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ABSTRACT 

 

Herbicides have become a key component in modern agricultural production. 

Meanwhile, there is a concern that some herbicides persist past the growing season of the treated 

crop, and negatively influence the production of the subsequently planted crops. Amongst 

various herbicides used in western Canada, acetohydroxyacid synthase (AHAS)-inhibiting 

herbicides warrant special attention given their residual properties and acute plant toxicity at low 

concentrations in soil. Soil residual AHAS inhibitors have the potential to influence both 

leguminous host plants and their bacterial symbiotic partners; consequently, the use of an AHAS 

inhibitor in a given year can negatively influence the inoculation success and grain yield of 

legumes cropped in the following year. The present thesis project focused on one of the AHAS 

inhibiting herbicides (flucarbazone) and studied its potential for carryover injury and negative 

influence on the success of inoculation in field pea. A series of growth chamber and field 

experiments were conducted to test the following null hypothesis: the presence of residual 

flucarbazone in soil does not affect nodulation of field pea by inoculum rhizobia.  

A growth chamber experiment clearly demonstrated the susceptibility of field pea to the 

presence of flucarbazone in soil where the lowest concentration of flucarbazone amendment (5 

μg kg–1) significantly reduced the crop growth. In contrast, a field study failed to reveal any 

negative effects of flucarbazone use on crop growth and N2 fixation. It was concluded that if the 

weather and soil conditions favour decomposition of flucarbazone as described in the present 

study, flucarbazone applied at the recommended field rate will not persist into the following 

season at high enough concentrations to negatively influence field pea growth, grain yields, and 

inoculation success. To ensure safety of rotational crops, it is important to strictly adhere to the 

herbicide application guidelines. Additionally, producers are cautioned to be particularly aware of 

the environmental and soil conditions that may reduce the rate of herbicide degradation. 
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1 INTRODUCTION 

 

Adequate weed control is vital in sustaining high crop yields, and consequently 

herbicides have become a key component in modern agricultural production. Ideally, 

herbicides control weeds during the growing season of the treated crop and dissipate to 

non-toxic levels before the next crop is seeded; however, some herbicides may persist 

longer than desired and injure or kill subsequently planted crops (Hanson et al., 2004). 

Such persistence of residual herbicides in the soil is a disadvantage for producers who 

aim to maximize crop diversity and productivity through rotation because it limits the 

flexibility of crop rotation planning (Beckie and McKercher, 1989). Furthermore, when 

herbicides are applied, most of the spray solution contacts the soil and may affect soil 

microorganisms that are important for sustainable agriculture, e.g., recycling of plant 

nutrients, maintenance of soil structure, and symbiotic assistance of crop growth (Vieira 

et al., 2007). The impact on soil microbes can occur instantly at the time of application 

and/or have long-lasting effects into the following cropping years.  

In the spring of 2000, the active ingredient flucarbazone-sodium and the 

associated end-use product Everest® were registered for use in Canada as a selective 

post-emergence herbicide for the control of wild oats (Avena fatua L.) and green foxtail 

(Setaria viridis L.) in spring wheat (Triticum aestivum L.) and durum wheat (Triticum 

durum Desf.) (Pest Management Regulatory Agency, 2000). Upon registration, the 

residual properties of the herbicide were extensively analyzed from the stand point of 

environmental protection and food/feed safety by the federal regulatory body (Pest 

Management Regulatory Agency, 2000). However, the full impact of the residual 
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properties of this herbicide on agricultural production is still under investigation. For 

instance, there is a lack of published data on the potential influence of residual 

flucarbazone on the success of Rhizobium inoculation on grain legume production.  

In western Canada the chief cereal crop, wheat, is often followed with annual 

grain legumes such as field pea (Pisum sativum L.), chickpea (Cicer arietium L.), and 

lentil (Lens esculenta L.) in a sequential rotation. This type of crop rotation is beneficial 

in conservation and replenishment of soil nitrogen (N) based on the leguminous plants 

ability to fix atmospheric nitrogen (N2) through symbiotic association with effective 

strains of Rhizobium bacteria (Baldock et al., 1981; Wright, 1990; Beckie and Brandt, 

1997; Przednowek et al., 2004). As a result, production of grain legumes has increased in 

western Canada over the years. In particular, the cropping area for field pea in the prairie 

provinces increased from 25 000 ha in 1976 to almost 1.5 million ha in 2007 (Clayton et 

al., 2004b; Statistics Canada, 2007), which makes field pea one of the most widely 

grown legumes in the area.  

During field pea production, farmers in the prairie region commonly use some 

form of commercial Rhizobium inoculant. There may be native strains of rhizobia 

naturally present in soil and these organisms may be able to establish a symbiotic 

association with field pea. However, native strains may not necessarily be efficient N2 

fixers. Thus, the purpose of inoculation is to establish highly effective inoculum strains 

in the rhizosphere so that they can compete successfully for infection sites on root 

surfaces against native strains (Dowdle and Bohlool, 1987). Rhizobia can commence N2 

fixation only after successful nodule formation. As a result, inoculation will not be 

effective unless the inoculum rhizobia dominate a significant portion of nodule sites on 

host plant roots, and subsequently initiate root nodule formation. Because the symbiotic 

association between the host legume and the Rhizobium is sensitive to changes in many 
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environmental factors and soil conditions, it follows that agrochemical residues in the 

soil may influence inoculation success, N2 fixation, and yield of field pea.  

Flucarbazone belongs to a group of herbicides that contains an active ingredient 

that interferes with an important metabolic pathway (i.e., branched-chain amino acid 

synthesis) unique to plants and microorganisms (Royuela et al., 1998). Thus, the product 

label provides specific instructions on how to minimize the chance of crop damage from 

residual flucarbazone in the sequential season, yet no information is provided on its 

potential influence on soil microbial activities and symbiosis. Consequently, the potential 

toxicity to Rhizobium bacteria, as well as the risk of negatively impacting plant-microbe 

interactions, has to be considered when using these herbicides (Zawoznik and Tomaro, 

2005). Furthermore, given the residual nature of flucarbazone and its increasing usage in 

crop rotation preceding field pea, there is a need to understand if and how the herbicide 

residue may influence the inoculation success in field pea production. 

In order to elucidate the effect of residual flucarbazone on the inoculation 

success in field pea production, this study tested the following null hypothesis: The 

presence of residual flucarbazone in soil does not affect nodulation of field pea by 

inoculum rhizobia. The two main goals of the research were to examine the effect of 

flucarbazone application on the various parameters of successful field pea production, 

and to investigate the residual behaviour of flucarbazone and its influence on the native 

rhizobial population. These goals were accomplished through a series of field plot and 

growth chamber studies designed to: 

1. Determine the effect of flucarbazone application on growth parameters, N2 

fixation, and nodule occupancy in field pea; 

2. Measure residual flucarbazone carryover in previously treated soils; and  

3. Evaluate the effect of flucarbazone application on the native rhizobial 

population.
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2 LITERATURE REVIEW 

 

2.1 Flucarbazone-sodium: An AHAS-inhibiting Herbicide 

Flucarbazone-sodium belongs to the chemical family sulfonylaminocarbonyl- 

triazolinone. Like other Group 2 herbicides, such as imazethapyr (Pursuit®) and 

sulfosulfuron (Sundance®), flucarbazone exerts phytotoxic effects on sensitive plants by 

blocking the normal functioning of an enzyme called acetohydroxyacid synthase 

(AHAS), also known as acetolactate synthase (ALS) (Weed Science Society of America, 

2002). This enzyme, which is found in bacteria, fungi, algae, and plants, catalyzes the 

first step in the synthesis of branched-chain amino acids valine, leucine, and isoleucine 

(Duggleby and Pang, 2000). The precise mechanisms that link AHAS inhibition with 

plant death have not been elucidated, yet Gaston et al. (2002) suggested a mechanism 

where the impairment of AHAS activity leads to a fermentative metabolism in the plant 

which, in turn, causes growth inhibition and plant death.   

AHAS-inhibiting herbicides are generally used at very low concentrations given 

their acute toxicity to plants (Santel et al., 1999). Absorption occurs through the foliage 

and the root system, followed by translocation within the plant (Santel et al., 1999). The 

inhibition of the amino acid synthesis initially occurs at the rapidly growing regions of 

the plant, spreads to other mature tissues, and ultimately leads to the termination of plant 

growth (Kishore and Shah, 1988). Given their persistence in soil, these herbicides not 

only control weeds that already have emerged, but also provide control over weeds that 

emerge after the time of application through root uptake (Vencill, 2002). Though such 

extended weed control is desirable, when environmental and soil conditions are such that 
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the herbicide does not dissipate to a non-toxic level before the next crop is seeded, it can 

cause injury to rotational crops (Moyer, 1995; Moyer and Esau, 1996). It has been 

reported that extremely low levels of AHAS-inhibiting herbicides, when received by a 

susceptible species during reproductive growth, could have devastating effects on seed 

production without causing pronounced visual symptoms (Bhatti et al., 1995; Fletcher et 

al., 1996). The residual nature of flucarbazone and its potential negative impact on pea 

production is further investigated in the following sections. 

 

2.2 Factors Affecting the Occurrence of Crop Injury Caused by Residual Herbicide 

The potential for crop injury from residual herbicide is determined by the 

persistence of a given herbicide in soil, the bioavailability of the herbicide, and the 

susceptibility of a crop to the herbicide (Hartzler et al., 1989). 

 

2.2.1 Persistence of flucarbazone in soil 

AHAS inhibitors can persist in soil from a couple of days to years (Colborn and 

Short, 1999), and the rate at which the herbicide dissipates to a non-toxic level is 

significantly influenced by environmental and soil conditions (Eliason, 2003). More 

specifically, environmental conditions influence degradation and translocation which are 

the two common ways in which applied herbicides dissipate from the soil. 

Degradation alters the chemical structure and properties of a herbicide, and new 

(generally less toxic) compounds are formed. This may occur by exposure to sunlight, 

chemical reaction, or microbial activities (Hanson et al., 2004). While all herbicides 

potentially are susceptible to decomposition upon exposure to sunlight (i.e., 

photodecomposition), the effect is much greater for some herbicides than others (Griffin, 

2006). With flucarbazone, photodecomposition in soil reportedly is not significant (EPA, 

2000). Degradation of herbicides through chemical reaction commonly takes place when 
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herbicides react with soil water and hydrolysis occurs (Hanson et al., 2004); therefore, 

dry soil conditions generally prolongs herbicide persistence (Eliason, 2003).  

With flucarbazone, the primary route of degradation is believed to be microbial 

(Santel et al., 1999) where bacteria and fungi in the soil use various enzymes to degrade 

herbicides and other compounds to obtain nutrients (Hanson et al., 2004). Generally, 

environmental factors such as warm soil temperature, adequate soil moisture, and high 

soil organic matter encourage microbial growth and reproduction (Griffin, 2006), which 

in turn provides an ideal environment for microbial degradation of herbicides. In contrast, 

environmental conditions that are not favourable for microbial proliferation reduce the 

rate of degradation. 

The product label for Everest® states that the herbicide is degraded by soil 

microbes (Arysta LifeScience, 2007). It cautions farmers making rotational cropping 

decisions to be mindful of environmental conditions that may decrease microbial 

activities in soil. These conditions include prolonged drought and/or cold temperatures 

within the following cropping season, as well as soils with both low organic matter (less 

than 2%) and high pH (greater than 7.5). Because such conditions can result in greater 

amounts of residual flucarbazone carried over into the subsequent growing season, the 

herbicide manufacturer encourages farmers in the described situation to have the field 

tested using a bioassay to ensure safety for the rotational crop. 

Another pathway of herbicide dissipation is translocation of the herbicide from 

the site of application, such that it becomes inaccessible to plants and microbes. This 

process includes volatilization, surface erosion, removal from the site by plant/animal 

uptake, leaching through soil, and adsorption to soil (Hanson et al., 2004), where 

adsorption can be considered translocation at a microscopic level. While surface erosion 

and plant/animal uptake are highly unpredictable, volatilization losses of flucarbazone 

are consistently negligible because it is a non-volatile compound (EPA, 2000). As for 
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leaching, Whitcomb (1999) reviewed characteristics of various AHAS inhibitors and 

reported the long-term stability and high mobility of some of the AHAS-inhibiting 

herbicides in soil. Whitcomb (1999) reported that in areas where water tables are shallow 

and soils are near neutral or higher in pH, these herbicides move deeper with rainfall but 

move back near the soil surface with rising water table or soil drying via capillarity, and 

they can remain in the soil solution indefinitely. 

 

2.2.2 Bioavailability of flucarbazone in soil 

Sorption–desorption interactions of herbicides with soil determine the 

availability of the chemical in soil (Koskinen et al., 2006). It has been reported that the 

bioavailability of herbicide in soil is strongly influenced by the soil organic matter 

(SOM) content because soils with high SOM content have increased herbicide retention 

capacity due to the presence of a large number of adsorption sites (Loux et al., 1989). 

Also, it has been observed that SOM adsorbed herbicide is unavailable for plant uptake 

and thereby unable to cause plant injury (El-Azzouzi et al., 1998). Based on the root 

length inhibition results from a mustard bioassay, Eliason (2003) reported the presence 

of inverse relationship between SOM content and flucarbazone phytotoxicity in nine 

soils from western Canada.  

Generally considered to have less influence on chemical adsorption than SOM, 

soil texture (i.e., relative composition of sand, silt, and clay) also has been known to play 

an important role in herbicide adsorption (Griffin, 2006). In fact, herbicide application 

rates sometimes vary according to soil type, and are generally higher for soils with high 

clay content compared with low clay soils because clay provides much greater soil 

surface area than sand for chemical adsorption (Calvert, 1980; Peter and Weber, 1985). 

In the case of flucarbazone, Eliason (2003) reported for nine western Canadian soils that 
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the effect of soil texture appeared to be overshadowed by SOM content in its influence 

on adsorption and phytotoxicity of flucarbazone in soils. 

 

2.2.3 Susceptibility of pea to flucarbazone 

Plant species vary in their sensitivity to AHAS inhibitors. For example, the 

amount of an AHAS-inhibiting herbicide (chlorsulfuron) needed to cause 50% reduction 

in the growth of a tolerant and a non-tolerant weed species was found to be different by 

21,000-fold (Hageman and Behrens, 1984). Such a large difference was explained by the 

fact that the chlorsulfuron-tolerant plants (such as wheat, oats, and barley) rapidly 

metabolize the herbicide to an inactive product, while sensitive broadleaf plants show 

little to no metabolism of chlorsulfuron (Sweetser et al., 1982). 

The product label for Everest® lists recommended rotational crops to be grown 

in the year following flucarbazone application (Arysta LifeScience, 2007). For example, 

the recommendation for the Black soil zone includes: spring wheat, durum wheat, barley, 

canola, field bean and flax. Field peas are also recommended for Dark Brown, Black, 

and Gray-Wooded soil zones, but with additional safety precautions. For example, crop 

safely is favoured only if precipitation has been normal or above normal (10 year 

average) during the growing season, pH is below 7.5, and organic matter content is 

above 4% (Arysta LifeScience, 2007).  

