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1. Introduction 

The world is on the brink of a demographic milestone. We soon will have 

more elderly people than children and more people at extreme old age than 

ever before. Driven by falling fertility rates and remarkable increases in life 

expectancy, population ageing will continue and even accelerate (Figure 1) 

(WHO, 2011).  

At a biological level, ageing results from the accumulation of a wide-variety of 

molecular and cellular damage over time. In the brain, this leads to structural 

and functional alterations and gradual decrease in cognitive abilities.  

Normal ageing, which is experienced by the majority of individuals, prompts 

subtle cognitive changes, mainly in domains of processing speed, memory 

and executive functions (Harada et al., 2013). However, it is known that there 

is considerable variability among individuals in the apparent rate of ageing, 

and only a loose association of these changes to the person’s chronological 

age has been observed. This indicates importance of other factors modulating 

the effects of ageing on the brain.  

Figure 1. Young children and older people as a percentage of global population: 1950-2050. 
Source: http://www.who.int/ageing/publications/global_health.pdf 
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Furthermore, as the population gets older, the number of individuals 

developing neurodegenerative diseases such as dementia and mild cognitive 

impairment increases. Although, by definition these pathologic conditions are 

not part of a normal ageing process, observations show that almost all aged 

brains show characteristic changes that are linked to neurodegeneration 

(Wyss-Coray, 2016). This raises the possibility that fundamental mechanisms 

of ageing may display early disease changes or contribute to the 

pathogenesis of neurodegenerative disorders (Bartzokis, 2011; Bishop et al., 

2010; Raz, 2005).  

Due to related high global social and economic costs and lack of causal 

therapeutic options for neurodegenerative diseases, risk-reduction has been 

increasingly recognised as the key prevention strategy. Therefore, studies on 

identification of possible “modifiable” risk factors have become a research 

priority. Most studies focus on healthy elderly and aim to identify genetic as 

well as environmental factors that accelerate ageing on both the brain and the 

behavioural level and the possible link between the accelerated ageing-

associated changes and an increased risk of neurodegenerative diseases. 

In this doctoral thesis, I focus on major modifiable, life-style related risk factors 

associated with increased risk of the most prevalent ageing-associated 

neurodegenerative disease, namely Alzheimer’s disease (AD). The aim is to 

identify alterations associated with these risk-factors among the elderly 

population and their influence on an accelerated brain- as well as cognitive-

ageing (Barnes and Yaffe, 2011). 

In section 1.1, I briefly review the current knowledge on typical ageing-

associated alterations in human brain structure and function, assessed with 
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in-vivo magnetic resonance imaging (MRI).  

The major modifiable risk factors of brain ageing and their estimated impact 

on prevalence of AD, are briefly covered in section 1.2.  

Section 1.3, covers a basic description of imaging modalities and processing 

algorithms, which are used to assess structural and functional properties of 

the brain at an individual level.  

Based on this information, I will derive the rationale and main questions 

(section 1.4) that have been addressed in our 4 published papers, which form 

the basis of the present cumulative dissertation (section 2).  
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1.1: “Normal” cognitive ageing 

As individuals get older, they will experience individual levels of alterations in 

their cognitive abilities, which can be attributed to a normal ageing process. 

These often subtle changes in cognitive abilities are particularly represented 

by difficulties in episodic memory and in tasks that represent different types of 

high level functions, such as tasks that involve working memory (Mccabe et 

al., 2010), attention, and task switching behavior (Grady, 2012). Older adults 

also have generally slower processing speed (Salthouse and Madden, 2013). 

Nevertheless, some aspects of cognition, such as crystallized intelligence, 

referring to skills and knowledge that is overlearned and familiar, are resilient 

to ageing (Harada et al., 2013). Understanding neurobiological mechanisms 

that underlie these alterations in cognitive abilities, is a challenge, on which 

structural and functional neuroimaging studies of ageing have focused. 

1.1.1. Ageing-associated changes in brain structure and function 

In-vivo assessment of structural properties of brain’s grey matter (GM) is 

commonly determined by-means of T1-weighted MRIs, (see section 1.3.1, for 

definition). Starting from middle age, decreased total GM volume and 

widespread cerebral cortical thinning, spanning cortical regions in primary as 

well as in association cortices, have been shown (Salat et al., 2004). Despite 

this global pattern, several lines of evidence suggest differential vulnerability 

to ageing in different parts of the brain (Raz, 2005). More specifically, in older 

individuals, accelerated decrease in volume and thickness have been 

predominantly documented in the prefrontal cortex, inferior temporal lobe, 

posterior association cortices, hippocampus and in subcortical structures such 
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as the striatum (Fjell et al., 2014; Fjell and Walhovd, 2010; Salat et al., 2004; 

Sowell et al., 2003). 

Higher vulnerability of these areas to ageing processes is also supported by 

evidence of pronounced age-related decline in certain cognitive abilities such 

as speed of processing, episodic and working memory, cognitive control 

including response inhibition and interference suppression, all of which rely on 

the integrity of these specific brain areas (Raz et al., 1998; West, 1996). 

Recent developments in data-driven analyses of MRI have immensely 

improved our understanding of brain structural and functional organization. It 

has been shown that the “structure” of the brain is organized in networks of 

distinct regions and morphological properties of areas that belong to the same 

structural network, co-vary together and follow the same developmental 

trajectories over the life span (Alexander-Bloch et al., 2013). It has also been 

shown that the strength of these brain-wide co-variance pattern is correlated 

with individuals’ scores on different cognitive tests (Brickman et al., 2008, 

2007) (even in healthy young subjects (Steffener et al., 2013)), emphasizing 

the practical significance of these network structures. Furthermore, regions 

belonging to the same structural network, are functionally connected, as 

defined using resting state functional magnetic resonance imaging (rsfMRI), 

see section 1.3.1, for details on rsfMRI and definition of functional connectivity 

(FC). 

The default mode network (DMN), comprised of the medial prefrontal cortex 

(MPFC), the posterior cingulate cortex (PCC), the precuneus, the anterior 

cingulate cortex (ACC) and the bilateral parietal cortices as well as the 

hippocampal formation, is one such network (Raichle et al., 2001), which has 
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gained particular importance as an early biomarker for cognitive decline and 

AD (Damoiseaux et al., 2012; Petrella et al., 2011; Sorg et al., 2007). Among 

healthy individuals, the volume of GM and FC among sub-regions (nodes) of 

the DMN, correlates with episodic memory and executive function 

performance and declines over the lifespan (Andrews-Hanna et al., 2007) 

(Koch et al., 2010) (Damoiseaux et al., 2007; Douaud et al., 2014). In AD 

patients, regional atrophy is predominantly documented in DMN (e.g. (Fjell et 

al., 2015, 2014) ), and FC among its nodes is also shown to be disrupted in 

advanced stages of the disease (Buckner et al., 2008).  

In their publication in 2009, Seeley et al. showed several other examples of 

such convergent patterns of structural and functional covariance networks, 

identified in healthy individuals and that are targeted by specific 

neurodegenerative conditions.  

Such coordinated change within spatially separated regions could hint 

towards shared susceptibility of regions within one network to selective 

pathologies or a network-based spread of toxic agents (Zhou et al., 2012).  

Through similar mechanisms, factors modulating risk of neurodegenerative 

conditions and cognitive decline may also affect GM structure and functional 

properties in large-scale networks, rather than in independent regions.  

In the next section, I will briefly introduce the current knowledge about major 

modifiable factors that accelerate brain ageing and their estimated impact on 

AD-prevalence. 

1.2. Modifiers of brain ageing and AD 

As briefly discussed in section 1.1, structural and functional properties of brain 

alters as individuals get older. However, previous research has shown that the 
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rate of brain ageing and its associated cognitive decline is not inevitably fixed 

but is plastic and possibly open to modification (Bishop et al., 2010).  

In the last decades, several observational studies have identified a wide range 

of such potentially modifiable risk factors including cardiovascular risk factors 

(eg. obesity, diabetes and hypertension) and unhealthy behaviour (eg. low 

level of mental activity and smoking) (Barnes and Yaffe, 2011; Buchman et 

al., 2012; Fotuhi et al., 2012). In the same line, protective factors that reduce 

cardiovascular risk, namely regular exercise and a healthy diet seem to have 

beneficial effects on brain health and on the preservation of cognitive abilities 

in elderly (WHO, 2009).  

Furthermore, although age is known as the strongest predictor of 

neurodegenerative conditions (e.g. late-onset AD), this important risk factor 

should be considered in the context of genetic predisposition, lifestyle and 

environmental factors. It has been estimated that one in three late-onset AD 

cases worldwide is attributable to one or more of seven key risk factors, 

namely, midlife obesity, diabetes, midlife hypertension, smoking, depression, 

physical inactivity, and low educational attainment (Barnes and Yaffe, 2011; 

Norton et al., 2014). It has also been estimated that a relative reduction of 

10% per decade in the prevalence of each of these seven risk factors could 

reduce the prevalence of late-onset AD in 2050 by 8.3% worldwide (Norton et 

al., 2014). 

In this context, many studies in the past decade have focused on structural 

and functional changes in the brain, underlying this manipulated risk of 

cognitive decline and AD. Obesity, as a major epidemic of the twentieth 
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century, is one of the most studied factors. Worldwide, the prevalence of 

obesity has nearly doubled since 1980 (WHO, 2014). A recent study, pooling 

data from 1698 population-based studies, estimating trends in mean body-

mass index (BMI) and prevalence of different categories of BMI, revealed that 

the trend is present in 200 countries, both in men and women (NCD Risk 

Factor Collaboration, 2016). Based on their prediction, if the post-2000 trends 

continue, by 2025, global obesity prevalence will reach 18% in men and 

surpass 21% in women, with severe obesity exceeding 6% of individuals of 

both gender (NCD Risk Factor Collaboration, 2016).  

These results are alarming, as obesity has been closely associated with 

higher prevalence of other cardiovascular risk factors such as type-2 diabetes, 

hypertension, and fatal outcomes such as coronary heart disease and 

ischemic stroke.  

Additionally, numerous epidemiological studies have found that obesity in 

midlife has a high predictive value for cognitive impairments later in life, and 

can thus be regarded as an important risk factor (e.g., (Anstey et al., 2011; 

Beydoun et al., 2008; Fitzpatrick et al., 2009; Gustafson, 2006; Kivipelto et al., 

2005; Whitmer et al., 2005); for review see (Emmerzaal et al., 2015); but see 

(Qizilbash et al., 2015) and (Kivimäki et al., 2017) for recent discussions.).  

In the central nervous system, the trajectory of increased BMI over the life 

course has been associated with brain atrophy, white matter changes, 

disturbances of blood–brain barrier integrity, and an increased risk of late-

onset dementia and AD (Kiliaan et al., 2014). One recent review, accounting 

for other associated risk factors, estimated 2% of AD cases worldwide being 
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potentially attributable to midlife obesity defined by BMI above 30 (Norton et 

al., 2014). 

However, effects of obesity in later life on cognitive performance in non-

demented individuals are equivocal. Some studies show lower performance in 

most cognitive domains including executive functions and memory (e.g. 

(Benito-León et al., 2013; Walther et al., 2010)), in association to higher BMI, 

while others did not find a reliable effect, partly dependent on sex and age 

range studied (e.g., (Elias et al., 2005); for a review, see (Smith et al., 2011)).  

In addition, obesity-related cardiovascular risk factors such as type 2 diabetes 

mellitus and hypertension, have been associated with general lower GM 

volume and cortical thickness. These changes, found in some but not in all 

studies, were specifically located in vulnerable regions in the frontal and the 

medial temporal lobes (reviewed in (Friedman et al., 2014)). Furthermore, 

variability in blood pressure has also been associated with changes in GM 

structure, although the literature suffers a substantial discrepancy on this topic 

with respect to location and extent of the effects and pattern of the 

associations (Foster-Dingley et al., 2015; Friedman et al., 2014), specifically 

in older ages. Norton et al. in their review in 2014 predicted that 3% and 5% of 

AD cases worldwide could be attributed to type2 diabetes and midlife 

hypertension, respectively (Norton et al., 2014). 

Interestingly, more favourable metabolic profiles such as lower glucose levels, 

even within normal ranges, have been shown to exert protective effects on 

AD-risk and microstructure of related temporal brain areas (Crane et al., 2013; 

Kerti et al., 2013; Villeneuve et al., 2014), suggesting significant effects of 
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body composition. Further, widespread cortical thinning in frontal and 

temporal lobes have been associated with lower levels of high-density 

lipoprotein (HDL) (Villeneuve et al., 2014).  

Smoking, as an important independent cardiovascular risk factor, with a high 

prevalence of ~27% worldwide, is also associated with general cortical 

thinning (Karama et al., 2015), increased severity of some abnormalities 

typical for AD, including amyloidogenesis, neuroinflammation and tau 

phosphorylation (Moreno-Gonzalez et al., 2013) and eventually increased risk 

of AD, with around 14% of AD cases worldwide being attributable to smoking 

(Norton et al., 2014). 

Physical inactivity as well as lower levels of education and mental activity, due 

to their high prevalence worldwide (~18% and 40%, respectively), serve as 

other major contributors of AD, attributed to 13% and 19% of cases 

worldwide, respectively. Beneficial effects of physical activity on brain 

structure, mainly increased cortical thickness and volume in the frontal lobe, 

and on cognitive function, especially memory performance, have been shown 

in several cross-sectional studies (Buchman et al., 2012; Colcombe et al., 

2006; de Bruijn et al., 2013; Erickson et al., 2014; Flöel et al., 2010; 

Ruscheweyh et al., 2011).  

These findings have already led to the initiation of promising large-scale 

longitudinal controlled trials (Ngandu et al., 2015). One example is the Finnish 

Geriatric Intervention Study to Prevent Cognitive Impairment and Disability 

(FINGER), a randomised controlled trial that assessed effectiveness of a 

multi-domain intervention (diet, exercise, cognitive training, vascular risk 
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monitoring) to prevent cognitive decline in ~1200 at-risk elderly individuals 

from the general population. Findings of this large-scale study show a modest, 

yet significant, improvement in total neuropsychological tests, as the result of 

intervention, in a two-year follow-up assessment. Similar modest improvement 

in cognition was reported in the French Multidomain Alzheimer’s Prevention 

Trial (MAPT) (Vellas et al., 2014). However, results of the six-year Prevention 

of Dementia by Intensive Vascular Care (PreDIVA) trial, questioned 

translation of such intervention to protection against Alzheimer’s disease or 

other dementias in broad population (Moll van Charante et al., 2016). 

However, possible physiological and structural changes resulted by these 

interventions are yet to be reported. 

In sum, there is a global intensified effort to identify causes and cures for 

neurodegenerative diseases, specifically the late-onset AD. Given that to this 

date no effective treatment has been found, risk factors identification and 

reduction is considered as the most promising approach to delay onset and 

potentially reduce the number of new AD cases (Barnes and Yaffe, 2011; 

Norton et al., 2014). In-vivo MRI gives precious insight into the neuronal 

correlates of these risk factors. However, as briefly reviewed in this section, 

there is a considerable amount of discrepancies in timing, location and extent 

of the observed effects and previous studies could neither establish a 

consistent pattern of regional changes, nor answer the question to what 

extent these changes could affect cognitive performance. This might be partly 

due to smaller sample sizes and different characteristics of the samples under 

study. Moreover, important confounders have not consistently been 

considered, rendering potential independent effects of these risk factors in 
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older age still debatable (Friedman et al., 2014; Prickett et al., 2015). 

This doctoral thesis aims to overcome many of the above-mentioned 

shortcomings. The goal is to assess the independent effects of each of the 

major cardiovascular risk factors on structure and function of brain, assessed 

using state-of-the-art methods on high-resolution MRI at 3Tesla, among yet 

cognitively intact older individuals from the population-based LIFE-Adult-

Study (Loeffler et al., 2015). 
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1.3. Methods 

In this thesis brain’s functional and structural properties were investigated 

using in-vivo magnetic resonance imaging.  

1.3.1. Imaging protocols 

For assessment of brain’s anatomy, T1-weighted MRI is the standard 

protocol. It relies on longitudinal relaxation times of tissue’s net magnetization 

vector (NMV) after application of a transverse (90 degree) radio-frequency 

(RF) pulse in a strong external magnetic field (3 Tesla, in case of our study). 

By incorporation of appropriate scanning parameters, such as short repetition 

times (TR) of the RF pulses and short delays before detecting the signal (TE), 

this protocol provides very good contrast between grey and white matter in 

most parts of the brain. Therefore, it is used for qualitative and quantitative 

assessment of brain’s anatomy in healthy and pathologic conditions.  

The activity of the brain is assessed using blood-oxygen level dependent 

(BOLD) functional MRI (fMRI), first introduced by (Ogawa et al., 1990). BOLD 

fMRI is an indirect measure of neuronal activity, based on relationship 

between neural activity, energy demands and blood flow (Logothetis, 2002).  

It relies on detecting the changes in blood oxygenation and blood flow that 

occur in response to neuronal activity, usually as a result of engaging in a 

task. What we measure with functional MRI is the changes in magnetic field 

caused by difference in the magnetic susceptibility of oxygenated 

(diamagnetic) and deoxygenated (paramagnetic) blood, as an indirect 

measure of energy consumption. However, there are further parameters that 

contribute to the alteration in blood oxygenation, including oxygen 

consumption dynamic, cerebral blood flow and volume (Logothetis, 2002).  
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In 1995, Biswal et al. measured BOLD fMRI at rest (no task). They observed 

intrinsic spontaneous slow oscillations that were correlated within functionally 

coupled networks (Biswal et al., 1995). They concluded that correlation of low 

frequency fluctuations in different brain regions, which may arise from 

fluctuations in blood oxygenation or flow, is a manifestation of functional 

connectivity (FC) between brain regions.  

Later, other researchers identified several large-scale networks of such 

correlated activity at rest, which resembled different task-based co-activation 

maps (Smith et al., 2009).  

1.3.2. Network Identification 

For extraction of different networks from resting-state fMRI (rsfMRI) and 

structural MRI, we use independent component analysis (ICA). ICA is a 

particularly efficient model for finding meaningful spatially independent 

components in an unsupervised setting, as it searches for non-Gaussian 

spatial sources that are likely to represent real features of the data. Unlike in a 

principal component analysis (PCA), the mixing matrix vectors of an ICA are 

not forced to be orthogonal to each other, and thus can explain common 

variance of variables external to the ICA. Because of different types of the 

inputs and different assumptions about the independent sources, we use 

different implementations of ICA for resting-state and GM structural data. 

1.3.2.1. Resting-state fMRI network extraction 

For estimation of resting-state ICA components, we used group independent 

component analysis (GICA) algorithm implemented in Matlab within GIFT 

toolbox (http://mialab.mrn.org/software/#gica).  
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GICA, involves two data reduction steps at subject and group level, using 

PCA. Here one begins with pre-processing of each participant’s scans. The 

pre-processing step includes removal of the first few volumes, co-registration 

of the functional scan with participant’s own anatomical image, motion and 

Echo-planar imaging (EPI) distortion and slice-time correction, normalization 

to the template space (MNI) and eventually reslicing to 3 mm isotropic voxels 

and smoothing with a gaussian kernel of 6 mm full-width-at- half-maximum. 

Each participant’s pre-processed and intensity normalized rsfMRI scans 

undergo the first PCA, which reduces the number of time points for each 

individual separately. Then all subjects’ PCA-reduced data are concatenated 

in time and a second level PCA is applied on this aggregate data to reduce 

the dimensionality of the data to the number of components to be estimated 

by ICA. A noise-free spatial ICA (based on Infomax-ICA implementation (Bell 

and Sejnowski, 1995)) is then used to extract the group-level spatial 

independent sources and a mixing matrix. The subject-specific spatial maps 

and time courses are then calculated using GICA3 back-projection algorithm 

method, which is based on PCA compression and projection. GICA and 

GICA3 back-projection algorithms are introduced in more detail in (Calhoun et 

al., 2001; Erhardt et al., 2011). 

1.3.2.2. Grey matter structural network extraction 

For estimation of structural networks, we used T1-weighted MRIs and 

incorporated information from three complementary types of GM image 

processing: GM volume as assessed using optimized voxel-based 

morphometry (VBM) in FSL software package 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; FSL 4.1), vertex-wise cortical 
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surface thickness and area measures calculated using FreeSurfe 

(http://surfer.nmr.mgh.harvard.edu/; FreeSurfer 5.0.0). In VBM, T1-weighted 

images are matched up in a common space and segmented to classify grey 

matter, white matter and cerebrospinal fluid. By accounting for regional 

stretching and compression at each voxel, final voxel values could be 

considered as measure of local absolute volume. 

On the other hand, cortical thickness measurements involve identification of 

the inner and outer cortical surfaces, achieved using surface geometry to 

construct a representation of the grey and white matter surfaces (Fischl and 

Dale, 2000; MacDonald et al., 2000; Miller et al., 2000). Thickness at each 

point on the GM surface is then given by a distance measure between 

corresponding points on the two surfaces. As by-product of the above-

mentioned analysis, the surface area at the interface between grey and white 

matter can also be computed. 

These measures are then smoothed with Gaussian kernels, accordingly and 

used in Linked-ICA framework, which derives spatially independent 

components from input data, consisting of more than one modality (input type) 

per participant.  

Linked-ICA is a data-driven approach that can co-model multiple imaging 

modalities and extracts linked (Spatial) components based on Bayesian-ICA.  

Unlike ICA algorithm used on the functional data, Bayesian-ICA incorporates 

a data reduction step in the ICA method itself by use of “automatic relevance 

determination (ARD)” on components. Furthermore, it models an explicitly 

“parameterized” non-Gaussian source model.  
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In this thesis, we used Linked flat ICA, which stacks maps of all subjects for 

each modality (input type) and applies Bayesian ICA on the stacked data.  

In this model, the same subject-loading matrix is shared between all 

modalities (input types), so each resulting component consists of a single 

subject-course (loading) and one spatial map per modality (i.e. GM volume, 

cortical thickness and surface area). Linked-ICA is introduced in more detail in 

(Groves et al., 2011) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA). 
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1.4. Rationale of the work 

Epidemiological studies, as stated earlier, have identified several modifiable 

parameters, which might have substantial effect on accelerated brain ageing 

and AD prevalence. Even eating patterns in different countries have been 

shown to have causal influence on altered risk of AD and other types of 

dementia.  

In our first study, we review evidence available in the literature on positive 

impact of “mediterranean style diet” (MeDi) on cognitive functioning and brain 

structure in ageing (Huhn et al., 2015). More specifically, we focus on two 

major components of MeDi, which have attracted increasing interest in the 

last years, namely long chain omega-3 fatty acids (LC-n3-FA), derived from 

fish, and plant polyphenols, which occur mainly in fruit, tea and red wine. 

Adherence to MeDi has been associated with better metabolic profiles and 

lowered cardiovascular risk score, two major factors that in turn are 

associated with decreased risk of AD worldwide.  

Despite an increasing number of interventional studies aiming at manipulation 

of AD risk, by means of risk factors reduction, the mechanisms underlying this 

manipulated risk remain elusive.  

