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Abstract: Immunotoxins are chimeric proteins obtained by linking a toxin to either an intact antibody
or an antibody fragment. Conjugation can be obtained by chemical or genetic engineering, where the
latter yields recombinant conjugates. An essential requirement is that the target molecule recognized
by the antibody is confined to the cell population to be deleted, or at least that it is not present on
stem cells or other cell types essential for the organism’s survival. Hundreds of different studies
have demonstrated the potential for applying immunotoxins to many models in pre-clinical studies
and in clinical trials. Immunotoxins can be theoretically used to eliminate any unwanted cell
responsible for a pathological condition. The best results have been obtained in cancer therapy,
especially in hematological malignancies. Among plant toxins, the most frequently employed to
generate immunotoxins are ribosome-inactivating proteins, the most common being ricin. This review
summarizes the various approaches and results obtained in the last four decades by researchers in
the field of plant toxin-based immunotoxins for cancer therapy.
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1. Introduction

More than one century ago, the Nobel Prize laureate Paul Ehrlich postulated the “magic bullet
concept”: drugs that go straight to their intended target cells. Since then, the idea of a drug selectively
able to affect only the cells to be eliminated continues to fascinate thousands of researchers around
the world.

Inspired by the magic bullet concept, one of the most popular research approaches is based on
the linking of a pharmacologically active molecule to a carrier for selective delivery to target cells.
Many different molecules have been exploited as carriers and as toxic moieties; the most studied are
summarized in Table 1.

Table 1. Components of pharmacologically active conjugates.

Carrier Toxic Moiety

Antibodies Drugs
Grow factors Radioisotopes

Cytokines Toxins
Hormones Human enzymes
Antigens -
Lectins -
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The pharmacologically active conjugates are primarily applied to research in the field of cancer
therapy [1]. This research arose from the clinical use of radio- and chemotherapeutic agents, which
have demonstrable anti-tumor effects but also limitations (considerable side effects due to the lack of
selectivity for tumor cells, development of drug resistance, and occurrence of secondary malignancies).
As a consequence, the study and development of alternative therapies, such as immunotherapy, were
deeply stimulated in order to find therapies with greater specificity for transformed cells and less
non-specific toxicity.

Various immunotherapeutic approaches are mainly focused on the identification of specific
antigens on the surface of cancer cells. An essential requirement for this approach is that the target
molecule is confined to the cell population to be destroyed, or at least that it is not present on stem
cells or other cell types essential for the organism’s survival. Antibodies are the most utilized carriers
due to their stability in blood and avidity and affinity for their target antigen.

Both bacterial and plant toxins have been used as toxic moieties. The most commonly used
bacterial toxic moieties are the Pseudomonas exotoxin and the diphtheria toxin, both of which inactivate
elongation factor 2 (EF-2), causing irreversible protein synthesis arrest and subsequent cell death.
Among plant toxins, ribosome-inactivating proteins (RIPs) are the most common. The use of toxins
as pharmacologically active moieties of conjugates has some advantages in comparison with drugs,
radionuclides, and enzymes:

1. As opposed to drugs that act in a stoichiometric ratio and only on dividing cells, toxins exert
their action in a catalytic manner, do not induce drug resistance, and are able to kill cells in both
dividing and quiescent states.

2. Radionuclides have the advantage of eliminating tumor cells that do not express the antigen or
express a mutated antigen, but they also have different disadvantages, such as the unspecific
toxicity for normal cells that surround the tumor, and the difficulties related to their manipulation,
stability, and decay time.

3. In comparison to human enzymes, conjugated toxins have a much greater stability and activity
against target cells.

2. Immunotoxins (ITs)

Immunotoxins (ITs) are chimeric proteins that are generally obtained by linking a toxin to an
intact antibody or a fragment of an antibody. When toxins are linked to other carriers, they are more
commonly referred to as “chimeric toxins” or “conjugates”.