In an unpublished field experiment, Sapsford et al. (2006) compared the 

sensitivity of fifteen crops to residual flucarbazone in field plots, eleven months after the 

initial application of the herbicide at various rates (0, 15, 20, 30, 40, and 60 g a.i. ha–1) in 

wheat, where 30 g a.i. ha–1 is the recommended field application rate. They observed no 

visual injury in wheat, durum wheat, flax, and canola in the year following application 

even when these crops were grown on soil that received double the recommended rates 

(60 g a.i. ha–1) of flucarbazone in year 1. On the other hand, yellow mustard, juncea 
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mustard, chickpea, and corn, grown on plots that received half the recommended 

concentration (15 g a.i. ha–1) of flucarbazone in year 1, showed visually notable injury. 

The sensitivity of field pea fell somewhere in between these two groups, where no injury 

was observed when grown on plots that received 40 g a.i. ha–1; however, visually notable 

injury was present on plots that received 60 g a.i. ha–1 flucarbazone in year 1. Because 

precipitation during the growing season greatly affects the extent of injury, year-to-year 

variation is expected on the sensitivity of these crops to the herbicide; however, the data 

provides a valuable perspective into the relative sensitivity of crops commonly grown in 

the region to residual flucarbazone. 

 

2.2.4 Challenges in studying flucarbazone residues and its degradation products 

Some AHAS inhibitors not only persist in soil for a long period of time, but the 

residual levels are such that in most cases, it cannot be detected analytically (Whitcomb, 

1999). According to Whitcomb’s review (1999) it has been found that traditional 

chemical analytical methods were of limited value because they could not detect 

concentrations of AHAS inhibitors still herbicidally active in the soil. For instance, 

Wheeler and McNally (1987) tested three analytical procedures for detecting AHAS 

inhibitors (sulfonylureas) in soil, and found that the lowest detection level was 1 μg g–1, 

which is 40 000 times higher than the concentrations reported by Brewster and Appleby 

(1983) for one of the sulfonylureas to cause crop injury. For this reason, the use of 

bioassays has been proposed to monitor soil residues in order to predict the risk of injury 

to rotational crops. 

To further complicate the matter, the degradation of flucarbazone leads to the 

formation of several chemical compounds (i.e., metabolites) such as sulfonamide, 

sulfonic acid, and O-desmethyl flucarbazone (EPA, 2000). While sulfonamide and 

sulfonic acid are resistant to aerobic metabolism in soil, O-desmethyl flucarbazone is 



 10

rapidly hydrolyzed to N,O-dimethyltriazolinone (NODT) which itself degrades rapidly 

to N-metyltriazolinone (NMT). The latter is either immobilized in the soil or 

metabolized to CO2 (EPA, 2000). 

Given the lack of published data on these metabolites, it is difficult to predict 

their influence on plants and soil microorganisms, and the possibility exists that these 

metabolites could interfere with biological processes. Of the three flucarbazone 

metabolites reported by the EPA, sulfonamide would likely have the greatest potential to 

negatively influence the inoculation success during field pea production as it can persist 

in the field for over one year (EPA, 2000). Furthermore, various sulfonamide compounds 

have been used as synthetic antimicrobial agents (i.e., sulfa drugs) in inhibiting the 

growth of a large number of Gram-positive and Gram-negative bacteria (Accinelli et al., 

2007). Anccinelli (2007) studied the influence of sulfonamides (sulfamethazine and 

sulfachloropyridine) on the soil microbial community and reported that concentrations 

up to 0.1 g kg–1 had no effect on the soil microbial community. 

 

2.3 Influence of Flucarbazone on the Legume-rhizobia Symbiosis 

Herbicides may affect the legume-rhizobia symbiosis in a number of ways 

including: (i) direct effects on the host plant (e.g., reduction in root biomass, leading to 

fewer infection sites, or reduced carbohydrate supply to existing nodules); (ii) direct 

effects on rhizobial survival or growth, leading to a decreased potential for rhizobial 

infection of root hairs; (iii) an inhibition or inactivation of the biochemical signalling by 

either rhizobia or plants required to initiate nodule development; and/or (iv) an inhibition 

of nodule development by reducing the capacity for cell division (Eberback, 1993). 

Though published data specifically dealing with the influence of flucarbazone on 

legume-rhizobia symbiosis are not available at the time of writing, the impact of other 

AHAS-inhibiting herbicides on N2-fixing symbiosis has been studied.  
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The growth of soybean rhizobia (Bradyrhizobium japonicum) was not affected 

when 150 times the recommended field application rates of chlorimuron-ethyl was added 

to the pure culture; however, the number of nodules formed on soybean plants was 

significantly reduced in a pot experiment when the plants were treated with the herbicide 

at standard application rates five days after emergence (Zawoznik and Tomaro, 2005). 

Interestingly, the herbicide-treated soybean plants formed fewer but more active nodules, 

and there was no difference in nodule size or the shoot N content between herbicide-

treated and control plants. These findings led Zawoznik and Tomaro (2005) to speculate 

that the influence of chlorimuron-ethyl on root tissue or on a bacterial partner at early 

stages of the nodule formation process caused abortion of developing nodules. Gonzalez 

et al. (1996) similarly reported that the number of nodules present on pea roots was 

reduced by imazethapyr whereas nodule size was unaffected, suggesting a direct 

imazethapyr effect on the initiation of nodulation rather than on later developmental 

stages. Anderson et al. (2004) reported that the addition of chlorsulfuron at double the 

recommended field application rate did not influence chickpea rhizobia (Mesorhizobium 

ciceri) grown in medium containing no external source of amino acids. However, the 

number of nodules formed was reduced when germinating chickpea seeds were 

inoculated with rhizobia that were briefly pre-exposed to chlorsulfuron. This led 

Anderson et al. (2004) to speculate the possibility of herbicidal interference with the 

nodule infection and development processes. 

 

2.4 Influence of Flucarbazone on Competition and Occupation of Nodules by 

Inoculum Strains 

The reduction in nodule count on host plant roots upon herbicide treatment, as 

observed by Anderson et al. (2004), Gonzalez et al. (1996), and Zawoznic and Tomaro 

(2005), was based on gnotobiotic studies where growth media, nutrient solution, and 
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seed surface were sterilized prior to addition of pure Rhizobium culture so that the only 

bacterium present in the system was the added inoculum strain. When producers apply 

commercial inoculant during field pea production, there are abundant soil bacteria 

present in soil which may contain native strains of rhizobia capable of forming a 

symbiotic relationship with field pea. In western Canada, the presence of native field pea 

rhizobia (R. leguminosarum bv. viceae) in soil is highly probable (Rennie and Dubetz, 

1986; Bremer et al., 1988; Kucey and Hynes, 1989; Clayton et al., 2004b). This makes 

the assessment of residual herbicidal influence on inoculation success much more 

complicated. 

Upon introduction of inoculum rhizobia into a multi-strain field environment, 

they firstly have to survive and adapt to the prevailing environmental conditions, then 

multiply and function as part of the overall soil microbial population until the roots of 

the host plant emerge (Pan and Smith, 2000). Having successfully survived independent 

of the host plant, the inoculant rhizobia then need to compete on the roots for infection 

sites against indigenous rhizobia (Streit et al., 1995). If the inoculum strain is inferior to 

native rhizobia in these steps (e.g., due to differential sensitivity of rhizobia to the 

herbicide), they will have less chance to occupy a significant proportion of the nodules, 

and a reduced contribution to N2-fixation can be expected from inoculation.  

Forlani et al. (1995) studied the differential sensitivity of plant-associated 

bacteria to AHAS-inhibiting herbicides and reported that the presence of rimsulfuron 

significantly promoted root colonization by the resistant bacterial strain when maize 

seedlings were inoculated with two strains, one tolerant and one sensitive to the 

herbicide. They concluded that the AHAS-inhibiting herbicides tested (chlorsulfuron, 

rimsulfuron, imazapyr, and imazethapyr) can influence the microbial structure of the 

rhizosphere at recommended rates of application (Forlani et al., 1995). 
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2.5 Methods for Analyzing Nodule Occupancy 

When several rhizobial strains occur in the presence of the leguminous plant to 

which they are specific, certain strains form nodules in preference to others (Amarger 

and Lobreau, 1982). This is because rhizobial strains differ from one another in their 

ability to be selected by the plant host (Amarger and Lobreau, 1982). Since rhizobia can 

commence N2 fixation only after successful nodule formation, inoculation will not be 

effective unless the inoculum rhizobial strain dominate nodule sites on the host plant 

roots, then form and occupy a significant proportion of the total nodules against native 

strains. To monitor inoculation success of agriculturally important leguminous crops, 

various strategies have been developed to determine the identity of the nodule occupants. 

These techniques can be broadly classified into biochemically-based or nucleic acid-

based methods. 

 

2.5.1 Biochemically-based methods 

Commonly used biochemical identification methods of nodule occupants are 

based on either the antibody/antigen reaction (e.g., immunofluorescence, Enzyme-

Linked Immuno Sorbent Assay which is often abbreviated as ELISA ) or the analysis of 

microbial membrane lipids, namely phospholipids fatty acids (PLFA) or fatty acid 

methyl esters (FAME). Antibody based methods, which exploit the specificity of 

antibodies against surface constituents of a cell, have been successfully used for the 

detection of nodule occupants in various legumes (May and Bohlool, 1983; Trinick et al., 

1989; Revellin et al., 1998). However, it requires the preparation of specific antibodies 

against the target organism, which is a time consuming and laborious procedure 

(Madigan et al., 2003b). Also, the potential cross reactions of antibodies with non-target 

bacterial strains reduce its specificity (Stead et al., 2000).  
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Fatty acid profiling utilises the variability in the composition and proportion of 

bacterial membrane lipids. Since such lipid biomarkers differ among microbial genera 

and species, it is possible to construct a reference database to which individual sample 

isolates can be compared for taxonomic identification (Spiegelman et al., 2005). 

Generally, fatty acid profiling is a very cost effective method of identification down to 

species level because species within a genus often contain the same types of fatty acid 

but in different proportions (Stead et al., 2000). However, overlap of fatty acid 

characteristics can occur at subspecies level among microorganisms of genetic variant or 

subtype (i.e., strains), and accuracy of identification may decrease (Stead et al., 2000). 

 

2.5.2 Nucleic acid-based method 

In an attempt to differentiate nodules occupied by inoculum rhizobia from those 

colonized by native rhizobia, a method that has the potential to discriminate a strain level 

variation is desirable. Since the differences in strains arise from the genetic variation, 

nucleic acid-based methods that directly analyse the genetic materials are suitable for 

such an endeavour. There are numerous ways in which bacterial genetic materials can be 

used in microbial identification. The procedures fundamental to most of the commonly 

used methods are: 1) exposure/extraction of the whole bacterial genetic material (i.e., 

genome) through physical or chemical disturbance of cell membrane; 2) use of 

polymerase chain reaction (PCR) to obtain multiple copies of a certain section of the 

genome; and 3) analysis of the amplified segment and its similarity/difference to the 

equivalent sections amplified from other bacterial samples of interest. 
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2.5.2.1 Choosing the target genetic region to be amplified 

The similarities/differences among various bacteria is dependent on their 

evolutionary relatedness because evolution involves random alteration in gene sequences, 

and it causes change in a line of descent leading to the production of new species or 

strains within species (Madigan et al., 2003a). In studying such phylogenetic 

relationships, the gene section analyzed should display molecular clock-like behaviour 

where the rate of change coincides with evolution, and have large enough size to provide 

adequate amounts of information on gene sequence variation (Woese, 1987). It is also 

important that the gene section is universally distributed across the group chosen for 

study, and it is moderately well conserved so that the evolutionary relatedness among 

various bacteria can be extrapolated from the degrees of similarities and differences of 

the gene sequences within the amplified sections (Madigan et al., 2003a).  

Given their crucial role in protein-synthesis, the genes that encode ribosomal 

RNA (i.e., ribosomal DNAs or rDNAs) are universally distributed and moderately well 

conserved in sequence across broad phylogenetic distances (Madigan et al., 2003a). All 

three rDNAs (5S, 16S, and 23S) collectively comprise the ribosomal RNA operon (i.e., 

the cluster of functionally related genes regulated and transcribed as a unit), which 

instruct the production of 5S, 16S, and 23S ribosomal RNAs that jointly make up a 

molecule of ribosome.  

The ribosomal operon is a classic molecular marker used to trace genetic 

relationships. Particularly, the 16S rDNA has been used extensively to characterize soil 

microorganisms, including rhizobia (Marilley et al., 1998; Garbeva et al., 2001; Young et 

al., 2004; Corgie et al., 2006). Though 16S rDNA contains several regions of highly 

conserved sequences that mutate very slowly, it also contains relatively variable regions 

which can allow discrimination at the genus and species levels (Giovannoni et al., 1988; 

Rome et al., 1997; von Wintzingerode et al., 1997). 
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When 16S rDNA does not provide sufficient resolving power to distinguish 

closely related organisms, the use of alternative gene sections has been proposed. Of all 

the different regions of the ribosomal operon, the intergenic spacer (IGS) regions 

between 16S and 23S ribosomal DNA are frequently used as molecular markers to 

identify bacteria, and analyze the phylogenetic relationship between strains (Gürtler and 

Stanisich, 1996; Daffonchio et al., 1998). The usefulness of the intergenic spacers 

primarily stems from its variability in sequence and length. Due to a higher mutation rate, 

intergenic spacers are relatively more variable in gene sequence than adjacent genes 

(Daffonchio et al., 1998). Also, it has been reported that the length of spacer region 

varies among bacteria from 50 base-pair (bp) to 1500 bp (García-Martínez et al., 1999; 

Ranjard et al., 2001). Such two-fold variability allows for more detailed taxonomic 

identification than can be attained by the use of more conserved regions. 

 

2.5.2.2 Analyzing the amplified target genetic region 

Once multiple copies of the target region are obtained through PCR 

amplification, the next step is the comparison and differentiation of target regions 

obtained from various sample bacteria. If one chooses not to have the samples sequenced 

at this point, the potential gene sequence variation among samples needs to be visualized 

and expressed in the form of various migration/banding patterns on a gel (i.e., 

electrophoresis). Unfortunately, 16S rDNA samples cannot be differentiated based on 

their size without additional manipulation because 16S rDNA is extremely constant in 

size across a wide range of bacteria (García-Martínez et al., 1999). Thus, 16S rDNA 

samples need to be processed further by using such techniques as: 1) restriction fragment 

length polymorphism (RFLP) which involves pre-electrophoresis digestion of amplified 

rDNA samples with a set of enzymes that cut/restrict rDNA into a set of shorter strands 
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of unique lengths, depending on where the restriction enzymes cut a given rDNA strand; 

or 2) denaturing gradient gel electrophoresis (DGGE) which is a special gel 

electrophoresis method that can differentiate rDNA strands of comparable length in 

terms of their base sequence variation (i.e., G-C content).  

In contrast, the analysis of PCR-amplified ribosomal intergenic spacer does not 

require restriction digestion or denaturing gradient gel electrophoresis (Spiegelman et al., 

2005). Owing to its sequence and length variability, as well as the variation in the 

number of ribosomal RNA operon present in various bacteria (Gürtler, 1999), the 

amplified intergenic spacer products produce unique banding patterns when separated by 

agarose gel electrophoresis (Cartwright et al., 1995; Khbaya et al., 1998; Flint et al., 

2001). Although it is possible to use restriction enzymes or denaturing polyacrylamide 

gel electrophoresis on amplified intergenic spacer products to achieve greater resolution, 

these procedures add extra incubation time, multiple digestions, and preparation of 

special gels with long gel-running time, which are not suitable when a large number of 

samples need to be processed and analyzed. In contrast, agarose gel electrophoresis is 

relatively simple to conduct and is thus more suitable for repeated analysis. Also, 

Khbaya et al. (1998) analyzed genetic diversity and phylogeny of rhizobia and reported 

that the digestion of amplified 16S-23S spacer samples with nine restriction enzymes did 

not allow them to make a clearer distinction among the strains. 