In the next step, we choose a mechanistic approach, focusing on neuronal 

correlates of obesity as a major component of metabolic syndrome and an 

important cardiovascular risk factor. Thus, we investigated the influence of 

higher body mass index on brain structure and function, using T1-weighted 

and resting state functional MRIs, in a large cross-sectional sample of yet 

cognitively intact older adults. Furthermore, we explored the pathways by 
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which higher obesity could influence cognitive functioning in older individuals. 

Independence of these effects from a large set of possible confounders 

including other cardiovascular risk factors, depression and genetic 

predisposition to AD and cognitive decline, is an important aspect of our 

research. 

In our next investigation, we followed-up our previous approach and 

expanded the scope of modifiers of brain ageing. Here, we investigated the 

association of a large number of important risk factors, including obesity, 

smoking status, physical activity, systolic blood pressure, glucose and lipid 

metabolism with brain GM structure across a large cohort of community-

dwelled older individuals. Inspired by our results on network-based FC 

alterations and in-line with the hypothesis of network-based spread of toxic 

agents in neurodegenerative diseases, in the later study, instead of focusing 

on traditional voxel-wise associations in one modality, we identified modifying 

effects of these risk factors on large-scale GM “networks”. We believe that the 

spatial extent and composition of co-varying GM measures within the different 

networks enhance interpretability of the effects of these factors on the brain, 

especially with regard to underlying neurobiological mechanisms.  
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Background: Adhering to the Mediterranean diet (MeDi) is known to be beneficial with
regard to many age-associated diseases including cardiovascular diseases and type 2
diabetes. Recent studies also suggest an impact on cognition and brain structure, and
increasing effort is made to track effects down to single nutrients.

Aims: We aimed to review whether two MeDi components, i.e., long-chain omega-3
fatty acids (LC-n3-FA) derived from sea-fish, and plant polyphenols including resveratrol
(RSV), exert positive effects on brain health in aging.

Content: We summarized health benefits associated with the MeDi and evaluated
available studies on the effect of (1) fish-consumption and LC-n3-FA supplementation
as well as (2) diet-derived or supplementary polyphenols such as RSV, on cognitive
performance and brain structure in animal models and human studies. Also, we
discussed possible underlying mechanisms.

Conclusion: A majority of available studies suggest that consumption of LC-n3-FA
with fish or fishoil-supplements exerts positive effects on brain health and cognition in
older humans. However, more large-scale randomized controlled trials are needed to
draw definite recommendations. Considering polyphenols and RSV, only few controlled
studies are available to date, yet the evidence based on animal research and first
interventional human trials is promising and warrants further investigation. In addition,
the concept of food synergy within the MeDi encourages future trials that evaluate the
impact of comprehensive lifestyle patterns to help maintaining cognitive functions into
old age.

Keywords: cognition, plasticity, omega-3 fatty acids, polyphenols, resveratrol, memory, brain structure

Background: Health Benefits of the Mediterranean Diet

According to the ‘‘Global Strategy on Diet, Physical Activity and Health’’, a review developed by
the World Health Organization (WHO), the Mediterranean Diet (MeDi) is a promising strategy
to prevent from diseases and enhance quality of life (World Health Organization, 2009). The
review aims specifically on interventions, that reduce the risk for non-communicable diseases like
cerebro- and cardiovascular diseases, cancer, respiratory diseases, diabetes and neurodegenerative
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diseases, which comprise the leading causes of death worldwide
(World Health Organization, 2009). The MeDi was first
investigated by Ancel Keys in the 1950s during his Seven
Countries Study, a large-scale prospective cohort-study with
more than 11,000 participants (Keys, 1970; Keys et al., 1986).
Keys et al. (1986) observed a considerable difference in the eating
pattern of Southern European countries, compared to Northern
Europe and the USA. This Mediterranean eating pattern and
related low intake percentage of total energy from saturated
fatty acids correlated with lower serum cholesterol and lower
blood pressure in Mediterranean countries, which were again
associated with a lower coronary mortality and a lower risk
for the above mentioned diseases in comparison to countries
adhering to a Western-type diet (Keys et al., 1986).

Distinctive for the MeDi is the high consumption of fruits,
vegetables, grains as well as sea-fish on regular basis, while the
intake of meat and dairy products, just as sweets and convenience
food is rather low (Trichopoulou et al., 1995; Gotsis et al.,
2015). In addition, the regular consumption of red wine (mainly
served with food) and olive oil (as principal source of fat) is
characteristic for the MeDi (Willett et al., 1995). For a detailed
description of the MeDi, often displayed as food pyramid, see
Bach-Faig et al. (2011).

Over the last decades, epidemiologic studies supported and
extended Keys’ findings to a multitude of health benefits that
are provided by the MeDi, e.g., with regard to cancer and
cardiovascular diseases (Couto et al., 2011; Lopez-Garcia et al.,
2014; Gotsis et al., 2015). More recently, research also focused on
neurodegenerative diseases and the impact ofMeDi on cognition.
For reviews, see e.g., Lourida et al. (2013) and van de Rest
et al. (2015). For example, Scarmeas et al. (2006) observed in
a prospective cohort of 2258 community-based non-demented
individuals that higher adherence to theMeDi is associated with a
significant reduction in the risk for Alzheimer’s disease (AD). In
a systematic review, Lourida et al. (2013) described a reasonably
consistent pattern of associations between adherence to theMeDi
and related lower risks for AD, reduced rates of cognitive decline
as well as better cognitive function. Most recently, Valls-Pedret
et al. (2015) described positive results of a long-term randomized
clinical trial (RCT) in 334 participants with high cardiovascular
risk at a mean age of 67 years (PREDIMED study), providing an
even stronger level of scientific evidence than results based on
observational studies (Valls-Pedret and Ros, 2013): Here, a MeDi
supplemented with either olive oil or nuts, in comparison to a
control diet, was associated with improved cognitive functions at
4-year follow-up (Valls-Pedret et al., 2015).

These beneficial effects might be due to multiple biological
mechanisms, such as lower concentrations of serum-cholesterol
in Mediterranean areas and a related decrease of cardiovascular
risk, which were among the first findings by Keys et al.
(1986). More specifically, adherence to the MeDi is associated
with a reduced risk for coronary heart diseases and metabolic
syndrome including hypertension and dyslipidemia, which have
been associated with the development of cognitive impairments
(for review see e.g., van den Berg et al., 2009; Yates et al.,
2012). Additionally, adhering to the MeDi might prevent from
disturbances in insulin/glucosemetabolism that can result in type

2-diabetesmellitus (DM-2), which is associated with an increased
risk for AD and cognitive impairments (Biessels et al., 2006; Hu
et al., 2013). Even in the absence of manifest DM-2, chronically
elevated levels of blood-glucose have shown to exert negative
effects on AD risk and memory performance in older adults
(Crane et al., 2013; Kerti et al., 2013).

In sum, the MeDi has been shown to exert positive effects
on risk for AD and cognitive functions during aging, which is
probably mediated through reductions in vascular risk factors
and benefits on lipid and glucose metabolism. Moreover, based
on animal research it has been postulated that specific nutrients
could exert even more directly protective effects on the aging
brain, e.g., considering amyloid-beta metabolism (Allès et al.,
2012). As the MeDi is a complex eating pattern, though, a
multitude of single components could cause beneficial effects
(Jacobs et al., 2009; Gotsis et al., 2015). Understanding these
underlying mechanisms and eventually develop preventive and
therapeutic strategies based on those insights, are important
issues for future research.

This review aims to evaluate recent findings concerning the
effects of single components of the MeDi and their impact on
cognition. Firstly, we focus on long chain omega-3 fatty acids
(LC-n3-FA) derived from fish, as they distinguish theMeDi from
other diets and are consumed with high frequency (Tangney
et al., 2014). Secondly, our focus is on plant polyphenols
(including resveratrol), which occur mainly in fruit, tea and
red wine (Manach et al., 2004). The deliberate consumption of
red wine is a well-known feature of the MeDi and especially
resveratrol is assigned beneficial effects with regard to overall
health, as well as cognition (Baur and Sinclair, 2006; Witte et al.,
2014). Both nutrients attracted increasing research interest in the
last years.

Impact of Omega-3 Fatty Acids on the
Brain

One characteristic of the MeDi is a high intake of unsaturated
fatty acids, including the long-chain omega-3 polyunsaturated
fatty acids (LC-n3-FA) eicosapentaenoic acid (EPA, C20:5, n-3)
and docosahexaenoic acid (DHA, C22:6, n-3; Figure 1). The
main source of DHA and EPA in the human diet is fatty sea
fish like mackerels or salmon (Max Rubner-Institut, 2011). DHA
and EPA cannot be efficiently synthesized by human enzymes
and are therefore regarded as semi-essential (Burdge and Calder,
2005; Burdge, 2006; Sala-Vila and Ros, 2011). Astrocytes in the
brain are a major site for the processing of LC-n3-FA. They
elongate and desaturate precursor fatty acids such as linoleic
acid and the vegetable LC-n3-FA alpha-linolenic acid (ALA) to
form EPA and DHA (Moore et al., 1991). Notably, not only the
absolute amount of DHA and EPA might be important, but also
the ratio of the precursors, as with different precursor ratios,
different conversion rates to DHA and EPA occur (Kaur et al.,
2014). In addition, intake of ALA, contained e.g., in nuts, might
also directly contribute to the beneficial effects of the MeDi on
cognition (Blondeau et al., 2009; Valls-Pedret et al., 2015; for a
detailed discussion of possibly distinct effects of ALA, EPA and
DHA please see Freemantle et al., 2006).
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FIGURE 1 | Postulated effects of long-chain Omega-3 Fatty Acids (Eicosapentaenoic Acid, EPA and Docosahexaenoic Acid, DHA) with regard to
brain health and their main dietary sources.

It is widely accepted, that LC-n3-FA are crucial for the
growth and development of the infant brain during pregnancy
and after birth (Kris-Etherton et al., 2009). The predominant
LC-n3-FA DHA alone comprises 10–20% of total fatty acids
of the brain and is thought to be important with regard to
neuronal differentiation, synaptogenesis, and synaptic function
(McNamara and Carlson, 2006). It has also been proposed that
the access to DHA during hominid evolution played a key role
in increasing the brain to body-mass ratio (Crawford et al., 1999,
2013). However, due to the easy availability of processed food in
Western societies today, the consumption of saturated fatty acids
and trans-fatty acids increased, while that of DHA decreased.
This has been speculated to contribute to an increased incidence
of brain disorders such as major depression (Su et al., 2003).

Considering the abundance of DHA in brain tissue and its
importance for brain development and evolution, it is reasonable
to suppose that DHA also contributes to the evolvement
and maintenance of proper cognitive functioning in later life
(Gómez-Pinilla, 2008). Indeed, several experimental animal
studies demonstrated superior learning and better memory
performance in rodents that received supplementary DHA with
their diet (Morris et al., 2005). DHA might have a beneficial
impact even during pathological conditions like AD. Lim et al.
(2005) found in aged mice on a DHA-enriched diet a significant
reduction of total amyloid b (A-b) by more than 70% when
compared with low-DHA or control chow diets. This could
be neuroprotective, given the probable downstream toxicity
of A-b deposition and its implications in the development
of AD (Lim et al., 2005). That is a further finding on the
protective properties of DHA against synaptic loss, which is
a critical issue in concerns of AD and seems to support the

hypothesis that DHA is protective against AD (Calon et al.,
2004).

These findings are in line with human epidemiological studies
that report associations between the consumption of fish in
general (Barberger-Gateau et al., 2005; Morris et al., 2005), as
well as LC-n3-FA e.g., as dietary fishoil supplement (McCann
and Ames, 2005; Gómez-Pinilla, 2008), with better cognitive
performances and lower risk of dementia (for a review, see
Fotuhi et al., 2009). For example, a large-scale prospective cohort
study with 6158 residents of a community in Chicago of 65
years and older, estimated that fish consumption was associated
with slower cognitive decline with age, assessed using a global
cognitive score (Morris et al., 2005).

The evidence for positive effects of LC-n3-FA fishoil
supplementation on cognitive functions in normal and
pathological aging based on placebo-controlled RCTs is less
clear, see Table 1 for an overview. In an early double-blind
RCT in 204 AD patients, Freund-Levi et al. (2006) observed
positive effects of LC-n3-FA in a small group of those with
very mild AD who took supplementary LC-n3-FA over
6 months. These findings are in line with a 24-week RCT by
Chiu et al. (2008) in 46 participants. Here the authors also
concluded that LC-n3-FA improved general clinical function in
patients with mild or moderate AD, as well as mild cognitive
impairment (Chiu et al., 2008). In an own double-blind
prospective interventional study, it was shown that LC-n3-FA
improved executive functions and gray matter volume, as well
as white matter microstructure in healthy older individuals,
after 26 weeks of fish oil supplementation (Witte et al., 2013).
Yurko-Mauro et al. (2010) observed in another RCT with
485 healthy subjects older than 55 years that 24 weeks of
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TABLE 1 | Characteristics of studies reporting associations between fish-consumption or LC-n3-FA-supplementation and cognition.

Author (year) Participants Duration Intervention Measured outcome Results

sample size/age (years)

Chiu et al.
(2008)

N = 46
memory
complaints

I: 74.0
(70.1–77.8)
P: 76.5
(71.8–81.1)

24 weeks 1.8 g
Omega-3
PUFAs/d

Placebo ADAS-cog AD group: � MCI
group: +

Dangour et al.
(2010)

N = 867
healthy

I: 74.7 ± 2.5
P: 74.6 ± 2.7

24 months 200 mg EPA +
500 mg DHA/d

Placebo Extensive NP test battery Whole group: �

Freund-Levi et al.
(2006)

N = 204
AD

I: 72.6 ± 9.0
P: 72.9 ± 8.6

6 months 1.7 g DHA/d
and 0.6 g EPA/d

Placebo ADAS-cog MMSE Whole group: � Sub-
group: +

Morris et al.
(2005)

N = 6185
healthy

I1: 74.6
I2: 74.2
I3: 73.9

6 years Observational Global cognitive score Whole group: +

Quinn et al.
(2010)

N = 402
mild to
moderate
AD

I: 76 ± 9.3
P: 76 ± 7.8

18 months 2 g/d DHA Placebo ADAS-cog Clinical Dementia
Rating (CDR)
sum of boxes

Whole group: �

Reddy et al.
(2011)

N = 27
schizophrenia

18–45 24 weeks 2 g/d EPA Wisconsin Card Sort Test Whole group: +

Tan et al.
(2012)

N = 1575
healthy

67 ± 9 – Observational (Red blood cell Extensive NP test battery Whole group: +

EPA + DHA)

van de Rest et al.
(2008)

N = 302
healthy

I1800:
69.9 ± 3.4
I400: 69.5 ± 3.2
P: 70.1 ± 3.7

26 weeks 1800 mg/d
EPA-DHA
400 mg/d
EPA-DHA

Placebo Extensive NP test battery Whole group: �

Witte et al.
(2013)

N = 65
healthy

I: 65 ± 6.3
P: 62.9 ± 6.8

26 weeks 2.2 g/d
EPA-DHA

Placebo Extensive NP test battery Whole group: +

Yurko-Mauro
et al. (2010)

N = 485
healthy

I: 70 ± 9.3
P: 70 ± 8.7

24 weeks 900 mg DHA/d CANTAB Paired Associate Learning Whole group: +

AD, Alzheimer’s Disease; ADAS-cog, Alzheimer’s Disease Assessment Scale, cognitive subscale; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; I, age of

intervention group; MCI, Mild Cognitive Impairment; MMSE, Mini-Mental State Examination; NP, neuropsychological; P, age of placebo group; +, positive effect on

cognition; �, no effect on cognition.

supplementation with 900 mg/d DHA improved learning and
memory function.

Supporting these findings, Pottala et al. (2014) observed in a
cross-sectional analysis, that a higher LC-n3-FA intake (indicated
by higher proportions of DHA and EPA in the membranes
of blood erythrocytes, see Harris and Von Schacky, 2004) was
correlated to higher total brain and hippocampal volume in
1111 postmenopausal women. In another cross-sectional study
by Tan et al. (2012) in 1575 elderly participants, those with
lower DHA had also lower scores on tests of executive function
and abstract thinking. Similarly, executive functions could be
improved after 24 weeks of supplementary LC-n3-FA intake
(2 g EPA/d) in 27 schizophrenic patients in an open-label study
(Reddy et al., 2011).

In contrast, other interventional studies in AD patients
(Quinn et al., 2010) or healthy older adults (van de Rest
et al., 2008; Dangour et al., 2010) did not support the
positive effects of fish oil consumption. These inconsistent
results might be explained due to differences in dosage

and duration between studies, e.g., that LC-n3-FA intake
might not have been sufficient to exert statistically significant
effects on cognition. Furthermore studies might differ in
intake instructions and cohort characteristics. It has also
been noted that not only the amount of LC-n3-FA, but
also the overall dietary fat-composition is considerably critical
for brain functions (Morris et al., 2005). For example, an
unfavorable fat composition might affect cognitive aging more
than total fat intake itself (Okereke et al., 2012). Especially
saturated fatty acids and trans-fatty acids are supposed to
increase the risk of AD (Hooijmans et al., 2007; Studzinski
et al., 2009; Ramassamy and Belkacémi, 2011) and affect
cognition (Greenwood and Winocur, 2005), which could be
due to decreased Brain-derived neurotrophic factor (BDNF)
related synaptic plasticity (Molteni et al., 2002). Thus, it
might be speculated that the positive effects of supplementary
LC-n3-FA could be masked out by the negative effects
of concurrent high saturated- and trans- fatty acid intake.
According to the latest Cochrane reviews, it is not yet clear
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that dietary or supplemental LC-n3-FA alter total mortality,
combined cardiovascular events or cancers in people with,
or at high risk of, cardiovascular disease or in the general
population (Hooper et al., 2004). The same stated Sydenham
et al. (2012) for LC-n3-FA and dementia. They could not
state benefits for cognitive health for older people taking
omega-3 supplements. However, none of the mentioned
studies reported severe adverse effects of fish or fish oil
consumption.

Underlying mechanisms of positive effects of LC-n3-FA
on cognition could include a reduction of cardiovascular risk
factors, e.g., by improving cerebral blood flow and lowering
triacylglycerol levels as found in non-human primates and rats
(Katayama et al., 1997; Tsukada et al., 2000; Fotuhi et al.,
2009). More direct neuronal effects of LC-n3-FA are e.g.,
stimulation of neurogenesis and neurite outgrowth (Kawakita
et al., 2006) and enhancement of synaptic membrane fluidity
(Cansev and Wurtman, 2007). Also, LC-n3-FA have been
found to increase the expression of myelin-related proteins
(Salvati et al., 2008), which could contribute to improved
axonal transmission and thus better neuronal signaling. In
addition, LC-n3-FA are thought to upregulate several genes
such as Sir2, involved in maintaining synaptic function and
plasticity (Wu et al., 2007). A recent study in mice showed an
increase of neuroprotectin D-1 (NPD-1) after fish oil treatment
(Afshordel et al., 2015). NPD-1 represents a neuroprotective
compound that is derived from unesterified DHA (Afshordel
et al., 2015).

Moreover, LC-n3-FA play several roles with regard to
inflammatory processes. DHA and EPA are capable of competing
with arachidonic acid in the production of eicosanoids,
which results in the production of biologically less active
thromboxans and therefore in a better hemodynamic, vascular
tone and inflammation (Mori and Beilin, 2004). LC-n3-FA
might also upregulate the expression of antioxidant enzymes

and downregulate genes associated with production of reactive
oxygen species (ROS), such as peroxisome proliferator-activated
receptors gamma (PPAR-g; Takahashi et al., 2002; Mori and
Beilin, 2004). Additionally, DHA has been implicated in reducing
inflammation through fatty acid derivatives such as NPD-1 (Cole
et al., 2010) and resolvin species (Kohli and Levy, 2009).

In sum, promising evidence indicates that LC-n3-FA,
especially DHA, exert positive effects on brain structure and
cognitive functions. Yet, more large-scale RCTs are needed
before fish oil intake could be fully recommended as preventive
strategy against cognitive decline in the older population.

Polyphenols and their Impact on the Brain

A further class of substances that is supposed to contribute to
the beneficial effects of the Mediterranean Diet (MeDi) is that of
polyphenols (Figure 2). Polyphenols are secondary metabolites
of plants and characterized by the chemical structure of hydroxyl
groups on aromatic rings (Manach et al., 2004). They are quite
abundant in our diet and several thousand molecules have
been identified to have polyphenol character (Manach et al.,
2004). One polyphenol agent that came into research focus
is resveratrol (RSV). It occurs naturally in the skin of red
grapes, red wine, blueberries, peanuts and Japanese knotweed
(Baur and Sinclair, 2006; Baur et al., 2006; Ingram et al., 2006).
Another group, the flavonols, are part of the flavonoid family
that is found in various fruits, cocoa, beans and the Ginkgo
biloba tree (Gómez-Pinilla, 2008). Flavonols contain anti-
inflammatory properties among several other complex actions
(for review, see Gómez-Pinilla, 2008). Although polyphenols are
somewhat heterogeneous regarding their chemical properties,
they seem to have some effects in common with regard
to cardiovascular health and (at least for some polyphenols)
antioxidant capacity (Halliwell, 2007; Habauzit and Morand,
2012).

FIGURE 2 | Postulated effects of Polyphenols including Resveratrol with regard to brain health and their main dietary sources.
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In vitro, several polyphenols including RSV eliminate a
multitude of ROS, including hydroxyl radicals, peroxyl radicals
hypochlorous acid and in part superoxide radical (Halliwell,
2007). ROS are considered to be toxic and ROS-induced cell
damage is assumed to contribute to the process of aging
(Liochev, 2013). In rats, polyphenols have been shown to increase
heat-shock protein (HSP) 70 and insulin-like growth factor 1
(IGF-1) expression in the hippocampus, which protects against
kainate-induced cell damage and benefits learning and memory
performance (Casadesus et al., 2004; Galli et al., 2006). Reduced
hippocampal neurodegeneration has also been shown after RSV
administration in rodent models for AD/tauopathies (Kim et al.,
2007). In addition, administration of RSV-containing red wine
was found to preserve spatial memory, while reducing Ab

neuropathology (Wang et al., 2010). In a non-human primate
study, supplementary RSV for 18 months increased spatial
memory performance compared to placebo (Dal-Pan et al.,
2011).

