image into plant and non-plant pixels, plant

height was scored as the y axis dimension of the minimum bounding box. Plant area was

scored as the total number of plant pixels observed in both side view images after

correcting for the area of each pixel at each zoom employed (See Methods). Similar

approaches to estimate plant biomass have been widely employed across a range of grain

crop species including rice,146 wheat,147 barley,147, 148 maize,139 sorghum149 and seteria.46

Calculated values were compared to manual measurements of plant height and plant

fresh biomass which were quantified using destructive methods on the last day of the

experiment. In both cases manual measurements and image derived estimates were
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highly correlated, although the correlation between manual and estimated height was

greater than the correlation between manually measured and estimated biomass (Figure

4.1A,B). Using the PlantCV software package,59 equivalent correlations between

estimated and ground truth biomass were obtained (r=0.91). Estimates of biomass using

both software packages were more correlated with each other (r=0.96) than either was

with ground truth measurements. This suggests that a significant fraction of the

remaining error is the result of the expected imperfect correlation between plant size

and plant mass, rather than inaccuracies in easimating plant size using individual

software packages. Recent reports have suggested that estimates of biomass

incorporating multiple traits extracted from image data can increase accuracy.141 We

tested the accuracy of biomass prediction of four multivariate estimation techniques on

this dataset (see Methods). The correlation coefficient (r value) of the estimated biomass

measures with ground truth data was 0.949, 0.958, 0.925 and 0.951 for multivariate linear

model, MARS, Random Forest and SVM respectively.

The residual value – difference between the destructively measured biomass value

and the predicted biomass value based on image data and the linear regression line

equation – was calculated for each individual plant (Figure 4.1C). Using data from the

multiple replicates of each individual accession, the proportion of error which is

controlled by genetic factors rather than random error can be ascertained. We

determined that 58% of the total error in biomass estimate was controlled by genetic

variation between different maize lines. As such, this error is systematic rather than

random and thus more likely to produce misleading downstream results when used in

quantitative genetic analysis. As mentioned above, biomass and plant size are

imperfectly correlated, as different plants can exhibit different densities, for example as

a result of different leaf to stem ratios. Recent reports have suggested that estimates of

biomass incorporating multiple traits extracted from image data can increase

accuracy.141 We tested the accuracy of biomass prediction of four multivariate estimation
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techniques on this dataset (see Methods). The correlation of the estimated biomass

measures with ground truth data was 0.949, 0.958, 0.925 and 0.951 for multivariate linear

model, MARS, Random Forest and SVM respectively. However, even when employing

the most accurate of these four methods (MARS), 63% of the error in biomass estimation

could be explained by genetic factors. This source of error, with the biomass of some

lines systematically underestimated and the biomass of other lines systematically

overestimated presents a significant challenge to downstream quantitative genetic

analysis. Given the prevalence of plant pixel counts as a proxy for biomass.46, 139, 146–149

Patterns of change over time

One of the desirable aspects of image based plant phenotyping is that, unlike

destructively measured phenotypes, the same plant can be imaged repeatedly. Instead of

providing a snapshot in time this allows researchers to quantify rates of change in

phenotypic values over time, providing an additional set of derived trait values. Given

the issues with biomass quantification presented above, measurements of plant height

were selected to validate patterns of change in phenotypic values over time. As expected,

height increases over time, and the patterns of increase tended to cluster together by

genotype (Figure 3.3A). Increases in height followed by declines, as observed for ZL26,

were determined to be caused by a change in the angle of the main stalk. While the

accuracy of height estimates was assessed by comparison to physical ground truth

measurements only on the last day, the height of three randomly selected plants (Plant

007-26, Plant 002-7 and Plant 041-29) were manually measured from image data and

compared to software based height estimates, and no significant differences were

observed between the manual and automated measurements (Figure 3.3B;

Supplementary Table 1). To perform a similar test of the accuracy of biomass estimation

at different stages in the maize life cycle, a set of existing ground truth measurements

for two genotypes under two stress treatments139 were combined with additional later
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grow stage data (Supplemental Table 2). The correlation between total plant pixels

observed in the two side views and plant biomass was actually substantially higher in this

dataset (r=0.97) than the primary dataset, likely as a result of the smaller amount of

genetic variability among these plants (Supplementary Figure 1).

Heritability of phenotypes

The proportion of total phenotypic variation for a trait controlled by genetic variation is

referred to as the heritability of that trait and is a good indicator of how easy or difficult

it will be to either identify the genes which control variation in a given trait, or to breed

new crop varieties in which a given trait is significantly altered. Broad-sense heritability

can be estimated without the need to first link specific genes to variation in specific

traits.150 Variation in a trait which is not controlled by genotype can result from

environmental effects, interactions between genotype and environment, random

variance, and measurement error. Controlling for estimated row effects on different

phenotypic measurements significantly increased overall broad sense heritability

(Figure 3.4A,B). This result suggests that even within controlled environments such as

greenhouses, significant micro-environmental variation exists and that proper

statistically based experimental design remains critical importance in even controlled

environment phenotyping efforts.

If the absolute size of measurement error was constant in this experiment, as the

measured values for a given trait became larger, the total proportion of variation

explained by the error term should decrease and, as a result, heritability should increase

as observed (Figure 3.4A). This trend was indeed observed across six different phenotypic

measurements (three traits calculated from each of two viewing angles (Figure 3.4B).

Plant height also exhibited significantly greater heritability than plant area or plant

width and greater heritability when calculated solely from the 90 degree side angle photo

than when calculated solely from to 0 degree angle photo.



46

In previous studies, fluorescence intensity has been treated as an indicator for plant

abiotic stress status44, 151–153 or chlorophyll content level.154, 155 Using the fluorescence

images collected as part of this experiment, the mean fluorescence intensity value for

each plant image was calculated (see Methods). We found that this trait exhibited

moderate heritability, with the proportion of variation controlled by genetic factors

increasing over time and reaching approximately 60% by the last day of the experiment

(Figure 3.4B).

Hyperspectral image validation

Hyperspectral imaging of crop plants has been employed previously in field settings

using airborne cameras.156–158 As a result of the architecture of grain crops such as maize,

aerial imagery will largely capture leaf tissue during vegetative growth, and either tassels

(maize) or seed heads (sorghum, millet, rice, oats, etc) during reproductive growth. The

dataset described here includes hyperspectral imagery taken from the side of individual

plants, enabling quantification of the reflectance properties of plant stems in addition to

leaf tissue.

Many uses of hyperspectral data reduce the data from a whole plant or whole plot of

genetically identical plants to a single aggregate measurement. While these approaches

can increase the precision of intensity measurements for individual wavelengths, these

approaches also sacrifice spatial resolution and can in some cases produce apparent

changes in reflectivity between plants that result from variation in the ratios of the sizes

of different organs with different reflective properties. To assess the extent of variation

in the reflectance properties of individual plants, a principal component analysis of

variation in intensity values for individual pixels was conducted. After non-plant pixels

were removed from the hyperspectral data cube (Figure 3.5A) (See Methods), false color

images were generated encoding the intensity values of the first three principal

components of variation as the intensity of the red, green, and blue channels respectively
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(Figure 3.5B, C and D). The second principal component (green channel) marked

boundary pixels where intensity values likely represent a mixture of reflectance data

from the plant and from the background. The first principal component (red channel)

appeared to indicate distinctions between pixels within the stem of the plant and pixels

within the leaves.

Based on this observation, an index was defined which accurately separated plant

pixels into leaf and stem (see Methods). Stem pixels were segmented from the rest of the

plant using an index value derived from the difference in intensity values observed in the

1056nm and 1151nm hyperspectral bands. This methodology was previously described.139

The reflectance pattern of individual plant stems is quite dissimilar from the data

observed from leaves and exhibits significantly different reflective properties in some

areas of the near infrared (Figure 3.6). Characteristics of the stem are important

breeding targets for both agronomic traits (lodging resistance, yield for biomass crops)

and value added traits (biofuel conversion potential for bioenergy crops, yield for

sugarcane and sweet sorghum). Hyperspectral imaging of the stem has the potential to

provide nondestructive measurements of these traits. The calculated pattern of leaf

reflectance for the data presented here are comparable with those observed in

field-based hyperspectral studies,159–161 providing both external validation and suggesting

that the data presented here may be of use in developing new indices for use under field

conditions.