The above review of the various methods used in analyzing nodule occupancy 

highlights the pros and cons of those procedures commonly employed. Given the wide 

range of techniques available to characterize various microorganisms, the potential exists 

to utilize these methods to study the impact of various environmental factors, including 

the presence of residual herbicides, on nodule occupancy and Rhizobium inoculation 

success.
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3 THE EFFECT OF FLUCARBAZONE APPLICATION ON GROWTH 

PARAMETERS, NITROGEN FIXATION, AND NODULE OCCUPANCY OF 

FIELD PEA: GROWTH CHAMBER EXPERIMENT 

 

3.1 Introduction 

In order to minimize rotational crop injury and maximize economic yield from 

crop rotations, it is important to consider soil persistence characteristics of herbicides 

because some herbicides can potentially carry over and injure subsequently planted crops. 

In western Canada where wheat production is often followed with annual grain legumes 

such as field pea (Pisum sativum L.), chickpea (Cicer arietium L.), and lentil (Lens 

esculenta L.) in a sequential rotation, it is particularly important for the producers to be 

aware of the residual properties of herbicides. This is because the symbiotic association 

between the host legume and the Rhizobium bacteria is sensitive to changes in many 

environmental factors and soil conditions, and thus agrochemical residues in the soil 

may influence inoculation success, N2 fixation, and yield of grain legumes. 

Amongst many herbicides used in wheat, acetohydroxyacid synthase (AHAS)-

inhibiting herbicides warrant special attention given their residual properties (Colborn 

and Short, 1999), acute plant toxicity at low concentrations in soil (Santel et al., 1999), 

and their potential ability to influence both host plant and the bacterial symbiotic partner 

(Duggleby and Pang, 2000). In fact, the reduction in plant/nodule production and N2 

fixation induced by various AHAS-inhibiting herbicides in different leguminous plants 

has been reported (Gonzalez et al., 1996; Royuela et al., 2000; Anderson et al., 2004; 

Zawonznik and Tomaro, 2005). 
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Flucarbazone-sodium is a relatively new AHAS-inhibiting herbicide used in 

western Canada to control wild oats (Avena fatua L.) and green foxtail (Setaria viridis 

L.) in spring wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) 

(Pest Management Regulatory Agency, 2000). Despite the herbicide’s popularity in the 

region, published data specific to the influence of flucarbazone on grain legume 

production, nodule production, and N2 fixation is not available at the time of writing. 

Thus, a growth chamber study was conducted to elucidate the influence of flucarbazone 

on the shoot and root development, nodule production, N2 fixation, and inoculation 

success during production of field pea. 

This experiment was conducted under controlled plant growth conditions and 

used a wide range of herbicide application rates in an attempt to determine the 

concentration at which residual levels of the herbicide significantly influences the above 

mentioned parameters of field pea production. It was recognized that flucarbazone 

freshly added to the soil for this experiment may not simulate the residual flucarbazone 

in the field because it has been reported that the aging of flucarbazone in the field leads 

to the formation of several chemical compounds (i.e., metabolites) such as sulfonamide, 

sulfonic acid, and O-desmethyl flucarbazone (EPA, 2000). However, this experiment 

was important in establishing the flucarbazone concentration at which field pea 

production is negatively influenced, and also to gain a general appreciation of plant and 

rhizobial response to the presence of an AHAS-inhibiting herbicide.  

 

3.2 Materials and Methods 

3.2.1 Experimental setup 

Soil samples were collected from experimental field sites established at the 

University of Saskatchewan Goodale Crop Research Farm, Saskatchewan (SW3-36-4-

W/3). The site was established as a component of the field experiment portion of this 
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thesis project, and soils used for the growth chamber experiment were collected from 

within the control plots of the field experiment. Detailed descriptions of the field site are 

provided in Chapter 4. Briefly, the field site was established and seeded to wheat in 2005 

(year 1). To manage weeds, the control plots were treated with a non-residual herbicide 

containing no AHAS inhibitor, while the rest of the plots were sprayed with various rates 

of flucarbazone-sodium to simulate flucarbazone carryover into the subsequent field pea 

cropping season in 2006 (year 2). The soil samples for the growth chamber experiment 

were collected from the control plots in year 2, prior to seeding to pea. 

Soil samples were collected from each of the four replicated control plots with a 

shovel to the depth of 10 cm, put into a container, and thoroughly mixed to obtain a 

composite sample. The sample was then air dried in the laboratory, sieved to pass 

through a 2-mm mesh, and then dispensed into 15-cm diameter plastic pots at 1.2 kg soil  

per pot. Each pot was lined with a plastic bag to prevent nutrient solution leaching. Field 

capacity (FC) moisture content of the soil was approximated according to Eliason et al. 

(2004) by determining the volume of water required to completely wet the known 

volume of air-dried soil to the bottom of a 100 mL plastic vial. 

In order to apply nutrients and flucarbazone to the pots, micro/macro nutrient 

solutions and various concentrations of flucarbazone solutions were prepared (Appendix 

A). Appropriate amounts of each solution (Appendix A) were mixed with water in a 

beaker, and applied to each pot to attain 75% FC and final flucarbazone concentrations 

ranging from 0 to 40 µg kg–1 in 5 µg kg–1 increments. The highest application rate (40 µg 

kg–1) is equivalent to twice the recommended field application rate of 30 g active 

ingredient per hectare (a.i. ha–1), which approximately converts to 20 µg kg–1. The 

spiking concentration range was chosen to ensure that sufficient herbicide would be 

present in at least some of the treatments to cause a negative impact on plant growth, 

nodulation, and nodule occupancy, particularly at the higher application rates. Each 
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herbicide application rate was replicated four times, and a total of 36 pots were set up 

(i.e., 9 herbicide rates x 4 replicates = 36 pots). Moistened soil was thoroughly mixed in 

the plastic bag used to line the pot to ensure even distribution of the nutrients and 

herbicide throughout the pot. Each pot was then seeded with four, pre-germinated field 

pea (Pisum sativum cv CDC Mozart) seeds at a depth of 2.5 cm. 

Prior to pre-germination, the seeds were surface-sterilized by soaking in 95% 

ethanol for 10 s, followed by a 3 min soak in full-strength, household bleach (i.e., 5% 

sodium hypochlorite; NaOCl). The seeds were then rinsed with sterile dH2O six times 

where fresh sterile water was used each time. The water used in last rinsing (0.1 ml) was 

plated on 1/10 tryptic soy agar (TSA) plate to ensure the seed surface sterility, then the 

seeds were allowed to germinate in a Petri dish with 10 ml of fresh sterile dH2O, lined 

with a sterile filter paper. Five seeds were placed per Petri dish.       

Seeds were inoculated with a strain of R. leguminosarum bv. viceae pure culture, 

grown in yeast mannitol broth (i.e., 1/10 YMB), at a rate of approximately 4.3 x 108 

colony forming units (cfu) mL–1 seed–1, by pipetting 1 mL of culture directly onto the 

seed in the soil. The seeds were then covered with soil.  

The Rhizobium used in this experiment is one of the two R. leguminosarum bv. 

viceae strains present in a commercial peat inoculant (NitraStik-C®; EMD Crop 

BioScience, WI). The peat inoculant was also used in the field experiment (Chapter 4), 

and the inoculum rhizobia are referred to as reference strains R1 and R2 where R1 is the 

strain used in this growth chamber experiment. The pure cultures of each strain were 

generously provided by EMD Crop BioScience.  

Following the emergence of the cotyledon, each pot was thinned to two plants, 

tomato cages were added for support, and the soil surface was covered with a 0.5-cm 

layer of white plastic beads to minimize soil drying. Pots were watered regularly to 

maintain 75% FC by weight during early stages of plant growth. When plant 
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transpiration became significant, they were watered to 100% FC on a daily basis. Pots 

were kept in a growth chamber with a 16 h photoperiod and day/night temperatures of 

22/18 ºC. Weed seedlings were removed daily and pots were regularly rotated under the 

light canopy which provided photon flux density of approximately 300 µmol m–2 s–1. 

 

3.2.2 Observation of shoot/root biomass, and nodule formation 

While at the flowering to pod formation stage, plants were harvested. The roots 

were washed with a gentle stream of tap water, and the whole intact plant was air-dried 

at room temperature. Once a constant weight was achieved, shoots were separated from 

roots, and nodules were removed from roots. Above-ground biomass (i.e., shoots and 

pods), root biomass, nodule number, and nodule weight were recorded for every two 

plants harvested from each pot. 

 

3.2.3 Assessment of nitrogen fixation by 15N natural abundance method 

Above-ground biomass samples (i.e., shoots and pods) were roughly ground in a 

grinder, and re-ground in a rotating ball-bearing mill into fine powder. Subsamples (1 ± 

0.05 mg) were analysed for natural abundances (δ) of the stable isotope pair 15N/14N 

using a ANCA elemental analyzer coupled to a TracerMass mass spectrometer (Europa 

Scientific, Crewe, U.K.) at the Stable Isotope Facilities at the Department of Soil Science, 

University of Saskatchewan. Finely ground field pea seed (REF/13CN.PEAGRN) with 

an atom % 15N of 0.3675 was used as a working standard. The δ15N value was calculated 

according to Robinson (2001) as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

standard

standardsample15

R
R - R

1000   Nδ       (3.1) 
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where Rstandard stands for the 15N:14N isotope ratio of atmospheric N2 (Rstandard = 

0.0036637) with δ15N of 0 ‰, and Rsample is the isotope ratio of the sample. 

 

3.2.4 Nodule occupancy analysis 

To conduct nodule occupancy analysis, a simple and rapid method was required 

to identify the origin of rhizobial nodule occupants as either inoculum or non-inoculum 

rhizobial strains. Prior to the adaptation of the molecular microbiological method as 

described in Chapter 3 and 4, the use of FAME (fatty acid methyl ester) profiling was 

considered. However, after a preliminary experiment (Appendix C), it became evident 

that the FAME profiles of the rhizobial strains of interest were too similar to be 

identified as distinct strains. Since strain level identification was necessary for the 

present study, the use of FAME analysis was not explored further, and molecular 

biological method was adopted instead. 

 

3.2.4.1 DNA extraction 

Following the removal of nodules from the roots, nodule samples were grouped 

into crown and distal regions to accommodate separate analysis of nodule occupants in 

these regions. Crown region was defined as roots within a 3-cm radius around the seed. 

Nodules on the roots outside of this radius were grouped as distal nodules.  

The method described by Santasup et al. (2000) was the original protocol used 

for DNA extraction from dried nodules, but in our hands, recovery was inconsistent. The 

final, optimized DNA extraction method included elements from Santasup et al. (2000) 

and Berthelet et al. (1996). The modifications were as follows. 

For every two plants grown in each pot, 12 nodules were selected (i.e., six crown 

and six distal), soaked in sterile distilled water until they became fully swollen and re-
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hydrated. To surface sterilize, re-hydrated nodules were soaked in 95% ethanol for 5 min 

and briefly dried on a sterile filter paper. Each surface sterilized nodule was placed in a 

1.5 mL Eppendorf tube, and crushed mechanically with a sterile plastic rod in the 

presence of Proteinase K enzyme (5 μL) to promote microbial cell membrane digestion. 

To physically disrupt the rhizobial cell membrane, sodium phosphate buffer (200 μL), 

20% Sodium dodecyl sulphate (SDS; w/v: 20 μL), zirconia/silica beads (0.4 g) were 

added into each tube, and vortexed for 5 min at maximum speed. 

To recover the buffer containing rhizobial DNA clean of the nodule debris, Tris-

HCl (200 μL) was added to each tube, centrifuged for 10 min at room temperature 

(13,000 rpm), and the supernatant transferred to a new 1.5 mL tube. To further 

precipitate and eliminate protein and cell debris, 7.5 M ammonium acetate was added (at 

half the volume of recovered supernatant), incubated on ice for 15 min, centrifuged for 5 

min at 4 ºC (13,000 rpm), and the supernatant transferred into a new 1.5 mL tube. To 

precipitate DNA out of the buffer for recovery, cold 2-propanol was added to each tube 

(at the same volume as the recovered supernatant), the tubes were kept overnight at – 20 

ºC and centrifuged for 5 min at 4 ºC (14,000 rpm), then the supernatant was discarded, 

leaving a pellet of DNA at the bottom of each tube. To wash the tube and the DNA 

pellet, 70% ethanol (500 μL) was added to each tube, gently inverted, centrifuged for 5 

min at 4 ºC (14,000 rpm), and ethanol was discarded. After washing the DNA twice in 

this manner, excess ethanol was allowed to evaporate in a bio-safety cabinet. Finally, the 

cleaned DNA pellet was dissolved in 50 μL of Tris ETDA buffer (pH 8.0), and passed 

through a polyvinylpolypyrrolidone (PVPP) spin column to remove chemical substances 

that can interfere with polymerase chain reaction (PCR) reactions. The PVPP cleaned 

rhizobial DNA was stored at – 80 ºC until use. 
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3.2.4.2 PCR amplification  

PVPP cleaned DNA isolates were subjected to a PCR reaction with primers 

FGPS1490 and FGPS132’ to amplify the 16S-23S rDNA intergenic spacer (IGS) regions. 

FGPS1490 is derived from conserved sequences in the 3’ part of 16S rDNA genes 

(Navarro et al., 1992), and reverse primer FGPS132’ corresponds to the 5’ part of the 

23S rDNA gene right next to the IGS (Ponsonnet and Nesme, 1994). To amplify the IGS 

regions of DNA extracted from nodule samples, 2 μL of PVPP cleaned DNA was 1:100 

diluted and used as a template (~ 10 ng μL–1). To be used as a reference during the 

banding pattern analysis, the reference inoculum strain was also PCR-amplified for the 

IGS region with the same set of primers by using 2 μL of its bacterial cell suspension as 

a template. 

PCR was done in a 20 μL volume with the aforementioned DNA templates. Taq 

PCR Master Mix system (Qiagen; Hilden, Germany) was used according to the reaction 

conditions recommended by the manufacture (1x Qiagen PCR buffer contains 1.5 mM 

MgCl2, 2.5 units Taq DNA polymerase, and 200 μM of each dNTP). The target region 

was amplified with a Robocycler Gradient 96 (Stratagene; California, USA) using the 

following conditions: an initial denaturation/cell lysis at 97 ºC for 10 min; 35 cycles of 

denaturation (1 min at 94 ºC), annealing (1 min at 55 ºC), and extension (2 min at 72 ºC); 

and final extension at 72 ºC for 3 min. 