Considering human studies, there is a considerable
heterogeneity in study quality, design and polyphenol
formula/dosage (Crichton et al., 2013). See Table 2 for an
overview. In a cross-sectional study by Nurk et al. (2009) with
2,031 participants aged 70–74 years from the Hordaland Health
Study in Norway, a diet over 1 year high in some flavonol-rich
foods, such as chocolate, wine and tea, was associated with better
performance in several cognitive abilities in a dose-dependent
manner in comparison to a non-consumer group. Only a few
placebo-controlled interventional studies are available to date,
such as Kennedy et al. (2010). This study assessed the effects of
250 and 500 mg oral RSV on cognitive performance in a RCT
crossover study in 22 healthy adults, with the result that even
single doses of orally administered RSV can modulate cerebral
blood flow variables, measured usingMRI (Kennedy et al., 2010).
In another study, blueberry supplementation (wild blueberry
juice) improved paired associate learning and word list recall, as

well as paired associate learning in a small sample of nine older
adults after comparison with a matched, placebo-controlled
sample (Krikorian et al., 2010). In a double-blind, clinical trial
by Small et al. (2014) intake of a pill-based nutraceutical that
contained a proprietary formulation of blueberry (including
RSV), green tea, carnosine, vitamin D3 and biovin, resulted
in significantly increased processing speed of 52 participants
compared to placebo (N = 53). In an own study with 46 healthy
overweight older individuals, a daily intake of 200 mg RSV (in
a formula with quercetin) over 26 weeks compared to placebo
intake significantly improved memory performance (Witte
et al., 2014). In addition, glycated hemoglobin (HbA1c) in
peripheral blood was significantly reduced after RSV treatment,
and this reduction in HbA1c correlated with higher functional
connectivity of the hippocampus, measured using resting-
state functional MRI in the same subjects. Notably, changes
in functional connectivity were found to correlate with the
observed increases in memory, pointing to ameliorated glucose
metabolism as one underlying mechanism of the positive effects
of RSV on cognition (Witte et al., 2014). Also, Brickman et al.
(2014) reported recently in a randomized study on flavonols
with 37 healthy 50 69 year old subjects using functional MRI that
a diet high in cocoa-flavanol over 3 months enhanced memory
function and improved related activation in the dentate gyrus,
the hippocampus region characterized by life-long neurogenesis,
in comparison to a diet low in cocoa-flavanol.

Both RSV and flavonols could contribute to a better
cognitive performance due to their protective effects against
oxidative stress, which increases with age and is a risk
factor for age-associated cognitive decline. Further possible
neuroprotective mechanisms of polyphenols including RSV are
reduced mitochondrial dysfunction, glucose toxicity, oxidative
damage, and chronic inflammation, by improving glucose
metabolism and vascular functions and by activating so-called
longevity genes including the sirtuins. For further discussions see

TABLE 2 | Characteristics of studies reporting associations between flavonol or RSV consumption and cognition.

Author (year) Participants Duration Intervention Measured outcome Results
(Polyphenol)sample size/age

Kennedy et al. (2010) N = 22 Healthy 20.17 y Single dose 250 mg (RSV) 500 mg (RSV) Placebo Cognitive
task

Cerebral blood flow +

Krikorian et al. (2010) N=9,
placebo
N = 7

Healthy
76.2 ± 5.2 y

12 weeks Daily consumption of wild blueberry juice Paired
associate
learning

Word list recall +

Nurk et al. (2009) N = 2031 Healthy 70–74 y Cross-
sectional

Observational (Chocolate, Wine, Tea) Extensive NP test battery +

Small et al. (2014) N = 52,
placebo
N = 53

Healthy
I: 72.82
P: 74.34

2 months Pill-based nutraceutical Placebo Extensive NP test battery +

Witte et al. (2014) N = 23,
Placebo
N = 23

Healthy,
overweight
I: 64.8 ± 6.8
P: 63.7 ± 5.3

26 weeks 200 mg/d RSV Placebo Auditory Verbal Learning Test +

Brickman et al. (2014) N = 37 Healthy 50–69 y 3 months High cocoa flavonol-diet Low
flavonol-
diet

ModBent task +

NP, Neuropsychological; P, Age of placebo group; RSV, resveratrol; I, Age of intervention group; y, years of age; +, positive effect on cognition; �, no effect on cognition.
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e.g., Calabrese et al. (2008, 2009), Sun et al. (2011), Crichton et al.
(2013) and Witte et al. (2014).

Conclusion and Outlook

A majority of available studies on the topic suggest that
consumption of LC-n3-FA with fish or fish oil-supplements and
plant polyphenols such as flavonols and RSV exerts positive
effects on brain health and cognition in older humans. However,
with regard to LC-n3-FA supplementation using fish oil, a
final recommendation based on RCTs cannot be drawn, as
some studies could not detect a positive effect. Here, more
large-scale RCTs that, for example, also control for other
fatty acid intake are needed to support a significant benefit
of regular supplementary LC-n3-FA intake in maintaining
cognitive performance. Considering polyphenols, the evidence
based on high-quality RCTs is even less clear, given that only
few reliable studies are available to date with different formulas
and different duration of the intervention. Yet, those few studies
were promising, and the animal literature provided convincing
examples that polyphenols are highly potent in activating
possible neuroprotective pathways, warranting the initiation
of large-scale RCTs in humans on supplementary flavonol or
RSV. Moreover, attempts to study in parallel the underlying
mechanisms in humans, e.g., using high-resolution MRI, are
especially important to further strengthen possible hypotheses
that are mainly based on animal research. Future studies also
need to address whether intervention-induced changes in LC-
n3-FA or polyphenol intake relate to changes in fatty acid or
polyphenol content at the brain level in humans, e.g., using post-
mortem techniques.

Besides that, additive or synergistic effects between single
dietary components come increasingly into focus. Diet is more
than the sum of its components, which is considered in the
concept of ‘‘food synergy’’. The assumption is that interactions
and synergistic effects of the single food components occur as
they are consumed in the framework of a balanced diet (Jacobs
et al., 2009). For example, antioxidant nutrients can protect
LC-n3-FA from peroxidation to which they are particularly
susceptible due to their multiple double bounds (Barberger-
Gateau, 2014). Also, even though studies on single nutrients

and their interactions might help to explain the beneficial
effects of dietary patterns, there is an even greater framework.
Yannakoulia et al. (2015) propose not only the additive and
synergistic effects of single nutrients or foods, but also add
other lifestyle behaviors like physical activity, social support,
sharing food, having lengthy meals and post-lunch siestas to
that explanatory approach. Regardless of all the modernization
processes happening (Bach-Faig et al., 2011), the lifestyle of the
Mediterranean countries remains an UNESCO World Cultural
Heritage and could thus contribute to a multitude of insights
regarding brain functioning and healthy aging (Bach-Faig et al.,
2011). First publications of large-scale RCTs, such as Valls-
Pedret et al. (2015) and Ngandu et al. (2015), provide a strong
level of scientific evidence for the beneficial effects of the
MeDi on cognitive functions. In addition, ongoing multidomain
interventional trials like the Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FINGER) will
help to gain further insights into the beneficial effects of the
MeDi-lifestyle and its components on cognition and brain
function. The FINGER-study is a multi-center RCT and includes
nutritional guidance, regular exercise, cognitive training and
social activity, as well as management of metabolic and vascular
risk factors, and might thus shed comprehensively further light
on possible mechanisms of how modifiable lifestyle factors could
help to maintain cognitive functions throughout age (Kivipelto
et al., 2013).

Summing up, LC-n3-FA and polyphenols such as RSV are
highly investigated substances in the framework of the MeDi.
Even though, more studies are needed to clarify the main effects
and their underlying mechanisms, they seem to be promising
with regard to their impact on brain structure and function in
aging.
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a b s t r a c t

Midlife obesity has been associated with increased dementia risk, yet reports on brain structure and
function are mixed. We therefore assessed the effects of body mass index (BMI) on gray matter volume
(GMV) and cognition in a well-characterized sample of community-dwelled older adults. GMV was
measured using 3T-neuroimaging in 617 participants (258 women, 60e80 years, BMI 17e41 kg/m2). In
addition, cognitive performance and various confounders including hypertension, diabetes, and apoli-
poprotein E genotype were assessed. A higher BMI correlated significantly with lower GMV in multiple
brain regions, including (pre)frontal, temporal, insular and occipital cortex, thalamus, putamen, amyg-
dala, and cerebellum, even after adjusting for confounders. In addition, lower GMV in prefrontal and
thalamic areas partially mediated negative effects of (1) higher BMI and (2) higher age on memory
performance. We here showed that a higher BMI in older adults is associated with widespread gray
matter alterations, irrespective of obesity-related comorbidities and other confounders. Our results
further indicate that a higher BMI induces structural alterations that translate into subtle impairments in
memory performance in aging.

! 2016 Elsevier Inc. All rights reserved.

1. Introduction

Numerous epidemiological studies found obesity in midlife to
be a risk factor for cognitive impairments later in life, including
Alzheimer’s Disease (AD; e.g., Anstey et al., 2011; Beydoun et al.,
2008; Fitzpatrick et al., 2009; Gustafson, 2006; Kivipelto et al.,
2005; Whitmer et al., 2005, 2008; for review, see Emmerzaal
et al., 2015; but, see Qizilbash et al., 2015 for recent discussions).
However, reports of cognitive performance in nondemented obese
compared to lean individuals are equivocal, showing either lower
performance in most domains including executive functions and
memory (e.g., Benito-León et al., 2013; Walther et al., 2010), or no
reliable effect, partly dependent on sex and age range studied

(e.g., Elias et al., 2005; for a review, see Smith et al., 2011). A recent
systematic review pointed out that due to methodological limi-
tations, such as incomplete confounder adjustment, the evidence
is still not sufficient to draw definite conclusions (Prickett et al.,
2015). Potential negative effects on cognition could be a conse-
quence of obesity-associated changes in structural brain proper-
ties, due to physiological alterations such as insulin resistance and
low-grade inflammation, but also secondary cardiovascular dis-
eases (Biessels et al., 2008; Shefer et al., 2013). For example,
obesity has been linked to reduced gray matter volume (GMV) and
thickness in frontal, temporal, and subcortical areas, yet the
regional patterns often varied between studies (Pannacciulli et al.,
2006; Raji et al., 2010; Walther et al., 2010; for a meta-analysis, see
Willette and Kapogiannis, 2014). In addition, obesity-related car-
diovascular risk factors such as hypertension and type 2 diabetes
mellitus have been associated with lower GMV in some, but not all
studies, showing again varying regions to be affected (reviewed in
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Friedman et al., 2014). Interestingly, even in the absence of man-
ifest obesity, better metabolic profiles have been shown to exert
protective effects on AD and related temporal brain areas (Crane
et al., 2013; Kerti et al., 2013; Villeneuve et al., 2014), suggesting
significant effects of body composition even in the normal-to-
overweight range. However, other studies, partly including
younger subjects, reported besides negative effects of obesity also
positive associations, for example in orbitofrontal and inferior
frontal, occipital, temporal, and cerebellar areas, sometimes
restricted to males or females (Horstmann et al., 2011; Pannacciulli
et al., 2006; Taki et al., 2008; Willette and Kapogiannis, 2014).

In sum, although negative effects of overweight and obesity on
the brain even in older ages seem biologically plausible, previous
studies could not establish a consistent pattern of regional changes
in gray matter structure, and if this would affect cognitive perfor-
mance. This might be partly due to different sample characteristics
such as age, sex, and obesity measures studied (Willette and
Kapogiannis, 2014). Moreover, important confounders, such as
age- and obesity-associated conditions and related medication
intake, for example, hypertension, diabetes, hyperlipidemia, or es-
trogen supplementation, have not consistently been considered in
previous studies (e.g., Brooks et al., 2013; Ho et al., 2011), rendering
potential independent effects of higher body mass index (BMI) in
older age still debatable (Friedman et al., 2014; Prickett et al., 2015).

To overcome these limitations, the aim of the present study was
to comprehensively assess the effect of BMI on regional GMV in-
dependent of potential confounders in a well-characterized popu-
lation-based cohort of otherwise healthy older individuals, using
whole-brain GMV analyses and a large sample size. Further, we
examined potential interactions with regard to age, sex, and
severity of obesity, and aimed to control for manifesting comor-
bidities including hypertension, diabetes and intake of anti-
hyperlipidemic medication (Biessels et al., 2008; Elias et al., 2005)
in both adjusted and sensitivity statistical analyses, as for example,
relatedmedical treatment could have confounded the effects of BMI
in older age (Beeri et al., 2008; Jennings and Zanstra, 2009;
Nadkarni et al., 2015; Patrone et al., 2014). In addition, we sought
to additionally control for various factors known to affect brain
structure and cognition, including white matter hyperintensities
(Wen et al., 2006), depression (Kirwan et al., 2008), smoking and
education status (Garibotto et al., 2008; Karama et al., 2015), intake
of estrogen supplements (Lord et al., 2008), as well as apolipopro-
tein E (APOE) e4 genotype (Wishart et al., 2006). We additionally
evaluated if BMI indirectly affected cognitive performance through
changes in regional GMV using simple mediation analyses, and if
this effect was moderated by age. We hypothesized that in our
cohort of cognitively healthy older individuals, a higher BMI would
on average be associated with lower regional GMV in several brain
areas, including frontal, temporal, and parietal areas, independent
of confounders. In addition, we speculate that this would correlate
with lower performance in higher-order cognitive domains
including memory and executive functions, as these processes are
known to correlate with regional GMV, for example, in the pre-
frontal and temporal lobe (Buckner, 2004; Mander et al., 2013;
Steffener et al., 2013; Yuan and Raz, 2014). Eventually, this might
help to further determine if overweight and obesity have an inde-
pendent negative impact on the brain in aging populations.

2. Methods

2.1. Participants

All participants were enrolled in the “Health Study of the Leipzig
Research Centre for Civilization Diseases” (LIFE). Adult Leipzig in-
habitants were randomly invited via the population registry

(n ¼ 10,000) and a proportion underwent neuropsychological
testing, medical examinations, and magnetic resonance imaging
(MRI) of the headat 3T (n¼w2600).Medical historyandmedication
intake was assessed by means of a structured interview by trained
staff. Brain pathologies due to stroke, intracranial bleeding, or tu-
mors were defined by a trained neuroradiologist after careful ex-
amination ofMR images. The study design and complete assessment
information have been described in detail in (Loeffler et al., 2015).

All participants signed an informed consent form and received a
small financial compensation. The study protocol was in accordance
with the declaration of Helsinki and approved by the ethics com-
mittee of the University of Leipzig.

Of 985 participants "60 years who underwent MRI available at
the date of our analyses and were free of stroke, 203 participants
were excluded due to intake of medication affecting central ner-
vous system such as antidepressants, and immune suppressive
medication (Fig. 1). Confounding parameters comprised “systolic
blood pressure” defined as the mean systolic blood pressure of 3
consecutive measurements in a seating position at rest; “smoking
status” defined using self-reported information as never smoker,
previous smoker, or current smoker; “depression score” assessed
using Center for Epidemiologic Studies Depression Scale
(Lewinsohn et al., 1997); and “education” defined using Interna-
tional Standard Classification of Education (ISCED, 7 levels,
UNESCO, 1997). “Arterial hypertension” (yes or no) was defined as a
systolic blood pressure "160 mm Hg, a diastolic blood pressure
"95 mm Hg, or use of antihypertensive medication (Biessels et al.,
2006). In addition, based on information assessed from the medical
interviews, “diabetes status”was defined as none, diabetes mellitus
type 1 (medicated), diabetes mellitus type 2 (medicated), or dia-
betes mellitus type 2 (unmedicated). Intake of “antihyperlipidemic
medication” (any or none) and estrogen supplements (any or none)
was also regarded as potential confounders. “Other cardiovascular
conditions” were defined as arrhythmia or tachycardia (any or
none). Furthermore, “white matter hyperintensities”were assessed
according to the Fazekas rating scale by a trained neuroradiologist
using 3D fluid-attenuated inversion recovery images (Fazekas et al.,
1993). Seventy-four participants were excluded due tomissing data
in one of these confounders. Furthermore, 78 participants were
excluded due to major brain pathologies, severe movement arti-
facts, or other technical problems. In addition, 13 participants were
excluded due to nonintact cognitive performance, defined as a
mean cognitive score (i.e., mean of all standardized cognitive sub-
tests, see Section 2.3. for details) of less than 3 standard deviation of
the sample mean, leaving 617 participants for GMV analyses. Of
these, APOE e4-allele carrier status was identified in 485 partici-
pants (see Supplementary Text for details).

2.2. Magnetic resonance imaging

Anatomic T1-weighted images were acquired using a 3-
dimensional Magnetization-Prepared Rapid Gradient Echo
sequence. Generalized autocalibrating partially parallel acquisition
parallel imaging technique (Griswold et al., 2002) was applied on
the Alzheimer’s Disease Neuroimaging Initiative standard protocol
with the following parameters: inversion time, 900 ms; repetition
time, 2300 ms; echo time, 2.98 ms; flip angle, 9#; band width,
240 Hz/pixel; imagematrix, 256$ 240; 176 partitions; field of view,
256 $ 240 $ 176 mm3; sagittal orientation; voxel size, 1 $ 1 $
1 mm3; no interpolation. GMV was assessed using voxel-based
morphometry in SPM8 (www.fil.ion.ucl.ac.uk/spm) on T1-
weighted MRI scans. Briefly, individual images were segmented
into gray matter maps and coregistered to a study-specific cerebral
and to a cerebellar-specific template. We performed separate
workflows for the cerebrum and the cerebellum to improve tissue
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segmentation and interindividual alignment, see Supplementary
Text for details.

2.3. Cognitive testing

Neuropsychological testing comprised trail-making test (TMT)
part A and B, semantic, and phonemic verbal fluency and verbal
memory, included in the neuropsychological test battery of the
Consortium to Establish a Registry for Alzheimer’s disease (Morris
et al., 1989). Learning was defined as the sum of 3 consecutive
learning trials, recall was defined as the sum of correctly recalled
words after a delay, in which participants performed a nonverbal
task, and recognition was defined as the number of correctly
recognized words of a list of 20 mixed words presented afterward.
Test scores were z-transformed and combined to create composite
scores for executive functions, memory performance, and pro-
cessing speed (Van de Rest et al., 2008). Composite scores were
defined as follows: executive functions ¼ [z_phonemic fluency þ
z_semantic fluency # z_TMT(part B # part A)/part A]/3; memory ¼
(z_sum_learning þ z_recall þ z_recognition)/3; processing
speed ¼ #z (TMT [part A]). For 39 participants, one of the cognitive
test scores was missing, and the respective composite score was
calculated based on average performance of the remainder of
available tests comprising the composite score (Oosterman et al.,
2010; Schaapsmeerders et al., 2013).

2.4. Statistical analysis

2.4.1. BMI and GMV
Voxel-wise associations of BMI and GMV were tested in SPM

using multiple regressions in 3 consecutive models. First, in a min-
imal model, we controlled for the effects of age and sex (model-1).
In model-2, we additionally controlled for arterial hypertension,
diabetes, other cardiovascular disease, intake of antihyperlipidemic
medication, estrogen-supplement intake, education, blood
pressure, smoking, depression, and white matter hyperintensities
(see Section 1). In model-3, we further adjusted for carrying 1 or 2
APOE e4-alleles (n ¼ 485).

To test if possible effects of BMI were age specific, we tested the
interaction term of BMI by age on GMV, controlling for confounders
according to models-1, -2, and -3. In addition, independent effects
of age on GMV were evaluated using age as main contrast.
Furthermore, we tested for interaction effects of BMI by sex, obesity
status, or hypertension. In addition, sensitivity analyses were per-
formed in subgroups without diabetes or intake of anti-
hyperlipidemic medication to demonstrate that the effects found
with respect to obesity are not due to, or biased by, possible effects
of comorbidities and related medication intake (see Supplementary
Text for details). Correction for multiple testing was performed
using the family-wise-error correction based on Gaussian Random
Field Theory (Friston et al., 1994) at cluster level (p < 0.05)

Fig. 1. Flow chart of the study. Of 985 older adults free of stroke, 368 were excluded due to medication intake, missing covariates, nonusable MRI scans, brain pathology, or nonintact
cognition, leaving 617 participants for main analyses. Of this sample, APOE-genotype was defined for 485 participants. Abbreviations: APOE, apolipoprotein E; MRI, magnetic
resonance imaging.
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combined with a primary uncorrected voxel-level threshold of p <
0.001 (Woo et al., 2014).

2.4.2. Exploratory analyses
Associations between BMI and cognitive composite scores (ex-

ecutive functions/memory performance/processing speed) were
analyzed using bivariate and partial correlations adjusting for
confounders according to models-1, -2, and -3. Next, associations
between cognitive composite scores and mean GMVs in BMI-
associated clusters were evaluated in an exploratory manner us-
ing bivariate and partial correlations adjusting for confounders
according to models-1, -2, and -3, with a significance threshold of p
< 0.05 (2 sided). GMV clusters were defined using voxel-level
family-wise-errorecorrected threshold of p < 0.05 and a cluster
extent of at least 50 voxels (Bennett et al., 2009;Woo et al., 2014). In
the following, we used simple mediation analyses (Hayes, 2013) to
investigate if BMI-associated alterations in GMV-mediated effects
of BMI on cognitive performance (Fig. 2A), independent of con-
founders according to models-1, -2, and -3, in line with previous
studies (Ferreira et al., 2014; Kerti et al., 2013; Mander et al., 2013).
To test if these mediations were modulated by age, we tested a
moderating effect of age on the indirect paths (Fig. 2B). In addition,
we assessed in simple mediation models if GMV in BMI-associated
clusters would mediate effects of age on cognition, in addition to
BMI (Fig. 2C). A 99% bias-corrected bootstrap confidence interval
(BBCI) excluding zero, based on 10,000 bootstrap samples, was
considered to be a robust effect (Hayes, 2013). All mediationmodels

were tested using standardized values, and results are reported
with standardized effects (ab).

We additionally tested for possible alternative models (i.e.,
causal chain of (1) effects of GMV on cognitive performance and
cognitive performance on BMI or (2) effects of GMV on BMI and BMI
on cognitive performance) to find the most plausible model as
supported by our data (for further discussion, see e.g., Hayes, 2013).

All variables were normally distributed (unimodal, jskewnessj
! 1) except TMT and memory composite score. These were log
transformed to overcome the skewed distribution. Exploratory
analyses were performed in SPSS 20 (PASW, SPSS, IBM), significance
level was set at p < 0.05, corrected for 2-sided nature of the tests.

3. Results

In total, 617 healthy older participants (258 women) were
included in main analyses, see Table 1 for demographic character-
istics and Table 2 for distribution of raw cognitive test scores. Owing
to the nature of our exclusion criteria, participants excluded from
main analyses (n ¼ 368) were on average slightly older, more
frequently women, exhibited a higher BMI and were less educated
compared to those included (all p < 0.05, Supplementary Table 1).
The subgroupwith available APOE genotype tended to be older (p<
0.001), yet without differences in age range (60e80 in both groups)
or with regard to sex, BMI, and education (all p > 0.05; for details
see Supplementary Table 1). No significant differences were found
between APOE e4-carriers and noncarriers in BMI or other cardio-
vascular risk factors (all p > 0.05; Supplementary Table 2).

3.1. Association between BMI and GMV

Multiple regression model-1 revealed that a higher BMI was
associated with lower GMV (Fig. 3, Table 3) within anterior cingu-
late cortex, paracingulate gyrus, ventral and medial prefrontal
cortex (vm-PFC), orbitofrontal cortex (OFC), mid/posterior cingulate
gyrus, superior and inferior lateral occipital lobe, occipital and
temporal fusiform gyri, middle temporal gyri, insula, thalamus,
putamen, caudate nucleus, and left amygdala. Decreased GMVwere
also found in area V and in the posterior and inferior cerebellum
(Fig. 3).