In conclusion, while the results presented above highlight some of the simplest

traits which can be extracted from plant image data, these represent a small fraction of

the total set of phenotypes for which image analysis algorithms currently exist, and those

in turn represent a small fraction of the total set of phenotypes which can potentially be

scored from image data. Software packages already exist to measure a range of plant

architectural traits such as leaf length, angle, and curvature from RGB images.50, 61 Tools

are also being developed to extract phenotypic information on abiotic stress response
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patterns from fluorescence imaging.44, 50 The analysis of plant traits from hyperspectral

image data, while common place in the remote sensing realm where an entire field may

represent a single data point, is just beginning for single plant imaging. Recent work as

highlighted the potential of hyperspectral imaging to quantify changes in plant

composition and nutrient content throughout development.57, 139 While these techniques

have great potential to accelerate efforts to link genotype to phenotype through

ameliorating the current bottleneck of plant phenotypic data collection, it will be

important to balance the development of new image analysis tools with the awareness of

the potential for systematic error resulting from genetic variation between different

lines of the same crop species.

3.2 Availability of source code and requirements

• Project name: Maize Phenotype Map

• Project home page:

https://github.com/shanwai1234/Maize_Phenotype_Map

• Operating system(s): Linux

• Programming language: Python 2.7

• Other requirements: OpenCV module 2.4.8, Numpy>1.5, CMake> 2.6, GCC>

4.4.x, Scipy 0.13

• License: BSD 3-Clause License

3.3 Availability of supporting data and materials

The image data sets from four types of cameras, pot weight records per day and ground

truth measurements with corresponding documentation for 32 maize inbreds and same

types of image data for two maize inbreds under two stress treatments were deposited in

https://github.com/shanwai1234/Maize_Phenotype_Map


49

the CyVerse data commons under a CC0 license with.162 All image data were stored in the

following data structure: Genotype− > Plant− > Camera type− >Day. For the

hyperspectral camera each photo is stored as 243 sub images, each image representing

intensity values for a given wavelength, so these require one additional level of nesting in

the data structure Day− >wavelength. The grayscale images from the IR camera and

the hyperspectral imaging system are stored as three-channel images with all three

channels in a given pixel set to identical values. The fluorescence images contain almost

all information in the red channel with the blue and green channel having intensities

equal to or very close to zero, but data all three channels exist. Genotype data of 32

inbreds were generated as part of a separate project and SNP calls for individual inbred

lines were made available either through163 or the ZeaGBSv2.7 GBS SNP dataset stored in

Panzea. Measurements for thirteen core phenotypes at each field trial as well as local

weather data can be retrieved from publicly released Genomes 2 Fields datasets released

on CyVerse.163, 164 Data from the 2014 G2F field trials is posted163 and data from the 2015

G2F field trials is posted.164 Genetically identical seeds from the majority of the

accessions used in creating both this dataset and the Genomes 2 Fields field trial data

can be ordered from public domain sources (e.g. USDA GRIN) and are listed in Table 3.1.

Further supporting metadata and snapshots of the Maize Phenotype Map code are

available in the GigaScience database, GigaDB.165

3.4 Declarations

3.4.1 List of abbreviations

DAP: Days after planting

GBS: Genotyping by Sequencing

LED: Light-emitting diode

MARS: Multivariate Adaptive Regression Splines

NDVI: Normalized difference vegetation index
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NIR: Near-infrared

RGB: An image with separate intensity values for the red, blue and green channels

SNP: Single Nucleotide Polymorphism

SVM: Support Vector Machines

UNL: University of Nebraska-Lincoln

PA0: Plant Area calculated from a 0 degree image. Plants were initially orientated then

leaves would be arranged parallel to the camera at 0 degrees.

PA90: Plant Area calculated from a 90 degree image. Plants were initially orientated then

leaves would be arranged perpendicular to the camera at 90 degrees.

PCA: Principal Component Analysis

PH0: Plant Height calculated from a 0 degree image

PH90: Plant Height calculated from a 90 degree image

PW0: Plant Width calculated from a 0 degree image

PW90: Plant Width calculated from a 90 degree image

PF0: Average of plant fluorescence intensity in 0 degree

PF90: Average of plant fluorescence intensity in 90 degree.
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Table 3.1: 32 genotypes in maize phenotype map

Genotype ID Genotype Source Released Year

ZL1 740 Novartis Seeds 1998
ZL2 2369 Cargill 1989
ZL3 A619 Public Sector 1992
ZL4 A632 Public Sector 1992
ZL5 A634 Public Sector 1992
ZL6 B14 Public Sector 1968
ZL7 B37 Public Sector 1971
ZL8 B73 Public Sector 1972
ZL9 C103 Public Sector 1991
ZL10 CM105 Public Sector 1992
ZL11 LH123HT Holden’s Foundation 1984
ZL12 LH145 Holden’s Foundation 1983
ZL13 LH162 Holden’s Foundation 1990
ZL14 LH195 Holden’s Foundation 1989
ZL15 LH198 Holden’s Foundation 1991
ZL16 LH74 Holden’s Foundation 1983
ZL17 LH82 Holden’s Foundation 1985
ZL18 Mo17 Public Sector 1964
ZL19* DKPB80 DEKALB Genetics ?
ZL20 PH207 Pioneer Hi-Bred 1983
ZL21 PHB47 Pioneer Hi-Bred 1983
ZL22** PHG35 Pioneer Hi-Bred 1983
ZL23 PHG39 Pioneer Hi-Bred 1983
ZL24 PHG47 Pioneer Hi-Bred 1986
ZL25 PHG83 Pioneer Hi-Bred 1985
ZL26 PHJ40 Pioneer Hi-Bred 1986
ZL27 PHN82 Pioneer Hi-Bred 1989
ZL28 PHV63 Pioneer Hi-Bred 1988
ZL29 PHW52 Pioneer Hi-Bred 1988
ZL30 PHZ51 Pioneer Hi-Bred 1986
ZL31 W117HT Public Sector 1982
ZL32 Wf9 Public Sector 1991

* Not currently available for order.
** Genotype represented by only a single plant in the dataset.
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Table 3.2: Experimental layout (ID: ZL1-ZL32). At the time this experiment was conducted,
the total size of the UNL greenhouse system was ten rows by twenty columns. Positions
marked with UP indicate pots filled with plants from an unrelated experiment, while po-
sitions marked with NA indicate pots which had no plants. The first complete replicate
is shown in color, and the four incomplete blocks within the first replicate are marked in
different colors. * marks empty pots within the experimental design.

29 15 25 8 19 25 12 29 11 9
13 10 30 1 32 9 23 31 16 7
23 5 4 17 29 21 32 15 1 3
14 32 9 23 24 27 16 13 32 10
27 31 16 21 16 28 7 1 17 23
7 21 32 5 13 12 28 17 27 25
11 16 14 7 3 5 2 25 6 26
30 26 20 24 8 11 18 9 22 19
12 2 * 27 17 15 10 21 24 13
1 18 10 18 14 6 11 30 31 5
28 9 6 3 18 * 8 3 14 29
4 25 29 11 30 7 26 5 30 21
3 6 28 31 10 4 27 * 15 2
20 8 12 15 26 23 4 19 28 4
17 24 26 19 1 31 20 14 8 18
19 * 13 2 2 20 24 6 12 20
NA NA NA NA UP UP UP UP UP UP
NA NA NA NA UP UP UP UP UP UP
NA NA NA NA UP UP UP UP UP UP
NA NA NA NA UP UP UP UP UP UP
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Figure 3.1: An example of plant segmentation. Segmentation of images into plant and
not plant pixels for one representative plant (Path to this image in the released dataset:
Genotype_ZL019− > Plant_008-19− > Image_Type− > Day_32). The area enclosed by
green border is composed of pixels scored as "plant", the area outside the green border s
composed of pixels scored as "not-plant". Minimum bounding rectangle of plant pixels is
shown in red. (A) Side view, angle 1; (B) Side view, 90 degree rotation relative to A; (C) Top
View.
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Figure 3.2: Correlation between image-based and manual measurements of individual
plants. (A) Plant height; (B) Plant fresh biomass; (C) Variation in the residual between
estimated biomass and ground truth measurement of biomass across inbreds.
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Figure 3.3: Time-series plant heights extracted from images. (A) Plant growth curves of
each of five replicates of eight selected genotypes; (B) Comparison of manual measure-
ments of plant height from image data with automated measurements for three randomly
selected plants on each day of the experiment.
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Figure 3.4: Time course heritability of extracted traits. (A) The time course broad sense
heritability of PA90 before and after controlling for the row effect. The heritability in the
G model was calculated using a linear model that only considers the effect of genotype with
residual values in the error term while heritability in the G + E model was calculated using
a linear model that considers the effect of both genotype and environment (row effect)
with residual values in the error term; (B) Variation in broad-sense heritability (H2) after
controlling row effects for 6 trait measurements every second day across the phenotyping
cycle. PA0: Plant Area in 0 degree (The major axis of leaf phylotaxy was parallel to the
camera at 0 degree); PA90: Plant Area in 90 degree (The major axis of leaf phylotaxy was
perpendicular to the camera at 90 degree); PH0: Plant Height in 0 degree; PH90: Plant
Height in 90 degree; PW0: Plant Width in 0 degree; PW90: Plant Width in 90 degree; PF0:
Average of plant fluorescence intensity in 0 degree; PF90: Average of plant fluorescence
intensity in 90 degree.
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Figure 3.5: Segmentation and visualization of variation in hyperspectral signatures of rep-
resentative maize plant images. (A) RGB photo of Plant 013-2 (ZL02) collected on DAP 37;
(B) False color image constructed of the same corn plant from a hyperspectral photo taken
on the same day. For each plant pixel the values for each of the first three principal com-
ponents of variation across 243 specific wavelength intensity values are encoded as one
of the three color channels in the false image; (C) Equivalent visualization for Plant 048-9
(ZL09); (D) Equivalent visualization for Plant 008-19 (ZL19).
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Figure 3.6: Reflectance values for three plants. Plant 090-6 (ZL06), Plant 002-7 (ZL07), and
Plant 145-16 (ZL16) on three days across development. (A) Reflectance values for non-stem
plant pixels (i.e. leaves) (B) Reflectance values for pixels within the plant stem.
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4:Genome-phenome wide association in maize identifies a molecularly, structurally, and