Amplified PCR products were analyzed by electrophoresis in 2% agarose gels 

with 10-μL aliquots of PCR products. Gels were stained with ethidium bromide and 

photographed under UV illumination. By visually comparing the banding pattern of the 

nodule occupants to the reference inoculum strain, nodule samples were classified as 

either having ‘matching’ or ‘non-matching’ banding patterns as the reference strain. 
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3.2.4.3 Analysis of nodule occupancy data 

For each treatment, four replicated pots were present with each pot containing 

two plants. From each replicated pot, six nodules were analyzed for each region (crown 

and distal), and the presence of the inoculum strain was recorded in terms of a fraction as 

in “X/6” where X signified the number of nodules containing an inoculum strain. To 

statistically analyze the differences in the proportion of successful colonization by the 

inoculum rhizobial strain among the treatments, a contingency table was constructed as 

in the example shown in Appendix B, and a Pearson's chi-square (χ2) test conducted. 

 

3.2.4.4 Verification of the nodule occupancy analysis 

After the completion of visual analysis of agarose gel photographs, a select 

number of rhizobial DNA extracts from sample nodules were analyzed for their IGS 

nucleotide sequences, along with that of the reference strain. Sequencing was conducted 

to verify the accuracy of the visual classification of nodule occupants (i.e., matching or 

non-matching to the reference strain) on the basis of banding patterns, and to confirm 

that PCR-IGS products with the same banding patterns are indeed identical in the IGS 

gene sequences. The verification was jointly conducted for the growth chamber study 

and the field study. The detailed procedure and the results are provided in Chapter 4. 

Briefly, select rhizobial DNA extracts from sample nodules and the reference inoculant 

strains were subjected to PCR reaction as described under Section 3.2.4.2. The PCR-IGS 

product was cleaned and subsample was taken to be quantified for the DNA 

concentration. After quantification, the remaining PCR-IGS products were run on 1% 

agarose gel. A select number of single bands produced by the sample nodules and the 

reference inoculum strains were excised under the UV illumination, and DNA was eluted 

from the excised gel and purified. The National Research Council – Plant Biotechnology 

Institute DNA Sequencing Lab (Saskatoon, Canada) performed the sequencing reactions. 
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The sequencing results were compared against the microbial nucleotide sequence 

database to determine the most closely related strain using the National Center for 

Biotechnology Information (NCBI) online standard BLAST (Basic Local Alignment 

Search Tool) program (http://www.ncbi.nlm.nih.gov/). 

   

3.2.5 Statistical analysis 

Except for those from molecular analysis of nodule occupancy, data were 

presented as means and standard errors, and the differences between treatments were 

assessed using one-way ANOVA with post hoc analysis (Tukey's test) using SPSS 

(version 15.0.1; SPSS, Chicago, IL). The data from molecular analysis of nodule 

occupancy were expressed in the form of a contingency table, and Pearson’s chi-square 

(χ2) test was conducted using SPSS (version 15.0.1; SPSS, Chicago, IL).  

 

3.3 Results 

3.3.1 Shoot development and above-ground/root biomass 

The influence of flucarbazone addition was evident in shoot development. While 

the shoot heights of the control plants with no flucarbazone addition steadily increased 

until harvest (46 days after seeding; DAS) to reach nearly 40 cm on average, the growth 

of flucarbazone-treated plants was hindered at approximately 25 DAS, and the final 

shoot heights of all treated plants remained approximately 25% of the control (Fig. 3.1). 

Furthermore, visual observations at the time of harvest revealed that control plants had 

healthy leaves and long tendrils, whereas some plants from all flucarbazone-added 

treatments exhibited browning of the leaf edges and tendril tips which had the 

appearance of dead plant tissue (Fig. 3.2). 
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Figure 3.1  Impact of flucarbazone, applied at varying concentrations, on shoot height of 
field pea grown in a growth chamber. Error bars represent standard error. 
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AA
 

 

BB
 

 
Figure 3.2  Field pea leaves and tendrils at the time of harvest: (A) Control and (B) 20 
μg kg–1 flucarbazone-added treatment. Recommended field application rate of 
flucarbazone is 30 g a.i. ha–1, which approximately converts to 20 µg kg–1. 
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As noted above, the control plants were nearly four times taller, on average, than any of 

the treated plants at the time of harvest, while there were no significant height differences among 

the treated plants at the time of harvest (P < 0.05; Fig. 3.1). This trend in height difference also 

was reflected in the dry mass of shoots and pods where control plants had a significantly greater 

above-ground biomass than any of the treated plants (P < 0.05); however, there was no 

statistically detectable difference in the above-ground biomass among the treated plants (Fig. 3.3). 

Similarly, root biomass of the control plants was nearly three times greater than any of the treated 

plants, and there was no statistically significant difference among the root biomass of the treated 

plants according to the ANOVA (P < 0.05; Fig. 3.4). When shoot and root biomass were 

combined to be analyzed as total biomass, the same trend was observed where control plants had 

a significantly greater total biomass than any of the treated plants (P < 0.05); however, there were 

no statistically detectable differences in the total biomass among the treated plants (Fig. 3.5). 

Interestingly, the increase in flucarbazone application rates from 5 μg kg–1 (lowest) to 40 μg kg–1 

(highest) did not result in consistently observable trends in the shoot height and the shoot/root 

biomass (Fig. 3.1, 3.3, 3.4, 3.5), and all rates had a negative impact on these growth parameters. 

 

3.3.2 Nodule number and weight 

There was a notable difference in the number and the dry mass of nodules collected from 

control and flucarbazone-treated plants. On average control plants had seven times the number of 

nodules and nine times more nodule dry mass than the plants treated with the lowest amount of 

flucarbazone (5 μg kg–1) (Fig. 3.6 and 3.7). Among the flucarbazone-treated plants, those treated 

with the lowest and the second lowest concentration of flucarbazone (5 μg kg–1 and 10 μg kg–1, 

respectively) both had similarly small numbers and weights of nodules, which were significantly 

less than the control plants (P < 0.05; Fig. 3.6 and 3.7). Application of flucarbazone at rates 

greater than 15 μg kg–1 prevented any nodule formation (Fig. 3.6 and 3.7). 
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Figure 3.3  Influence of flucarbazone application rates on above-ground biomass (g per two plants) of 

field pea plants grown in a growth chamber. Error bars represent standard error. Bars with different 

letters are statistically different according to Tukey’s test at P < 0.05. Recommended field application 

rate is 30 g a.i. ha–1, which approximately converts to 20 µg kg–1. 
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Figure 3.4  Influence of flucarbazone application rates on root biomass (g per two plants) of field pea 

plants grown in a growth chamber. Error bars represent standard error. Bars with different letters are 

statistically different according to Tukey’s test at P < 0.05. Recommended field application rate is 30 g 

a.i. ha–1, which is approximately 20 µg kg–1. 
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Figure 3.5  Influence of flucarbazone application rates on total biomass (g per two plants) of field 

pea plants grown in a growth chamber. Error bars represent standard error. Bars with different letters 

are statistically different according to Tukey’s test at P < 0.05. Recommended field application rate of 

flucarbazone is 30 g a.i. ha–1, which approximately converts to 20 µg kg–1. 
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Figure 3.6  Influence of flucarbazone application rates on the number of nodules collected from field 

pea plants (per two plants) grown in a growth chamber, measured at 46 days after seeding. Error bars 

represent standard error. Bars with different letters are statistically different according to Tukey’s test 

at P < 0.05.  
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Figure 3.7  Influence of flucarbazone application rates on the nodule biomass (g per two plants) 

collected from field pea plants grown in a growth chamber, measured at 46 days after seeding. Error 

bars represent standard error. Bars with different letters are statistically different according to Tukey’s 

test at P < 0.05. 
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3.3.3 δ15N and total N in above-ground biomass 

Only the δ15N of above-ground biomass obtained from the control plants had a 

negative value (‰), which was significantly less (P < 0.05) than any of the positive δ15N 

values obtained from the flucarbazone-treated plants (Fig. 3.8). There were no 

significant differences in above-ground biomass δ15N values among treated plants (P < 

0.05), and the increase in flucarbazone application rates from 5 μg kg–1 (lowest) to 40 μg 

kg–1 (highest) did not generate a notable trend in the δ15N values (Fig. 3.8).  

The N concentration (µg mg –1) of above-ground biomass was unique in that the 

average value from the control plants did not vary appreciably from any of the 

flucarbazone-treated plants (Fig. 3.9). According to the ANOVA (P < 0.05), there were 

statistically significant differences observed among the N concentration values of select 

treatments; however, their occurrence was random, and the differences did not 

correspond with incremental changes in herbicide application rates. 

 

3.3.4 Nodule occupancy 

The plants that formed nodules (0, 5, and 10 μg kg–1 flucarbazone-treated) were 

analyzed for their nodule occupants, and the proportion of successful nodule 

colonization by the inoculum strain was compared. The photographs of the agarose gels, 

visualizing PCR-IGS products, were used to visually compare banding patterns of 

rhizobial strains extracted from nodules to that of the reference inoculum strain. An 

example of the photographed agarose gel is shown in Fig. 3.10. Electrophoresis of PCR-

IGS products revealed that the reference strain possessed one band whereas some strains 

isolated from nodules possessed multiple bands (Fig. 3.10). Also, the lengths of the 

PCR-IGS products were not identical for all strains tested which varied from 

approximately 600 to 1400 bp long.  
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Figure 3.8  Influence of flucarbazone application rates on δ15N (‰) of above-ground plant material 

obtained from a growth chamber experiment at 46 days after seeding. Error bars represent standard 

error. Bars with different letters are statistically different according to Tukey’s test at P < 0.05. 
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Figure 3.9  Influence of flucarbazone application rates on N concentration (μg mg–1) of above-

ground plant material obtained from a growth chamber experiment at 46 days after seeding. Error bars 

represent standard error. According to Tukey’s test at P < 0.05, statistically significant differences 

were observed among the N concentrations of select treatments; however, their occurrence was 

random, and the differences did not correspond with incremental changes in herbicide rates.
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Figure 3.10  Banding patterns of PCR amplified IGS products ran on 2% agarose gel. 
Lane L: Low DNA Mass Ladder; Lane 1 to 6: Rhizobium strains extracted from crown 
nodules of control plants; Lane R: Reference inoculum strain. 

 

 

 

The results from the visual examination of the agarose gel images were then 

reported as the proportion of successful nodulation by the inoculum strain (Table 3.1). 

There were no statistically detectable differences in the proportion of successful 

nodulation by the inoculum strain when nodules from each region (i.e., crown or distal) 

were compared separately across treatments (crown: χ2 = 4.16, P = 0.13; distal: χ2 = 1.03, 

P = 0.60), and the increasing flucarbazone application rates did not cause the inoculation 

success levels to have a notable trend (Table 3.1). Also, there were no significant 

differences in the nodulation success when sampling regions were compared within each 

herbicide application rate (i.e., crown vs. distal) (0 μg kg–1: χ2 = 3.02, P = 0.08; 5 μg kg–

1: χ2 = 1.42, P = 0.23; and 10 μg kg–1: χ2 = 0.00, P = 1.00). 
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Table 3.1  Influence of flucarbazone application on the proportion of successful nodule 
colonization by inoculum strain. Nodules were collected from field pea plants grown in a growth 
chamber, measured at 46 days after seeding. 
 

 Flucarbazone application rate 

 0 μg kg–1  5 μg kg–1  10 μg kg–1 
      

Crown Average 4/6  2/6  3/6 
      

Distal Average 2/6  3/6  3/6 

* For each treatment, four replicated pots were present with each pot 

containing 2 plants. From each replicated pot, six nodules were 
analyzed for each region (crown or distal), and the presence of the 
inoculum strain was recorded in terms of a fraction as in “X/6” where 
X = number of nodules containing an inoculum strain. 

** The fractional values from the four replicated plots were averaged, 
rounded to the nearest whole number, and presented in the table. 
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3.4 Discussion 

3.4.1 Shoot growth and nodule formation 

The results from the herbicide-spiked growth chamber study clearly indicated 

the susceptibility of field pea to the presence of flucarbazone in the soil, demonstrated by 

the significant reduction in the shoot and root development, nodule production, and N2 

fixation induced by the herbicide addition (Fig. 3.1 to 3.7). There are numerous reports 

in the literature of reduction in plant/nodule production and N2 fixation induced by 

various AHAS-inhibiting herbicides in different leguminous plants (Gonzalez et al., 

1996; Royuela et al., 2000; Anderson et al., 2004; Zawoznik and Tomaro, 2005). 

Unfortunately, published data specific to the influence of flucarbazone on field pea 

growth, nodule production, and N2 fixation is not available at the time of writing; 

however, some other AHAS inhibitors have been reported to influence these parameters 

in peas. 

Gaston et al. (2002) transplanted 12-day-old field pea plants into a hydroponic 

system with nutrient solution, containing 140 times the recommended field application 

rate of an AHAS inhibitor (imazethapyr; IM), to study the change in shoot and root 

lengths. The resultant shoot growth pattern reported by Gaston et al. (2002) was very 

similar to those from the current study where the control plants continued to grow until 

harvest (7 d after IM treatment), while the shoot growth was arrested in IM-treated plants 

3 d after the herbicide addition. Interestingly, the AHAS inhibitors prevented elongation 

of shoots and roots, yet the plants continued to live until harvest in the current study and 

in the experiment conducted by Gaston et al. (2002). 

Blair (1988) reviewed the visible symptoms of AHAS inhibitors on plants and 

reported that plants treated with sulfonylureas usually died slowly, and older plants 

decreased in susceptibility to the herbicide while some recovered from the inhibition in 
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growth. Although stunted and malformed, these plants produced normal leaves, flowered 

and produced seeds (Blair and Martin, 1988). 

Gonzalez et al. (1996) conducted a 4-wk growth chamber study with field pea 

and reported that while the application of 3.5 times the recommended field application 

rate of IM reduced nodulation by 45%, the application of IM at above 3.5 times the 

recommended field application rate nearly eliminated the nodule formation. Similarly, in 

the current study, the treatment of plants with the lowest and the second lowest 

concentration of flucarbazone (5 μg kg–1 and 10 μg kg–1, respectively) reduced the 

nodulation by approximately 85%, and the application of flucarbazone at 15 μg kg–1 or 

more eliminated nodule formation. These findings suggest the presence of a threshold 

herbicide concentration for a given herbicide with which nodulation is abolished when it 

is exceeded. Published data is not available to confirm the presence of such a threshold 

level for field pea treated with flucarbazone. 

 

3.4.2 N fixation assessed by δ15N and total N in above-ground biomass 

Because of isotope discrimination caused by biological and chemical processes, 

most soils have slightly higher 15N abundance than the atmosphere (Amarger et al., 

1979). As a result of such a difference in 15N abundance between soil and atmospheric 

N2, N2-fixing plants have been found to have lower 15N enrichment than non-fixing ones 

(Amarger et al., 1979). Since the shoot δ15N (‰) values are presented in terms of the 

relative 15N abundance of a given sample to that of the atmosphere, those plants with 

positive shoot δ15N values are thought to have utilized relatively more N from the soil 

than the control plants which primarily obtained N from the atmosphere via symbiotic N2 

fixation. Since isotopic fractionation has been reported to occur with some legumes 

during N2 fixation by the legume-rhizobia symbiosis with a preference for 14N over 15N 
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(Yoneyama et al., 1986), it is not unusual for actively N2-fixing plants to have negative 

shoot δ15N values. 