Fig. 2. Conceptual diagrams of main mediation models. (A) Simple mediation models
of the indirect path of the effect of body mass index (BMI) on cognitive performance
through changes in gray matter volume (GMV) in BMI-associated clusters, controlling
for confounding effects of covariates. (B) Conceptual diagram, representing moderation
effects of age on the indirect path by which BMI affects cognitive performance through
GMV changes in BMI-associated clusters. (C) Simple mediation model of the indirect
path of the effect of age on cognitive performance through changes in GMV in BMI-
associated clusters, controlling for confounders. a, a1, a2: regression coefficient of as-
sociation between GMV and BMI or age, respectively. b: regression coefficient of
association between GMV and cognitive scores, controlling for confounders.

Table 1
Sample characteristics

Participants, n ¼ 617
(258 women)

Age (y) 68.7 # 4.6 (60e79)
BMI (kg/m2) 27.5 # 4 (16.8e41.4)
Mean systolic BP (mm Hg) 136.1 # 16.9 (89e197)
Education (%) [without SS-LD/SS-LD/advanced SS-LD/

advanced technical SS-LD/technical college-
entrance degree/university-entrance degree]

0.2/10.7/6.3/42.6/5.2/35

Depression scale (CES-D) [score] 9.38 # 5.1 (0e34)
Smoking (%) [current/previous/never] 7.5/33.2/59.3
APOE status (n) [e4 carrier/nonee4 carrier/missing] 97/388/132
Arterial hypertension (%) [yes] 55.8
Cardiovascular diseases (%) [any] 19.1
Diabetes status (%) [none/type 1 medicated, type 2

medicated, type 2 nonmedicated]
84.4/0.5/12.2/2.9

Antihyperlipidemic medication (%) [yes] 22.2
Estrogen supplement (% females) [yes] 7.4
White matter hyperintensities (%) [Fazekas score

0/1/2/3]
23.5/59.8/16.2/0.5

Data are mean (SD) (minimumemaximum) unless indicated otherwise.
Key: APOE, apolipoprotein E; BMI, body mass index; BP, blood pressure; CES-D,
Center for Epidemiologic Studies Depression Scale; SS-LD, secondary school-
leaving degree, which represents the end of 9th grade, The university-entrance
degree equals to 12e13 years of education, in Germany; SD, standard deviation.
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Controlling for additional confounders included in model-2 did
not affect these results (Supplementary Fig. 1). In addition, a similar
regional patternwas seenafter correcting forAPOE status (model-3),
yet significance was slightly reduced in frontal and parietal lobes
(Supplementary Fig. 2). In addition, APOE e4-carrier status was not
associated with significant differences in regional GMV.

We did not observe a significant interaction effect between BMI
and age on GMV. Although, multiple regression model-1 revealed a
significant negative association of age with most parts of the ce-
rebrum, sparing the cerebellum (data not shown). No significant
interactionwas found between BMI and sex, BMI and obesity status,
or BMI and hypertension on GMV. In addition, constraining the
sample to participants without diabetes (n ¼ 518) or to the ones
that do not take lipid-loweringmedication (n¼ 480) did not change
the pattern of BMI-GMV associations (Supplementary Figs. 3 and 4).

3.2. Associations with cognitive performance

A higher BMI correlated with lower scores on executive function
(r¼"0.11, p¼ 0.006). This association persisted after controlling for
model-1 (partial-r ¼ "0.108, p ¼ 0.007) but diminished after

adjusting for other confounders in models-2 and -3. Other com-
posite scores did not show significant associations with BMI (all p>

0.05). As expected, age was significantly negatively correlated with
performance in memory (r ¼"0.17, p < 10"3) and processing speed
(r ¼ "0.19, p < 10"3). Executive function sum score, however, was
not associated with age in our sample (p > 0.05).

3.2.1. Executive functions
Bivariate correlations showed that larger GMV in left para-

cingulate gyrus and right planum temporale were associated with
higher scores on executive function (see Supplementary Table 3 for
r- and p-values). These associations remained significant after
correction for confounders in model-1 but slightly diminished in
models-2 and -3. We did not find significant mediations between
BMI and executive function via GMV in these clusters (p > 0.05).

3.2.2. Memory performance
Considering memory, lower GMVs in most of BMI-associated

clusters were associated with lower performance (for r- and p-
values, see Supplementary Table 3). These correlations remained
significant after adjusting for confounders in the vm-PFC, right
medial thalamus, bilateral lateral OFC/Insula, and left paracingulate
gyrus.

Furthermore, simple mediation models supported existence of
an indirect path by which a higher BMI affected memory perfor-
mance via alterations in GMV in frontal and thalamic clusters (Fig. 4,
vm-PFC: ab ¼ "0.035, BBCI: ["0.075, "0.006]; right medial thal-
amus: ab ¼ "0.0235, BBCI: ["0.052, "0.003]; right lateral OFC:
ab ¼ "0.022, BBCI: ["0.05, "0.0028]; left paracingulate gyrus:
ab ¼ "0.022, BBCI: ["0.052, "0.003]). Mediations of the first 2
clusters stayed significant after controlling for bothmodels-2 and -3.

Considering further mediation models, we did not find evidence
for a moderating effect of age on the indirect effects of BMI on
memory through differences in GMV in the previously described

Table 2
Distribution of raw cognitive test scores in the main sample

Semantic fluency (animals)* (no. of words) 23.5 # 5.8 (6e42)
Phonemic fluency (s-words)** (no. of words) 13.3 # 4.4 (1e27)
TMT, part A (s) 39 [32e45] (17e120)
TMT, part B (s) 87 [71e109] (25e300)
Word list learning (no. of words) 21.5 # 3.6 (6e29)
Word list recall (no. of words) 7.6 # 1.7 (0e10)
Word list recognition*** (no. of words) 20 [20e20] (17e20)

Data aremean# SD (minimumemaximum) ormedian [IQR] (minimumemaximum).
n ¼ 617, except, *n ¼ 616, **n ¼ 578, ***n ¼ 615.
Key: TMT, Trail-making test; SD, standard deviation; IQR, interquartile range.

Fig. 3. Body mass index (BMI)-associated gray matter alterations. Significant association between higher BMI and lower gray matter volume (GMV), according to multiple regression
analysis adjusted for age and sex (model-1) in a cohort of 617 older individuals. Significant clusters, surviving a voxel-level threshold of p < 0.001 (uncorrected) and a cluster level
threshold of p< 0.05 (FWE-corrected), are displayed in the cerebrum (A) and cerebellum (B), superimposed on a study-specific graymatter template. Color bar shows the t value at each
significant voxel. Abbreviation: FWE, family-wise-error. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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clusters. Yet, we detected independent effects of age, that is, that
increasing age resulted in lower memory scores partly through
variations in GMV in BMI-associated clusters, according to media-
tion models controlling for sex and BMI (vm-PFC: ab ¼ "0.036,
BBCI: ["0.071, "0.006]; right medial thalamus: ab ¼ "0.027,
BBCI: ["0.058, "0.005]; right lateral OFC: ab ¼ "0.017, BBCI:
["0.04, "0.002]; left paracingulate gyrus: ab ¼ "0.023, BBCI:
["0.05, "0.0035]), and other confounders (data not shown).

Testing of alternative mediation models within these clusters
did not yield significant results.

Taken together, mediation analyses indicated that both higher
BMI and higher age affected memory performance independently
through lower GMV in frontal and thalamic BMI-associated regions,
yet without showing significant interactive effects in our sample.

3.2.3. Processing speed
A faster processing speed was also associated with higher GMV

in almost all BMI-associated clusters. Adjusting for confounders in
models-1 and -2 suggested an independent association of pro-
cessing speed and GMV within the bilateral temporal/insular
clusters and in intracalcarine cortex (see Supplementary Table 3 for
r- and p-values). However, these effects diminished after correction
for parameters in model-3. Furthermore, mediation models did not
support existence of a significant causal link between BMI and
processing speed through any of these gray matter regions.

4. Discussion

Using a large population-based cohort of 617 healthy older
adults, we found that a higher BMI is associated with lower GMV in
multiple cortical and subcortical areas and in the cerebellum, even
after adjusting for age, sex, obesity status, and other confounders
such as arterial hypertension, diabetes, and APOE genotype. In

addition, mediation analyses indicated that a higher BMI affected
memory through reduced regional GMV in frontal and thalamic
brain areas. Further, mediation analyses indicated that higher age
contributed to decreases in memory performance through reduced
GMV in BMI-associated brain areas, yet not moderating the indirect
effects of BMI.

4.1. BMI and GMV

Our finding of an inverse linear association between BMI and
GMV in a large population-based cohort of nondemented older
adults confirms and extends previous studies that used obesity-
related measures such as BMI, waist circumference, and visceral
adipose tissue (Raji et al., 2010; Walther et al., 2010; Willette and
Kapogiannis, 2014). Several reports described reductions in
similar areas of the frontal lobes, cingulate gyrus, amygdala, dorsal
striatum, thalamus, and cerebellum with higher weight (Marqués-
Iturria et al., 2013; Walhovd et al., 2014), mainly in older age
(Brooks et al., 2013; Driscoll et al., 2012; Raji et al., 2010; Walther
et al., 2010), for a review see Willette and Kapogiannis (2014).
However, some studies yielded contrary results, linking a higher
BMI to higher regional GMV (Horstmann et al., 2011; Taki et al.,
2008). For example, besides regional decreases, Taki et al. (2008)
observed in men, but not in women, increases in frontal GMV
with higher BMI, using voxel-based morphometry in a large cohort
(n ¼ 1428) of 12- to 80-year-old Japanese. Horstmann et al. (2011)
reported positive associations of BMI and GMV in women in
reward-related areas, using a cohort of 122 young adults. Several
differences between these studies render a direct comparison of
results difficult, for example, regarding age range, considered con-
founders, image acquisition and processing software (Streitbürger
et al., 2014), and BMI distribution [i.e., BMI # 25 kg/m2 in over
70% of our population-based older cohort, compared tow40% in the
young sample (Horstmann et al., 2011) and only 15% males and 12%
females in the Japanese sample (Taki et al., 2008)].

4.2. Associations with cognitive performance

Our data suggest that a lower BMI was associated with better
executive functions in bivariate correlations, a link that has been
reported previously (Davidson and Martin, 2014; Elias et al., 2005;
Fergenbaum et al., 2009; Gunstad et al., 2007), and might be
explained by working memory advantages that lower the risk to
develop obesity later in life (Brooks et al., 2013; Davidson and
Martin, 2014). However, we show that this association depen-
ded on confounders, and we did not find evidence for correlations
with memory and processing speed, indicating that BMI might
not directly relate to cognitive outcomes or that the explained
variance is rather small in our sample of cognitively intact older
adults. In addition, in contrast to our assumptions, our data do not
support a causal link between higher BMI, subsequent gray
matter alterations, and lower executive functions in aging. This
lack of mediation might be insightful given that executive func-
tions are known to depend on information transfer between
distant brain regions (Delbeuck et al., 2003; Uhlhaas and Singer,
2006). Thus, future studies that implement structural or func-
tional connectivity measures are needed to clarify possible in-
teractions here.

Turning to memory, lower GMV in frontal, insular, and thalamic
clusters were associated with lower performance, independent of
confounders. Moreover, mediation results indicated that higher
BMI affected memory performance indirectly via its negative effect
on GMV in frontal and thalamic regions, which is in line with our
hypothesis. The frontal lobe cluster belongs to the Brodmann areas
10 and 11, which contribute to a variety of tasks including strategic

Table 3
Peak coordinates of significant negative associations between gray matter volume
and BMI, adjusted for model-1 (voxel-level FWE-corrected threshold of p < 0.05 and
a cluster extent of at least 50 voxels)

Regions MNI coordinates
(mm, hot voxel)

z-score Cluster size
(voxels)

x y z

Cerebral clusters
Frontal medial cortex(R) 6 52 "23 6.43 4023
Frontal pole (R) 40 54 "15
Subcallosal cortex (R) 4 30 "23
Frontal pole (L) "10 57 "3

Frontal orbital cortex (R) 33 32 "5 5.08 216
Paracingulate gyrus (L) "4.5 40.5 18 4.98 109
Precentral gyrus (L) "48 "7 40 4.96 86
Superior temporal gyrus (R) 46 "9 "9 7.32 4118
Insular cortex (R) 39 "9 9

Planum polare (L) "45 "4 "14 7.03 3399
Insular cortex (L) "39 18 "3

Planum temporale (R) 50 "30 12 5.02 94
Planum temporale (L) "52 "36 12 5.06 164
Parahippocampal gyrus (R) 22 "19 "26 5.47 182
Parahippocampal gyrus (L) "21 "19 "24 4.90 64
Temporal fusiform cortex (L) "34 0 "50 6.08 461
Occipital fusiform gyrus (R) 36 "72 "18 6.29 862
Occipital fusiform gyrus (L) "30 "78 "17 6.86 5100
Inferior temporal gyrus (L) "62 "22 "20

Intracalcarine cortex (R) 9 "84 13 5.20 278
Thalamus (R) 6 "15 16 5.75 887

Cerebellar clusters
Right crus I 31 "68 "38 7.03 9939
Left crus I "25 "73 "32 6.69 9984

Key: BMI, body mass index; FWE, family-wise-error; L, left; MTL, medial temporal
lobe; PFC, prefrontal cortex; R, right.
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Fig. 4. Mediating pathways between body mass index (BMI), gray matter volume (GMV), and verbal memory performance. According to mediation analysis, a higher BMI and higher
age independently affected verbal memory performance through lower GMV in (A) the ventral-medial prefrontal cortex (vm-PFC, green cluster) and (B) in the right medial thalamus
(red cluster). Scatterplots show bivariate associations. R2 is the coefficient of determination. a1: standardized regression coefficient of the association between mean GMV at each
cluster and BMI, in a model controlling for age and sex. a2: standardized regression coefficient of the association between mean GMV at each cluster and age, in a model controlling
for BMI and sex. b: regression coefficient of the association between mean GMV at each cluster and verbal memory z-scores, controlling for age, BMI and sex. Significance of indirect
paths were tested using 99% BBCIs of 10,000 bootstrap samples, a1b and a2b are standardized indirect effects, n ¼ 617. Abbreviation: BBCI, bias-corrected bootstrap confidence
interval. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

S. Kharabian Masouleh et al. / Neurobiology of Aging 40 (2016) 1e10 7



 

 44 

 
 
 
  

processes in memory recall and encoding new information into
long-term memory (Euston et al., 2012; Kirwan et al., 2008). The
thalamic cluster, on the other hand, involves regions of the intra-
laminar and medial thalamic nuclei that exhibit long-range con-
nections predominantly with the medial prefrontal cortex (Behrens
et al., 2003; Eckert et al., 2012; Klein et al., 2010). Others have
shown that focal lesions to the mediodorsal thalamus, similar to
those resulting from PFC damage, are associated with deficient
memory processing (Staudigl et al., 2012; Zola-Morgan and Squire,
1985). This is in line with our findings indicating that GMV alter-
ations within these areas, suggestive of degenerative processes
such as neuronal loss, shrinkage of neurons, reductions in synaptic
spines, or other changes in the structural substrates of interneu-
ronal communication (Fjell and Walhovd, 2010; Raz, 2005), pro-
voked alterations in memory performance. Notably, Mander et al.
(2013) previously observed that medial PFC atrophy is a key
player in mediating the impact of aging on impaired memory
consolidation. We were able to replicate and extend these findings,
showing that besides BMI, higher age contributed independently to
lower memory through frontal and thalamic GMV decreases in our
cohort. Yet, mediation analyses did not provide evidence that age
moderated the indirect effects of BMI, indicating that the influence
of BMI in healthy older adults does not increase or diminish sub-
stantially between 60 and 80 years of age. Taken together, our
findings indicate that gray matter in frontal and thalamic areas
show vulnerability to both age- and BMI-related morphological
changes, which, as a consequence, translate into subtle declines in
memory functions. The observed effect sizes in our study were
relatively small though, which could be due to cognitive reserve or
ceiling effects of the used memory task, as we analyzed a cogni-
tively intact sample. However, the described BMI-related structural
changes, linked with initial memory impairments, are of consid-
erable importance, as they illustrate a further, yet modifiable load
on intact cognition, and put individuals into a more vulnerable
condition.

Our results also indicate that lower GMV in temporal/insular
and occipital clusters correlated with slower processing speed,
mainly independent of confounders. This is in line with previous
studies that found negative associations between processing speed
and GMV in similar regions (Eckert et al., 2010; Steffener et al.,
2013), but see Ferreira et al., 2014 for positive effects of lower
regional GMV in certain frontal areas on reaction times. However,
also note that slower processing speed has been mainly attributed
to alterations in white matter integrity (Madden et al., 2009, 2012;
Penke et al., 2010), which might explain a lack of significance of a
mediating path between BMI and processing speed in our sample.
This hypothesis needs to be tested in upcoming studies that
evaluate mediation models involving (frontal) white matter
microstructure.

4.3. Potential underlying mechanisms

A higher BMI could have affected GMV via several pathways. For
example, excessive weight is associated with conditions that exert
negative effects on neuronal tissue, for example, endothelial
dysfunction, microbleeds, subclinical strokes, and ischemic events
(Ferguson et al., 2003) or production of advanced glycated end-
products and reactive oxygen species (Biessels et al., 2008). In a
previous study, it was shown that higher glucose (which is corre-
lated with higher BMI) even in the normal range could exert
negative effects on brain structure and function (Kerti et al., 2013).
Adipose tissue is also associated with increased production of in-
flammatory cytokines (Gregor and Hotamisligil, 2011) and altered
lipid metabolism, which are associated with detrimental effects on
the brain (Haley et al., 2013). In addition, obesity-induced

alterations in production and sensitivity to adipose tis-
sueederived hormones, such as leptin, could play an important
role, as these factors can pass the blood-brain barrier and affect
neuronal functioning (Davis et al., 2014). Future studies imple-
menting sensitive measures of energy metabolism and brain
function should further address these issues.

4.4. Strengths and limitations

Several limitations should be considered when interpreting our
findings. First, although mediation analyses are frequently used to
identify potential underlying mechanisms (Hayes, 2013; Kerti
et al., 2013; Mander et al., 2013), we are unable to infer causal
relationships due to the cross-sectional nature of our study.
Particularly with regard to obesity, it has been speculated that
impairments in executive functions could predispose an individual
to gain excessive weight (Reinert et al., 2013), and cognitive
impairment, obesity and gray-matter changes might have caused
each other reciprocally (Davidson and Martin, 2014), a hypothesis
that needs to be tested in carefully designed longitudinal assess-
ments. However, note that mediation analyses did not yield sig-
nificance for alternative paths, rendering a causal relationship
between GMV and cognitive performance (or BMI) via indirect
effects of GMV on BMI (or on cognition) in our older cohort un-
likely. Second, we cannot exclude residual confounding due to
poor sleep quality or sarcopenia, which are frequent in the elderly
and have been linked to poorer brain health and risk for AD
(Benedict et al., 2015; Burns et al., 2010; Sprecher et al., 2015).
Third, in the subgroup analyses including APOE-genotype status,
the lower number of participants might have resulted in lower
statistical power. However, strength of this study rely on the large
community-based sample of healthy older adults randomly chosen
via the city registry office, which is considered to be more repre-
sentative of the general population than sampling via advertising
(Martinson et al., 2010). In addition, participants underwent high-
resolution neuroimaging at 3T and provided information of a
comprehensive set of potential confounders, accompanied by
assessment of cognitive tests in major domains that are affected in
normal and pathological aging.

4.5. Conclusions

Using a large sample of community-dwelled participants, we
were able to show that a higher BMI is linked with lower GMV in
the aging population, even after controlling for important con-
founders. Moreover, mediation analyses indicated that higher BMI
and higher age contributed independently to lower memory per-
formance, through reductions in GMV in BMI-associated frontal and
thalamic brain areas. Thus, gray matter structural preservations
caused by lower weight could eventually be protective for specific
cognitive domains, independent from other comorbid, environ-
mental, or genetic factors. Our findings further implicate that
reducing overweight and obesity in our societies could help to
maintain brain health into late life, a hypothesis that has already led
to initiation of promising large-scale longitudinal controlled trials
(Ngandu et al., 2015). Future studies focusing on physiological
manifestations of a higher BMI and associations with BMI-related
gray matter alterations would further help us to walk through
better individualized therapies and preventing cognitive decline in
aging.
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Abstract: Obesity is a complex neurobehavioral disorder that has been linked to changes in brain struc-
ture and function. However, the impact of obesity on functional connectivity and cognition in aging
humans is largely unknown. Therefore, the association of body mass index (BMI), resting-state network
connectivity, and cognitive performance in 712 healthy, well-characterized older adults of the Leipzig
Research Center for Civilization Diseases (LIFE) cohort (60–80 years old, mean BMI 27.6 kg/m2 6 4.2 SD,
main sample: n 5 521, replication sample: n 5 191) was determined. Statistical analyses included a multi-
variate model selection approach followed by univariate analyses to adjust for possible confounders.
Results showed that a higher BMI was significantly associated with lower default mode functional connec-
tivity in the posterior cingulate cortex and precuneus. The effect remained stable after controlling for age,
sex, head motion, registration quality, cardiovascular, and genetic factors as well as in replication analyses.
Lower functional connectivity in BMI-associated areas correlated with worse executive function. In addi-
tion, higher BMI correlated with stronger head motion. Using 3T neuroimaging in a large cohort of healthy
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older adults, independent negative associations of obesity and functional connectivity in the posterior
default mode network were observed. In addition, a subtle link between lower resting-state connectivity in
BMI-associated regions and cognitive function was found. The findings might indicate that obesity is asso-
ciated with patterns of decreased default mode connectivity similar to those seen in populations at risk for
Alzheimer’s disease. Hum Brain Mapp 38:3502–3515, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: brain; neuroimaging; obesity; risk factors; cognition

r r

INTRODUCTION

Obesity is a complex neurobehavioral disorder resulting
from excessive energy intake and insufficient energy
expenditure. It has been associated with abnormal func-
tionality of homeostasis brain networks [Grill et al., 2007]
and some studies also reported differences in higher cog-
nitive functions such as reward evaluation [Amlung et al.,
2016; Stice et al., 2008], executive functions [Benito-Le!on
et al., 2013; Gunstad et al., 2007] and learning and memory
[Cheke et al., 2017; Smith et al., 2011], yet underlying
mechanisms are far from understood.

Using task-based functional MRI (fMRI), several studies
revealed differences between lean and obese participants in
regional activation patterns during the processing of reward-
ing food and non-food stimuli [Rothemund et al., 2007; Stice
et al., 2008; Stoeckel et al., 2008]. In addition, using resting-
state fMRI, obesity has been linked to selective changes in
functional connectivity between brain areas, including atten-
tional and default mode resting state networks (RSN) [Garcia-
Garcia et al., 2013; Kullmann et al., 2012]. However, previous
findings of obesity-related changes in functional connectivity
are mixed [Kullmann et al., 2012] and mostly based on
small sample sizes in young participants using non-
standardized experimental conditions [Hsu et al., 2015;
Tregellas et al., 2011]. Recently, several studies have associ-
ated RSN connectivity strength with individual differences
in cognitive performance such as executive function [Gor-
don et al., 2015; Reineberg et al., 2015] and memory [Sala-
mi et al., 2016; Wang et al., 2010]. Thus, determining
changes in functional connectivity that are attributed to
obesity might help to better understand the link between
body weight and cognition in humans.