evolutionarily distinct set of genes

4.1 Introduction

Many approaches can be taken to achieve the goal of linking individual genes to their

roles in determining the characteristics of an organism. One widely used approach is to

employ natural functional variation between alleles in populations. Individual genetic

markers are tested for association with differences in phenotype. Arguably, the first such

association was the identification of a seed size QTL in dry bean (Phaseolus vulgaris) in

1923. This study used a single genetic marker, which was a qualitative trait controlled by

a single gene.166 Soon after, quantitative trait variation could be linked directly to

chromosome structural markers.167 Technology for scoring genetic markers continued to

advance, making it possible to genotype markers covering the entire genome across a

population. This enabled Genome Wide Association Study (GWAS) employing the

linkage disequilibrium (LD) present in natural populations to identify functionally

variable alleles of a gene influencing variation in a target trait.168–170

It is now feasible to collect data for thousands of intermediate molecular

phenotypes, such as transcript, protein, or metabolite abundance, from entire

association populations. These data can be incorporated into GWAS and Phenome Wide

Association Study (PheWAS) analysis as either explanatory83, 171 or response

variables.64, 172–174 Advances in high-throughput plant phenotyping have expanded the

capacity of these techniques to score dozens or hundreds of whole-organism phenotypes

across multiple time points and environments.175, 176 Multivariate GWAS methodologies
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increase the power to detect true positives relative to single-trait methods,177–184 however,

current multivariate GWAS approaches face computational chanllenges related to

scaling to hundreds of traits simultaneously. Statistical methods for PheWAS or "reverse

GWAS"185–187 seek to identify traits showing a statistical association with either a given

marker, or all polymorphisms present in a given target gene.188, 189 Attempts have been

made to unify GWAS and PheWAS in animals190 and plants,191 however, the rapid scaling

of multiple testing makes it challenging to retain appropriate statistical power.

Here we employ a published dataset of 260 distinctly scored traits for 277

resequenced maize inbred lines9, 26 to develop and evaluate a novel approach to identify

the links between genes and quantitative phenotypic variation using a multi-trait

multi-SNP framework. We demonstrate that the genes identified using this method,

which we call Genome-Phenome Wide Association Study (GPWAS), show substantially

greater cross-validation in an independent study using data from approximately 20

times as many individuals192 than do genes identified using conventional GWAS analysis

of the same dataset. For a wide range of features, including expression level and breadth,

syntenic conservation, purifying selection in related species, and the prevalence of

presence-absence variation (PAV) across diverse maize lines, the genes identified using

this multi-trait multi-SNP approach appear more similar to genes identified using

forward mutagenesis and less similar to the overall population of annotated maize gene

models.

4.2 Results

Genetic marker data were obtained from resequencing data of 277 inbred lines from the

Buckler-Goodman maize association panel.9 These lines are part of Maize HapMap3,

which contains data for a total of 81,687,392 SNPs.26 After removing the SNPs with high

levels of missing data, those that were not polymorphic among the 277 individuals

employed here, and several other quality filtering parameters, 12,411,408 SNPs remained.
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Of these, 1,904,057 SNPs were assigned to 32,084 annotated gene models from the B73

RefGenV4 genome release. Filtering to eliminate redundancy between SNPs assigned to

the same gene in high LD with each other reduced this number to 557,968 highly

informative SNPs. A phenotypic dataset consisting of 57 specific traits scored for the

Buckler-Goodman maize association panel across 1 to 16 distinct environments for a

total of 285 unique phenotypic datasets was obtained from Panzea.193 Removing datasets

with extremely high levels of missing data resulted in 260 trait datasets with a median

missing data rate of 18%. Of the total 72,020 potential trait datapoints (277 inbred lines×

260 traits), 23.6% or 16,963 trait datapoints were unobserved. Unobserved trait

datapoints were imputed using a kinship-based method,194 and the estimated

imputation accuracies for the individual traits are reported in Supplementary Table 1.

A conventional GWAS analysis generally employs either empirically determined

statistical significance cutoffs,192 or a Bonferroni correction based on the total number of

hypothesis tests conducted.195 For the above dataset, employing a Bonferroni correction

would mean each individual analysis would be conducted using a multiple-testing

corrected p-value cutoff of 8.96e-08, while a sequential analysis of all 260 traits should

employ a multiple-testing corrected p-value of 3.45e-10. As shown in Figure 4.1a, a given

gene might be identified in multiple independent GWAS analyses for individual traits

but not be considered significantly associated with any traits when correcting for the

total number of traits analyzed. In the example given, Zm00001d002175 shows a

statistically significant association with flowering time in multiple environments, yet

none of these associations are individually significant enough to meet the threshold for

the full multiple testing correction.

Bonferroni multiple testing correction assumes that each test is independent of all

other tests, however, the different trait datasets collected from the Buckler-Goodman

association panel exhibited significant correlation (Figure 4.1c), including three large

blocks of traits related to flowering time, plant architectural traits, and tassel structure
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traits respectively. To address the challenges of partially correlated traits and partially

correlated genotype matrices, we developed an approach based upon a stepwise

regression model fitting. In this model, the SNPs inside a gene body region are treated as

response variables, and both population structure and individual trait datasets are

employed to explain the patterns of SNP variance across the population. The significance

of the association between each gene and the population of plant phenotypes is

determined through a comparison of the final model with an initial model incorporating

only the population structure variables (see Methods and Supplementary Figure 4.3).

Multiple testing was corrected using a permutation-based method (see Methods),

which controls for the complexities introduced by iterative model selection. Although

computationally expensive, permutation has been shown to be robust for controlling

false positives in both GWAS and PheWAS studies.74, 196 Based on the permutation

analysis, a p-value cutoff of 1.00e-23 resulted in the classification of 1,776 genes as being

significantly associated with phenomic variation in the Buckler-Goodman association

panel, resulting in an estimated false discovery rate (FDR)< 1.00e-3. For comparison

purposes, the same set of traits and genotypes was also tested for associations using

three conventional GWAS algorithms: a general linear model (GLM GWAS),72 a mixed

linear model (MLM GWAS),72 and FarmCPU GWAS197 (See Methods). Applying an

equivalent permutation based FDR threshold to each conventional GWAS algorithm

removed the vast majority of positive signals (Supplementary Figure 4.4). Therefore, for

GWAS models, a conventionally multiple testing corrected p-value cutoff was employed

(Supplementary Table 2).

4.2.1 Validation of Gene-Phenome Associations

A second published dataset of genes identified as being associated with variation in trait

values in the maize nested association mapping (NAM) population, which includes

approximately 5,000 lines,198 was employed to assess the relative power and accuracy of
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three conventional GWAS algorithms as well as the GPWAS algorithm.192, 198 As the

published data for the NAM population used B73 RefGenV2, all comparisons employed

only the subset of 29,372 gene models with a clear 1:1 correspondence between gene

models included in the B73 RefGenV2 and B73 RefGenV4 annotation versions. Of these,

4,227 of these genes were identified as being associated with at least one trait in the NAM

dataset.192 Genes identified using GPWAS showed significantly higher cross-validation

in the NAM dataset than the sets of genes identified using GLM GWAS (p = 2.05e-5;

Chi-squared test), MLM GWAS (p = 0.010; Chi-squared test), or FarmCPU GWAS (p =

0.013; Chi-squared test) (Figure 4.2a; Supplementary Figure 4.5; Supplementary Table 2).