Since the flucarbazone added plants had practically no nodulation (Fig. 3.6) and 

the tissue N concentrations were more or less comparable over the range of herbicide 

application without any notable trends (Fig. 3.9), it is safe to assume that the control 

plants met their N demand via symbiotic N2-fixation, whereas the flucarbazone-treated 

plants satisfied N requirements by taking up N from the soil. The growth arrest caused 

by the herbicide also may have contributed in the maintenance of N levels in 

flucarbazone-treated plants similar to control plants. Published data specific to the 

influence of flucarbazone on N fixation in field pea was not available at the time of 

writing.  

Zawoznik (2005) reported that the treatment of soybean with AHAS inhibitor 

(chlorimuron-ethyl) reduced the number of nodules by 38% but shoot N content 

remained constant. Unlike the present study, however, the herbicide-treated plants still 

produced a small number of nodules, and this led Zawoznik (2005) to speculate that the 

herbicide-treated soybean plants formed fewer but more active nodules. Shoot δ15N 

values of control and treated plants were not presented by Zawoznik (2005) to analyze 

the potential N source difference. 

 

3.4.3 Influence of flucarbazone on nodulation success by an inoculum strain 

The current study found no difference in the proportion of successful nodule 

occupancy by the inoculum strain among different treatments of flucarbazone (0, 5, 10 

μg kg–1), and between crown and distal regions of a given treatment (Table 3.1). Also, 

the application of flucarbazone at rates greater than 15 μg kg–1 prevented any nodule 

formation (Fig. 3.4). In the absence of published data on the influence of AHAS 

inhibitors on nodule occupancy, an attempt is made to speculate how flucarbazone 
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application would have influenced rhizobia and/or the host plant to produce such results. 

Because AHAS inhibitors can affect both rhizobia and the plant, it is necessary to 

analyze the potential herbicidal influence on both symbiotic partners. 

Multiple reports are present on the apparent resistance of rhizobia to high-

concentrations of various AHAS-inhibiting herbicides. Gonzalez et al. (1996) reported 

that imazethapyr doses 700 times the recommended field application rates did not 

influence the growth and the nodulation ability of Rhizobium leguminosarum biovar 

viceae pure culture grown in complex and defined medium. Similarly, the growth of 

soybean rhizobia (Bradyrhizobium japonicum) was not affected when 150 times the 

recommended field application rates of chlorimuron-ethyl was added to the pure culture 

(Zawoznik and Tomaro, 2005). Furthermore, Anderson et al. (2004) reported that the 

addition of chlorsulfuron at double the recommended field application rate did not 

influence chickpea rhizobia (Mesorhizobium ciceri) grown in medium containing no 

external source of amino acids. The results from these studies suggest that rhizobial 

growth is generally unaffected by most AHAS-inhibiting herbicides, except at levels far 

exceeding those encountered in the field. In this study, nodulation was eliminated at 15 

μg kg–1 which is approximately 65% of the field recommended application rate. Given 

the apparent tolerance of rhizobia to various AHAS inhibitors indicated in the literature, 

15 μg kg–1 of flucarbazone did not likely hinder the multiplication of rhizobia in soil, but 

apparently influenced the ability to nodulate. 

Interestingly, Anderson et al. (2004) reported in the aforementioned study of 

chickpea rhizobia that there was a reduction in number and weight of chickpea nodules 

when rhizobia were pre-exposed to chlorsulfuron at double the recommended field 

application rate. This means that the nodulation ability of rhizobia can be affected 

without any apparent effect on its growth characteristics. This is possible when the nod 

genes involved in the nodulation process are part of an extrachromosomal genetic 
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element nonessential for growth (i.e., plasmids), and not part of the bacterial 

chromosome (Gonzalez et al., 1996). Anderson et al. (2004) designed the experiment so 

that AHAS inhibitor was only present during the pre-exposure of rhizobia to the 

herbicide in a pure culture, and the herbicide was absent from any other stages of 

chickpea production. This led Anderson et al. (2004) to speculate that the reduction in 

nodulation resulted from an effect of the herbicide on the nodule formation process. Thus, 

it is possible that 15 μg kg–1 of flucarbazone hindered the nodulation ability of all of the 

rhizobia present in soil to cause elimination of nodulation at that flucarbazone 

application rate. Having speculated as such, it is difficult to hypothesize, given the lack 

of information, if an AHAS inhibitor would affect one strain of rhizobia or a large group 

of related strains in their nodule formation process. Depending on the scope of influence 

of a given AHAS inhibitor, it can selectively influence the success of nodule occupancy 

by a certain strain or it can influence a large group of compatible rhizobia to affect 

nodulation in general. 

Aside from its potential influence on rhizobia, AHAS inhibitors can influence 

the root biomass and its surface area to which rhizobia attach themselves when initiating 

nodulation. The herbicide influence on the root development can affect rhizobial 

infection of root hairs because the site of infection is restricted to actively growing hairs 

and the infection period is transitory (Gonzalez et al., 1996). Such change in 

physiological development of roots would likely influence nodulation by all compatible 

rhizobia present in soil regardless of their strains, and affect nodulation in general. In 

addition to the herbicidal influence on rhizobial nodulation capabilities, the influence of 

flucarbazone on root development may also explain the elimination of nodulation in the 

present study although root hair development was not examined. 

The possibility of herbicidal interference of chemical signalling between 

rhizobia and host plant also has been suggested (Fox et al., 2007); however, the author is 
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not aware of published data on the topic specific to AHAS inhibitors and field pea. 

Therefore, it is not possible to speculate if herbicidal interference of communication 

between the symbiotic partners would be strain specific to impact nodulation success of 

a certain strain or if it would influence a large group of compatible rhizobia to affect 

nodulation in general. Nonetheless, the current study found that the flucarbazone 

application at 5 and 10 μg kg–1 significantly reduced the nodule count without 

influencing the nodulation success ratio by the inoculum strain. This may suggest that 

flucarbazone equally influences all rhizobial strains, rather than being selectively 

discriminatory against the inoculum strain tested in this study.   

 

3.5 Conclusions 

The findings from this study demonstrated the susceptibility of field pea to the 

presence of flucarbazone in soil. Given high enough concentrations of residual 

flucarbazone remaining in soil, the herbicide has the potential not only to hinder the 

proper physiological development of the plant, but also to eliminate nodulation 

altogether. Given the lack of published data on the influence of AHAS inhibitors on 

nodulation success however, it was not possible to validate findings on nodule 

occupancy from the present study. Even though an attempt was made to confirm the 

results based on the data from related studies, it was a challenging task because AHAS 

herbicides can potentially influence both symbiotic partners at various stages of nodule 

formation. Nonetheless, it is clear that if the environmental conditions are such that the 

concentration of residual flucarbazone in soil approaches 5 μg kg–1 (25% of 

recommended field application rates), a producer would likely notice a significant 

reduction in plant growth, nodulation, and N benefit of growing field pea. These findings 

from the growth chamber study raise questions as to whether or not similar results would 

be obtained in the field conditions where actual field pea production takes place.
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4 THE EFFECT OF FLUCARBAZONE APPLICATION ON GROWTH 

PARAMETERS, NITROGEN FIXATION, AND NODULE OCCUPANCY OF 

FIELD PEA: FIELD EXPERIMENT 

 

4.1 Introduction 

In western Canada the chief cereal crop, wheat, is often followed with annual 

grain legumes such as field pea (Pisum sativum L.), chickpea (Cicer arietium L.), and 

lentil (Lens esculenta L.) in a sequential rotation. This type of crop rotation is beneficial 

in conservation and replenishment of soil N based on the ability of the leguminous plant 

to fix atmospheric N2 through symbiotic association with effective strains of Rhizobium 

bacteria (Baldock et al., 1981; Wright, 1990; Beckie and Brandt, 1997; Przednowek et al., 

2004) (Beckie and Brandt, 1997; Przednowek et al., 2004; Wright, 1990). 

Certain herbicides used during wheat production can persist in soil longer than 

desired, and injure subsequently planted legumes (Moyer et al., 1990); however, a 

comprehensive study has not been conducted to fully examine the potential effects of a 

residual herbicide on the symbiotic association between the host legume and the 

Rhizobium bacteria. Based on the sensitivity of symbiotic partners to changes in many 

environmental factors, agrochemical residues in the soil holds great potential to 

influence inoculation success, N2 fixation, and yield of grain legumes. 

Given their residual properties (Colborn and Short, 1999), severe plant toxicity 

at low concentrations (Santel et al., 1999), and their potential ability to influence both 

host plant and the bacterial symbiotic partner (Duggleby and Pang, 2000), 

acetohydroxyacid synthase (AHAS)-inhibiting herbicides are of particular concern when 
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planning crop rotations. To examine the potential of an AHAS inhibitor to cause 

carryover injury in field pea cropped following wheat, a field experiment was conducted 

with one of the AHAS-inhibiting herbicides (flucarbazone-sodium) commonly used in 

western Canada in wheat production.  

It was established in our previous growth chamber experiment (Chapter 3) that at 

a high enough concentration (i.e., 5 μg kg–1 of freshly added flucarbazone; 

approximately 25% of recommended field application rates), flucarbazone in soil has the 

potential to hinder proper development of field pea and restrict nodule development. By 

studying the potential influence of field-aged, one-year-old residual flucarbazone on 

field pea, the present field work was intended to elucidate whether flucarbazone applied 

at the field recommended rate during wheat production would persist for 1 yr at high 

enough concentrations (as either non-degraded flucarbazone or in the form of 

metabolites) to cause the type of negative impact on plant growth and nodule 

development as was observed in the growth chamber experiment. Also, a possibility was 

recognized that the proportion of nodules occupied by the inoculum rhizobial strains 

may vary among different flucarbazone treatments without affecting any of the plant and 

nodule development parameters. Thus, an attempt was made to genetically identify the 

origin of nodule occupants using a molecular microbiological method. 

 

4.2 Materials and Methods 

4.2.1 Description of field sites and soil characteristics 

Field experiments were conducted in the spring/summer of 2005 and 2006 at the 

University of Saskatchewan Goodale Crop Research Farm, Saskatchewan (SW3-36-4-

W/3) and the Agriculture and Agri-Food Canada Research Station at Beaverlodge, 

Alberta (NW36-71-10-W/6). In order to simulate flucarbazone carryover during crop 

rotation, wheat was grown in 2005 (year 1), and was treated with three rates of 
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flucarbazone-sodium (0, 20, 30 g a.i. ha–1) to control weeds in wheat, where the 

recommended field rate is 30 g a.i. ha–1 (≈ 20 µg kg–1). The control plots that received no 

flucarbazone were treated with non-residual herbicides containing no AHAS inhibitor 

(i.e., bromoxynil and clodinafop mix) at the field recommended application rates to 

control weeds. At each site, all treatments were replicated four times, and arranged in a 

randomized complete block design. 

Prior to seeding pea in 2006 (year 2), soil samples (0- to 10-cm depth) were 

collected from each replicated plot with a shovel, and bulked together to obtain a 

composite sample for each treatment at each location. At each replicated plot, three to 

five sampling locations were randomly selected, avoiding the perimeters of the plot. 

Each composite soil sample was air-dried in the laboratory, ground to pass through a 2-

mm sieve, and stored for analyses. Composite soil samples of control plots were 

analyzed to obtain general physical and chemical characteristics of the soil at each site 

(Table 4.1). Soil texture analysis was conducted with a laser diffraction particle size 

analyzer according to the manufacturer’s instructions (Horiba Instruments, Inc., Irvine, 

CA). Percent organic carbon (OC) contents were determined using a LECO CNS-2000 

furnace (LECO Corporation, St. Josheph, MI) at 840 ºC (Wang and Anderson, 1998). 

Soil pH was measured with a pH meter in a 1:2 soil:water suspension (McLean, 1982). 

Field capacity (FC) moisture content of the soil was approximated according to Eliason 

et al. (2004). Both ammonium (NH4) and nitrate (NO3) concentrations in soil was 

measured by using a 2M KCl soil extraction method as described by Page (1982). 
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Table 4.1  Soil characteristics in the upper 10 cm of the soil profile at trial sites: 
Goodale SK and Beaverlodge, AB 
 

Site Soil Classification Texture Sand Silt Clay OC† pH FC‡ NH4 NO3 

   ------------%--------------    µg/ 
g soil 

µg/ 
g soil 

Goodale, SK Dk Br Chernozem Sandy Clay Loam 65 12 23 2.2 5.9 18 8 57 

Beaverlodge, AB Dk Grey Luvisol Clay 25 24 51 3.9 5.5 29 6 89 
† Percent organic carbon  
‡ Percent moisture (w/w) at field capacity 

 

 

4.2.2 Pea seeding and inoculation 

In year 2, the same field plots at Goodale, SK and Beaverlodge, AB were seeded 

to field pea (Pisum sativum cv CDC Mozart) which was pre-treated with a commercial 

peat inoculant (NitraStik-C®; EMD Crop BioScience, WI) containing two strains of R. 

leguminosarum bv. viceae. The pure cultures of each strain were generously provided by 

EMD Crop BioScience, and designated as reference strains R1 and R2. The product label 

for NitraStik-C® states that a gram of the product delivers a minimum of 500 million 

viable cells of R. leguminosarum bv. viceae (EMD Crop BioScience, 2007). Given the 

rate of inoculant used for this experiment (4g per kg of seeds) and the approximate 

average weight of a pea seed (0.2 g), each seed would have, in theory, received at least 

4.0 x 105 viable rhizobial cells. The information was not available on the relative 

proportion of the two strains R1 and R2 present in the inoculant. 

 

4.2.3 Acetylene reduction assay 

When the field peas were at flowering to pod formation stage, random samples 

of three plants from each treatment plot were collectively tested for nitrogenase activity 

according to the acetylene reduction assay (ARA) (Hardy et al., 1973). Upon excavation 

of the plants, excess soil was gently removed from roots, shoots were cut off, and roots 
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were placed in a gas tight 1 L Mason jar equipped with a rubber septum installed in the 

lid. One hundred millilitres of air was replaced with an equal volume of acetylene (C2H2) 

using a syringe, and the jar was buried in soil for incubation. During the 20-min 

incubation period, the jar was dug up every 5 min to be shaken gently to ensure nodule 

exposure to C2H2. After incubation, 10 mL of the gas sample was removed from the jar 

with a syringe, and placed into an evacuated gas tight test tube (BD Vacutainer®) through 

a septum installed in the lid. A total of twelve gas samples (i.e., 0, 20, 30 g a.i. ha–1 

flucarbazone treated plots x 4 replicates) were brought back to the laboratory, and 

analyzed on a gas chromatograph (GC; Hewlett-Packard 5890A) fitted with a flame 

ionization detector (FID) for the concentration of nitrogenase-reduced acetylene (i.e., 

ethylene: C2H4). Chromatographic separation was carried out on a 1.8m Porapak™ Q 

column (80/100 mesh), and the instrument was run at 60 °C with nitrogen as the carrier 

gas at flow rate of 40cc min-1.    

 

4.2.4 Observation of shoot and root biomass and nodule formation 

After the ARA was conducted in the field, the harvested shoots and roots were 

brought back to the laboratory for the determination of plant biomass and nodulation. 

Root samples were washed clean with a gentle stream of tap water prior to nodule 

removal, and then nodule numbers were recorded on three plants per plot. Shoots, roots, 

and detached nodules were oven dried (shoots and roots = 72 h at 45 °C; nodules = 24 h 

at 60 °C), and weights were recorded for each plot. 