IT technology is the culmination of a therapeutic strategy originally devised by Köhler and
Milstein in 1975 [2], in which hybridoma technology was introduced, allowing for large-scale
production of monoclonal antibodies (mAbs) in mice. Recently, the development of recombinant DNA
techniques permitted the generation of chimeric/humanized antibodies and engineered antibody
fragments [3,4]. Thanks to numerous and continuous technical advances in the production of new
mAbs and related fragments over the last decades, antibody-based immunotherapy has become a
fast-growing field in cancer therapy, which has led to important achievements [5,6]. The clinical
success of the chimeric (human-murine) anti-CD20 mAb rituximab, the first approved mAb for cancer
treatment [7,8], has prompted interest in the development of mAb-based technologies, including ITs.

Until now, hundreds of studies have demonstrated the potential for IT application in many
different models, both in pre-clinical studies and in clinical trials [9–12]. Theoretically, ITs could be
used to eliminate any unwanted cell that is responsible for a pathological condition. Most ITs have
been prepared to attack cancer cells, endothelial cells of tumor vasculature, immunocompetent cells,
or virus-infected cells. The best results are in cancer therapy, especially hematological malignancies.
Due to vascular accessibility, hematological cancers have a favorable setting for IT treatment.
Furthermore, hematological cells are ideal targets for antibody-based immunotherapy due to the
presence of clusters of differentiation (CD) on the cell surface.
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The efficiency of an IT in killing cells depends not only on the specific properties of the toxin
and the carrier but also on characteristics of the target cell, including antigen density, binding affinity,
and intracellular routing. Moreover, immunotherapy specificity is based on characteristics (surface
antigens) that are completely independent from those associated with chemotherapy and radiotherapy.
This specificity results in fewer side effects for non-target cells and enhanced cytotoxicity toward cell
clones resistant to chemotherapy and radiotherapy.

Crucial to the design of an IT is the concerted effort of clinicians (to determine medical needs
and models), immunologists (to select the most suitable mAbs), and basic scientists/pharmacologists
(to choose the appropriate toxin and linker). An antibody and toxin can be conjugated by means
of chemical linkage or by genetic engineering to obtain recombinant conjugates [13]. The choice of
the modality to chemically link the antibody and the toxin is another fundamental step in IT design.
In fact, the efficacy of an IT mainly depends on its capacity to deliver its toxic moiety into the target cell.
The linker must meet some basic requirements: (i) to not impair the antigen-binding capacity of the
carrier; (ii) to be stable in the plasma; (iii) to not release the toxin in the extracellular environment; and
(iv) to release the toxin intact and in the cellular compartment where it can exert its enzymatic activity.
To this end, a disulfide bridge is the most commonly used chemical linkage because such a bond exists
in nature between the toxic and lectin subunits of toxins (see below). The presence of thio-disulfide
oxidoreductase enzymes in the lysosome allows for breaking the bond and the subsequent release of
the toxic payload. A disulfide bridge is obtained upon reaction of the antibody and toxin, previously
derivatized using heterobifunctional reagents that are able to introduce thiol reactive groups in the
two molecules. The most commonly used heterobifunctional reagents, able to insert thiol groups, are
2-iminothiolane and succinimidyl 3-(2-pyridyldithio)propionate. These reagents bind amino groups
accessible on proteins, forming stable amide or imino bonds [14].

Recombinant ITs (also defined as second generation, in contrast with chemically obtained ITs,
which are sometimes defined as first generation) are hybrid molecules in which the carrier and the
toxin are fused by recombinant DNA techniques to obtain conjugates of smaller size to facilitate
penetration into tumor masses [15]. The carrier moiety can be a single-chain variable fragment or a
disulfide-stabilized variable fragment, in which a disulfide bond connects the two variable regions.
The DNA sequences coding for the toxic agent and the ligand are cloned and expressed in yeast,
bacteria, Chinese hamster ovary cells, or insect cells. The ITs produced in bacteria usually accumulate
to high levels in “inclusion bodies”, inside which ITs are often incorrectly folded, resulting in less
active ITs compared to first generation ITs [16].

The main side effects reported in clinical trials with ITs are immunogenicity and vascular
leak syndrome. The generation of anti-toxin antibodies can represent a serious obstacle in the
continuation of treatment, mainly in carcinoma and sarcoma patients treated with ITs. Instead,
in patients affected by hematological cancers, this side effect is less important, as these patients are
often immunosuppressed [13]. Vascular leak syndrome is a consequence of a direct damage toward
endothelial cells and is associated with fluid extravasation with edema, hypotension, and in severe
form, signs of pulmonary and cardiovascular failure [17].