In the present study we therefore aimed to investigate the
association of obesity with RSN connectivity in a large
population-based cohort of healthy older adults. We hypothe-
sized that a higher BMI would be associated with changes in
obesity-related RSN such as frontal, attentional, or default
mode networks. As functional connectivity has been linked to
differences in cognition we also determined if changes in RSN
connectivity would correlate with cognitive performance.

METHODS

Participants

All participants took part in the LIFE-Adult-Study [Loef-
fler et al., 2015] and were randomly selected, community-

dwelling volunteers older than 60 years (see Fig. 1 for
details on sample selection). In total, 712 subjects were
included, thereof 521 subjects in the main sample (sample
1) and another 191 subjects in the replication sample (sam-
ple 2) (see Table I for demographics). Exclusion criteria
were stroke, cancer treatment in the last 12 months, neuro-
radiological findings of brain pathology, intake of centrally
active medication and a score below 25 in the Mini Mental
State Examination. All subjects underwent medical exami-
nation, anthropometric measurements, MRI assessment,
and neuropsychological testing.

Standard protocol approvals and patient consents

The study was approved by the institutional ethics
board of the Medical Faculty of the University of Leipzig
and all participants signed an informed consent form.

Neuroimaging

Brain imaging was performed on a 3T Siemens Verio
Scanner with a 32 channel head coil. T1-weighted images
were acquired using generalized autocalibrating partially
parallel acquisition technique [Griswold et al., 2002] and
the Alzheimer’s Disease Neuroimaging Initiative standard
protocol with the following parameters: inversion time,
900 ms; repetition time, 2.3 ms; echo time, 2.98 ms; flip
angle, 98; band width, 240 Hz/pixel; image matrix, 256 3
240; 176 partitions; field of view, 256 3 240 3 176 mm3;
sagittal orientation; voxel size, 1 3 1 3 1 mm3; no
interpolation.

T2*-weighted functional images were acquired using an
echo-planar-imaging sequence with the following parame-
ters: repetition time, 2 s; echo time, 30 ms; flip angle, 908;
image matrix, 64 3 64; 30 slices; field of view, 192 3 192
3 144 mm3, voxel size of 3 mm 3 3 mm, slice thickness of
4 mm, slice gap of 0.8 mm; 300 volumes; total acquisition
time, 10:04 minutes. For two participants only 299 volumes
and for one participant only 215 volumes were acquired.
Preprocessing was implemented in a reproducible pipeline
using nipype [Gorgolewski et al., 2011] which is available
to the public at https://github.com/fBeyer89/LIFE_rs_
ICA_preprocessing.

After removal of the first five volumes in order to allow
the magnetization to reach steady-state, rigid body,
boundary-based coregistration with 6 degrees of freedom
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of the functional scan to the anatomical image, as well as
motion and EPI distortion corrections were calculated and
jointly applied in a subsequent step to each volume of the
functional scan. Scans were slicetime-corrected and non-
linearly transformed to MNI space using ANTS Symmetric
Normalization (SyN) registration algorithm [Avants et al.,
2011], resliced to 3 mm isotropic voxels and smoothed
with a gaussian kernel of 6 mm full-width-at-half-
maximum. Frame-to-frame head motion was estimated by
calculating framewise displacement (FD) [Power et al.,
2012]. We excluded 12 participants from sample 1 and 6

participants from sample 2 because of gross motion (maxi-
mal FD> 3 mm). Mean FD was calculated across volumes
and used as a covariate to correct for head motion in sta-
tistical analysis.

All normalized functional images were visually checked
and compared with the MNI template which led to the
exclusion of 15 and four participants from sample 1 and 2
respectively because of major registration issues (large
ventricles, atrophy, or calcified falxes).

A mean functional image was created for the remaining
521 subjects from sample 1 and 191 subjects from sample 2

TABLE I. Demographic characteristics of sample 1 and 2

Sample 1
n 5 521

(230 women)

Sample 2
n 5 191

(96 women)

Age (y) 70.1 6 3.8 (60–79) 68.8 6 5.4 (60–82)
BMI (kg/m2) 27.5 6 4.1 (16.8–41.4) 28.1 6 4.5 (18.6–43.9)
Mean FD (mm) 0.27 6 0.12 (0.05–0.87) 0.28 6 0.14 (0.06–0.92)
qr 0.95 6 0.015 (0.86–0.97) 0.93 6 0.02 (0.79–0.96)
APOE status (% e4 carriers/non-e4 carriers/missing) 20.7/79.3/– 7.3/27.2/65.4
Arterial hypertension (% yes) 60.7 58.6
Diabetes (% yes) 15.7 15.7
Education (% no SS-LD/SS-LD/advanced SS-LD/university-entrance degree) 0.8/52.6/7.7/39 1.6/65.4/11.5/21.5
CES-D (score)/missing 9.3 6 5.5 (0–34)/– 11.2 6 5.6 (0–29)/47
Smoker (% current/previous/never/missing) 6.5/32.8/60.7/– 8.4/29.8/37.7/24.1

Data are mean 6 SD (minimum–maximum).
BMI, body mass index; FD, framewise displacement; qr, registration quality; APOE e4, apolipoprotein E epsilon 4 allele; SS-LD, second-
ary-school leaving degree; CES-D, Center for Epidemiologic Studies Depression Scale.

Figure 1.
Flow chart of the study illustrating the exclusion criteria for the selection of sample 1, motion-
matched sample, and sample 2.
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using the first volume of each subject’s time series. A reg-
istration quality index qr was calculated as the spatial cross
correlation of each of the subject’s first volumes with the
mean image and later used as a covariate describing the
accuracy of spatial normalization from functional to ana-
tomical subject and MNI space.

To assess RSN, we applied independent component
analysis (ICA) which has been shown to reliably identify
RSN across subjects [Damoiseaux et al., 2006] using the
GIFT toolbox [Calhoun, 2004]. A high number of n 5 75
components was chosen because such decompositions
have been previously shown to yield detailed and non-
overlapping components [Abou-Elseoud et al., 2010; Kivi-
niemi et al., 2009]. Independent components were selected
as reliable RSN if their spatial cross-correlation with pub-
licly available templates [Allen et al., 2011] was higher
than 0.4 and they contained mainly low-frequency fluctua-
tions measured with a power ratio above 3 [Robinson
et al., 2009]. Subject-specific component maps were calcu-
lated using the GICA-approach implemented in the GIFT
toolbox [Erhardt et al., 2011].

Gray matter volume (GMV) probability maps were
derived from T1-weighted scans using voxel based mor-
phometry in SPM 8 (www.fil.ion.ucl.ac.uk/spm) and aver-
aged within thresholded ICA component maps to correct
for local gray matter volume differences within the resting
state networks.

Total intracranial volume, cortical white matter volume
as well as cortical and subcortical gray matter volumes
were derived using FREESURFER (http://surfer.nm.mgh.
harvard.edu/) and used to assess and correct for associa-
tions of global brain volume measures with BMI.

Neuropsychological Testing and Confounder
Definition

Neuropsychological testing was performed using the
CERAD-Plus test battery [Morris et al., 1989] and included
the trail-making test (TMT) part A and B, semantic and
phonemic verbal fluency and verbal memory. The trail-
making test is an indicator of speed of cognitive process-
ing and executive functioning [Sanchez-Cubillo et al.,
2009] while phonemic and verbal fluency tests measure
executive and verbal reasoning [Van Der Elst et al., 2006].
In the verbal memory test, learning was defined as the
sum of 3 consecutive learning trials, recall was defined as
the sum of correctly recalled words after a delay, in which
participants performed a nonverbal task, and recognition
was defined as the number of correctly recognized words
of a list of 20 mixed words presented afterwards. Test
scores were z-transformed and combined to create com-
posite scores for executive function, memory performance
and processing speed [Kerti et al., 2013; Van de Rest et al.,
2008]. This allowed us to reduce number of comparisons
and investigate specific cognitive domains. Composite
scores for executive function, memory performance and

processing speed were calculated as follows [Kharabian
Masouleh et al., 2016]: executive functions 5 [z_phonemic
fluency 1 z_semantic fluency 1 z_TMT(part B 1 part A)/
part A]/3; memory 5 (z_sum_learning p z_recall p z_rec-
ognition)/3; processing speed 5 2z (TMT [part A]).

Arterial hypertension was defined as systolic blood
pressure !160 mm Hg, diastolic blood pressure !95 mm
Hg or diagnosis of hypertension or use of antihypertensive
medication [Biessels et al., 2006]. Diabetes and hyperlipid-
emia were binarily defined based on self-reported diagno-
sis or medication intake. Four levels of education were
defined: no secondary-school leaving degree (SS-LD),
secondary-school leaving degree (corresponding to 8 years
of school), advanced secondary-school leaving degree (cor-
responding to 10 years of school) and university-entrance
degree (corresponding to 13 years of school). Depression
score was measured using the Center for Epidemiologic
Studies Depression Scale (CES-D) [Radloff, 1977]. Smoking
status was defined using self-reported information as nev-
er smoker, previous smoker or current smoker. Genotyp-
ing of the APOE allele status (E2, E3, E4) was performed
on a Roche Lightcylcer 480 according to the method of
Aslanidis [Aslanidis and Schmitz, 1999]. APOE-e4 carrier
status was then defined as carrying none (0) or at least
one APOE-e4 allele (1).

Statistical Analysis

Statistical analysis of the association between obesity and
RSN functional connectivity was performed using a multi-
variate backward model selection approach [Allen et al.,
2011] implemented in the MANCOVAN toolbox (http://
mialab.mrn.org/software). The primary design matrix con-
tained BMI, age and sex (Model 1). In a second model we
additionally added head motion measured by mean FD
(log-transformed) and registration quality measured by qr

(Fisher-Z-transformed) as covariates (Model 2). In order to
correct for multiple comparison across 18 different RSN
that were identified in our sample, the significance level for
model selection was set to 0.05/18 5 0.0028.

After covariate selection, univariate voxelwise testing of
multiple regression models was performed as imple-
mented in the MANCOVAN toolbox and results were cor-
rected for multiple comparisons within components using
false discovery rate correction (FDR) with a< 0.05 [Benja-
mini and Hochberg, 1995].

In networks significantly associated with BMI we inves-
tigated intra-network connectivity using mean cluster con-
nectivity and network eigenvariate (EV) as proposed
previously [Glahn et al., 2010]. Statistical analysis on con-
nectivity measures was performed using multiple regres-
sion in SPSS 22.0 (IBM). Age, sex, APOE-e4 status,
hypertension, diabetes, education, smoking status, and
depression score were used as confounding variables.

Associations between BMI, BMI-associated differences in
functional connectivity and cognitive performance were
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explored without correction for multiple comparisons
using bivariate and partial Pearson’s correlations.

Confirmatory analysis

In a replication approach we investigated a second sam-
ple including 191 participants who had not been used in
any prior analysis and had complete information of BMI,
arterial hypertension, diabetes and education (sample 2).
Subjects included in sample 2 were on average younger
(independent samples t-test, P 5 0.005) while exhibiting a
comparable age range, and similar distributions of sex,
BMI, mean FD, hypertension and diabetes (independent
samples t-tests, Chi-squared test, all P> 0.1) (see Table I
for details). Using FSL’s DUAL REGRESSION we calculat-
ed subject-specific spatial maps for sample 2 based on com-
ponents found in the main analysis of sample 1. We
extracted the EV of those components that were significant-
ly associated with BMI and calculated a multiple linear
regression using a model containing age, sex, BMI, diabetes,
arterial hypertension, and education. APOE-e4 status,
depression score and smoking status were not available for
all participants in the replication sample. Additionally, we
estimated a voxelwise multiple regression model with the
same covariates using permutation testing implemented in
FSL’s RANDOMISE. Results were corrected for multiple
comparisons using FDR correction with a< 0.05.

To overcome the collinearity between BMI and head
motion which was noticed during preprocessing, we sepa-
rated participants from sample 1 into three BMI-groups

(BMI< 25 kg/m2, 25 kg/m2<BMI< 30 kg/m2,
BMI> 30 kg/m2) and matched participants from each
group for mean FD with an uncertainty of 0.02 mm. This
yielded a sample of 186 participants in which BMI and
mean FD no longer correlated (motion-matched sample,
see Fig. 2). The resulting sample did not significantly differ
from the original sample 1 in age, sex, BMI, APOE-e4 sta-
tus, hypertension, diabetes, education, depression score,
and smoking status (independent samples t-tests, Chi-
squared test, all P> 0.1).

In order to verify that our results were independent of
the number of independent components used, we repeated
the analysis in sample 1 with 20 instead of 75 components.

RESULTS

RSN Components

Using independent component analysis, we identified 18
RSN components that belong to six commonly described net-
works, that is, attentional, default mode, frontal, sensorimo-
tor, auditory, and visual network (see Fig. 3 for overview).

Multivariate Results

Multivariate backward model selection analysis of mod-
el 1 (including BMI, age, and sex) detected BMI as a signif-
icant predictor of functional connectivity strength in the
default mode network components 29 and 42, and in the
visual network component 25 (see Fig. 4). Backward model
selection of model 2 including motion and registration
parameters (i.e., FD and qr) added qr as a significant pre-
dictor for the components 29, 42, and 25.

Univariate Results

Univariate analysis using model 1 showed that higher
BMI was significantly associated with decreased functional
connectivity within the spatial maps of default mode com-
ponents 29 and 42 (P< 0.05, FDR-corrected, adjusted for
sex), more specifically in clusters located in the posterior
cingulate cortex (PCC) and precuneus in component 29,
and in the precuneus and left parietal cortex in component
42 (see Fig. 5).

We also found a BMI-associated increase of connectivity
in visual network component 25. This cluster was located
in the right precuneus and left lingual cortex (see Fig. 6).

For model 2 significant BMI effects on voxelwise net-
work connectivity were again found in the PCC and pre-
cuneus within the default mode component 29 (P< 0.05,
FDR-corrected, adjusted for sex and qr). Effects in compo-
nent 42 did not survive FDR-correction.

Adding qr as a covariate into the model for visual com-
ponent 25 did not change the univariate result showing
positive correlations with BMI.

Figure 2.
Correlation of body mass index (BMI) and mean framewise dis-
placement (FD) in the motion-matched sample (green) com-
pared with sample 1 (blue): the strong positive correlation
between BMI and mean FD has clearly been reduced. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Analysis of Intra-Network Connectivity

In order to analyze if the association of BMI and posteri-
or default mode network connectivity was independent of

further known confounders, we used a multiple linear
regression on the intra-network functional connectivity of
the spatial maps and corrected for age, sex, APOE-e4
status, diabetes, hypertension, education level, smoking

Figure 3.
Spatial maps (SM) of the 18 components identified as resting state networks: SM are plotted as
t-statistics thresholded at t> 12 and displayed at the three most informative slices. Coordinates
refer to the maximal t-value in MNI-space coordinates. [Color figure can be viewed at wileyonli-
nelibrary.com]
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status, and depression score. Accordingly, BMI was sig-
nificantly negatively associated with intra-network connec-
tivity of default mode component 29, even after adjusting
for confounders (ß 5 20.148, P 5 0.001, R2

adjusted 5 0.075,
see Table II and Fig. 7). Age, smoking and APOE-e4 status
were all negatively associated with intra-network connec-
tivity (Age: ß 5 20.14, P 5 0.002, smoking status:
ß 5 20.14, P 5 0.001, APOE-e4 status: ß 5 20.1, P 5 0.018),
while hypertension, diabetes, education, and depression
score did not contribute significantly to the model (see
Table II).

This result remained stable when additionally including
HbA1c as a covariate (N 5 516, b 5 20.14, P 5 0.002, cor-
recting for HbA1c, age, sex, APOE-e4 status, diabetes,
hypertension, education level, smoking status, and

depression score) and correcting for presence of hyperlip-
idemia (N 5 521, b 5 20.15, P 5 0.001, correcting for age,
sex, APOE-e4 status, hyperlipidemia, arterial hypertension,
diabetes, BMI, education level, smoking status, and
depression score). We also included mean GMV within
component 29 and total cortical GMV into the model to
correct for possible effects of reduced GMV in the region
of interest and globally, which did not attenuate the
results (b 5 20. 145, P 5 0.001, linear regression on EV of
posterior DMN 29, corrected for age, sex, diabetes, hyper-
tension, APOE-e4-status, depression score, smoking-status,
education, mean GMV in DMN 29, and mean global
GMV). Total mean GMV was significantly associated with
BMI (partial correlation coefficient q 5 20.12, P 5 0.005,
corrected for age and sex) while mean GMV within

Figure 4.
Results from the multivariate analysis on 18 identified resting state network (RSN) components
using Model 1 including BMI, age, and sex (a< 0.0028). Colorscale indicates log(P), white cells
indicate that covariates were removed from the full model during backward selection. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

Figure 5.

Higher BMI is associated with decreased posterior default mode
network connectivity. A: Decreased functional connectivity in
default mode network component 29 is found in clusters in the
posterior cingulate cortex (PCC) and precuneus. Blue color
map represents log(P)-values of significant voxels (P< 0.05, FDR
corrected, using model 1: main BMI effect correcting for sex).
MNI coordinates of peak voxel in component 29 in the PCC is
(23, 233, 27). Red color map represents the spatial map of the

component. B: Decreased functional connectivity in default
mode network component 42 is found in clusters in the precu-
neus and parietal cortex. Blue color map represents log(p)-val-
ues of significant voxels (P< 0.05, FDR corrected, using model
1: main BMI effect correcting for sex). MNI coordinates of peak
voxel in the precuneus: (23, 254, 26). Red color map repre-
sents the spatial map of the component. [Color figure can be
viewed at wileyonlinelibrary.com]
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component 29 was not (q 5 20.023, P 5 0.6, corrected for
age and sex). BMI was not significantly associated with
intra-network connectivity of the visual component 25
when correcting for age, sex, APOE-e4 status, diabetes,
hypertension, education level, smoking status, and depres-
sion score (ß 5 0.056, P 5 0.22, R2

adjusted 5 0.027).

Associations with Cognitive Performance

Higher BMI was significantly correlated with lower
executive performance (r 5 20.11, P 5 0.015), even when
adjusting for age and sex (partial correlation coefficient
q 5 20.10, P 5 0.02). In addition, higher mean cluster con-
nectivity in the PCC of component 29 was associated with
higher executive function (q 5 0.10, P 5 0.03, corrected for
age and sex) although the association became non-

significant when additionally controlling for BMI
(q 5 0.075, P 5 0.09). We also observed lower memory per-
formance to be associated with lower PCC cluster connec-
tivity (r 5 0.11, P 5 0.009); however, without reaching
statistical significance when correcting for age and sex
(PCC-ROI: q 5 0.06, P 5 0.17).

Confirmatory Analyses

In the replication sample, we found a significant associa-
tion of higher BMI and lower intra-network connectivity
of DMN 29sample2 (BMI: b 5 20.29, P< 0.001, with age, sex,
diabetes, arterial hypertension, and education as covari-
ates). In an additional voxelwise analysis we found BMI-
associated connectivity reductions to be located mainly in
precuneus (significant at P< 0.05, whole brain FDR cor-
rected, see Fig. 8) correcting for age, sex, diabetes, arterial
hypertension, and education.

We observed in part strong effects of the head motion
parameter mean FD on RSN connectivity in the multivari-
ate analysis and found BMI and mean FD to be highly col-
linear. We, therefore, conducted a sensitivity analysis in a
motion-matched sub-sample. Here again, according to lin-
ear regression, higher BMI correlated significantly with
lower mean connectivity in the cluster previously identi-
fied in the PCC (ß 5 20.18, t 5 22.48, P 5 0.014, correct-
ing for age, sex, APOE-e4 status, diabetes, hypertension,
education level, smoking status, depression score, and
mean FD). Mean FD was also negatively correlated with
reduced connectivity (ß 5 20.16, t 5 22.1, P 5 0.03).

Figure 6.
Association of higher BMI with increased connectivity: In visual
network component 25 higher BMI is associated with increased
functional connectivity. Green color map represents log(P)-val-
ues of significant voxels (P< 0.05, FDR corrected, using model
1: main BMI effect correcting for sex). MNI coordinates of peak
voxel is (15, 245, 22). Red color map represents the spatial
map of the component. [Color figure can be viewed at wileyon-
linelibrary.com]

Figure 7.
Association of higher BMI and reduced connectivity after con-
trolling for genetic and environmental confounders: Linear
regression of BMI and intra-network functional connectivity of
default mode network component 29, controlling for age, sex,
APOE-e4 status, hypertension, diabetes, education, smoking sta-
tus, and depression score. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE II. Results of multiple regression performed on
EV of DMN component 29 (standardized regression
coefficient b, t-value t, and P-value) (R2

adjusted5 0.074)

b t P

BMI 20.15 23.35 0.001
Age 20.14 23.16 0.002
Sex 20.04 20.78 0.44
APOE2e4 status 20.1 22.37 0.02
Arterial hypertension 0.04 0.81 0.42
Diabetes 20.034 20.78 0.44
Education 0.009 0.19 0.84
Smoking status 20.14 23.21 0.001
Depression score 20.06 21.23 0.21
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We also repeated the ICA with a model order of 20 and
found higher BMI to be associated with reduced precu-
neus and PCC connectivity in a default mode network
component (data not shown), which is in line with our ini-
tial finding and shows that the result does not depend on
the number of extracted independent components.

DISCUSSION

In this study, we detected significant negative associa-
tions of BMI and DMN connectivity in the PCC and precu-
neus using 3T resting-state fMRI in a large cohort of
healthy older adults. These findings were independent of
age, sex, obesity-associated co-morbidities and other con-
founders, and remained stable in replication analyses. In
addition, posterior default mode connectivity correlated
with executive function.

Functional Connectivity and Obesity in Aging

Our main finding is a reduction of posterior default
mode connectivity with higher BMI. This effect was found
in the main sample (n 5 521), in a ROI-based analysis of a
motion-matched subgroup (n 5 186), as well as in an inde-
pendent replication sample in the same age range (n 5
191), underlining the robustness of the association.

Our finding is in line with and extends a recent report
in which lower DMN connectivity was associated with
higher BMI in a young sample but no differences of DMN
functional connectivity in siblings with differing obesity
status were found, indicating the connectivity differences

to be subsequent, not prior to the development of obesity
[Doucet et al., 2017]. In addition, previous studies on car-
diovascular risk factors in middle-aged samples have
linked insulin resistance and type 2 diabetes to alterations
in default mode connectivity [Buckner et al., 2008; Kenna
et al., 2013; Musen et al., 2012]. Notably, decreased default
mode connectivity has also been reported in young indi-
viduals at risk for Alzheimer’s disease (AD) such as APOE
e4-carriers, and in older MCI patients [Sheline et al., 2010;
Sorg et al., 2007]; moreover several studies suggest that
modifiable AD risk factors are linked to alterations in
DMN connectivity [Buckner et al., 2008; Kenna et al., 2013;
Musen et al., 2012]. Thus, our results suggest an associa-
tion of obesity and connectivity changes similar to those
seen in populations at risk for AD, and support the view
of obesity being a risk factor for dementia [Beydoun et al.,
2008; Kivipelto et al., 2005].