Filtering to remove signals from rare SNPs where the minor allele was present in only

one or two of the NAM population founder lines reduced the total number of genes

identified in that study to 3,621. However, the overall trend observed remained consistent

and statistically significant, with the genes identified using the GPWAS algorithm

continuing to show statistically significantly higher rates of identification in the reduced

NAM dataset (GLM GWAS, p=1.63e-4; MLM GWAS, p=0.002; FarmCPU GWAS, p=0.025;

Chi-squared test) (Supplementary Table 2). Analyses with two smaller real-world

datasets for biochemical traits related to vitamin A (24 traits) and vitamin E (20 traits)

metabolism174, 199 did not reveal any significant increase in the number of a priori gene

candidates identified as showing a link to phenotypic variation relative to conventional

GWAS approaches (Supplementary Figure 4.6). This was consistent with the results of

the simulation analyses, for which GPWAS showed a significant increase in power/false

discovery trade-offs for datasets with 100 simulated phenotypes, even including many

with low heritability, but did not show substantial advantages relative to conventional

GWAS for datasets with smaller numbers of traits (Supplementary Figure 4.7).

Our GPWAS algorithm also produces a list of the specific traits included in the

model for a given gene. For example, in Figure 4.1b, the overall association between

Zm00001d002175 and the trait dataset was statistically significant. The 11 individual
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traits included in the Zm00001d002175 model included both flowering time measured in

multiple locations, as well as additional traits with indirect links to flowering time (e.g.

number of leaves, Summer 2008, Cayuga, NY), and others with no obvious links to

flowering time. These included the total kernel volume in one year in one location and

kernel proteins as estimated using near infrared imaging in another year in a different

location.

4.2.2 GPWAS Accurately Predicts Pleiotropic Consequences of Gene Knockouts

It is important to keep in mind that the associations of individual phenotypes identified

within the model are not rigorously controlled for false discovery. We therefore sought

to qualitatively evaluate whether traits included in the model for an individual gene

make sense in the context of existing detailed biological knowledge about the function of

a given gene. One such gene was anther ear1 (an1), a classical maize gene encoding an

ent-copalyl diphosphate synthase involved in gibberellic acid biosynthesis, for which

knockout alleles have been shown to reduce or abolish tassel branching, reduce plant

height, delay growth, and delay flowering.200 In a separate analysis of the 5,000

individual maize NAM lines, an1 was identified as being associated with one trait, tassel

spike length,32 however, it was not found to be associated with any individual traits

through a conventional GWAS analysis of the Buckler-Goodman 282 dataset. GPWAS

identified a statistically significant link between an1 and a model incorporating multiple

phenotypes including flowering time, plant height, and tassel branch number, all

consistent with the known mutant phenotypes (Supplementary Figure 4.8). At least one

additional phenotype included in the GPWAS model – germination count (Summer

2006, Johnston, NC) – was not supported by direct reports of characterization of the an1

knockout allele, but is consistent with the role of an1 in gibberellic acid metabolism.201, 202

Overall, the set of phenotypes identified using GPWAS for the an1 gene appeared to be

consistent with previously reports based on either the characterization of the knockout
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allele or quantitative genetic analyses of natural populations.

The GPWAS model also identified liguleless2 (lg2), another classical maize mutant

with a well characterized knockout mutant phenotype.203 The lg2 encodes a bZIP

transcription factor.204 The loss of lg2 function disrupts the establishment of the ligule

and auricle of the maize leaf and results in plants with extremely erect leaves.203, 205 Lines

carrying lg2 knockout alleles have been reported to exhibit substantially (10-50%) higher

grain yield than otherwise isogenic hybrids,206, 207 reduced tassel branch numbers,207, 208

and moderately increased central spike length.208 Quantitative genetic analyses have

identified signals for leaf angle, tassel branch number, and kernel row number associated

with the lg2 locus,32, 74, 209 although the effect on kernel row number was not significant in

at least one study utilizing null alleles of lg2.208 In this study, GPWAS identified a

statistically significant link between lg2 and a model incorporating multiple phenotypes

including upper leaf angle, leaf length, central spike length, kernel weight (a yield

component trait), and cob diameter. Cob diameter exhibits substantial correlation and

overlapping genetic architecture with kernel row number210 (Supplementary Figure 4.9).

The GPWAS model for lg2 also incorporated a number of flowering-time related traits,

which do not have consistent support in either the characterization of lg2 knockout

mutants, or previous quantitative genetic analyses of flowering time in maize. Despite

this, knockout alleles of lg2 have been reported to alter the vegetative-to-reproductive

phase transition in maize and produce increased numbers of leaves on the main stalk,

which would be consistent with its altered flowering time.208 As in the case of an1, the

traits identified as being associated with lg2 using GPWAS appear to be largely

consistent with previous characterization of the functional roles of lg2 in maize.

4.2.3 Greater Functional Specificity of Genes Identified Using GPWAS

Genes identified using GPWAS appear to be a significantly less random sample of total

gene models than the set of genes identified using GLM GWAS. A set of 1,406 genes were
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uniquely identified using GPWAS but not GLM GWAS. An equivalent set of 1,630 genes

were identified using GLM GWAS but not GPWAS. In the larger unique-to-GLM GWAS

gene set, a single Gene Ontology (GO) term showed a statistically significant bias towards

being associated with phenotypic variation (GO:0046034: ATP metabolic process), and

two GO terms with nearly identical gene assignments showed a statistically significant

bias towards not being associated with phenotypic variation (GO:0000723: Telomere

maintenance and GO:003220 Telomere organization). However, the moderately smaller

set of genes uniquely identified using GPWAS was enriched or purified for the presence

of many more GO terms. A total of 71 GO terms were overrepresented in the

unique-to-GPWAS (relative to GLM GWAS) gene set to a statistically significant degree,

including numerous terms linked to development, hormone signalling, response to

different stimuli, and cell growth (Supplementary Table 4). The 13 GO terms that were

underrepresented among genes uniquely identified using the GPWAS algorithm were

generally associated with DNA conformation and replication (Supplementary Table 4). A

similar comparison was made between genes uniquely identified using GPWAS and

FarmCPU GWAS. In this case only 706 genes were uniquely identified using FarmCPU.

As it is more likely for an enrichment or purification to be statistically significant in

larger populations, only the 706 most significant unique-to-GPWAS (relative to

FarmCPU GWAS) genes were evaluated in this comparison to eliminate any potential

bias. Among the unique-to-FarmCPU GWAS gene set, only a single GO term was

overrepresented to a statistically significant degree (GO:0051707: Response to other

organism). However, among the the unique-to-GPWAS (relative to FarmCPU GWAS)

gene set of equal size, 39 GO terms showed a statistically significant overrepresentation,

while another 4 were statistically underrepresented (Supplementary Table 4).

Several potential factors could explain the large difference in GO enrichment

purification we observed between genes identified solely using GWAS and genes

identified solely using GPWAS. A number of factors, including the number of GO terms
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per gene and the proportion of genes with no assigned GO term, differed modestly

between the different populations of genes (Supplementary Table 5). The specificity of

GO terms varied somewhat between the two populations. The median GO term assigned

to a gene identified only using GLM GWAS was assigned to 514 total distinct gene models

in B73 RefGenV4. For genes identified only using GPWAS, this decreased to 430 gene

models. This difference in the number of genes that a given GO term is assigned does not

appear to explain the differences observed in the enrichment or purification

(Supplementary Figure 4.10). Rather, the large differences observed here are consistent

with GWAS identifying a more random subset of annotated genes as being associated

with phenotypic variation than did GPWAS.