 

4.2.5 Observation of N concentration, and 15N accumulation 

At pea seed maturity in year 2, above-ground biomass (shoot and seeds) was 

harvested by hand from each plot by randomly selecting 1m2 area (containing four 1-m 

crop rows) in the middle of each plot. The plant sample from each plot was individually 
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bagged, air-dried, weighed, threshed, and seed yield recorded. Shoot samples were 

roughly ground in a grinder, re-ground in a rotating ball-bearing mill into fine powder, 

and analyzed for N content (%) using a LECO CNS-2000 furnace (LECO Corporation, 

St. Josheph, MI). Subsamples (1 ± 0.05 mg) of the powderized shoot samples were also 

analysed for natural abundance (δ) of the stable isotope pair 15N/14N as described under 

Section 3.2.3. 

 

4.2.6 Nodule occupancy analysis 

At the same time as when in-field ARA was conducted at flowering to pod 

formation stage, a separate set of field pea samples were collected for nodule occupancy 

analysis. Three plants were randomly selected from each replicated plot, excavated with 

a shovel, and the whole plant brought back to the laboratory with soil attached to the 

roots. In the laboratory the roots were washed clean of soil using a gentle stream of tap 

water, and the plant was air-dried at room temperature. Once a constant weight was 

achieved, nodules were removed from roots, and grouped into crown and distal regions, 

as described under Section 3.2.4.1. DNA extraction and PCR amplification were 

conducted on nodule samples as previously described under Sections 3.2.4.1 and 3.2.4.2, 

respectively. When it was necessary to PCR-amplify the inoculum strains as a reference, 

their pure culture bacterial cell suspensions were used as a template. 

 

4.2.7 Analysis of nodule occupancy data 

At each field site, four replicated plots were present for each treatment. From the 

plant samples collected to represent each replicated plot, six nodules were analyzed for 

each region (crown and distal), the presence of the inoculum strain was recorded in each 

nodule, and results are reported in terms of a fraction, e.g. “X/6” where X signifies the 

number of nodules containing an inoculum strain. To statistically analyze the differences 
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in the proportion of successful colonization by the inoculum rhizobial strains among the 

treatments, a contingency table similar to the example shown in Appendix B was 

constructed, and a Pearson's chi-square (χ2) test was conducted in SPSS (SPSS Inc, 

2006). 

 

4.2.8 Verification of the nodule occupancy analysis 

After the visual analysis of agarose gel photographs, a select number of sample 

nodule occupants and the reference rhizobial strains were analyzed for their 16S-23S 

rDNA intergenic spacer (IGS) nucleotide sequences. Sequencing was conducted to verify 

the accuracy of the visual classification of nodule occupants on the basis of banding 

patterns (i.e., matching or non-matching to the reference strain), and to confirm that 

PCR-IGS products of indistinguishable band mobility are indeed identical in the IGS 

gene sequences. The verification was jointly conducted for the growth chamber study 

(Chapter 3) and the field study.  

 

4.2.8.1 Sample preparation for nucleotide sequencing 

Select rhizobial DNA extracts from sample nodules and the reference inoculant 

strains were subjected to PCR reaction (40 μL reaction volume per tube x 4 tubes = 160 

μL IGS-PCR product per nodule sample) as described under Section 3.2.4.2. The PCR 

amplified IGS product (PCR-IGS) of each sample was combined in a 1.5 mL Eppendorf 

tube, 16 μL of 3M sodium acetate (pH 5.2) and 440 μL of 95% ethanol were then added 

to precipitate DNA overnight at – 20 ºC. The precipitated DNA was centrifuged for 15 

min at 4 ºC (13,000 rpm), and supernatant was discarded to leave the DNA pellet on the 

bottom of the tube. To wash the tube and the DNA pellet, 70% ethanol (500 μL) was 

added to each tube, gently inverted, centrifuged for 5 min at room temperature (13,000 
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rpm), and the ethanol was discarded. After washing the DNA twice in this manner, 

excess ethanol was allowed to evaporate in a bio-safety cabinet. The cleaned DNA pellet 

was dissolved in 30 μL of Tris ETDA buffer (pH 8.0), then 1 μL of the dissolved product 

was quantified for the DNA concentration with a 1% (w/v) agarose gel and a dilution 

series of a Low DNA MassTM Ladder (Invitrogen, California, USA). 

After quantification, the remaining PCR-IGS products were run on 1% agarose 

gel. A select number of single bands produced by the sample nodules and the reference 

inoculum strains were excised under the UV illumination, and DNA was eluted from the 

excised gel and purified using Geneclean II kit (MP Biomedicals, California, USA). The 

National Research Council – Plant Biotechnology Institute DNA Sequencing Lab 

(Saskatoon, Canada) performed the sequencing reactions using the primer FGPS1490. 

The sequencing results were compared against the microbial nucleotide sequence 

database to determine the most closely related strain using the National Center for 

Biotechnology Information (NCBI) online standard BLAST (Basic Local Alignment 

Search Tool) program (http://www.ncbi.nlm.nih.gov/). 

 

4.2.8.2 Selection of banding patterns to be sequenced 

The agarose gel electrophoresis of PCR-IGS products obtained from nodule 

samples and reference inoculum strain produced unique sets of banding patterns for the 

growth chamber experiment (Fig. 3.10). As reported later in this chapter (Section 4.3.3), 

the PCR-IGS products of nodule samples and reference strains from the present field 

experiment also produced unique banding patterns upon electrophoresis which were 

distinguishable from each other. Excluding the ones that were visually quite different 

from the reference strains, five banding patterns were identified in the sample nodules as 

containing either ‘similar’ or ‘identical’ bands as those of the reference strains based on 
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their migratory distance. These patterns were classified as A, B, C, R’1, and R’2 to 

signify that the bands A to C were similar to (but visually distinguishable from) one of 

the reference strains while the bands R’1, and R’2 were matching to (and visually 

indistinguishable from) the reference strains R1 and R2, respectively. For each pattern, 

three representative bands were excised from the agarose gel to have the PCR-IGS 

products of each pattern sequenced in triplicates as described in the previous section. 

 

4.2.9 Statistical analysis 

Except for those from molecular analysis of nodule occupancy, data were 

presented as means and standard errors, and the differences between treatments were 

assessed using one-way ANOVA with post hoc analysis (Tukey's test) using SPSS 

(version 15.0.1; SPSS, Chicago, IL). The data from molecular analysis of nodule 

occupancy were expressed in the form of a contingency table, and Pearson’s chi-square 

(χ2) test was conducted using SPSS (version 15.0.1; SPSS, Chicago, IL).  

 

4.3 Results 

4.3.1 Weather 

During the 2005 growing season (year 1) when flucarbazone was applied in wheat at 

both field sites, Goodale had 83% more precipitation than the 30-yr average between May and 

September, while Beaverlodge received 17% less precipitation than the 30-yr average for the 

same period (Table 4.2). Similarly, during the 2006 growing season (year 2) when field pea 

was grown, Goodale had 70% more precipitation than the 30-yr average between May and 

September, while Beaverlodge received 32% less precipitation than the 30-yr average for the 

same period. 
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Table 4.2  Monthly precipitation (mm) for the two growing seasons at field trial 
locations: Goodale, SK and Beaverlodge, AB. 

 

 2005 

 May  June  July  Aug.  Sept.  Total 

Goodale, SK† 27.6  173.2  57.0  84.0  92.4  434.2 
Beaverlodge, AB‡ 52.4  71.4  65.4  49.2  17.2  255.6 

 2006 

 May  June  July  Aug.  Sept.  Total 

Goodale, SK† 58.2  110.8  45.8  35.4  125.2  375.4 
Beaverlodge, AB‡ 59.6  18.8  59.8  10.0  22.8  171.0 

* 30 yr long term annual precipitation average (1970 – 2001) for Goodale, SK (244.3 mm) 
and Beaverlodge, AB (317.7 mm). 

† Environment Canada Kernen weather station, SK 
‡ Environment Canada Beaverlodge weather station, AB 

 

 

4.3.2 Plant growth and nodulation 

According to the ANOVA (P < 0.05), the use of various rates of flucarbazone in 

year 1 (0, 20, and 30 g a.i. ha–1) did not cause statistically significant differences in any 

of the parameters measured in year 2 at either field site (Goodale, SK and Beaverlodge, 

AB). The parameters measured included: shoot and root dry biomass, seed yields, 

nitrogenase activity (ARA), nodule number and weight, shoot N concentration, and 

shoot δ15N (Fig. 4.1.a to h and 4.2.a to h). 

At Goodale, data suggested an inverse relationship between the incremental 

herbicide application rates and the average values of shoot weight and total nodule 

number (Fig. 4.1.a and e). Similarly, at Beaverlodge, data suggested an inverse 

relationship between the incremental herbicide application rates and the average values 

of seed yield (Fig. 4.2.c).  
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Figure 4.1  a to f. Impact of flucarbazone application on: shoot weight (a), root weight (b), seed yield 

(c), nitrogenase activity measured by acetylene reduction assay (d), total nodule number (e), and total 

nodule weight (f) of field pea grown at Goodale, SK. Error bars represent standard error. Differences 

in the reported mean values of each parameter among flucarbazone application rates were not 

statistically significant according to Tukey’s test at P < 0.05.
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Figure 4.1 (continued) g to h. Impact of flucarbazone application on: shoot N concentration (g) and 

δ15N (‰) of shoot (h) of field pea grown at Goodale, SK. Error bars represent standard error. 

Differences in the reported mean values of each parameter among flucarbazone application rates were 

not statistically significant according to Tukey’s test at P < 0.05.
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Figure 4.2  a to f. Impact of flucarbazone application on: shoot weight (a), root weight (b), seed yield 

(c), nitrogenase activity measured by acetylene reduction assay (d), total nodule number (e), and total 

nodule weight (f) of field pea grown at Beaverlodge, AB. Error bars represent standard error. 

Differences in the reported mean values of each parameter among flucarbazone application rates were 

not statistically significant according to Tukey’s test at P < 0.05.
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Figure 4.2 (continued) g to h Impact of flucarbazone application on: shoot N concentration (g) and 

δ15N (‰) of shoot (h) of field pea grown at Beaverlodge, AB. Error bars represent standard error. 

Differences in the reported mean values of each parameter among flucarbazone application rates were 

not statistically significant according to Tukey’s test at P < 0.05.

g h
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However, these relationships were not consistently observed at both locations. 

Moreover, the ANOVA failed to detect any statistically significant differences at P < 0.05. 

As for those parameters lacking any identifiable trends, the variation in their average 

values across treatments appeared random, and the differences did not correspond with 

incremental changes in herbicide application rates. 

 

4.3.3 Nodule occupancy 

Field pea harvested from the field sites with three different treatments (i.e., 

application of 0, 20, and 30 g a.i. ha–1 of flucarbazone in year 1 in wheat) were analyzed 

for their nodule occupants, and the proportion of successful nodule colonization by the 

inoculum rhizobial strains was compared. The photographs of the agarose gel 

electrophoresis, visualizing PCR-IGS products, were used to compare banding patterns 

of rhizobial strains extracted from nodule samples to those of the reference inoculum 

strains. An example of an agarose gel is shown in Fig. 4.3. 

As in the growth chamber experiment (Chapter 3), electrophoresis of PCR-IGS 

products revealed that the reference inoculum strain R1, as well as R2, possessed one 

band whereas some strains isolated from nodules possessed multiple bands (Fig. 4.3). 

Also, the lengths of the PCR-IGS products were not identical for all strains tested which 

varied from approximately 600 to 1400 bp long. The results from the visual examination 

of the agarose gel images were then reported as the proportion of nodules successfully 

colonized by inoculum strains R1 or R2 (Table 4.3). 

Statistically detectable differences in the proportion of successful nodulation by 

the inoculum strains were not found when nodules from each region (i.e., crown or 

distal) were compared across the treatments for Goodale (crown: χ2 = 2.63, P = 0.27; 

distal: χ2 = 2.09, P = 0.35) and Beaverlodge (crown: χ2 = 1.57, P = 0.46; distal: χ2 = 0.38, 

P = 0.83).
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Figure 4.3  Banding patterns of PCR amplified IGS products ran on 2% agarose gel. 
Lane L: Low DNA Mass Ladder; Lane 1 to 6: Rhizobium strains extracted from crown 
nodules (Goodale, 20 g a.i. ha–1 treatment); Lane R1 and R2: Reference inoculum strains.  

 

 

Table 4.3  Influence of flucarbazone application on the proportion of nodules 
successfully colonized by either of the inoculum strains R1 or R2. Nodules collected from 
field pea plants grown in a field treated with three rates of flucarbazone (0, 20, and 30 g 
a.i. ha–1) 1 yr prior to field pea seeding. 
 

 Goodale, SK Beaverlodge, AB 

 0  20  30  0  20  30
 ----------------g a.i. ha–1----------------  ----------------g a.i. ha–1---------------- 

Crown Average 1/6  2/6  3/6  4/6  4/6  4/6 

Distal Average 2/6  1/6  2/6  4/6  4/6  4/6 

* At each field site, four replicated plots were present for each treatment. From the plant 
samples collected to represent each replicated plot, six nodules were analyzed for each 
region (crown and distal), and the presence of the inoculum strain was recorded in terms of a 

fraction as in “X/6” where X signified the number of nodules containing an inoculum strain. 
** The fractional values from the four replicated plots were averaged, rounded to the nearest 
whole number, and presented in the table.  
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Additionally, there were no statistically significant differences in the nodulation 

success by the inoculum strains when sampling regions were compared within each 

herbicide application rate (crown vs. distal) for Goodale (0 g a.i. ha–1: χ2 = 1.06, P = 

0.30; 20 g a.i. ha–1: χ2 = 2.02, P = 0.16; and 30 g a.i. ha–1: χ2 = 0.87, P = 0.35) and 

Beaverlodge (0 g a.i. ha–1: χ2 = 0.09, P = 0.76; 20 g a.i. ha–1: χ2 = 0.78, P = 0.38; and 30 

g a.i. ha–1: χ2 = 0.00, P = 1.00). 

To reveal the potential difference between the inoculum rhizobial strains R1 and 

R2 in their infectiveness and susceptibility to flucarbazone, the information in Table 4.3 

was re-arranged and presented in Table 4.4 so that each inoculum strain was shown 

separately. To maintain the clarity in data presentation, both sampling regions (crown 

and distal) of each replicate were combined before calculating the average values to be 

presented in Table 4.4. The combination of sampling regions changed the way in which 

the proportion of successful nodule colonization was presented from “X/6” to “X/12” 

where X still signified the number of nodules containing an inoculum strain. 

When the proportions of successful colonization by the inoculum rhizobia were 

compared separately for each inoculum strain (R1 or R2) across the three treatments, 

statistically detectable differences were not found for Goodale (R1: χ2 = 2.34, P = 0.31; 

R2: χ2 = 3.13, P = 0.21) or Beaverlodge (R1: χ2 = 0.39, P = 0.82; R2: χ2 = 3.34, P = 0.85). 

Thus the use of flucarbazone was found to have no influence on the proportion of 

successful nodulation by inoculum rhizobia across the three treatments, regardless of the 

way in which the data were grouped (i.e., strains R1 and R2 together or separately). 