This view, however, is controversially discussed. While
a recent meta-analysis reported that being obese below the
age of 65 increased the risk of dementia and being obese
above this age lowered dementia risk [Pedditizi et al.,
2016], it was also reported that the incidence of dementia
decreased with increasing BMI [Qizilbash et al., 2015] and
that weight loss in mid-age independent of weight status
was associated with increased risk of dementia three to
four decades later [Strand et al., 2017]. Selection bias and
reverse causation have been proposed to contribute to
these contradictory results: obesity is strongly associated
with cardiovascular risk factors which are themselves risk
factors for dementia [Skoog et al., 1996] as well as overall
mortality risk [Stevens et al., 1998] and weight loss 10–20
years before onset of dementia is well known [Knopman
et al., 2007]. Our sample solely comprised healthy, cogni-
tively intact older adults with a narrow age range between
67 (1. quartile) and 72 (3. quartile). Half of the sample was
younger than the postulated reverse point of 70 years
[Gustafson et al., 2009] and only very few were consider-
ably older. This leads us to believe that our sample repre-
sents subjects vulnerable to the adverse effects of obesity
on cognition who have not yet experienced prodromal
dementia-related weight loss. Other studies reporting BMI
to be associated with gray matter volume decline and cog-
nitive deficits in old-age [Kharabian Masouleh et al., 2016;
Walther et al., 2010] support this association of obesity
and brain damage in older subjects.

In line with the literature, we found APOE-4 genotype
to be independently associated with precuneus DMN con-
nectivity [Sheline et al., 2010]. Opposed to a previous find-
ing in individuals above the age of 70 years [B€ackman
et al., 2015], there was no significant interaction of BMI
and APOE-4 status. The modifiable risk factor obesity and
the genetic risk factor APOE-4 might thus be associated
with similar patterns of decreased posterior DMN connec-
tivity, hinting to a common mechanism such as dysregu-
lated lipid metabolism [Chouinard-Watkins et al., 2015;
Romas et al., 1999; Sheline et al., 2010].

Figure 8.
In the replication sample 2, higher BMI is associated with
decreased connectivity of dual-regression derived DMN 29. Blue
color map represents p-values of significantly associated voxels
(P< 0.05, FDR corrected, adjusted for age, sex, hypertension,
diabetes, and education). RSN spatial map is shown in red. [Col-
or figure can be viewed at wileyonlinelibrary.com]
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Our results remained significant when correcting for
age, sex, obesity-associated co-morbidities arterial hyper-
tension and diabetes, and other confounders. This indi-
cates that the association is not primarily due to
conditions frequently associated with obesity and known
to affect brain structure and function [Jennings and Zan-
stra, 2009; Moheet et al., 2015].

We found the association of BMI and reduced posterior
default mode connectivity to be independent of GMV
reductions in the context of pathological aging and did not
observe an association of DMN GMV with BMI. In the lit-
erature, mixed associations for BMI and precuneus/poste-
rior cingulate cortex gray matter volume have been
reported [Willette and Kapogiannis, 2015], leaving the
interplay of gray matter volume and functional connectivi-
ty strength a matter of debate. Functional connectivity
within the DMN is thought to be based on white matter
connections between its anterior and posterior regions
[Greicius et al., 2008] and decreased functional connectivi-
ty could thus be a result of decreased white matter fiber
integrity. Obesity has been shown to be associated with
reduced indices of white matter microstructure within the
limbic system and in other regions [Kullmann et al., 2015]
and recently higher BMI was associated with decreased
white matter volume in a stereotactic white matter mask
of the DMN [Figley et al., 2016]. Upcoming longitudinal
studies thus need to further disentangle if obesity-
associated white matter microstructural changes within the
DMN precede or follow observed obesity-associated
decreases in functional connectivity.

Concerning further associations of BMI and functional
connectivity, only the visual network was found to be
associated with higher BMI, but the extent of increased
connectivity was very limited. In our large cohort, we did
not observe previously reported increased putamen and
insula connectivity [Hogenkamp et al., 2016], decreased
insula–anterior cingulate cortex (ACC) connectivity
[Moreno-Lopez et al., 2016], increased salience network
connectivity [Figley et al., 2016; Garcia-Garcia et al., 2013],
reduced temporal lobe network connectivity [Kullmann
et al., 2012] or increased DMN connectivity [Kullmann
et al., 2012; Legget et al., 2016; Tregellas et al., 2011] with
higher BMI. Similar to our results, one study reported
reduced precuneus connectivity for obese compared with
lean participants, although the results might have been
confounded by the significant age difference between
groups [Geha et al., 2016]. In a recent study with 496 par-
ticipants, DMN cohesiveness has been shown to be
reduced in young, obese compared with lean individuals,
with highest effect size found for the posterior DMN com-
ponent which is in line with our results. A siblings analy-
sis suggested this to be a consequence rather than a
driving factor of obesity [Doucet et al., 2017].

Taken together, our results only partly replicate these
findings obtained in young participants (age <40 years);
this might be due to an interaction of obesity and aging in

the brain potentially involving changes in eating behavior
[Elsner, 2002] and levels of circulating hormones such as
leptin [Isidori et al., 2000; Moller et al., 1998]. Also, the
negative effects of obesity on the brain are probably not
detectable at young age but accumulate proportionally to
“obesity pack-years” [Abdullah et al., 2011].

The only study investigating obesity and resting state
connectivity in aged individuals showed that lower DMN
activity during a finger-tapping task in older obese com-
pared with lean participants predicted better working
memory performance 12 months later [Hsu et al., 2015].
The authors argued that functional connectivity of the
DMN might be a neuroprotective mechanism of higher
BMI. Considering the mean sample age of 75 years and
the steeper decline in cognitive scores within the normal
weight group, we would rather consider this to be an
effect of reverse causation. Interestingly, baseline cognitive
scores were significantly lower for the overweight and
obese groups compared with the lean group which fits to
the notion of higher BMI exerting negative effects on the
brain in mid-to-late-life.

Cognitive Performance

We observed BMI-associated connectivity changes in a
region which is considered to be affected early during cog-
nitive decline [Sorg et al., 2007]. Our results show that
both higher BMI and lower mean connectivity in the BMI-
associated cluster within the PCC of DMN 29 correlated
with slightly worse performance in the memory and more
so in the executive domain. Several studies indicate that
the DMN plays an important role not only in episodic
memory, but also in executive function, as its successful
deactivation is predictive of performance in attention and
working memory tasks [Daselaar et al., 2004; Wang et al.,
2007; Weissman et al., 2006]. Thus, we speculate that a
higher BMI in older age might exert negative effects on
posterior DMN connectivity, which eventually translate
into subtle cognitive impairments. Future longitudinal
studies are needed to further test this hypothesis.

Effects of Head Motion

As motion has been shown to exert massive and wide-
spread effects on connectivity [Power et al., 2015] we
aimed to account for motion by (1) adding mean FD as a
covariate into the multivariate backward model selection
and by (2) selecting a sub-sample in which motion and
BMI were not correlated. Notably, BMI was retained in the
backward model selection process even after including
mean FD as a covariate and it remained a significant pre-
dictor of reduced PCC intra-network connectivity in the
motion-matched sample. This leads us to conclude that
there is an association of BMI with posterior default mode
connectivity independent of confounding motion effects.
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It has also been suggested that by using the common
approach of strictly correcting for the effects of motion one
might remove information related to the phenotype under
study. Along this line, inter-individual differences in
motion have been explained by a neurobiological trait of
long-range default mode connectivity [Zeng et al., 2014]
and head motion has been shown to positively correlate
with impulsivity [Kong et al., 2014]. As elevated BMI has
been linked to increased impulsivity [Braet et al., 2007],
the BMI-related motion increase found in our cohort might
not be simply due to increased discomfort during the scan
(thereby confounding BMI-related analyses), but reflect an
obesity-related trait. This is further supported by recent
findings of common genetic factors associated with head
motion and BMI that have been reported in two large
cohorts [Hodgson et al., 2016]. Thus, disentangling the
effects of BMI and motion remains difficult and merits
careful investigation in future studies.

Limitations

Several limitations should be considered when interpret-
ing our results. First, our cross-sectional data does not
allow us to draw conclusions on the causal relationship
between BMI and posterior default mode connectivity and
the underlying mechanisms should be carefully studied in
longitudinal designs. We demonstrated that the described
association of BMI and connectivity was not solely driven
by head motion differences, however head motion was a
major confounder in this study and it remains unclear
whether it is inherently associated with obesity. Physiolog-
ical parameters [Glover et al., 2000] were not measured
and related noise could thus not be controlled for.

In addition, spatial normalization accuracy might be
limited in large samples like ours which might have
biased our results. However, besides controlling for regis-
tration quality as a confounder, we generally achieved a
high registration quality through state-of-the-art registra-
tion tools [Klein et al., 2009] and careful visual inspection
that led to exclusion of subjects with morphological altera-
tions such as calcifications or atrophies/large ventricles as
well as brain extraction failures. Another limitation is the
definition of obesity by BMI, as this does not reflect age-
related changes in body composition, such as conversion
of lean body mass to fat [Zamboni et al., 2005]. A more
precise measure of body fat (such as MRI-assessment of
abdominal fat) would have allowed us to characterize the
relationship between obesity and resting-state connectivity
more specifically. Our analysis of the associations between
BMI, connectivity and cognitive performance was explor-
atory and should thus be expanded to gain more insight
into the cognitive implications of our result. An important
strength of this study is that it relies on a large sample
size of community-based well-characterized healthy older
adults, supplemented by a homogenous replication sam-
ple. Also, various potential confounders were

comprehensively assessed and controlled for. Our results
remained significant when correcting for age, sex, hyper-
tension, diabetes and other confounders, but the high
covariance of BMI and obesity-associated comorbidities
make it difficult to disentangle their contributions to func-
tional connectivity differences in our cross-sectional
design.

CONCLUSION

In the current study we showed that higher BMI is asso-
ciated with reduced connectivity of the default mode net-
work in the PCC and in the precuneus in a large sample
of healthy older adults. This finding was independent of
obesity-related comorbidities, changes in regional gray
matter volume and APOE-e4 genotype. Moreover, our
results indicate that regional changes in default mode con-
nectivity translate into subtle differences in cognitive
performance.

Thus, our results support the view that obesity might
independently contribute to accelerated brain aging in
older individuals without incident dementia, as lower
default mode connectivity has been detected in popula-
tions at risk for AD, and it has been proposed as an early
biomarker for emerging AD [Sorg et al., 2007]. The modifi-
able risk factor obesity might thus share the pattern of
decreased posterior default mode connectivity with the
unmodifiable risk factor APOE-e4 allele [Sheline et al.,
2010]. Future studies should further investigate potential
mechanisms underlying the association of obesity and rest-
ing state connectivity and infer obesity-preventing strate-
gies to maintain cognitive function in aging.
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Salami A, Wåhlin A, Kaboodvand N, Lundquist A, Nyberg L
(2016): Longitudinal evidence for dissociation of anterior and
posterior mtl resting-state connectivity in aging: Links to per-
fusion and memory. Cereb Cortex 26:3953–3963.

Sanchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-
Sanchez JM, Rios-Lago M, Tirapu J, Barcelo F (2009): Construct
validity of the Trail Making Test: Role of task-switching, work-
ing memory, inhibition/interference control, and visuomotor
abilities. J Int Neuropsychol Soc 15:438.

Sheline Y, Morris J, Snyder A, Price J, Yan Z, D’Angelo G, Liu C,
Dixit S, Benzinger T, Fagan A, Goate A, Mintun M (2010):

r Beyer et al. r

r 3514 r



 

 61 

 

APOE-4 allele disrupts resting state fMRI connectivity in the
absence of amyloid plaques or decreased CSF Aper. J Neurosci
30:17035–17040.

Skoog I, Nilsson L, Persson G, Lernfelt B, Landahl S, Palmertz B,
Andreasson LA, Od!en A, Svanborg A (1996): 15-year longitudi-
nal study of blood pressure and dementia. Lancet 347:1141–1145.

Smith E, Hay P, Campbell L, Trollor J (2011): A review of the
association between obesity and cognitive function across the
lifespan: Implications for novel approaches to prevention and
treatment. Obes Rev 12:740–755.

Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L,
Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM
(2007): Selective changes of resting-state networks in individu-
als at risk for Alzheimer’s disease. Proc Natl Acad Sci USA
104:18760–18765.

Stevens J, Cai J, Pamuk ER, Williamson DF, Thun MJ, Wood JL
(1998): The effect of age on the association between body-mass
index and mortality. N Engl J Med 338:1–7.

Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM (2008):
Relation of reward from food intake and anticipated food
intake to obesity: A functional magnetic resonance imaging
study. J Abnorm Psychol 117:924.

Stoeckel LE, Weller RE, Cook Iii EW, Twieg DB, Knowlton RC,
Cox JE (2008): Widespread reward-system activation in obese
women in response to pictures of high-calorie foods. Neuro-
image 41:636–647.

Strand BH, Wills AK, Langballe EM, Rosness TA, Engedal K,
Bjertness E (2017): Weight change in midlife and risk of mor-
tality from dementia up to 35 years later. J Gerontol Ser A:
Biol Sci Medl Sci 72:855–860.

Tregellas JR, Wylie KP, Rojas DC, Tanabe J, Martin J, Kronberg E,
Cordes D, Cornier MA (2011): Altered default network activity
in obesity. Obesity (Silver Spring) 19:2316–2321.

Van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA,
Dullemeijer C, OldeRikkert MGM, Beekman ATF, de Groot
CPGM (2008): Effect of fish oil on cognitive performance in
older subjects: A randomized, controlled trial. Neurology 71:
430–438.

Van Der Elst WIM, Van Boxtel MPJ, Van Breukelen GJP, Jolles J
(2006): Normative data for the Animal, Profession and Letter
M Naming verbal fluency tests for Dutch speaking participants
and the effects of age, education, and sex. J Int Neuropsychol
Soc 12:80–89.

Walther K, Birdsill AC, Glisky EL, Ryan L (2010): Structural brain
differences and cognitive functioning related to body mass
index in older females. Hum Brain Mapp 31:1052–1064.

Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007):
Altered functional connectivity in early Alzheimer’s disease: A
resting-state fMRI study. Hum Brain Mapp 28:967–978.

Wang L, LaViolette P, O’Keefe K, Putcha D, Bakkour A, Van Dijk
KRA, Pihlajamaki M, Dickerson BC, Sperling RA (2010): Intrin-
sic connectivity between the hippocampus and posteromedial
cortex predicts memory performance in cognitively intact older
individuals. Neuroimage 51:910–917.

Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006):
The neural bases of momentary lapses in attention. Nat Neuro-
sci 9:971–978.

Willette AA, Kapogiannis D (2015): Does the brain shrink as the
waist expands?. Ageing Res Rev 20:86–97.

Zamboni M, Mazzali G, Zoico E, Harris TB, Meigs JB, Di
Francesco V, Fantin F, Bissoli L, Bosello O (2005): Health con-
sequences of obesity in the elderly: A review of four unre-
solved questions. Int J Obes Relat Metab Disord 29:1011–1029.

Zeng LL, Wang D, Fox MD, Sabuncu M, Hu D, Ge M, Buckner
RL, Liu H (2014): Neurobiological basis of head motion in
brain imaging. Proc Natl Acad Sci USA 111:6058–6062.

r Obesity and the Default Mode Network in Aging r

r 3515 r



 

 62 

2.4. Publication4: Original article: Kharabian et al, 2017 

 
 
 
 
 
 
 
 
 

Cardiovascular risk factors are associated with grey matter structural 

networks in ageing  

Kharabian Masouleh S., Beyer F., Lampe L., Loeffler M., Luck T., Riedel-

Heller S.G., Schroeter M.L., Stumvoll M., Villringer A., Witte A.V 

journal of cerebral blood flow and metabolism  

2017 

 

 

 

 
  



 

 63 

 

Original Article

Gray matter structural networks are
associated with cardiovascular risk
factors in healthy older adults
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Abstract
While recent ‘big data’ analyses discovered structural brain networks that alter with age and relate to cognitive decline,
identifying modifiable factors that prevent these changes remains a major challenge. We therefore aimed to determine
the effects of common cardiovascular risk factors on vulnerable gray matter (GM) networks in a large and
well-characterized population-based cohort. In 616 healthy elderly (258 women, 60–80 years) of the LIFE-Adult-Study,
we assessed the effects of obesity, smoking, blood pressure, markers of glucose and lipid metabolism as well as physical
activity on major GM-networks derived using linked independent component analysis. Age, sex, hypertension, diabetes,
white matter hyperintensities, education and depression were considered as confounders. Results showed that smoking,
higher blood pressure, and higher glycated hemoglobin (HbA1c) were independently associated with lower GM volume and
thickness in GM-networks that covered most areas of the neocortex. Higher waist-to-hip ratio was independently
associated with lower GM volume in a network of multimodal regions that correlated negatively with age and memory
performance. In this large cross-sectional study, we found selective negative associations of smoking, higher blood pressure,
higher glucose, and visceral obesity with structural covariance networks, suggesting that reducing these factors could help
to delay late-life trajectories of GM aging.
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Introduction

Recent ‘big data’ analyses of structural co-variance
between brain regions revealed large-scale gray matter
(GM) networks that are linked to developmental
changes and inter-individual behavioral differences.1–4

Douaud et al.3 described a network of transmodal cor-
tical and limbic GM regions that showed correlated
shrinkage in healthy aging and links to memory per-
formance. That GM network also mirrored brain
regions that exhibit accelerated atrophy in patients
with Alzheimer’s disease (AD).3

The observed network-based effects could hint
towards a shared susceptibility of connected regions,
indicative of unique morphological properties, to
selective pathological processes.5,6 They also strengthen

1Department of Neurology, Max Planck Institute for Cognitive and Brain
Sciences, Leipzig, Germany
2LIFE – Leipzig Research Center for Civilization Diseases, University of
Leipzig, Leipzig, Germany
3Institute for Medical Informatics, Statistics, and Epidemiology (IMISE),
University of Leipzig, Leipzig, Germany
4Institute of Social Medicine, Occupational Health and Public Health
(ISAP), Medical Faculty, University of Leipzig, Leipzig, Germany
5Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
6IFB Adiposity Diseases Faculty of Medicine, University of Leipzig, Leipzig,
Germany

Corresponding author:

A Veronica Witte, Department of Neurology, Max Planck Institute for
Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany.
Email: witte@cbs.mpg.de

Journal of Cerebral Blood Flow &

Metabolism

2018, Vol. 38(2) 360–372

! Author(s) 2017

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0271678X17729111

journals.sagepub.com/home/jcbfm



 

 64 

 

the hypothesis that fundamental mechanisms of aging
may contribute to (or result from) neurodegenerative
pathologies.7–11 A better understanding of possible
modulators of GM networks that are vulnerable to
aging would thus open a novel window towards targets
for intervention of disease progression.

Using conventional analyses, global and regional
decreases in GM volume and cortical thickness have
been linked, though not unequivocally,12 to common
cardiovascular risk factors comprising cigarette smok-
ing, hypertension, obesity and metabolic changes.13–16

However, addressing potential impact of these factors
at the network- and population-level remains a major
challenge.17

We therefore aimed to systematically assess the
effects of obesity, smoking, blood pressure, as well as
markers of glucose and lipid metabolism and physical
activity on major GM networks using linked independ-
ent component analysis of cortical volume, thickness,
and surface area estimated from T1-weighted MRIs in
a large cohort of community-dwelled healthy older
individuals. We determined the unique contribution
of each risk factor (selected according to the
Framingham study18 and additionally physical activ-
ity19) to variations in these GM networks using multi-
variable statistics that were adjusted for confounders.
Possible associations between GM networks and cog-
nition were explored using a sumscore of verbal
memory performance, known to be highly affected by
age.20 We hypothesized negative effects of cardiovascu-
lar risk factors on major GM components that are
prone to undergo age-associated changes and linked
with cognition.

Materials and methods

Participants

Data were drawn from the baseline examination of the
‘‘Health Study of the Leipzig Research Centre for
Civilization Diseases’’ (LIFE), a population-based
cohort study of adult Leipzig inhabitants, randomly
invited via the population registry. All subjects signed
an informed consent form and received a small financial
compensation. The study protocol was in accordance
with the declaration of Helsinki and approved by the
ethics committee of the University of Leipzig.

Participants underwent neuropsychological testing,
medical examinations, and a randomly selected subset
underwent magnetic resonance imaging (MRI) of the
head at 3T (n ! 2600). For details on the study design,
see Loeffler et al.21 Out of a sample of 985 older
participants (" 60 years) available at the date of ana-
lyses, we excluded participants with dementia, neuro-
logical, psychiatric or immune suppressive medication

(n¼ 203), as well as major brain pathology (e.g. tumors
and stroke) (n¼ 47). Also, subjects with missing
information on confounding factors (n¼ 74), severe
movement artifacts on the MRI or other technical
problems (n¼ 32), as well as non-intact cognitive
performance (n¼ 13, defined as showing a total
cognitive sumscore of< 3 SD of the mean population)
were excluded, resulting in a sample of 616 subjects
(Figure 1). Due to the nature of our exclusion criteria,
participants excluded (n¼ 369) were on average slightly
older (mean age: 69.5$ 6 (SD) years, p¼ 0.021),
more frequently women (p¼ 0.028), exhibited a higher
BMI (mean BMI: 28.4$ 4.25 (SD) kg/m2, p¼ 0.001)
and were less educated compared to those included
(p< 0.001).

MRI acquisition

Anatomic T1-weighted images were acquired in a 3-
Tesla Magnetom Verio scanner (Siemens, Erlangen,
Germany) equipped with a 32-channel head array
coil, using a three-dimensional Magnetization-
Prepared Rapid Gradient Echo (MPRAGE) sequence.
GRAPPA parallel imaging technique22 was applied on
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) standard protocol with the following param-
eters: TI 900ms, TR 2300ms, TE 2.98ms, flip angle 9%,
band width 240Hz/pixel, image matrix 256& 240, 176
partitions, FOV 256& 240& 176mm3, sagittal orienta-
tion, voxel size 1& 1& 1mm3, no interpolation.