4.2.4 Molecular, Structural, and Evolutionary Features of Genes Identified Using GP-

WAS

Genes identified using the GPWAS algorithm differed from the overall population of

annotated maize gene models in a number of characteristics, as well as from the

populations of genes identified using conventional GWAS. In many cases, the properties

of genes identified using GPWAS appeared more similar to the population of genes with

validated loss-of-function phenotypes.36 Slightly less than half of all annotated maize

genes were expressed to a level above 1 fragment per kilobase of transcript per million

mapped reads (FPKM) in at least one of the 92 tissues/time points assayed.63 This figure

was greater than 2/3 for the genes identified using the three conventional GWAS

algorithms, and approximately 3/4 for genes identified using the GPWAS algorithm and

maize genes with validated loss-of-function phenotypes (Supplementary Table 2). Genes

identified using GLM GWAS, MLM GWAS, FarmCPU GWAS, GPWAS, and the classical

mutants all exhibited greater breadths of expression across tissues, larger numbers of

genes with observed evidence of translation, and greater gene lengths than the

population of annotated genes as a whole (Supplementary Table 2; Supplementary Table



68

6). The number of associated SNPs was positively correlated with the log-transformed

inverse p-value assigned to genes using both GWAS (r = 0.566) and GPWAS (r = 0.625)

(Supplementary Figure 4.11; Supplementary Table 6). However, this association declined

dramatically in the permuted data for GPWAS (median permuted r = 0.155), but

remained high for GWAS (median permuted r = 0.626) (Supplementary Table 7). This

suggests that the high number of SNPs per gene for GPWAS (median: 43 SNPs, mean:

47.3 SNPs) relative to the overall gene set (median: 12 SNPs, mean: 17.4 SNPs) is a

biological property of the genes controlling phenotypic variation in this population,

rather than reflecting a bias in the GPWAS algorithm.

On a population and comparative genomics level, genes identified using the

GPWAS algorithm also differed from the overall population of annotated maize gene

models, and looked more like genes with validated loss-of-function phenotypes. Genes

identified using both the conventional GWAS and GPWAS algorithms were significantly

less likely to exhibit PAV in the maize populations (Figure 4.2b) than the overall

population of maize gene models. The reduction in PAV frequency for genes identified

using GPWAS (7.0%) was statistically significantly greater than for genes identified only

using GWAS (10.4%) (p=0.0015; Chi-squared test), and not statistically significantly

different from low level of presence absence variation observed for maize genes with

validated loss of function phenotypes genes (4.1%) (p=0.36; Chi-squared test)

(Supplementary Table 3). Genes identified using either conventional GWAS and GPWAS

algorithms were significantly more likely to be conserved at syntenic orthologous

locations in sorghum than the overall set of maize gene models (Figure 4.2c). Genes

uniquely identified using GPWAS were more likely to be conserved at syntenic locations

in the genome of sorghum Sorghum bicolor (91.8%) than those uniquely identified using

GWAS (74-85%; see Supplementary Table 3). This difference was statistically significant

in comparisons to all three GWAS algorithms tested and was comparable to the

likelihood of syntenic conservation for maize genes with known loss of function mutant
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phenotypes (93.9%) (Supplementary Table 3).

The genes identified as being associated with phenotypic variation using GPWAS

also appeared to be under stronger purifying selection than either the overall population

of maize gene models or those identified using any of the three conventional GWAS

algorithms (Figure 4.2d; Supplementary Table 3). This analysis was constrained to the

subset of gene models with conserved orthologs in sorghum (Sorghum bicolor), and foxtail

millet (Setaria italica). Among these genes, those uniquely identified using GPWAS

showed a reduced ratio of nonsynonymous substitution rate to synonymous substitution

rate (Ka/Ks) (median: 0.168-0.169; mean 0.208-0.210), relative to the overall population of

syntenically conserved maize gene models (median: 0.200; mean: 0.246), while those

uniquely identified using GWAS showed elevated rates (median: 0.202-0.233; mean:

0.251-0.261) relative to the same overall population (Supplementary Table 3). Among the

maize genes with characterized loss-of-function phenotypes, this ratio declined even

further (median: 0.144; mean: 0.177). In short, the typical annotated gene appears to

experience notably less purifying selection than those associated with organismal-level

phenotypic variation based on either characterized loss-of-function mutant phenotypes

or those identified using the GPWAS, but not a GWAS, algorithm.

4.3 Discussion

Complex datasets can contain scores for dozens or hundreds of traits across the same

populations. The prevalence of these datasets and the challenges and opportunities they

present is expected to grow in the coming years. Here, we developed an approach for

identifying genotype-phenotype associations that can scale to the analysis of datasets

containing hundreds, or potentially even thousands, of traits. The statistical tests upon

which the GPWAS approach is built become unstable once the number of traits exceeds

the number of individuals scored, therefore, scaling to high numbers of traits would

require the use of larger association populations than many of the most widely used
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plant populations today.9, 168, 211, 212 Multicollinearity in either the predictor or response

variables can make the statistical estimation and inference procedures we employed

unstable.213 One common approach for reducing the total number of traits in a

multi-year and/or multi-field site trial is to calculate the best linear unbiased predictors

(BLUPs), which provide a single value for a given trait in a given line across multiple

environments.214 However, this approach strips out information on trait plasticity across

environments, controlled by distinct sets of genes from those controlling multiple

environment mean values38 and is thus likely to bias the downstream analysis away from

a large class of genes involved in determining organismal phenotypes across changing

environments. In cases where the number of measured traits exceeds the number of

environments, it would be advisable to employ alternative approaches to reduce the

dimensionality of the trait dataset, whether that be an ad hoc approach such as selecting a

subset of representative traits from highly correlated blocks, or dimensional reduction

analyses such as a principal component analysis or multidimensional scaling. The

automatic application of variable selection and/or dimensional reduction in such

scenarios could be incorporated into future GPWAS implementations.

Another challenge for the present implementation of GPWAS is that it requires

regions of interest to be defined across the genome. In this study, annotated gene

models were used to define these regions, however, approximately 40% of of the

phenotypic variation in maize has been estimated to be explained by noncoding

regulatory regions.215 These regions can be separated from the genes whose expression

they control by many kilobases,216, 217 while LD in maize generally decays within one to

several kilobases.108, 218 Both sequence conservation and chromatin mark data could be

used to define additional regions of interest likely to represent regulatory

sequences.8, 215, 219–222 Similar approaches could also be employed to identify currently

unannotated regions of the genome with a high potential of containing cryptic genes,

including functional long noncoding RNAs.223
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We found that genes with statistically significant links to phenotypic variation

exhibit substantial differences from the overall population of annotated genes in the

maize genome for a number of characteristics. They are more likely to be transcribed to

significant levels, more likely to be conserved at syntenic orthologous positions in the

genomes of related species, dramatically less likely to exhibit PAV across diverse maize

inbred lines, and appear to be subjected to notably stronger purifying selection than the

overall population of annotated genes. In all these cases, the genes identified using

GPWAS are less like the overall population of annotated gene models and more like the

small subset of genes in the maize genome whose functions have been characterized

using loss of function alleles.36 The distinct features shared by both genes identified

using classical forward genetics and now using GPWAS suggest that it is unlikely that all

annotated genes in the maize genome contribute to organismal phenotypes. Over the

past three decades, without substantial discussion or debate, many in the scientific

community have moved from a definition of genes that was based on organismal

function, to one which is based on molecular features.224–226 However, many analyses still

implicitly assume that genes annotated in the genome based on homology and/or

expression evidence must play a role in determining organismal phenotypes. The

absence of evidence for a role in determining a phenotype is interpreted as a failure to

find either the correct trait to measure or the correct environment in which to measure

it. Improved approaches to distinguish which annotated gene models are more likely to

contribute to controlling organismal phenotypes will be critical to future efforts to guide

gene-by-gene functional characterization efforts.

4.4 Methods

4.4.1 Genotype and Phenotype Sources, Filtering, and Imputation

Raw genotype calls from the resequencing of the maize 282 association panel26 were

retrieved from Panzea in AGPv4 coordinates. Missing genotypes were imputed using
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Beagle (version: 2018-06-10).227 Only biallelic SNPs with fewer than 20% missing data

points were subjected to imputation. After imputation, SNPs with a minor allele

frequency (MAF) of less than 0.05 or which were scored as heterozygous in more than

10% of samples were discarded. A phenotype file

(traitMatrix_maize282NAM_v15-130212.txt) containing total of 285 traits, corresponding

to 57 unique types of phenotypes scored in 1 to 16 environments was downloaded from

Panzea. A set of 277 accessions with identical names in the HapMap3 data release and the

Panzea trait data were employed for all downstream analyses.

Maize gene regions were extracted from AGPv4.39, which was downloaded from

Ensembl. SNPs were clustered based onR2 > 0.8 and only one randomly selected SNP

per cluster was retained. If, after collapsing the highly correlated clusters, the number of

SNPs exceeded 138 (50% of the number of inbred lines scored), a random subsample of

138 SNPs was employed for the downstream analyses. Identical final SNP sets were

employed for the GPWAS and GWAS analyses.

Of the 285 initial trait datasets, 25 were removed because the data file contained a

recorded trait value for only one individual, leaving a total of 260 trait datasets. Using a

Bayesian multiple-phenotype mixed model,194 missing phenotypes were imputed based

on a kinship matrix calculated from 1.24 million SNPs generated using GEMMA.181 For

those traits with a sufficient numbers of real observations to enable evaluation, the

accuracy of the phenotypic imputation was assessed independently by masking 1% of

available records for each trait and comparing the imputed and masked values. This

process was repeated 10x for each trait.