In contrast, when the proportions of successful colonization by each inoculum 

strain were compared against each other for a given herbicide application rate to reveal 

the difference in their infectiveness (R1 vs. R2), some statistically significant differences 

were found. 
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Table 4.4  Influence of flucarbazone application on the proportion of nodules 
successfully colonized by the inoculum strains R1 or R2. Nodules collected from field 
pea plants grown in a field treated with three rates of flucarbazone (0, 20, and 30 g a.i. 
ha–1) 1 yr prior to field pea seeding. 
 

 Goodale, SK  Beaverlodge, AB 

 0  20  30  0  20  30
 ----------------g a.i. ha–1----------------  ----------------g a.i. ha–1---------------- 

Strain R1 1/12  2/12  2/12  6/12  6/12  7/12 

Strain R2 2/12  1/12  2/12  2/12  2/12  2/12 

* At each field site, four replicated plots were present for each treatment. From the plant 

samples collected to represent each replicated plot, twelve nodules (i.e. six crown and six 
distal) were analyzed, and the presence of the inoculum strain was recorded in terms of a 
fraction as in “X/12” where X signified the number of nodules containing an inoculum 
strain. 

** The fractional values from the four replicated plots were averaged, rounded to the nearest 
whole number, and presented in the table.  

 

 

At Goodale, the inoculum strains R1 and R2 had comparable infectiveness under 

the treatments 0 g a.i. ha–1 (χ2 = 0.92, P = 0.34) and 30 g a.i. ha–1 (χ2 = 0.71, P = 0.40); 

however, the proportion of nodules colonized by strain R1 was significantly greater than 

that of strain R2 (χ2 = 4.02, P < 0.05) for the plants grown on a plot that received 20 g a.i. 

ha–1 of flucarbazone in year 1. At Beaverlodge, the proportion of nodules colonized by 

strain R1 was significantly greater than that of strain R2 for all three treatments (0 g a.i. 

ha–1: χ2 = 13.77, P < 0.05; 20 g a.i. ha–1: χ2 = 14.28, P < 0.05; and 30 g a.i. ha–1: χ2 = 

14.76, P < 0.05). Although such comparison of infectiveness between the inoculum 

strains was not the focus of this study, the data suggests the greater infectiveness of 

strain R1 than strain R2 at Goodale and Beaverlodge. 
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4.3.4 Verification of the nodule occupancy analysis 

The sequencing results confirmed that the PCR-IGS products recovered from 

visually indistinguishable bands (i.e., bands with comparable migratory distances) were 

identical in the IGS gene sequences, except for one instance. A photograph contrasting 

the migratory distances of the sequenced samples from each pattern (A, B, C, R’1, R’2, 

R1, and R2) is presented in Fig. 4.4. Only the pattern R’2 shows all of its replicate 

samples in Fig. 4.4 (i.e., R’2-1 , R’2-2 , and R’2-3). Also, the sequencing results were 

compared against the microbial nucleotide sequence database (i.e., BLAST search of 

GenBank) to determine the most closely related strain (Table 4.5). The results from the 

BLAST search were consistent among the replicated sequence results for all of the 

patterns A, B, C, R’1, R’2, R1, and R2. Only the pattern R’2 shows all of its replicate 

samples in Table 4.4 (i.e., R’2-1 , R’2-2 , and R’2-3). 

BLAST results indicated that the patterns A, B, and C, each of which with 

distinguishable mobility (Fig. 4.4), were 16S-23S rDNA IGS sequences of Rhizobium 

leguminosarum bv. viceae strains P233 and VD10B, and Rhizobium sp. CCBAU 83389, 

respectively. There was no entry available in the database that would match the sequence 

of band A to yield a minimum of 97% similarity, which is the minimum requirement for 

identity as suggested by Stackebrandt and Goebel (1994). The BLAST search of the 

pattern R’1 and the reference strain R1 indicated that both bands were 16S-23S rDNA 

IGS sequences of Rhizobium leguminosarum bv. viceae strain USDA2370, which 

confirmed the accuracy of the visual classification since the migration pattern R’1 

represents the sample nodule occupants with indistinguishable band mobility as the 

reference inoculum strain R1.  



 63

 

1         2          3         4         5         6         7  R1 R2 L

A
B C R’1

R’2-1 R’2-2 R’2-3

1200 bp

1         2          3         4         5         6         7  R1 R2 L

A
B C R’1

R’2-1 R’2-2 R’2-3

1200 bp

 

Figure 4.4  Banding patterns of PCR amplified IGS products ran on 2% agarose gel. 
Lane 1 to 7: Rhizobium strains extracted from nodule samples; Lane R1 and R2: 
Reference inoculum strains; Lane L: Low DNA Mass Ladder. 

 

 

 

Table 4.5  Similarity comparison of sequences recovered from agarose gel bands 
against NCBI (National Centre for Biotechnology Information) GenBank database by 
using the online standard BLAST (Basic Local Alignment Search Tool). 
 

Sequence 
designation† 

Most related strain from GenBank 
(% sequence similarity by BLAST)‡ 

GenBank accession no. for 
most related sequences 

A Rhizobium leguminosarum bv. viceae strain P233 (93%)§ AY491951.1 

B Rhizobium leguminosarum bv. viceae strain VD10B (99%) AY491949.1 

C Rhizobium sp. CCBAU 83389 (100%) EF549553.1 

R’1 Rhizobium leguminosarum bv. viceae strain USDA2370 (99%) AY491944.1 

R1 Rhizobium leguminosarum bv. viceae strain USDA2370 (100%) AY491944.1 

R’2-1 Rhizobium sp. CCBAU 83268 (98%) EF549538.1 

R’2-2 Rhizobium sp. CCBAU 83268 (99%) EF549538.1 

R’2-3 Rhizobium sp. CCBAU 83268 (100%) EF549538.1 

R2 Rhizobium sp. Trr-4 (98%) AF510892.1 
† Sequence designation are as labeled in Fig. 4.4. Bands A to C were similar to (but visually 
distinguishable from) one of the reference inoculum strains R1 or R2, while the bands R’1 and R’2 
visually indistinguishable from the reference strains R1 and R2, respectively. 
‡ 97% sequence similarity is the minimum requirement for identity (Stackebrandt and Goebel, 1994). 
§ There was no entry available in the database that would match the sequence of band A to yield a 
minimum of 97% similarity. 
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With the reference inoculum strain R1, the visual classification appeared to work 

consistently since all three sequenced samples of matching mobility (R’1-1, R’1-2, and R’1-

3) were identified as the same rhizobial strain as the reference strain R1 according to the 

BLAST search of their 16S-23S rDNA IGS sequences. The reproducibility of visual 

classification was demonstrated further by the replicated samples of R’2-1, R’2-2, and R’2-3 

with visually indistinguishable mobility, when their sequence results were all identified 

as the same rhizobial strain upon the BLAST search (Rhizobium sp. CCBAU 83268). 

Interestingly however, when the gene sequence result of the inoculum strain R2 was 

analyzed for its most closely related strain, it was identified as Rhizobium sp. Trr-4, 

which was different from the identity of R’2 despite the fact that bands of R’2 and R2 

were indistinguishable upon visual classification. When the IGS gene sequences of R’2 

and R2 were directly compared against each other using the Clustral X program 

(Thompson et al., 1997), they were identified as being 93% similar to each other. The 

implications of these findings on the nodule occupancy analysis are discussed in Section 

4.4.3. 

 

4.4 Discussion  

4.4.1 Influence of flucarbazone use on field pea production and inoculation success 

Given the weather and soil conditions present at Goodale and Beaverlodge 

during year 1 and 2, the use of flucarbazone in wheat up to the field recommended 

application rate of 30 g a.i. ha–1 (≈ 20 µg kg–1) had no significant influence on field pea 

production and nodulation as indicated by the absence of statistically detectable 

differences in: shoot and root weight, seed yields, nitrogenase activity (ARA), total 

nodule number and weight, and N concentration (μg mg–1) and δ15N (‰) of above-

ground plant material. Because the growth chamber experiment (Chapter 3) 

demonstrated the significant reduction of plant growth and nodulation in the presence of 
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high enough concentrations of flucarbazone in soil, the results from the field experiment 

certainly point to the absence of soil residual flucarbazone one year after application, or 

the amount of flucarbazone carried over into the following season was too low to 

influence plant and nodule development.  

Referring back to the hypothesis statement: the presence of residual 

flucarbazone in soil does not affect nodulation of field pea by inoculum rhizobia, it is 

likely safe to assume that the presence of residual flucarbazone in soil does not affect 

nodulation of field pea by inoculum rhizobia when the concentrations of soil residual 

flucarbazone is low, which was probably the case for the present field study. This 

assumption is based on the comparable inoculation success of field pea among the three 

treatments (0, 20, and 30 g a.i. ha–1 flucarbazone-treated plots) as indicated by the lack of 

statistically detectable differences in plant growth, grain yields, nodulation, nitrogenase 

activities, and plant tissue N content among the three treatments. In other words, the lack 

of herbicidal influence on field pea production, nodulation, and N2-fixation point to the 

fact that the level of residual flucarbazone present (if any) in this field study did not 

interrupt the inoculum rhizobia from accomplishing their task of establishing an effective 

symbiotic relationship with the host plant. The presence of soil residual flucarbazone at 

the field sites were tested and the results are reported in Chapter 5. 

Having speculated the lack of residual herbicidal impact on inoculation success 

as above, a possibility was recognized that the proportion of nodules occupied by the 

inoculum rhizobial strains may differ among the three treatments without affecting any 

of the parameters measured for the present study. Thus, an attempt was made to 

genetically identify the origin of nodule occupants using a molecular microbiological 

method, and the findings are presented in Sections 4.4.3 and 4.4.4.  

 As discussed in Chapter 3, some published data was available on the influence 

of non-aged AHAS inhibitors directly applied to leguminous plants and/or rhizobial 
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bacteria. However, published data dealing with the influence of ‘residual’ AHAS 

inhibitors on legume production was very rare at the time of writing. Moyer et al. (1990) 

conducted a field experiment to study the influence of residual AHAS-inhibiting 

herbicide (chlorsulfuron) on rotational crops by applying the herbicide in wheat one year, 

then growing various crops on the same plot the following season. They reported that 

when the recommended field rate of chlorsulfuron was used in wheat, the subsequent 

field pea yield was reduced by approximately 75%. Moyer et al. (1990) attributed the 

cause of the severe rotational crop injury to the high pH (pH 8) and low SOM (2%) of 

the field soil, along with other climatic conditions that favoured the likelihood of 

herbicide carryover. The influence of residual chlorsulfuron on shoot and root dry 

biomass, nitrogenase activity, nodule formation, plant tissue N and δ15N contents were 

not reported by Moyer et al. (1990). The findings of Moyer et al. (1990) support the 

potential of AHAS inhibitors to cause injury in rotational crops. However, since the 

likelihood of herbicide carryover is largely influenced by the soil and environmental 

conditions and the nature of the herbicide itself, the risk of the rotational crop injury 

induced by residual AHAS inhibitors needs to be assessed on a case-by-case basis. 

 

4.4.2 Influence of location and climate on field pea production and inoculation success 

Although the comparison of plant growth parameters between field sites was not 

the focus of the present field experiment, there was a sharp contrast in plant and nodule 

development which was noteworthy. In general, the Beaverlodge site was less productive 

than the Goodale site. For example, field pea grown at Beaverlodge had 30% less shoot 

biomass (Fig. 4.1a and 4.2a), 35% less seed yield (Fig. 4.1c and 4.2c), and 82% fewer 

nodules (Fig. 4.1e and 4.2e) than pea grown at Goodale.  

It has been reported that nodules have a strong demand for C, and can grow at 

the expense of root growth in both the vegetative and flowering stages (Voisin et al., 
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2003). This may explain the presence of greater root biomass on control plants at 

Beaverlodge (with fewer nodules) than that of Goodale (Fig. 4.1b and 4.2b). Despite the 

presence of greater root biomass however, the control plants of Beaverlodge had less N 

accumulation (%) in the shoot than that of Goodale (Fig. 4.1g and 4.2g). 

One of the reasons for the considerable difference in field pea development 

between the two locations might have been the difference in precipitation where Goodale 

received above the 30-yr long term average from May to September for both years 1 and 

2 (78 and 54% above the 30-yr average, respectively), while Beaverlodge received less 

precipitation than the 30-yr average during the same time period for both years 1 and 2 

(20 and 46% below the 30-yr average, respectively) (Table 4.2). Aside from its obvious 

influence on plant development, soil moisture availability has important implications for 

the present study because soil moisture content is one of the key factors influencing the 

rate of herbicide degradation in soil (Eliason, 2003). Thus, although none of the plant 

growth parameters suggested the presence of residual flucarbazone in soil, it is possible 

that the precipitation difference at these sites caused a difference in the way that 

flucarbazone was degraded at each location. Further analysis on the residual 

flucarbazone was conducted on the soil samples from both field sites, and this 

information is presented in Chapter 5. 

 

4.4.3 Verification of the nodule occupancy analysis 

As described previously, the genetic identification of sample nodule occupants in 

this study (inoculum vs. native) was conducted using the PCR-IGS. By visually 

comparing the PCR-IGS products of the reference inoculum rhizobia and sample nodule 

occupants based on their migratory distance upon agarose gel electrophoresis (Section 

3.2.4.2), nodule samples were classified as either having ‘matching’ or ‘non-matching’ 

bands as the reference strains. Those nodules with indistinguishable band mobility as the 
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reference strains were then assumed to have been colonized by the inoculum rhizobia. 

This method was used in both the growth chamber study (Chapter 3) and the field 

experiment (Chapter 4) to examine the influence of flucarbazone on successful 

nodulation initiated by inoculum rhizobial strains.   

The sequencing results of PCR-IGS products (Section 4.3.4) clearly 

demonstrated the reproducibility of the visual classification method because the gene 

sequences of the replicated samples for each migration pattern (i.e., A, B, C, R’1, R’2, R1, 

and R2) were consistently identified to be the same rhizobial strain according to the 

BLAST search (Section 4.3.4). The sequencing results also demonstrated that those 

sample nodule occupants visually classified as having the migration pattern R’1 (and thus 

assumed to be the inoculum rhizobial strain R1) were indeed the inoculum strain R1. 

These findings supported the usefulness and accuracy of the visual identification method 

in recognizing sample nodules containing the inoculum rhizobial strain R1. Since the 

growth chamber experiment (Chapter 3) was conducted with the inoculum strain R1 

only, the results of genetic analysis on nodule occupants, as presented in Section 3.3.4, is 

reliable for the strain tested.    

In contrast, the visual identification method was not effective in accurately 

recognizing sample nodules containing the inoculum rhizobial strain R2. While the 

BLAST search identified the gene sequence of the inoculum strain R2 as Rhizobium sp. 

Trr-4, those sample nodule occupants with indistinguishable band mobility as the 

inoculum strain R2 were identified as Rhizobium sp. CCBAU 83268 according to the 

BLAST search (Section 4.3.4). In other words, the visual identification method was not 

able to distinguish a nodule occupant of non-inoculum origin (Rhizobium sp. CCBAU 

83268) from the inoculum rhizobial strain R2 (Rhizobium sp. Trr-4).  

As reviewed in Section 2.5.2.1, the usefulness of the IGS regions primarily 

stems from its variability in sequence and length. To fully exploit the dual variability of 
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IGS, the use of methods such as restriction fragment length polymorphism (RFLP) or 

denaturing gradient gel electrophoresis (DGGE) would be ideal (Section 2.5.2.2). 