Image processing

T1-weighted images were processed using FSL-VBM,23

an optimized voxel-based morphometry (VBM)24

protocol using FMRIB Software Library (FSL) tools
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; FSL 4.
1),25 in which a symmetric study-specific GM template
was built from the images of a sub-group of 260 par-
ticipants equally matched for males and females, which
were not significantly different from the whole sample
with regard to age and BMI range and frequency of
hypertension and diabetes. Prior to the FSL-VBM pro-
cessing, the volumes were masked by the full brain-seg-
mented volume output from FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/; FreeSurfer 5.0.0),26 effectively
excluding non-brain compartments. After nonlinearly
registering all of the brain-extracted, GM-segmented
images onto the symmetric study-specific GM template,
the optimized FSL-VBM protocol involved a compen-
sation (or ‘‘modulation’’) for the local contraction/
enlargement caused by the nonlinear component of
the transformation. In addition, brain structural infor-
mation was derived from vertex-wise cortical thickness
and surface area calculated in FreeSurfer by means of
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an automated surface reconstruction scheme.26 All sur-
face reconstructions were visually inspected in Freeview
and manually edited in 31 cases. For computational
reasons, we reduced the number of data points
in each modality by lowering the resolution of the
pre-processed images, while not losing any information
about global patterns of structural covariance, due
to the smoothness of the pre-processed images.
The modulated registered GM-segmented images were
first down-sampled to 4mm isotropic and then were
smoothed with an isotropic Gaussian kernel with a
s of 4mm (&9.4mm full width at half maximum
(FWHM)). Cortical thickness and surface area maps
were sampled from subject space to the fsaverage5 tem-
plate (10,242 vertices) and then smoothed with a surface
FWHM of 10mm.

Then linked-independent component analysis
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) was applied
to measures of GM volume, cortical thickness and sur-
face area, decomposing the data into 70 components,
see Douaud et al.3 and Groves et al.27,28 for further
descriptions. Briefly, here the aim is to model the

group data as a set of interpretable features (the inde-
pendent components (ICs)), each one characterizing a
single mode of variability. Each feature consists of a
shared subject loading, which indicates which subjects
have more or less of this feature, and the corresponding
spatial pattern that is learned for each modality.
We selected 12 global networks based on the elbow in
the scree plot of the relative amount of total variance
explained by each component (similar to Groves
et al.27) and further denoted them as IC 1–12
(Table 1). Two components (IC1 and IC8) were
considered of no further interest, as their respective
variance was nearly fully explained by differences in
head size (IC1) and image artifacts (IC8). See
Supplementary Figure, for illustration of spatial maps
of the remaining ten components.

For illustration purposes, we up-sampled the linked-
ICA results to the high-resolution versions of the
smoothed input data, similar to Groves et al.27 (GM
volume images on 2mm isotropic and surface measures
sampled on fsaverage space, i.e. 163,842 cortical
vertices per hemisphere).

Figure 1. Flow chart of the study. Out of 985 older adults free of stroke, 369 were excluded due to medication intake, brain
pathology, missing covariates, non-usable MRI scans, or non-intact cognition, leaving 616 participants for main analyses. Out of this
sample, 516 participants had physical activity information.
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Cardiovascular risk factors

All subjects underwent anthropometric assessments,
donated blood after fasting overnight and were asked
to fill in questionnaires about their lifestyle habits.
Cardiovascular risk factors comprised obesity, assessed
using ‘‘waist-to-hip ratio’’ (WHR, measured using an
ergonomic circumference measuring tape (SECA 201)
to the nearest 0.1 cm) and ‘‘BMI’’ (in kg/m2, measured)
as continuous variables, ‘‘smoking status’’ (current,
past or never smokers), systolic ‘‘blood pressure’’ (in
mmHg, mean of three consecutive measurements in a
seated position at rest), fasting serum concentrations
of glucose and lipid metabolism, i.e. ‘‘glycated
hemoglobin (HbA1c)’’ (in mmol/mol), ‘‘high-density
lipoprotein (HDL)’’ (in mU/mL), and total ‘‘choles-
terol’’ (in mmol/L). By using blood pressure and
markers of glucose control (HbA1c) as continuous
variables of interest related to hypertension and
diabetes, we were able to increase statistical power
and sensitivity in a dose–response relationship.
Six subjects had missing blood values due to technical
problems (HbA1c, n¼ 5, HDL, n¼ 1), these values
were replaced by the sample’s medians. ‘‘Physical
activity’’ (self-reported according to the German
short version of the international physical activity
questionnaire, IPAQ,29 in MET-minutes/week) was
analyzed in a subgroup of 516 subjects due to
unreturned questionnaires in 100 subjects.

Memory performance and assessment
of confounders

‘‘Memory performance’’ was assessed using the
CERAD verbal learning task.30 Briefly, subjects were
asked to remember and recall immediately and after a
delay as many words as possible out of a list of 10
words. The memory performance sumscore was defined
as the standardized mean performance in the sum of (1)
immediate learning (no. of correct words across the
three learning trials), (2) delayed recall (no. of correct
words in the recall trial), and (3) recognition (no. of
correctly recognized words in the recognition trial,
minus false positives).31,32

‘‘Depression’’ was measured using the Center for
Epidemiologic Studies Depression Scale (CES-D) ques-
tionnaire,33 ‘‘arterial hypertension’’ was defined as a
systolic blood pressure" 160mmHg, a diastolic blood
pressure" 95mmHg or use of antihypertensive medica-
tion,14 ‘‘diabetes’’ was defined as none, type 1 medi-
cated, type 2 medicated, type 2 unmedicated, and
‘‘other cardiovascular conditions’’ were defined as
arrhythmia or tachycardia. ‘‘Education’’ was measured
according to the International Standard Classification
of Education (7 levels).34 In addition, ‘‘APOE4 carrier
status’’ was defined as carrying one or two E4 alleles of
the apolipopreotein E (APOE) gene (n¼ 32 missings
due to lack of DNA samples). Genotyping was per-
formed on a Roche Lightcylcer 480 using genomic

Table 1. Relative amount of explained variance by independent components (IC), according to linked-IC analysis
of gray matter volume (GMV), cortical thickness, and surface area; and correlation with age and memory
performance.

#
Component

Explained variance (%) Correlation (r, p-value)

GMV Thickness Area Age Memory

IC1 1 2 47 #0.136, 10#3 #0.075, 0.062

IC2 0 32 0 #0.115, 0.004 0.036, 0.376

IC3 9 4 14 #0.581, 10#3 0.192, 10#3

IC4 8 0 4 0.003, 0.95 #0.078, 0.053

IC5 0 12 0 0.177, 10#3 #0.082, 0.042

IC6 4 0 0 #0.165, 10#3 0.023, 0.57

IC7 3 1 4 #0.150, 10#3 0.144, 10#3

IC8 3 2 0 #0.034, 0.4 #0.061, 0.13

IC9 2 1 1 #0.086, 0.034 0.027, 0.5

IC10 3 0 1 0.001, 0.97 0.184, 10#3

IC11 3 0 0 #0.178, 10#3 #0.018, 0.65

IC12 0 8 0 #0.044, 0.28 0.047, 0.24

Note: r- and p-values are according to Spearman’s rank correlations. Significant associations are indicated by bolding the numbers
(p< 0.005).
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DNA that was isolated from peripheral leukocytes
using an automate protocol on the Qiagen Autopure
LS (Qiagen, Hilden, Germany).

Statistical analysis

To determine unique associations between the GM net-
works and cardiovascular risk factors, we conducted
partial correlations between subjects’ loading on each
of the 10 ICs and BMI, WHR, smoking, blood pres-
sure, HbA1c, HDL and total cholesterol, respectively,
in line with previous studies.35,36 When meeting the
criteria of bivariate correlation with the respective IC
(Figure 2), the remainder of the cardiovascular risk fac-
tors as well as the following confounder variables was
considered in the partial correlation models: age, sex,
depression, hypertension (except for blood pressure
analyses), diabetes (except for HbA1c analyses), other

cardiovascular conditions, white matter hyperintensi-
ties (WMH, assessed according to the Fazekas rating
scale by means of 3D-FLAIR images37), education,
total intracranial volume (TIV), and APOE4 carrier.
We repeated analyses for physical activity in the phys-
ical activity subgroup (n¼ 516).

To assess if the relation between blood pressure (or
HbA1c) and GM networks would change with medica-
tion, we repeated the analysis in those with anti-hyper-
tensive medication (or anti-diabetic medication,
respectively), and in those without. In addition, given
the link between estrogen replacement therapy and
brain aging,38,39 we excluded women with current estro-
gen medication in confirmatory analyses. All variables
were normally distributed (unimodal, jskewnessj" 1),
except IC7, HbA1c, HDL, and physical activity, there-
fore non-parametric statistics were used. For partial
correlations, missing APOE4 values (n¼ 32) were

Figure 2. Bivariate correlations among independent components (IC), cardiovascular risk factors, confounders, and verbal memory
score. Significant associations (Spearman’s correlations, p< 0.05) are color-coded in red-shaded (positive) and blue (negative).
CV: cardiovascular; WMH: white matter hyperintensities; TIV: total intracranial volume; APOE-e4: apolipoprotein E epsilon-4 carrier
status; BMI: body mass index; WHR: waist-to-hip ratio; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein.
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substituted by the sample mean. The significance
threshold of partial correlations was set to p< 0.05
(two-sided) and corrected for the number of ICs
tested (n¼ 10), resulting in pa< 0.005. All statistical
analyses were performed in SPSS 20 (PASW, SPSS,
IBM).

Results

In total, 616 older participants (258 women) were
included in the analyses, see Table 2 for demographic
characteristics. Subjects without physical activity ques-
tionnaires (n¼ 100) were slightly older (mean age:
70" 5 (SD) years; p< 0.001) and less educated
(p¼ 0.005) in comparison to those with complete infor-
mation (n¼ 516).

Structural networks and cardiovascular risk factors

Out of 10 independent GM components, global net-
works IC2 and IC7 showed an overall decrease in
cortical thickness and volume, respectively, with age
(IC2: r¼#0.115, p¼ 0.004; IC7: r¼#0.150, p< 10#3;
Table 1). IC7 was also associated with memory per-
formance (r¼ 0.144, p< 10#3).

Independent of further associated risk factors and
confounders, cigarette smoking was significantly
linked to lower thickness and volume throughout the
neocortex in these two global networks (Figure 3(a) and
(b), IC2: partial-r¼ 0.120, p¼ 0.003; IC7: partial-
r¼#0.143, p< 0.001).

Also, blood pressure was independently associated
with IC7, showing an overall cortical volume decrease
in association with increased blood pressure
(Figure 3(b), partial-r¼#0.122, p¼ 0.003).

Considering glucose metabolism, we observed that
higher serum concentrations of HbA1c were associated
with decreased cortical thickness in IC2 after control-
ling for other risk factors and confounders (partial-
r¼#0.158, p< 10#3) (Figure 4(a)). A more regionally
specific effect was noted for HbA1c in network IC5,
showing lower thickness in medial frontal, insular, cin-
gulate and inferior temporal areas and higher thickness
in the postcentral gyrus and in the intraparietal sulcus
(partial-r¼#0.206, p< 10#3) (Figure 4(b)). This network
exhibited a positive correlation with age (r¼ 0.177,
p< 10#3).

A strong negative association with age was present
in IC3 (r¼#0.58, p< 10#3), which was characterized
by changes in GM volume predominantly within the

Table 2. Sample characteristics.

Participants
n¼ 616 (258 women)

Age [y] 69" 5 (60–79)

Waist-to-hip ratio 0.96" 0.085 (0.73–1.14)

BMI [kg/m2] 27.5" 4 (17–41)

Smoking [%] (current/previous/never) 7.5/33.1/59.4

Mean Systolic BP [mmHg] 136" 17 (89–197)

HbA1c [mmol/mol] (n¼ 611) 5.4 [5.16–5.68] (3.84–12.38)

HDL [mU/mL] (n¼ 615) 1.6 [1.32–1.92] (0.45–4.17)

Total cholesterol [mmol/L] 5.9" 1.1 (2.3–10.8)

Physical activity [MET-minutes/week] (n¼ 516) 4159 [2374.5–6919.5] (33.0#16398.0)

APOE status [% e4-carrier] (n¼ 584) 20.9

Depression scale (CES-D) [score] 9.4" 5.1 (0–34)

Arterial hypertension [%] (yes) 55.7

Diabetes status [%] (none / type 1-medicated,
type 2-medicated, type 2-non-medicated)

84.4/0.5/12.3/2.8

Current estrogen supplement [% females] (yes) 7.3

Cardiovascular diseases [%] (any) 19.2

Education [%] (without SS-LD/SS-LD/advanced SS-LD /
advanced technical SS-LD / technical college ED / university ED)

0/10.7/6.3/42.7/5.2/35.1

White matter hyperintensities [%] (Fazekas score 0/1/2/3) 23.5/59.8/16.2/0.5

Note: Data are mean" SD (minimum-maximum) or median [Interquartile range] (minimum-maximum), unless indicated otherwise.
BMI: body mass index; BP: Blood pressure; MET: multiples of the resting metabolic rate; HbA1c: glycated hemoglobin A1c; HDL: high-
density lipoproteins; APOE: Apolipoprotein E; CES-D: center for epidemiologic studies depression scale; SS-LD: secondary school-
leaving degree; ED: entrance degree.
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fundus of the sulci in prefrontal, temporal and parietal
regions, as well as in limbic and paralimbic areas and in
the cerebellum (Figure 5(a) and (b)). Notably, this net-
work had a good spatial agreement with the GM com-
ponent in Douaud et al.3 (http://www.fmrib.ox.ac.uk/
analysis/LIFOþADþAOS/), showing late development
and accelerated decline in aging, and with GM atrophy
seen in AD (spatial correlation of Z-maps: r¼ 0.82,
p< 10#3; r¼ 0.67 p< 10#3, respectively). Lower GM
volume in this network correlated with worse mem-
ory performance in our sample (r¼ 0.192, p< 10#3

Figure 5(b)). In addition, lower GM was independently
associated with higher WHR in this component
(partial-r¼#0.149, p< 10#3) (Figure 5(c)).

Considering components covering parts of the cere-
bellum, GM volume in IC10 correlated with memory
performance (r¼ 0.184, p< 10#3). In addition, IC10

was independently associated with lower blood pressure
(partial-r¼#0.129, p¼ 0.001), showing decreased
GMV in the lateral cerebellum, including bilateral
Crus I, part of Crus II, area VI, VII-b, and VIII-a.

Subsample analysis

Considering physical activity in the subgroup of 516
subjects, no independent significant associations with
the GM networks were found. Additionally, controlling
for physical activity did not change the pattern of
above-described effects of cardiovascular risk factors
and GM networks, as well as when excluding women
on estrogen replacement therapy (n¼ 19) (data not
shown).

In participants with anti-hypertensive medication
(n¼ 325), higher blood pressure was associated with

Figure 3. In two global networks, lower gray matter thickness (IC2, a) and volume (IC7, b) were associated with smoking (a) and
higher blood pressure (b). Scatter plots show the individual’s loading (black dots) and the group’s median with 95% SE or linear fit.
Colors indicate positive (red/yellow) or negative (blue/light-blue) co-variations within the network (z> 4), maps are drawn on a
standard brain.
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lower GM volume in both IC7 (partial-r¼"0.176,
p¼ 0.002) and IC10 (partial-r¼"0.139, p¼ 0.013). In
those without anti-hypertensive medication (n¼ 291),
however, associations did not reach significance. In par-
ticipants without anti-diabetic medication (n¼ 534),
but not in those with (n¼ 82), higher HbA1c, similar
to the whole sample analysis, was negatively associated
with IC2 (partial-r¼"0.159, p< 10"3) and IC5
(partial-r¼"0.230, p< 10"3)

Discussion

In this large cross-sectional study, we identified unique
associations of cardiovascular risk factors, independent
from confounders, on major structural covariance
brain networks in a well-characterized cohort of 616
healthy older adults. In two age-associated networks
that covered most cortical areas, we detected lower
GM volume and thickness in smokers, in participants
with higher blood pressure, and in those with higher
long-term glucose. Also, WHR was associated with
lower GM volume in a multimodal, age- and memory-
sensitive network, known to be affected in both normal
aging and AD.3,40

Smoking

We observed a significant negative association between
smoking and global networks IC2 and IC7, pointing to
a negative impact of smoking throughout all areas of
the neocortex. Our findings are in line with recent
results of Karama,15 which linked smoking to wide-
spread cortical thinning in a similarly large sample of
older individuals (n¼ 504). Considering the pattern of
GM covariance, these networks could be indicative of
ubiquitous neuronal properties that are affected by
smoking.41 This could be due to direct and indirect
toxic effects of cigarette smoking, for example as
shown in rodents after prenatal exposure to nicotine,42

or in humans with regard to chronic effects of cigarette
smoking on cerebral perfusion.43

Blood pressure

Our results indicate that higher blood pressure exerts
negative effects on GM volume in networks that cov-
ered most parts of the neocortex and cerebellum, with
stronger associations in subjects taking anti-hyperten-
sive medication. There is consistent evidence that

Figure 4. Higher fasting serum levels of HbA1c were associated with lower cortical thickness of IC2 (a) and IC5 (b). Scatter plots
show the individual’s loading on each network (black dots) and linear fit. Colors indicate positive (red/yellow) or negative (blue/light-
blue) co-variations within the network (z> 4), maps are drawn on a standard brain.
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higher blood pressure in mid-life is a risk factor for
cognitive decline and AD,44 and medication intake
could indicate a prolonged period of elevated blood
pressure, leading to stronger effects of high blood pres-
sure in this group. A meta-analysis of neuroimaging
findings concluded that high blood pressure leads to
lower GM volume, particularly in frontal and temporal
lobes.13 Possible underlying mechanisms include cere-
brovascular lesions due to chronic high blood pressure
and GM loss.45

Glucose metabolism

Higher concentrations of the long-term marker of glu-
cose metabolism, HbA1c, were associated with two net-
works of covariance mainly in cortical thickness.
Considering the additive nature of components in our
analysis, this indicates a negative impact of higher glu-
cose on most parts of the neocortex with stronger
effects in medial frontal, cingulate and temporal
areas, in line with previous reports in young.46 Due to

neurotoxic effects of glucose and accumulation of
advanced glycation end products (AGEs),47 persistent
episodes of hyperglycemia might have led to GM
damage in subjects with higher long-term glucose.
It could be speculated that regions of higher metabol-
ism in young and higher Aß accumulation in older
cognitively normal subjects48 would show stronger
correlations; however, future studies that for example
implement AGE-receptor-PET49 are needed to expand
on these speculations.

Visceral obesity

We found an independent association of higher WHR
and lower GM volume in IC3, covering multimodal
cortices at the gray-to-white matter border as well as
limbic regions. This finding is in line with previous stu-
dies that showed negative effects of obesity on regional
and total GM volume in older cohorts,31,50 and extends
previous reports that observed more severe changes
when looking at visceral obesity measures in

Figure 5. Higher waist-to-hip ratio was associated with lower gray matter volume in a network of multimodal regions (IC3, a, c) that
also correlated negatively with age and memory performance (b). Scatter plot shows the individual’s loading on the network and linear
fit. Colors indicate positive (red/yellow) or negative (blue/light-blue) co-variations within the network (z> 11), maps are drawn on a
standard brain.
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comparison to ‘‘crude’’ BMI.51 This might be due to the
more severe negative effects of visceral adipose tissue
compared to (gluetal-) subcutaneous fat, including a
higher expression of proinflammatory cytokines.52

Chronic low-grade inflammation has been speculated
to particularly harm myelination, thus affecting white
matter tracts and intra-cortical axon collaterals.53

The network depicted by IC3 in our cohort has been
previously linked to AD and described to display a
‘‘last-in-first-out’’ trajectory.3,40 These effects had been
further ascribed to the myelination process of intracor-
tical fibers depicted by the network.3 Therefore, our
data-driven analysis supports the hypothesis that
higher visceral fat, possibly through higher inflamma-
tory activity, exerts detrimental effects on the late-mye-
linated GM. However, future studies combining
imaging techniques capable of quantifying myelin
content and AD pathology as well as more detailed
measures of visceral fat-related inflammation are
needed to test this hypothesis.

Lipid markers and physical activity

We did not observe robust association between markers
of lipid metabolism or physical activity and GM net-
works. In our sample of healthy elderly, we observed
higher HDL levels and far less individuals on anti-
hyperlipidemic medication compared to others,16,54,55

rendering a low sensitivity to detect HDL-effects on
GM structure in our cohort likely. Considering physical
activity, longitudinal studies including older adults
observed protective effects on GM volume and thick-
ness,55–57 raising the possibility that our cross-sectional
questionnaire (IPAQ short version) might not have
been sensitive enough to capture these effects.58

Furthermore, accumulated evidence suggests a positive
impact of leisure activities on cognitive function and
lowered risk of AD.59,60 Specifically, in an elderly popu-
lation, such as ours, use of standardized leisure activity
questionnaire might better depict factors with possible
beneficial effect on brain aging.

Limitations

We are unable to infer causal relationships due to the
cross-sectional nature of our study, thus we cannot
exclude that changes in GM structure were prior to
the differences in cardiovascular risk factors.
However, it has been suggested that modifiable risk
factors at middle-age are a better predictor of structural
decline and cognitive outcomes in later life,61 which
potentially imply even stronger associations of risk fac-
tors on GM networks than seen here. The effects of
smoking in our cohort could have been underestimated
as result of cortical recovery after quitting smoking15

that might have led to a higher variance within our
‘‘previous smoker’’ group. Despite possible effects of
further factors linked with higher cardiovascular risk,
such as low ‘‘cognitive reserve’’ or depressive illness, on
GMmeasures,62–65 we did not evaluate these conditions
in detail. Strengths of the study include the large popu-
lation-based sample and the data-driven multi-modal
analysis of GM networks, instead of focusing on
traditional voxel-wise associations in one modality.
This systems-view could increase the interpretability
of the effects in older populations on the brain,
especially with regard to underlying mechanisms and
potential preventive options.1,7,8

Conclusions

Using a large cohort of healthy older adults and a data-
driven approach, we were able to replicate and further
characterize large-scale, age-sensitive GM networks
that inversely correlated with major cardiovascular
risk factors, i.e. smoking, blood pressure, long-term
glucose, and visceral obesity. The spatial extent and
composition of covarying GM measures within the
different networks indicated that smoking and, to a
lesser degree, higher blood pressure affected GM
throughout the brain, which might be attributed to
direct and indirect damage of neuronal tissue. Higher
HbA1c was found to predominantly affect areas that
are known to have high glucose metabolism and early
Abeta deposition. In addition, we detected negative
effects of visceral obesity on a structural network cover-
ing areas rich in intracortical myelinated fibres, possibly
pointing to detrimental effects of visceral fat-induced
low-grade inflammation on myelin. This proposed
mechanism might also help to better understand how
a cardiovascular risk factor, in this case WHR, could be
a trigger or booster of cognitive decline and regional
AD pathology, as this network has specifically been
linked to accelerated aging and vulnerability to AD in
previous studies.3 Our additional observation of a
negative correlation of both age and memory perform-
ance with IC3 further underlines the congruency and
the functional relevance of this specific network. Future
longitudinal studies including the LIFE follow-up data
(starting in August 2017) or those that incorporate
more detailed microstructural assessments are now
needed to prove our hypotheses and to test if improving
cardiovascular risk, specifically visceral obesity, would
help to maintain the integrity of GM networks sensitive
to aging throughout old age.
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Due to a world-wide demographic change ageing-associated complications including 

cognitive impairments and neurodegenerative diseases such as dementia are 

becoming increasingly prevalent. In 2015, almost 47 million people worldwide were 

estimated to be affected by dementia, and the numbers are expected to reach 75 

million by 2030, and 131 million by 2050, with the greatest increase expected in low-

income and middle-income countries (Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.; Wu, 

Y.; Prina, 2015). As no cure or substantial symptom-relieving treatment is yet available 

for these ever growing pathologic conditions, identifying modifiable factors that 

causally impact the risk of these diseases has become an important mission (Barnes 

and Yaffe, 2011). 