4.4.2 GPWAS Analysis

All the operations for the GPWAS analyses are detailed in the R source code used to

conduct the analysis – and associated documentation – which has been made available

online (https://github.com/shanwai1234/GPWAS). Briefly, we employed a model
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selection approach to adaptively select the most significant phenotypes associated with

each gene. A F-test was used to compare a model to explain variation in SNPs based

solely on population and a model which incorporated both population structure and trait

data. The significance in the difference of the goodness of fit between these two models

was used to determine the significance of the association of individual genes with

phenotypic variation in the dataset.

The first stage is a stepwise selection procedure. The procedure iterates over all

phenotypes in order to select individual phenotypes to incorporate into the model. This

approach models all the SNP markers assigned to a given gene jointly with multiple

responses. During each iteration, the association between each single trait and all of the

evaluated SNPs are determined using a F-test which incorporates the dependence

among the SNPs (see provided R code for details). If at least one trait passes a set

threshold (in the analyses presented in this paper a threshold of p< 0.01 was employed),

the single most significant trait is added to the model. If at least one trait was not

significant based on the same threshold employed above, the single least significantly

associated trait was removed from consideration. This process is repeated for a

configurable number of iterations. For the analyses presented in this paper, the number

of iterations was set to 35 as, given this number of iterations, none of the models for any

gene included the maximum of 35 distinct traits.

After the number and identity of the phenotypes included in the model for a

particular gene is finalized, the next stage is to evaluate how much the inclusion of

phenotypic data improves model fit, relative to a purely population structure based

model. To do this, two separate models are fit. The first model (initial model or IM) uses

only population structure principal components to predict the values for all SNP markers

associated with the target gene. The second model (GPWAS model or GM) uses both

population structure and the phenotypes selected in stage one to predict the values for

the same set of SNP markers. The goodness of fit of these two models is compared using
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a F-test. The final result of the F-test takes into account all of the SNPs included from the

target interval, as well as the degree of correlation between these SNPs. One of the

criteria of those F-tests is that multiple response variables should not exhibit strong

correlations with each other. This is the reason that the set of SNPs within each

gene/interval were first filtered to select only one representative SNP from groups of

SNPs in high linkage disequilibrium with each other.

In order to calculate the principal components used above, a separate PCA analysis

was conducted for genes on each of the 10 chromosomes of maize. For analysis of the

given gene on each chromosome, markers solely from the other 9 chromosomes were

used to reduce the endogenous correlations between genes and principal components.228

A subset of 1.24 million SNPs distributed across both intragenic and intergenic regions

on all 10 chromosomes was used to perform PCA for both GPWAS and GWAS. The first

three PCs were calculated using R prcomp function and included in GPWAS analysis.

The final model can be represented as:

gk,i = PCk,1βi1 + PCk,2βi2 + PCk,3βi3 +

vi∑
j=1

Phek,(j)τi(j) + εk,ij. (4.1)

Here, the subscript k and i represent the kth observation and the ith gene, respectively.

There are vi selected phenotypes for the ith gene, where vi ≤ 260. The selected

phenotypes {Phek,(j)} are a subset of the collection of all the phenotypes

{Phek,1, Phek,2, . . . , Phek,260}, where τi(j) is the corresponding coefficients for the

selected phenotype Phek,(j) of the ith gene. The first three PC scores PC1, PC2 and PC3

were always included in the model with their effects βi1, βi2 and βi3. Note that gk,i,

βi1, βi2, βi3 and τi(j) could be vectors corresponding to the multiple SNPs within the ith

gene. Total phenotypes was iteratively selected for each scanned gene. The p-value of

each gene was determined using the partial F test through comparing the final model

containing both the first three PCs and the selected phenotypes with the initial model
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containing only the PCs.

FDR cutoffs for the partial F-test were based on the results from 20 permutation

analyses, for which the values for each trait were independently shuffled among the 277

genotyped individuals and the entire GPWAS pipeline was rerun for all genes. Selected

significant GPWAS genes with incorporated phenotypes are listed in Supplementary

Table 8.

4.4.3 GWAS Analysis

GLM GWAS and MLM GWAS analyses were conducted using the algorithm first defined

by Price and coworkers.72 The FarmCPU GWAS with the algorithm was defined by Liu

and colleagues.197 All of algorithms were run using the R-based software rMVP (A

Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool For

Genome-Wide Association Study) (https://github.com/XiaoleiLiuBio/rMVP). FarmCPU

analysis method was run using maxLoop = 10 and the variance component method

method.bin = "Fast-LMM".229 The first three principal components were considered to be

additional covariates for the population structure control in all of analyses. The same

kinship matrix used in the phenotype imputation was also used for controlling the

genotype relationship in the MLM GWAS model, while the method for analyzing variance

components (vc.method) was set to GEMMA.230 To enable a comparison with the GPWAS

results, each gene was assigned the p-value of the single most significant SNP among all

the SNPs assigned to that gene across the 260 analyzed phenotypes in the GWAS model.

4.4.4 Nested Association Mapping Comparison

Published associations identified for 41 phenotypes scored across∼5,000 maize

recombinant inbred lines were retrieved from Panzea (http :

//cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid = 14).192

Following the thresholding proposed in that paper, a SNP and CNV (copy number
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variant) hits with a resample model inclusion probability≥ 0.05, which were either

within the longest annotated transcript for each gene (AGPv2.16) or within 15kb

upstream or downstream of the annotated transcription start or stop sites were assigned

to that gene respectively. Gene models were converted from the B73 RefGenV2 to B73

RefGenV4 using a conversion list published on MaizeGDB

(https://www.maizegdb.org/search/gene/ download_gene_xrefs.php?relative=v4).

4.4.5 Gene Expression Analysis

Raw reads from the a published maize expression atlas generated for the inbred line B73

were downloaded from the NCBI Sequence Read Archive PRJNA171684.63 Reads were

trimmed using Trimmomatic-0.38 with default setting parameters.95 Trimmed reads

were aligned to the maize B73 RefGenV4 reference genome using GSNAP version

2018-03-25.96 Alignment results were converted to a sorted BAM file format using

Samtools 1.6,97 and the FPKM values where calculated for each gene in the AGPv4.39

maize gene models in each sample using Cufflinks v2.2.101 Only annotated genes located

on 10 maize pseudomolecules were used for downstream analyses and the visualization

of the FPKM distribution.

4.4.6 Ka/Ks Calculations

For each gene listed in a public syntenic gene list,231 the coding sequence for the single

longest transcript per locus was downloaded from Ensembl Plants. There sequences

were each aligned to the single longest transcript of genes annotated as syntenic

orthologs in Sorghum bicolor v3.1232 and Setaria italica v2.2,233 retrieved from Phytozome

v12.0 using a codon-based alignment as described previously.7 The calculation of the

ratio of the number of nonsynonymous substitutions per non-synonymous site (Ka) to

the number of synonymous substitutions per synonymous site (Ks) was automatically

calculated using an in-house software pipeline posted to github
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(https://github.com/shanwai1234/Grass-KaKs). Genes with a synonymous substitution

rate less than 0.05 were excluded from the analyses, because their extremely small

number of synonymous substitutions tended to produce quite extreme Ka/Ks ratios.

Genes with multiple tandem duplicates were also excluded from the Ka/Ks calculations.

The calculated Ka/Ks ratios of maize genes are provided in Supplementary Data 1.

4.4.7 Presence/Absence Variation (PAV) Analysis

PAV data were downloaded from a published data file.234 Following the thresholding

proposed in that paper, a gene was considered to exhibit presence absence variance if at

least one inbred line had a coverage of less than 0.2.

4.4.8 Gene Ontology Enrichment Analysis

All GO analyses used the maize-GAMER GO annotations for B73 RefGenV4 gene

models.235 Statistical tests for GO term enrichment and purification were performed

using the goatools software package (v0.8.12),236 with support for a two-sided Fisher’s

exact test provided by the fisher_exact function in SciPy. To determine the median

information content of the GO term, each was assigned a score based on the total

number of gene models to which this GO term was assigned to in the maize-GAMER

dataset. This analysis considered only gene models to which a GO term was specifically

applied to in the dataset, but not gene models where the assignment of the GO term may

have been implied by the assignment of a child GO term. Genes in B73 RefGenV4

Zm00001d.2 that employed in maize-GAMER GO annotations (∼40,000 genes) were

used as the background population.