3. Ribosome-Inactivating Proteins

RIPs are a class of toxic enzymes that are widely distributed in the plant kingdom. RIP activity
was first identified in rRNA N-glycosylase (EC 3.2.2.22) of the rat ribosome; RIPs specifically remove
the A4324 adenine residue inside the GAGA sequence on the ricin/sarcin region of the 28S rRNA
in the 60S subunit. Importantly, the GAGA sequence is universally conserved among eukaryotic
rRNA. Adenine removal damages ribosomes in an irreversible manner, causing inhibition of protein
synthesis [18]. RIPs also have in vitro N-glycosylase activity on other substrates, such as DNA, mRNA,
tRNA, and poly(A). For this reason, the definition of RIP enzymatic activity has been proposed to be
changed to polynucleotide:adenosine glycosylase [19–21].
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RIPs are mainly classified as type 1, consisting of a single-chain protein with enzymatic activity,
or type 2, consisting of an enzymatic A-chain linked by a disulfide bond to a lectin B-chain that is able
to bind to sugar-containing receptors on the cell membrane. The presence of the B-chain in type 2 RIPs
allows for rapid internalization of the toxin into the cell. Inside the cell, the two moieties are separated
and the active A-chain can enter the cytosol to exert its action. For this reason, most type 2 RIPs are
quite toxic. However, a number of non-toxic type 2 RIPs were found in some plant species belonging
to the Sambucus genus [22].

Despite the different toxicity reported in animals and cell systems [23], both type 1 and type 2
RIPs often show a similar activity on ribosomes in a cell-free system [24].

4. Plant Toxin-Based Immunotoxins

Despite a highly efficient cell-killing mechanism, toxins are limited by a lack of specificity.
The mAbs have high selectivity for their target, but low cytocidal capacity. Both of these limitations
can be overcome by conjugating the two moieties, thus building an IT.

An IT can trigger cell death by multiple death pathways (see Figure 1). Once the RIP reaches
the cytosol, endoplasmic reticulum, or nucleus, it can induce activation of apoptosis, necroptosis,
oxidative stress, as well as protein synthesis inhibition and potentially autophagy [25,26]. Moreover,
the antibody can also activate cell death through apoptosis, or when whole antibodies are used, through
complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC).
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Figure 1. Plant toxin-based immunotoxins (type 1 RIPs or type 2 RIP A chains) can cause cell death
by triggering multiple death pathways. Once the toxin reaches the cytosol, endoplasmic reticulum
or nucleus, it can cause apoptosis activation, necroptosis, oxidative stress, the inhibition of protein
synthesis and probably autophagy. Also, the antibody can activate cell death through apoptosis or
through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity
(ADCC), in the event that whole antibody molecules are used.

Ricin is the most commonly used type 2 RIP. The first ITs were prepared with ricin, binding the
whole toxin to the mAb, with the hope that antibody avidity and specificity would be able to confer to
the conjugate a specific toxicity for the cell target much greater than the non-specific toxicity given by
the B-chain. Despite having high efficiency, the high non-specific toxicity of these ITs has prevented
their clinical use. Attempts to limit non-specific toxicity involve blocking, modifying, or deleting the
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lectin chain. Blocking the galactose binding domain in the B-chain was obtained by different means:
(a) in vitro, by co-administration of excess of lactose or galactose in the culture medium; (b) by reaction
with specific ligands, obtained by chemical modification of oligosaccharides; (c) by chemical bond
with mAbs that sterically hinder binding to oligosaccharides [27].

A different approach is the use of only the A-chain, obtained by purification after chemical
reduction of the A-B disulfide bridge or by genetic engineering. A large number of ITs have been
constructed with the ricin A-chain (RTA). However, the use of RTA has also presented some problems,
especially related to the difficulty and danger of its purification and non-specific toxicity due to the
recognition of residues of mannose present on the A-chain by receptors present on many cell types.
To address the problem of non-specificity, different ITs were prepared with the deglycosylated ricin
A-chain (dgRTA).