Although age is known to be the most important risk factor for these conditions, not all 

older individuals develop these pathologic states and pathologic neurodegenerative 

changes are not considered as part of a normal aging process. However, observations 



show that almost all aged brains show characteristic changes that are linked to 

neurodegeneration (Wyss-Coray, 2016). These observations raise the possibility that 

fundamental mechanisms of ageing may display early disease changes or contribute 

to the pathogenesis of neurodegenerative disorders (Bartzokis, 2011; Bishop et al., 

2010; Raz, 2005). A better understanding of possible modulators of function and 

structure of brain in regions that are known to be vulnerable in aging would thus open 

a novel window towards targets for intervention of disease progression.  

Epidemiological studies have begun to identify many environmental and genetic risk 

factors that influence prevalence of neurodegenerative diseases in older ages. 

Importantly, with respect to Alzheimer’s disease (AD), conditions such as depression, 

obesity and hypertension, specifically in midlife and diabetes are shown to 

independently affect increased prevalence of AD worldwide. In 2010, fifteen thousand 

AD-cases world-wide were attributed to cigarette smoking and low physical or mental 

activity (Norton et al., 2014). Moreover, disadvantageous metabolic profiles such as 

higher blood glucose levels or lower high-density lipoprotein (HDL) levels have also 

been associated with worse cognition, brain alterations in AD-vulnerable regions and 

ultimately increased likelihood of developing AD in older ages (Crane et al., 2013; 

Villeneuve et al., 2014).  

In the first study of this thesis, we reviewed the epidemiological evidence regarding the 

impact of a “Mediterranean style diet” (MeDi) on brain health in aging (Huhn et al., 

2015). MeDi, which is based on high consumption of fruits, vegetables, grains as well 

as sea-fish and low intake of sweets, convenient food, meat and dairy products, is 

shown to reduce cardio-vascular risk factors and benefit lipid and glucose metabolism 

while reducing risk of AD and cognitive dysfunction in aging.  

Despite extensive epidemiological evidence, little is known about neurobiological 



mechanisms, linking these life-style and health related factors to alterations in cognitive 

performance and incidence of AD.   

In the recent years whole brain magnetic resonance (MR) measurements have 

immensely increased our knowledge about the brain in health and disease. Novel MR 

protocols and analysis routines have been invented to assess different aspects of 

structure of the brain regions and their function within the living individuals.  

Studies in elderly AD patients have linked deposition of amyloid plaques, assessed 

using positron emission tomography (PET), in vulnerable structures such as frontal 

lobe, medial temporal structures and posterior cingulate area to atrophy and lower 

metabolic rate of glucose within these brain regions in association with accelerated 

cognitive decline (Buckner et al., 2005). 

Also, within healthy ageing population it has been shown that these AD-prone 

structures create a network, in which grey matter (GM) volume follow a different ageing 

trajectory compared to the rest of the brain, with a late development during 

adolescence and accelerated decline in older ages (Douaud et al., 2014; Fjell et al., 

2014). Such coordinated change, specifically in older ages, might be a result of shared 

susceptibility of regions within this network to selective pathologies or a network-based 

spread of toxic agents (Zhou et al., 2012).  

Consequently, the above-mentioned AD-risk factors could through similar mechanisms 

impact brain structures within vulnerable regions, resulting in accelerated ageing, 

possibly reducing resilience of these regions towards AD-related pathology and thus 

increasing risk of developing AD in older ages. Based on this working hypothesis, in 

the rest of this doctoral research we investigate cerebral correlates of these risk factors 

and their impact on cognitive performance in healthy older adults. 

We initially focused on obesity as a major epidemic of the twentieth century, a major 

component of metabolic syndrome and an important AD-risk factor. Here we used 



conventional techniques to identify effects of Body-mass index (BMI) on regional GM 

volume (n = 617) as well as resting-state network connectivity (n = 712) and relations 

to cognitive performance in well-characterized samples of community-dwelled older 

adults (60-80 years) from Leipzig Research Centre for Civilization Diseases (LIFE) 

adult-study. The LIFE-Adult-Study is a population-based cohort study, which has 

already completed the baseline examination of 10,000 randomly selected participants 

from Leipzig, out of which ~2600 underwent a 3 Tesla MRI brain scan, structured 

interviews, neuropsychological tests, and an extensive set of medical assessments 

(Loeffler et al., 2015). 

Our results showed that independent of age and a wide range of other confounding 

factors such as diabetes, hypertension, smoking status and APOE-genotype, there is 

a robust linear association between a higher BMI and lower GM volume in multiple 

brain regions, including (pre)frontal, temporal, insular and occipital cortex, thalamus, 

putamen, amygdala and cerebellum, which partially mediated negative effects of 

higher BMI on memory performance in our sample of older adults (Kharabian 

Masouleh et al., 2016). 

Furthermore, in the follow-up study, we found reproducible association between higher 

BMI and lower functional connectivity of the posterior cingulate cortex with other nodes 

of the default mode network (Beyer et al., 2017). This network that consists of AD-

prone regions within frontal, temporal and parietal lobes, exhibits similar alterations in 

normal ageing and among patients with AD (Damoiseaux et al., 2012; Tomasi and 

Volkow, 2012).  

Inspired by our results on network-based functional connectivity alterations and in-line 

with the hypothesis of network-based spread of toxic agents in neurodegenerative 

diseases, in our third MRI-study, we extended the number of risk factors to cover major 

“modifiable” risk factors of AD and identified the potential impact of these factors on 



morphological properties of large-scale structural covariance networks (Kharabian 

Masouleh et al., 2017). We therefore systematically assessed independent effects of 

obesity, smoking, blood pressure, as well as markers of glucose and lipid metabolism 

and physical activity on major GM networks in the same cohort as our first MR study. 

Furthermore, we detailed our analysis by adding both BMI as well as waist-to-hip ratio 

as measures of obesity and identified the structural networks based on information on 

area, thickness and volume of cortical structures.  

The spatial extent and composition of the co-varying GM measures within the different 

networks indicated that smoking and, to a lesser degree, higher blood pressure 

affected GM throughout the brain, which might be attributed to direct and indirect 

damage of neuronal tissue. Higher glycosylated hemoglobin, as a long-term marker of 

glucose metabolism, was found to predominantly affect areas that are known to have 

high glucose metabolism and early A-beta deposition. In addition, we detected 

negative effects of visceral obesity on a structural network consisting of multimodal 

regions, covering areas rich in intracortical myelinated fibres. This network spatially 

recapitulated the pattern of brain atrophy observed in Alzheimer’s disease and has 

been previously shown to develop relatively slowly during adolescence but present 

“accelerated” age-related degeneration at an old age. Accordingly, our findings 

possibly point towards detrimental effects of visceral fat-induced low-grade 

inflammation on myelin. This is a hypothesis that we are going to test in our future 

studies in LIFE (by direct assessment of visceral fat (VAT) on abdominal MRI and 

inflammatory markers).  

Future longitudinal studies that incorporate more detailed microstructural assessments 

are now needed to prove our proposed neurobiological hypotheses on the underlying 

mechanisms of the observed effects and to test if improving cardiovascular risk, 



specifically visceral obesity, would help to maintain the integrity of GM networks 

throughout old age and reduce the risk of AD.  
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A. Supplemental Materials 

Publication2- Kharabian Masouleh et. al., 2016 

Apolipoprotein E (APOE) genotyping 

To assess individual APOE status, we used genomic DNA isolated from 

peripheral leukocytes using an automate protocol on the Qiagen Autopure LS 

(Qiagen, Hilden, Germany). DNA purity and yield was determined on a 

NanoDrop spectrophotometer. Genotyping of the APOE allele status (E2, E3, 

E4) was performed on a Roche Lightcylcer 480 according to the method of 

(Aslanidis and Schmitz, 1999). 

 

Voxel Based Morphometry (VBM) 

T1-weighted magnetic resonance images (MRIs) were processed using a 

VBM approach in SPM8 (www.fil.ion.ucl.ac.uk/spm). For VBM analysis of the 

cerebrum, individual whole brain images were segmented into gray matter 

maps and co-registered to a study-specific Dartel-template. In order to 

improve tissue segmentation and inter-individual alignment of the cerebellar 

lobules, individual cerebella were coregistered to a cerebellum-only atlas 

template (Diedrichsen, 2006; Diedrichsen et al., 2009). In detail, The following 

two approaches were performed: 

For cerebral VBM, freely available VBM8 package (http://dbm.neuro.uni-

jena.de/vbm/) integrated in the SPM8 software with default parameters was 

used. Whole brain Images were bias-corrected, tissue classified, and 

preregistered to standardized Montreal Neurological Institute (MNI) space 

using linear (12-parameter affine) transformations, within a unified model 

(Ashburner and Friston, 2005). A subgroup of 496 participants equally 
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matched for gender, age and body mass index (BMI) were used to create a 

group-specific Dartel template. The segmented images were then warped 

using high dimensional deformations to the created template. Gray matter 

segments were modulated by the Jacobian determinant of the deformations to 

account for local expansion and compression introduced by nonlinear 

transformation and then smoothed with an isotropic Gaussian kernel of 8mm 

full width half maximum (FWHM) (Ridgway et al., 2009). 

Cerebellar VBM was carried out using Spatially Unbiased Infra-Tentorial 

(SUIT) toolbox (version 2.5, http://www.icn.ucl.ac.uk/motorcontrol/ 

imaging/suit.htm) (Diedrichsen, 2006). To ensure that the infratentorial 

cerebellum was isolated from the surrounding tissue, we used the isolate 

function within the SUIT toolbox, generating segmentation cerebellum maps. 

We additionally used freesurfer (version 5.0, 

https://surfer.nmr.mgh.harvard.edu) generated cerebellar masks to further 

improve participant-specific isolation function. This minimized the required 

manual corrections of the isolated maps. In the next step the cropped 

anatomical images were normalized to the SUIT template and the 

segmentation maps were modulated and resliced into the SUIT atlas space. 

Eventually, to preserve precision in the definition of cerebellar structures, a 

smaller smoothing was used (i.e. 4 mm FWHM isotropic Gaussian kernel 

(Reetz et al., 2012)). As modulation of the cerebellar gray matter maps 

included both linear and non-linear effects, a measure of total cerebellar 

volume (TCV) was estimated from the sum of gray and white matter 

segments, and then included as a nuisance regressor, in statistics concerning 

cerebellar gray matter volume (GMV). 
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Additional statistics  

Interaction effects of BMI by sex and BMI by arterial hypertension were 

investigated in full-factorial models. To test if effects of BMI on GMV were 

dependent on obesity status, we additionally grouped participants using cut-

offs by the World Health Organisation (WHO, 2006) in three groups, i.e. lean 

(BMI ≤ 25 kg/m², n = 175), overweight (25 kg/m² < BMI ≤ 30 kg/m², n = 277) 

and obese (BMI > 30 kg/m², n = 165) and tested for an interaction in a 

separate full factorial model. Note that only one participant of our cohort would 

fall in an underweight category (i.e. BMI < 18.5, WHO, 2006), this participant 

was grouped into the lean group. Lastly, we tested if restricting our analysis to 

participants without diabetes (n = 518) or to those without anti-hyperlipidemic 

medication (n=480) would result in similar effects of BMI on GMV. These 

additional analyses have been performed to further demonstrate that effects 

found with respect to obesity are not due to, or biased by, possible effects of 

co-morbidities and related medication intake. 
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Supplementary Tables for Publication2 

Supplementary Table 1. Characteristics of participants included in the main study compared to the subgroup with defined APOE-
status, and compared to those participants that were excluded. 

 
Main sample 
 
n = 617 

Subgroup with defined 
APOE genotype 
n = 485 

p  
(main 
vs. 
APOE) 

Participants excluded  
 
n = 368 

p  
(main vs. 
excluded) 

sex (female) 258 (41.8%) 208 (42.9%) 0.721 181 (49.2%) 0.0241 

Age (y)  68.7 ±	5 (60-79) 69.5	±	4 (60-79) 0.00142 69.5 ±	6 (60-79) 0.0212 

BMI (kg/m2)  27.5	±	4 (16.8-41) 27.46	±	4 (16.8-41.3) 0.812 28.4 ±	4.25 (19-46.5) 0.0012 

Education 
(%) 

no SS-LD 0.5 0.6 

0.833 

1.1 

< 0.0013 

SS-LD 10.4 10.5 17.9 

advanced SS-LD 6.3 6.2 8.4 

advanced technical SS-
LD 42.6 41.4 46.7 

technical college-ED 5.2 5.4 3.5 

university-ED 35 35.9 22.3 

Data are mean (SD) (minimum-maximum) or median (IQR) (minimum-maximum). 1 chi-squared test, 2 independent t-test, 3 Mann-Whitney-U 
test. Abbreviations: APOE: Apolipoprotein E, SS-LD: secondary school-leaving degree, which represents the end of 9th grade. The university 
entrance degree equals to 12-13 years of education, in Germany. ED: entrance degree, BMI: body mass index, VBM: Voxel Based 
Morphometry. 
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Supplementary Table 2.  Participants’ characteristics compared between APOE4-allele carriers and non-carriers. 

 APOE non-carriers 
n = 388 (164 women) 

APOE e4-carriers 
n = 97 (44 women) 

p 
 

Age (y)  69.5 ±	4.2 (60-79) 69.7 ±	4.1 (60-79) 0.7* 

BMI (kg/m2) 27.5	±	4.1 (16.8-40.0) 27.3	±	4.1 (19.3-
41.4) 0.7* 

Women (%) 42.3 45.4 0.6** 

Mean systolic BP (mmHg) 136.1	±	16.9 (89-194) 138.6	±	18.1 (100-
197) 0.2* 

Education (%) [without SS-LD / SS-LD / advanced SS-LD / advanced technical SS-LD 
/ technical college-entrance degree / university-entrance degree] 

0.3 / 11.6 / 6.4 / 41.0 / 
5.9 / 34.8 

0 / 8.2 / 5.2 / 43.3 / 
3.1 / 40.2 0.3*** 

Depression scale (CES-D) [score] 9.2	±	5.2 (0-34) 9.6	±	5.3 (0-33) 0.5* 

Smoking (%) [current / previous / never] 6.4 / 30.7 / 62.9 5.2 / 39.2 / 55.7 0.27** 
Arterial hypertension (%) [yes] 56.4 60.8 0.4** 
Cardiovascular diseases (%) [any] 18.3 23.7 0.2** 
Diabetes status (%) [none / type 1-medicated / type 2-medicated / type 2-non-
medicated] 84.3 / 1.0 / 11.6 / 3.1 81.5 / 1.0 / 16.5 / 1.0 0.5*** 

Anti-hyperlipidemic medication (%) [yes] 24.2 23.7 0.9** 
Estrogen supplement (% females)[yes] 7.3 6.8 0.6** 

White matter hyperintensities (%) [Fazekas score 0 / 1 / 2 / 3] 25.2 / 57.0 / 17.3 / 0.5 24.8 / 60.8 / 14.4 / 
0.0 0.7*** 

* independent t-test, ** Chi-square test, *** Mann-Whitney-U test 
Data are shown as mean ±SD (minimum-maximum) unless indicated otherwise.  
Abbreviations: APOE: Apolipoprotein E, BMI: body mass index, BP: Blood pressure, CES-D: center for epidemiologic studies depression scale, 
SS-LD: secondary school-leaving degree, which represents the end of 9th grade. The university entrance degree equals to 12-13 years of 
education, in Germany. 
 
 
 
 
  



 

 99 

Supplementary Table 3. Bivariate and partial correlations between cognitive performance and GMV in BMI-associated regions 
(defined by voxel-level FWE-corrected threshold of p<0.05 and a cluster extent of at least 50 voxels) 

 

r, p-value 
 

bivariate 
n = 617 

model-1 
n = 617 

model-2 
n = 617 

model-3 
n = 485 

Executive functions:     

Paracingulate gyrus (L) 0.1, 0.013a 0.105, 0.009 a 0.07, 0.07 0.063, 0.17 

Planum Temporale (R) 0.091, 0.024 a 0.096, 0.017 a 0.07, 0.07 0.087, 0.06 

Verbal memory:     

Ventral-medial PFC 0.23, <10-3a 0.13, 0.001 a 0.109, 0.008 a 0.119, 0.01 a 

Frontal Orbital cortex (R) 0.159, <10-3a 0.116, 0.004 a 0.09, 0.026 a 0.08, 0.086 

Paracingulate gyrus (L) 0.204, <10-3a 0.118, 0.004 a 0.086, 0.034 a 0.107, 0.02 a 

Precentral gyrus (L) 0.197, <10-3a 0.072, 0.075 0.041, 0.3 0.024, 0.6 

Insular cortex (L) 0.192, <10-3a 0.103, 0.01 a 0.093, 0.02 a 0.086, 0.06 

Superior Temporal gyrus (R) 0.176, <10-3a 0.077, 0.057 0.062, 0.13 0.072, 0.12 

Planum Temporale (L) 0.114, 0.005a 0.086, 0.032 a 0.075, 0.07 0.062, 0.18 

Planum Temporale (R) 0.174, <10-3a 0.085, 0.034 a 0.076, 0.06 0.084, 0.07 

Parahippocampal gyrus (R) 0.135, 0.001a 0.028, 0.5 0.011, 0.78 0.01, 0.8 

Parahippocampal gyrus (L) 0.148, <10-3a 0.057, 0.16 0.047, 0.25 0.043, 0.35 

Occipital fusiform gyrus (L) 0.125, 0.002a 0.05, 0.2 0.05, 0.23 0.064, 0.17 

Occipital fusiform gyrus (R) 0.087, 0.03 a 0.042, 0.3 0.015, 0.7 0.019, 0.7 
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Intracalcarine cortex (R) 0.146, <10-3a 0.034, 0.4 0.034, 0.4 0.058, 0.21 

Thalamus (R) 0.188, <10-3a 0.112, 0.005 a 0.113, 0.006 a 0.103, 0.025 a 

Processing speed:     

Ventral-medial PFC 0.152, <10-3a 0.082, 0.042 a 0.067, 0.1 0.02, 0.66 

Paracingulate gyrus (L) 0.124, 0.002a 0.066, 0.1 0.053, 0.2 -0.012, 0.78 

Precentral gyrus (L) 0.155, <10-3a 0.072, 0.076 0.064, 0.12 0.066, 0.155 

Insular cortex (R) 0.165, <10-3a 0.095, 0.019 a 0.087, 0.033 a 0.067, 0.145 

Insular cortex (L) 0.105, 0.009a 0.045, 0.261 0.043, 0.3 0.02, 0.64 

Planum Temporale (L) 0.097, 0.016a 0.065, 0.106 0.066, 0.102 0.076, 0.099 

Planum Temporale (R) 0.115, 0.004a 0.051, 0.203 0.047, 0.24 0.05, 0.28 

Parahippocampal gyrus (R) 0.096, 0.017a 0.036, 0.37 0.024, 0.56 0.03, 0.51 

Occipital fusiform gyrus (L) 0.141, <10-3a 0.088, 0.028 a 0.087, 0.03 a 0.053, 0.25 

Intracalcarine cortex (R) 0.149, <10-3a 0.085, 0.035 a 0.078, 0.055 0.067, 0.147 

a: Significant at p < 0.05. 
Abbreviations: GMV: gray matter volume, BMI: body mass index, PFC: prefrontal cortex, L:left, R: right. r: Pearson’s correlation coefficient. 
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Supplementary Figures for Publication 2 

 
Supplementary Figure 1. Body mass index (BMI)-associated gray matter 
alterations (model-2) 
Gray matter voxels negatively associated with BMI defined using multiple 
regression analysis with covariates in model 2 (n = 617). Significant clusters, 
surviving a voxel level threshold of p < 0.001 (uncorrected) and cluster level 
threshold of p < 0.05 (FWE-corrected) are displayed in the Cerebrum (B) as 
well as the Cerebellum (C), superimposed on a study-specific gray matter 
template. Color bar shows the t-value at significant voxels. 
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Supplementary Figure 2. Body mass index (BMI)-associated gray matter 
alterations (model-3) 
Gray matter voxels negatively associated with BMI defined using multiple 
regression analysis with covariates in model 3 (n = 485). Significant clusters, 
surviving a voxel level threshold of P<0.001 (uncorrected) and cluster level 
threshold of p < 0.05 (FWE-corrected) are displayed in the cerebrum (B) as 
well as the cerebellum (C), superimposed on a study-specific gray matter 
template. Color bar shows the t-value at significant voxels. 
  



 

 103 

Supplementary Figure 3. Body mass index (BMI)-associated gray matter 
alterations in participants without diabetes 
Gray matter voxels negatively associated with BMI defined using multiple 
regression analysis with covariates in model 1, in participants without diabetes 
(n = 518). Significant clusters, surviving a voxel level threshold of p < 0.001 
(uncorrected) and cluster level threshold of p < 0.05 (FWE-corrected) are 
displayed in the cerebrum (B) as well as the cerebellum (C), superimposed on 
a study-specific gray matter template. Color bar shows the t-value at 
significant voxels. 
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Supplementary Figure 4. Body mass index (BMI)-associated gray matter 
alterations in participants without intake of anti-hyperlipidemic 
medication 
Gray matter voxels negatively associated with BMI using multiple regression 
analysis with covariates in model 1, in participants without intake of anti-
hyperlipidemic medication (n = 480). Significant clusters, surviving a voxel 
level threshold of p < 0.001 (uncorrected) and a cluster level threshold of p < 
0.05 (FWE-corrected), are displayed in the cerebrum (A) and cerebellum (B), 
superimposed on a study-specific gray matter template. Color bar shows the 
t-value at each significant voxel. 
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Supplementary Figures for Publication4 

supplementary Figure 5. Spatial maps of independent components (ICs). 
Spatial maps of the selected ICs give the regional extent and contribution of 
each gray matter modality, i.e., volume, thickness and area (z > 4), to the 
generation of the IC. Colors indicate positive (red/yellow) or negative 
(blue/light-blue) co-variations within the network, percentages give the amount 
of weighted variance that is explained by each modality. Maps are drawn on a 
standard brain.	  

 

Supplemental Figure: 
Spatial maps of independent components (ICs). Spatial maps of the selected ICs give the regional extent and 
contribution of each gray matter modality, i.e., volume, thickness and area (z > 4), to the generation of the IC. 
Colors indicate positive (red/yellow) or negative (blue/light-blue) co-variations within the network, percentages 
give the amount of weighted variance that is explained by each modality. Maps are drawn on a standard brain. 
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