4.4.9 Power and FDR Evaluation of GPWAS and GWAS Using Simulated Data

SNP calls for the entire set of 1,210 individuals included in Maize HapMap3 were

retrieved from Panzea,26 filtered, imputed, and assigned to genes as described above
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resulting in 1,648,398 SNPs assigned to annotated gene body regions in B73 RefGenV4. A

sample of 2,000 randomly selected genes associated with 30,547 SNP markers were

employed for the downstream simulations. In each simulation, 100 genes (5%) were

randomly selected as causal genes. For each causal gene in each simulation, a causal SNP

was selected to simulate the phenotypic effects. A total of 100 phenotypic traits were

simulated with heritability equaling to 0.5 in each permutation of the analysis. Effect

sizes for each SNP for each phenotype in each permutation were drawn from a normal

distribution centered on zero using the additive model in GCTA (v1.91.6).237

The resulting simulated trait data and genuine genotype calls were analyzed using

GLM GWAS, FarmCPU GWAS, and GPWAS as described above, with the exception that

the population structure PCs were calculated using a sample (1% or 191,856 SNPs) of the

total SNPs remaining after filtering, rather than only using the subset of SNPs assigned

to the 2,000 randomly selected genes included in this analysis. For each analysis, the set

of 2,000 genes was ranked from most to least statistically significant based on the

significance of the most significantly associated SNP (for GLM and FarmCPU GWAS) or

the significance of the overall model fit relative to a population structure only model (for

GPWAS). Total 100 simulated phenotypes were split into 1, 5, 10, 20, 50 and 100

subgroups for running GPWAS. new added The power evaluation for GPWAS was

defined as the number of true positive genes relative to the total number of causal genes,

and FDR was defined as the number of false positive genes relative to the total number of

positive genes. Power and FDR were calculated in a stepwise manner (step size: five

genes) from five total positive genes to 500 (i.e. {5,10,...,495,500}).
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All of supplementary tables are deposited in FigShare under the link of

https://figshare.com/s/c2f6a2d2003227740a83.

Supplementary Table 1: The 260 phenotypes employed in this study with

corresponding missing data rates, imputation accuracies and classified phenotype

classes.

Supplementary Table 2: Expression characteristics, protein abundance and NAM

gene validation among gene populations.

Supplementary Table 3: Conversation features for unique gene sets between each of

GWAS models (GLM GWAS, MLM GWAS and FarmCPU GWAS) and GPWAS.

Supplementary Table 4: GO terms enriched and purified in gene populations

uniquely identified in GPWAS.

Supplementary Table 5: Statistics of GO terms assigned to each gene population.

Supplementary Table 6: Gene length and SNP density in each gene population.

Supplementary Table 7: Correlation between significance levels and SNP numbers

per gene for the genes generated from permuted and real data in GPWAS and GLM

GWAS.

Supplementary Table 8: Significant genes detected using GPWAS and the

phenotypes selected for each gene model.

Supplementary Data 1: Categories of annotated maize genes (AGPv4.39).
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Figure 4.1: Each diamond or triangle represents one specific phenotypic dataset. Symbol
colors indicate the broad categories into which each specific phenotype falls. The specific
identities of each phenotype ordered from left to right are given in Supplementary Table
1. (a) The position of each diamond on the y-axis indicates the negative log10 p-value of
the most statistically significant SNP assigned to that gene in a GLM GWAS analysis for
that single trait. The dashed blue line indicates a p = 0.05 cutoff after Bonferroni correc-
tion for multiple testing based on the number of statistical tests in a single GWAS analysis
(8.96e-8). The solid line indicates a p = 0.05 cutoff after Bonferroni correction for multiple
testing based on the number of statistical tests in GWAS for all 260 traits (3.45e-10). (b) The
placement of each triangle on the y-axis indicates whether a given phenotype was included
in (Sel.) or excluded from (Uns.) the final GPWAS model constructed for this gene. The
complete list of phenotypes incorporated into the GPWAS model for Zm00001d002175 is
as follows: days to silk (Summer 2006, Cayuga, NY; Summer 2007, Johnston, NC), days to
tassel (Summer 2007, Johnston, NC; Summer 2008, Cayuga, NY), GDD (Growing Degree
Days) day to silk (Summer 2006, Cayuga, NY; Summer 2007, Johnston, NC), main spike
length (Summer 2006, Johnston, NC), number of leaves (Summer 2008, Cayuga, NY), leaf
width (Summer 2006, Champaign, IL), NIR (Near InfraRed)-measured protein (Summer
2006, Johnston, NC) and ear weight (Summer 2006, Champaign, IL). (c) The panel indi-
cates the pairwise Pearson correlation coefficient between each pair of measured pheno-
types. Clustering based on phenotypic correlation was used to determine the ordering of
phenotypes along the x-axis. Each tick mark on the x-axes of the top and middle panels
indicates a distance of five phenotype datasets.
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Figure 4.2: (a) Proportions of genes detected using various GWAS models (GLM, MLM,
and FarmCPU), which overlap with genes detected by Jason Wallace et al.192 *: p value
≤ 0.05; ***: p value ≤ 1e-3 (Chi-squared test). (b) Ratio of detected genes with PAVs to
genes without PAVs. (c) Ratio between detected genes with syntenic conservation features
relative to sorghum and genes without syntenic conservation features. The proportions
of genes identified using MLM GWAS and FarmCPU GWAS with features of PAV, synteny
conservation and Ka/Ks can be found in Supplementary Table 3. (d) Distribution of Ka/Ks
values for different populations of genes within the maize genome. The background set
comprises all maize genes with syntenic orthologs in sorghum (Sorghum bicolor) and foxtail
millet (Setaria italica) after the exclusion of genes with tandem duplicates and genes with
extremely few synonymous substitutions identified in the original alignment. The kernel
density plots for genes uniquely identified using either GWAS or GPWAS, as well as by
the use of classical mutants, are the subsets of each of these categories, which also met the
criteria for inclusion in the background gene set. For each population of genes the median
value is indicated with a solid black line, and dashed black lines indicate the 25th and 75th
percentiles of the distribution. GLM GWAS was used to represent the GWAS model in
panels b, c, and d.
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Figure 4.3: GPWAS algorithm implementation. (a) Example of trait and genotype matri-
ces employed for GPWAS. (b) Flow chart of the initial data processing and the forward
selection process within the GPWAS algorithm.
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Figure 4.4: Permutation testing based estimation of false discovery rates for GLM GWAS,
FarmCPU, and GPWAS. For each panel, the dark curve shows the distribution of per gene
p-values obtained from 20 permutations of genotype and trait data (see Methods), while
the light curve indicates the distribution of per gene p-values obtained from the analysis of
the non-permuted dataset. Red lines indicate the p-value analyses employed in these anal-
ysis, corresponding top=8.96e-8 for GLM and FarmCPU and an estimated FDR< 0.001 for
GPWAS. Genes assigned p-values on the right side of each red line were employed for all
downstream analyses in the main text. Panels a-c show the entirety of the distributions,
while panels d-f display a magnified view of the regions of the curve where the p-value
threshold is employed. When these data were used to estimate the p-value cut off corre-
sponding to an estimated FDR < 0.001 for GLM GWAS, this was found to correspond to
an uncorrected p-value of approximately 1e-14, resulting in 31 genes would remain sta-
tistically significantly associated with traits. For FarmCPU GWAS, the minimum FDR
achieved was FDR < 0.029 at a p-value threshold of 1e-15, resulting in 38 genes remain-
ing statistically significantly associated with traits.
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Figure 4.5: Comparison of the performance of GPWAS and conventional GWAS methods
in the identification of candidate genes identified by Wallace et al192 using genotypic and
phenotypic data from the maize NAM population. Genes were sorted by p-value, and the
genes with the most significant p-values were selected at each threshold number of sig-
nificant genes listed on the x-axis.