Type 1 RIPs are also commonly used to obtain ITs. In comparison with RTA, type 1 RIPs are
more stable, less dangerous, and easier to manipulate. Moreover, a wide variety of well-characterized
type 1 RIPs is available, and often, they are immunologically not correlated with each other. These
characteristics allow the selection of proteins with different properties that can be very useful in the
construction of an IT, such as low systemic toxicity, high stability, etc.

The most studied type 1 RIPs for clinical applications as toxic components of ITs are PAP
(pokeweed antiviral protein), gelonin, and above all, saporin-S6 [9,11,28]. The success of saporin-S6
derives from its strong activity both in cell-free systems and in cell lines. Moreover, it is extremely
resistant to denaturation, high temperature, repeated freeze-thaw cycles, and proteolysis. Saporin-S6
is also stable with respect to chemical modifications, such as those required for derivatization and
conjugation [29].

Despite the large number of research studies in vitro [30–35] or in animal models [11,36–39],
a limited number of clinical trials have been conducted with type 1 RIP–containing ITs in comparison
to dgRTA- or RTA-containing ITs (Table 2). Nevertheless, some type 1 RIPs, such as saporin, would
have many advantages with respect to ricin, in terms of stability and efficacy, as described above [26].
Altogether, these characteristics render saporin-S6 an attractive molecule for the construction of
immunoconjugates.

Table 2. Clinical trials with plant toxin-containing immunotoxins for cancer therapy #.

Immunotoxin Antigen Target RIP Diseases Clinical Phase Ref.

VB6-845 EpCAM deBouganin Carcinoma I [40]
HuM-195/rGel CD33 r-Gelonin Leukemia I [41]

B43-PAP CD19 PAP ALL I/II [42]
H65-RTA CD5 RTA CTCL I [43]
T101-RTA CD5 RTA CLL I [44]

XOMAZYME-MEL HMW mel. ag RTA Melanoma I [45,46]
Combotox CD19/CD22 dgRTA ALL, NHL I [47,48]

3A1-dgRTA CD7 dgRTA T-LGL, ALL II [49]
IgG-HD37-dgA CD19 dgRTA NHL I [50]
Xomazyme-791 72 kDa gp dgRTA Colon cancer I [51,52]

RFT-5-dgA IL-2R (CD25) dgRTA CTCL, Melanoma I/II [53]
Anti-B4-bR CD19 bRicin NHL, Multiple myeloma I/II [54,55]

N901-bR CD56 bRicin SCLC I [56]
260F9-rA 55 kDa gp RTA Breast cancer I [57,58]

Ber-H2-SO6 CD30 Saporin-S6 HD I/II [59,60]
F(ab’)2 BsAb CD22 Saporin-S6 NHL I [61,62]

4KB128 + HD6 CD22 Saporin-S6 BCL I [63]
# For more details about clinical trials, see the specific references. ALL: acute lymphoblastic leukemia; BCL:
B-cell lymphoma; CD: cluster of differentiation; CLL: chronic lymphoblastic leukemia; CTCL: cutaneous
T-cell lymphoma; dgRTA: deglycosylated ricin A chain; gp: glycoprotein; HD: Hodgkin’s disease; NHL:
non-Hodgkin’s lymphoma; PAP: pokeweed antiviral protein; RTA: ricin A chain; RIP: ribosome-inactivating
protein; SCLC: small cell lung carcinoma; T-LGL: T-cell large granular lymphocyte leukemia.
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5. Conclusions

Although more than a century has passed from Erlich’s initial idea, the concept of ITs as a
“magic bullet” for cancer therapy has not yet faded. In fact, new strategies to study and apply these
hybrid molecules are underway, thanks to the availability of new generations of antibodies, such
as chimeric or humanized molecules that are already used in clinical therapy. The great interest of
institutional researchers and pharmaceutical companies in the field is also demonstrated in the number
of patents protecting immunoconjugates or their components. It is the opinion of many investigators
that immunoconjugates will likely become important players in cancer treatment in the near future
(e.g., [63]). Recently, an anti-IL-2R IT containing dgRTA has been approved by the US Food and Drug
Administration for the treatment of cutaneous T-cell lymphoma in adults [13,53]. The large number of
antibody–drug conjugates and ITs in clinical trials supports the maturity of this approach [64].
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