86

Figure 4.6: Comparison of the performance of GPWAS and conventional GWAS methods
in the identification of a prior candidate genes involved in vitamin A and E biosynthesis.
Phenotypic data and published a priori candidate gene lists for vitamin A and vitamin E
were taken from previous studies.174, 199 The methodology used here was otherwise identi-
cal to that employed for Supplementary Figure 4.5.
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Figure 4.7: Power and FDR evaluation of the GPWAS model compared to the GWAS model
based on simulated phenotypes. Ten random sets of 100 quantitative trait nucleotides
(QTNs) were used to simulate 100 replicated phenotypes with h2 of 0.5. For one simu-
lated phenotype set, the positive genes were defined as the top m most significant of 2,000
genes. Each dot was represented as mean values of power and FDR of 10 replicates in each
rank. Error bars in both vertical and horizontal ways were represented by standard errors
of 10 replicates for power and FDR in each dot. The curve of power to FDR of GLM model is
under FarmCPU (data not shown). GPWAS-p1 stands for using 1 simulated phenotype for
running GPWAS, GPWAS-p2 stands for using 2 simulated phenotypes for running GP-
WAS. The same naming standard can be applied on GPWAS-p5, GPWAS-p10, GPWAS-
p20, GPWAS-p50 and GPWAS-p100. Although more phenotypic information was incor-
porated into GPWAS model, it demonstrated a better power/false discovery trade-off rel-
ative to FarmCPU with only 1 trait.
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Figure 4.8: Evaluation of GLM GWAS, FarmCPU GWAS, and GPWAS using the known
maize gene Anther ear1 (an1) (Zm00001d032961). (a) The dashed lines indicates a p-value
corresponding to 0.05 after a Bonferroni correction for independent tests on 557,968
(SNPs). Solid lines indicate the stricter multiple testing corrected threshold, which con-
siders both the number of SNPs and the number of phenotypes tested. In the GPWAS
panel, Sel. and Uns. indicate traits that were selected and unselected respectively, in the
model GPWAS fit for this particular gene. Phenotypes are ordered along the x-axis in the
same order used for Figure 1, with each tick mark indicating a distance of five pheno-
types. Phenotypes incorporated in the GPWAS model for an1 were as follows: germination
count (Summer 2006, Johnston, NC), days to tassel (Summer 2007, Cayuga, NY), GDD
days to silk (Summer 2007, Johnston, NC; Summer 2007, Champaign, IL; Winter 2006,
Miami-Dade, FL), tassel length (Summer 2007, Cayuga, NY), spikelets primary branch
(Summer 2006, Champaign, IL), secondary branch number (Summer 2006, Boone, MO),
plant height (Summer 2006, Cayuga, NY), NIR-measured protein (Summer 2006, John-
ston, NC), NIR-measured oil (Summer 2006, Johnston, NC; Winter 2006, Miami-Dade,
FL), cob weight (Summer 2007, Johnston, NC), ear diameter (Summer 2007, Johnston,
NC) and total kernel volume (Summer 2006, Cayuga, NY). (b) The potential correspon-
dence between phenotypes selected using the GPWAS model for an1 using the GPWAS
model and phenotypes either reported for loss of function an1 mutants or previous quan-
titative genetic analyses.32, 200–202
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Figure 4.9: Evaluation of GLM GWAS, FarmCPU GWAS, and GPWAS using the known
maize gene liguleless2 (lg2) (Zm00001d042777). (a) The dashed lines indicates a p value cor-
responding to 0.05 after a Bonferroni correction for independent tests on 557,968 (SNPs).
Solid lines indicate the stricter multiple testing corrected threshold which considers both
the number of SNPs and the number of phenotypes tested. In the GPWAS panel, Sel. and
Uns. indicate traits that were selected and unselected respectively, in the model GPWAS
fit for this particular gene. Phenotypes are ordered along the x-axis in the same order
used for Figure 1, with each tick mark indicating a distance of five phenotypes. Pheno-
types incorporated in the GPWAS model for lg2 were as follows: days to silk (Summer
2006, Johnston, NC), days to tassel (Winter 2006, Ponce, PR), GDD days to tassel (Sum-
mer 2007, Champaign, IL), GDD anthesis-silking interval (Winter 2007, Miami-Dade, FL),
main spike length (Summer 2006, Johnston, NC), leaf length (Summer 2006, Boone, MO),
upper leaf angle (Summer 2006, Cayuga, NY), number of tillering plants (Summer 2007,
Cayuga, NY), cob diameter (Winter 2006, Ponce, PR) and kernel weight (Summer 2007,
Cayuga, NY). (b) The potential correspondence between phenotypes selected by the GP-
WAS model for lg2, and phenotypes either reported for loss of function lg2 mutants or
previous quantitative genetic analyses.74, 203, 205–208
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Figure 4.10: Comparison of GO enrichment/purification among genes uniquely identified
as being associated with phenotypic variation using different statistical approaches. Each
circle represents a single GO term in a single analysis. The position of each circle on the x
axis indicates the total number of maize gene models which were assigned to this GO term
in the maize GAMER dataset.235 The position of each circle on the y-axis indicates the sta-
tistical significance of the enrichment or purification of this GO term in the given gene
population relative to the background set of all annotated maize gene models. Red lines
indicate the threshold for determining a significant GO term after a Bonferroni correc-
tion. (a) Comparison of the patterns of GO term enrichment/purification among genes ei-
ther uniquely identified as being associated with phenotypic variation using a GLM GWAS
analysis or uniquely identified as being associated with phenotypic variation in a GPWAS
analysis. (b) As in panel a, but the comparison is between genes uniquely identified as be-
ing associated with phenotypic variation using a FarmCPU analysis or uniquely identified
as being associated with phenotypic variation in a GPWAS analysis. Only the 706 genes
uniquely identified using GPWAS with the strongest statistical signal were employed in
panel b, to prevent any bias towards more significant p-values resulting from an analysis
using a larger population of genes identified using GPWAS than those identified using
FarmCPU.
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Figure 4.11: Number of SNPs identified per gene and the p-value of genes identified us-
ing different models. (a) The number of SNPs assigned to genes uniquely identified using
either GPWAS or GLM GWAS, as well as the total number of genes with identified SNPs.
SNPs assigned to gene regions were filtered and employed in all analyses. The maximum
remaining number of SNPs per gene was 138. The distributions of the genes uniquely
identified using GLM GWAS or GPWAS were statistically significantly different, p< 2.2e-
16 (Mann-Whitney U test). (b) Correlations between the SNP number per gene and the
-log10 p-value of the total number of genes identified using GPWAS on real phenotype
data. (c) Correlations between the SNP number per gene and the -log10 p-value of the to-
tal genes identified using GPWAS on randomly selected phenotype data from 20 permu-
tations. (d) Correlations between the SNP number per gene and the -log10 p-value of the
total genes identified using GLM GWAS on real phenotype data. (e) Correlations between
the SNP number per gene and -log10 p-value of total genes identified using GLM GWAS
on randomly selected phenotype data from 20 permutations. Spearman correlation meth-
ods were employed for the correlation test between SNP number and -log10 transformed
p-value for each gene. Full statistical reports are presented in Supplementary Table 7.



92

5:Summary

Genomic researches accelerate the process for understanding genetic basis of observed

phenotypes in maize and other crop species. However, only a limited number of inbreds

have been sequenced to serve as reference genomes. We need to align raw reads against

reference genome to detect molecular signals in specific genomic regions, such gene

expression level, single nucleotide polymorphisms and non-coding regulators. To

accomplish these tasks, both assembled genome in high-quality and seed materials in

pure genetic background are needed. The method we demonstrated in maize B73

population only requires RNA-seq data for investigating differences against the

reference genome. This could potentially provides an approach to answer unexpected

observations during genomic/transcriptomic studies, such as low correlations among

biological replicates, introgressions into inbreds during propagation and extremely low

expressions for certain genes.

With seed resources in high-confident genetic identity and advanced genotyping

technologies, we can acquire high-confident genotype markers for research materials.

To understand gene functions, precisely measured phenotypes are also needed, either at

molecular level or visible level. High-throughput phenotyping technologies (HTP)

enables us to measure dozens or hundreds of phenotypes per plant in an unified

standard and high efficient way. Imaging is one of broadly applied methods for this

phenotype collection process. Under well-controlled environment, we can extract diverse

sets of numeric values from images in different types across the plant developmental

stage. Potentially novel "trait", as the measurement bias between manually and
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computationally estimated plant biomass, could be an example to show the application

of HTP on trait discoveries. The future application of HTP measured trait associated with

genetic variants could be verified from experiments for more functional gene mining.

In population level, a nature diversity panel consists of a large number of genotypes

from different geographical sources. This big genetic pool gives the accessibility for

evaluating associations between candidate genetic loci with investigated phenotypes.

The application of GWAS can dissect the genetic architecture of a certain trait. However,

except for the connection between genotype and phenotype, underlying relationships

between phenotypes and phenotypes, or within molecular markers are highly complex.

The emerging research direction in plant phenotyping can generate much more

phenotypic measurements than before. A broad set of phenomic data enable us to test

the null hypothesis to see if any of annotated genes can be significantly associated with

these phenome-wide variants. The developed GPWAS model detected a distinct set of

maize gene population from both background and conventional GWAS detected genes.

The GPWAS genes are more conserved in functions and have closer genetic distance

with classical maize knock-out gene mutants, which have been studied by many research

groups. Overall, this dissertation highlights methods for utilizing precise and

high-throughput genotype and phenotype data for functional gene discoveries in maize.
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