However, these methods necessitate extra processing and prolonged preparation, and 

thus were not suitable for the present study that involved a large number of nodule 

samples for genetic identification. Therefore, the PCR-IGS products were analyzed using 

a simple and rapid method of agarose gel electrophoresis that differentiates PCR-IGS 

products exclusively on the basis of their length variation.  

In the present study, the lengths of the PCR-IGS products obtained from 

inoculum and native rhizobia varied from approximately 600 to 1400 bp long (Section 

4.3.3). Such length variation was, in fact, sufficient to correctly differentiate most of the 

rhizobial strains encountered in this experiment, including those strains with similar IGS 

length (i.e., migration patterns A, B, C, R’1, and R’2). Unfortunately however, the 

sequencing results revealed the presence of a native rhizobial strain (Rhizobium sp. 

CCBAU 83268; migration pattern R’2) whose IGS region is very similar in length to that 

of the inoculum strain R2. This meant that it was not possible to distinguish Rhizobium 

sp. CCBAU 83268 from the inoculum strain R2 based solely on the PCR-IGS length 

which, in turn, meant that the visual identification method used for the present study has 

the potential to falsely identify the nodule occupant of non-inoculum origin (Rhizobium 

sp. CCBAU 83268) as the inoculum rhizobial strain R2. 

 

4.4.4 Influence of flucarbazone on nodulation success by an inoculum strain 

The genetic analysis of nodule occupants conducted on the nodule samples 

collected from the current field experiment revealed that the three rates of flucarbazone 

(0, 20, and 30 g a.i. ha–1) applied in year 1 had no influence on the nodulation success by 

the inoculum rhizobial strains in year 2, whether both strains R1 and R2 were analyzed 

collectively or separately (Tables 4.3 and 4.4).  
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Although the sequencing results revealed the potential overestimation on the 

nodulation success of strain R2, the visual classification of strain R1 appears accurate, 

and it was consistently found by the growth chamber study (Chapter 3) and the present 

field experiment that the nodulation success of strain R1 is unaffected by the use of 

flucarbazone. Therefore it appears safe to conclude that the use of flucarbazone up to the 

field recommended application rate does not influence the nodulation success by the 

inoculum rhizobial strains, if the soil and environmental conditions are comparable to 

those observed during the present field study.  

As discussed in Chapter 3, for a given herbicide to selectively influence the 

nodulation success by an inoculum strain, the herbicide would have to discriminatorily 

hinder the survival, chemical signalling, and/or nodulation ability of the inoculum strain 

while native strains of rhizobia continue to nodulate the host plant. Given the lack of 

relevant published data, it was not possible to verify if flucarbazone would have such 

selectivity to cause differences in the proportion of successful nodulation by inoculum 

rhizobia. However, the results of the growth chamber experiment (Chapter 3) showed 

that the flucarbazone addition at high enough concentrations reduced the nodule count 

without influencing the nodulation success by an inoculum strain. These results seem to 

indicate that the influence of flucarbazone on nodule occupancy is generally applicable 

to all rhizobial strains (both inoculum and native), rather than being discriminatory 

against the inoculum strains tested in this study.  

 

4.5 Conclusion 

The results from this experiment suggest that the use of flucarbazone in wheat, 

up to the field recommended application rate of 30 g a.i. ha–1 (≈ 20 µg kg–1) does not 

influence the production and nodulation success of field pea in the subsequent cropping 

season, if the weather and soil conditions favour degradation and/or dissipation of the 
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herbicide, as described in the present experiment. Results of a growth chamber 

experiment (Chapter 3) indicated that the presence of flucarbazone in soil, at high 

enough concentrations, has the potential to hinder pea growth and nodulation. Thus, the 

reason for the absence of detectable effects of residual herbicide in the present field 

experiment may be that both field sites did not have any flucarbazone remaining in soil 

one year after application, or the amount of flucarbazone carried over into year 2 was 

low enough not to influence plant and nodule development. Further analysis on the 

presence of soil residual flucarbazone was conducted for both sites, and results are 

presented in Chapter 5. 

It can be speculated that if the field sites from the present study had the 

combination of soil and environmental conditions that are conducive to herbicide 

persistence in soil, the growth parameters observed in the present field study might have 

shown signs of rotational injury. To elucidate the influence of soil and environmental 

conditions on rotational crop injury caused by residual flucarbazone, it is necessary to 

gather more data by repeating the field experiments under various soil and climatic 

conditions. 
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5 RESIDUAL FLUCARBAZONE CONCENTRATIONS AND IMPACT ON 

MICROBIAL POPULATIONS IN FIELD INCUBATED SOILS 

 

5.1 Introduction 

Adequate weed control is vital in sustaining high crop yields, and consequently 

herbicides have become a key component in modern agricultural production. Ideally, 

herbicides control weeds during the growing season of the treated crop and dissipate to 

non-toxic levels before the next crop is seeded; however, some herbicides may persist 

longer than desired and injure or kill subsequently planted crops (Hanson et al., 2004). 

Such persistence of residual herbicides in the soil is a disadvantage for producers who 

aim to maximize crop diversity and productivity through rotation because it limits the 

flexibility of crop rotation planning (Beckie and McKercher, 1989).  

When herbicides are applied, most of the spray solution contacts the soil and it 

may affect soil microorganisms that are important for sustainable agriculture, e.g., 

recycling of plant nutrients, maintenance of soil structure, and symbiotic assistance of 

crop growth (Vieira et al., 2007). The herbicidal impact on soil microbes can occur 

instantly at the time of application and/or have long-lasting effects into the following 

cropping years.  

The potential negative impact of residual herbicide on soil microbial populations 

is a serious concern in western Canada where wheat production is often followed with 

annual grain legumes such as field pea (Pisum sativum L.), chickpea (Cicer arietium L.), 

and lentil (Lens esculenta L.) in a sequential rotation. The basis for the concern is the 

potential interference with the symbiotic association between the host legume and the 
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Rhizobium bacteria. Given its sensitivity to changes in many environmental factors and 

soil conditions, the symbiotic association between the host legume and rhizobia may be 

affected by the presence of agrochemical residues which in turn, may negatively 

influence inoculation success, N2 fixation, and yield of grain legumes. 

Amongst many herbicides used in wheat production, acetohydroxyacid synthase 

(AHAS)-inhibiting herbicides warrant special attention given their residual properties 

(Colborn and Short, 1999), acute plant toxicity at low concentrations in soil (Santel et al., 

1999), and their ability to influence both host plant and the bacterial symbiotic partner 

(Duggleby and Pang, 2000). In fact, the reduction in plant/nodule production and N2 

fixation induced by various AHAS-inhibiting herbicides in different leguminous plants 

has been reported (Gonzalez et al., 1996; Royuela et al., 2000; Anderson et al., 2004; 

Zawoznik and Tomaro, 2005). 

The present thesis project focused on one AHAS inhibiting herbicide 

(flucarbazone-sodium), and studied its potential to persist into the subsequent cropping 

season to influence inoculation success during field pea production. A growth chamber 

experiment (Chapter 3) clearly demonstrated the susceptibility of field pea to the 

presence of flucarbazone in soil where it was shown that the herbicide has the potential 

to hinder the proper development of the plant and root nodules when high enough 

concentrations of flucarbazone were present in the soil (5 μg kg–1; approximately 25% of 

recommended field application rate). Despite such findings from the growth chamber 

study, the use of flucarbazone in wheat, up to the field recommended application rate of 

30 g a.i. ha–1 (≈ 20 µg kg–1), did not influence the production and nodulation success of 

field pea in the subsequent cropping season during our field experiment (Chapter 4).   

In an attempt to explain the lack of herbicidal influence in the field experiment, 

further analyses were conducted on the field soil samples to determine the 

presence/absence of soil residual flucarbazone. Also, the native rhizobial population and 
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total soil microbial population in the flucarbazone-treated soil samples were determined 

to find out if the use of flucarbazone in year 1 had caused a lasting negative influence on 

the soil microbial population size that is detectable in year 2. 

 

5.2 Materials and Methods 

5.2.1 Description of field sites and soil characteristics 

Detailed descriptions of field sites as well as the soil characteristics are provided 

under Section 4.2.1. Briefly, field experiments were conducted in the spring/summer of 

2005 and 2006 at the field sites in Saskatchewan and Alberta. In order to simulate 

flucarbazone carryover during crop rotation, wheat was grown in 2005 (year 1), and was 

treated with three rates of flucarbazone-sodium (0, 20, 30 g a.i. ha–1) to control weeds in 

wheat, where the recommended field rate is 30 g a.i. ha–1 (≈ 20 µg kg–1). The control 

plots that received no flucarbazone were treated with non-residual herbicides containing 

no AHAS inhibitor (i.e., bromoxynil and clodinafop mix) at the field recommended 

application rates to control weeds. At each site, all treatments were replicated four times, 

and arranged in a randomized complete block design. Prior to seeding pea in 2006 (year 

2), soil samples (0- to 10-cm depth) were collected from each replicated plot with a 

shovel, and bulked together to obtain a composite sample for each treatment at each 

location. At each replicated plot, three to five sampling locations were randomly selected, 

avoiding the perimeters of the plot. As soon as the soil samples were returned to the 

laboratory, a portion of each composite soil sample was ground to pass through a 2-mm 

sieve, and stored in a freezer (- 20 °C) for microbial analyses. The rest of the composite 

soil samples were ground to pass through a 2-mm sieve, and stored in a walk-in 

refrigerator (5 °C) to be used for mustard bioassay and chemical analysis.  
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5.2.2 Measurement of residual flucarbazone concentrations in experimental plot soils 

5.2.2.1 Mustard bioassay 

A mustard bioassay was conducted by using oriental mustard seeds (Brassica 

juncea L. var. Cutlass) as described in Szmigielski et al. (2008) to determine the 

bioavailable concentrations of residual flucarbazone at the experimental sites one year 

after herbicide application. Firstly, standard bioassay curves for each site were 

constructed by using soil sample from the control plots with no flucarbazone residues. 

The standard curves were needed to relate the bioassay results of the herbicide-treated 

soils to the soil residual flucarbazone concentrations. Fifty grams of the sieved control 

soil samples were spiked with various concentrations of flucarbazone solutions together 

with an appropriate amount of water in order to obtain subsamples containing final 

flucarbazone concentrations of 0, 1, 3, 5, 10, and 20 µg kg–1 at 100% field capacity (FC). 

The 20 µg kg–1 level is approximately equivalent to the recommended rate of field 

application (30 g a.i. ha–1) assuming that flucarbazone remains in the top 10 cm layer of 

soil that has a bulk density of 1.3 g cm-3 (Eliason et al., 2004). The spiked subsamples 

were thoroughly mixed, transferred to Whirl-PakTM bags (6 cm wide x 10 cm long), and 

gently formed into a layer which was approximately 6 cm wide, 8 cm long, and 1 cm 

thick. Six oriental mustard seeds were planted in each bag at a depth of approximately 2 

mm, and the soil surface was covered with a 0.5 cm layer of white plastic beads to 

minimize soil moisture loss. Plants were grown under fluorescent light (12 µmol m-2 s–1 

photon flux density; 24 h light) for 3 d at room temperature. Bags were watered every 

day to 100% FC by adding distilled water up to a predetermined weight until harvest, 

upon which the root length was measured using a ruler. Each herbicide concentration 

was replicated four times (i.e., 4 bags x 6 plants/bag = 24 plants per treatment). 

Following the root length measurement, the inverse relationship between the increasing 
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herbicide concentration and the decreasing average root length of the spiked treatments 

was plotted against each other. Upon plotting, the average root length of flucarbazone-

spiked plants was expressed in terms of percentage values relative to the root length of 

control, which is set to 100%. More specifically, this was done by using the formula: 

(Lt/L0) x 100, where Lt is the average root length measured in the flucarbazone-spiked 

soil and L0 is the average root length in the untreated soil (Eliason et al., 2004). A 

sigmoidal curve was then fitted using the following mathematical formula (Seefeldt et al., 

1995): 

 

b
50 )(x/I  1
C - DC y 

+
+=        (5.1) 

 

where D corresponds to the mean root growth length of the control plants. When the 

curve is plotted, D is set to 100% which corresponds to the mean root growth length 

when the roots are allowed uninhibited growth, and thus, also signifies the upper limit of 

the sigmoidal curve. The value C corresponds to the mean root growth length of the 

control plants at very high doses of root growth inhibitor (i.e., flucarbazone). The value 

C is extrapolated from the sigmoidal curve that best fits the plotted data points obtained 

from the above mentioned bioassay. Moreover, C corresponds to the flattened portion at 

the bottom of the sigmoidal curve, and it also represents the lower limit of the curve. 

Note that the lower limit is not necessarily zero in biological responses (Seefeldt et al., 

1995). The growth inhibitor concentration (µg kg–1 soil) that caused the average root 

growth length of the treated plants to fall midway between D (upper limit) and C (lower 

limit) is then referred to as I50. Since the lower limit (C) is not always zero, I50 does not 

necessarily correspond with the 50% point on the Y-axis. Finally, b in the above formula 

represents the slope of the curve at the I50 value. Given the definitions of C and D, the 
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model was fitted with constraints C ≥ 0 and D ≤ 100. Estimated values for C, I50, and b 

are given in Table 5.1., and the standard curves for both locations are presented in Fig. 

5.1. 

After obtaining the standard curves, the mustard bioassay was conducted using 

the field soil samples collected from plots that were sprayed with flucarbazone one year 

prior to the sample collection at three different rates (0, 20, and 30 g a.i. ha–1). Upon 

harvest, root length was measured, averaged, and the plant response to the soil samples 

was related to residual herbicide concentration in soil using the standard curves. 

 

5.2.2.2 Chemical analysis 

Along with the bioassay, the same set of flucarbazone-treated soil samples were 

tested chemically for the presence of residual herbicide. The chemical extraction analysis 

of the soil samples was conducted by ALS Laboratory Group (Edmonton, AB), which 

used the modified EPA test method to determine the concentration of soil residual 

flucarbazone and its degradation products (i.e., metabolites). Detailed procedures are 

described in EPA (2007) online test method collections. Briefly, in order to extract 

flucarbazone and its metabolites, acetonitrile was added to a soil sample and shaken in a 

flask. The extract was centrifuged and the supernatant was cleaned by elution through an 

acetonitrile pre-washed C18 cartridge. The extractant was then analyzed for the 

concentration of flucarbazone and its degradation products with high-performance liquid 

chromatography. 
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Table 5.1  Estimated parameters for the root growth inhibition bioassay standard curves 
for Goodale, SK and Beaverlodge, AB. 
  

Soil (location) C† ± SE D‡ I50
§ ± SE b¶ ± SE 

Goodale 19.1 ± 4.4 100 2.7 ± 0.3 - 4.5 ± 2.8 
     

Beaverlodge 24.1 ± 9.7 100 8.8 ± 1.2 - 3.4 ± 1.4 
† C = lower limit of the sigmoidal curve (%). 
‡ D = upper limit of the sigmoidal curve (%). 100% by definition. 
§ I50 = concentration corresponding to 50% inhibition (µg kg–1). 
¶ b = slope of the curve around I50 value. 

 

 

 

 

 
Figure 5.1  The root growth inhibition bioassay standard curves for Goodale and 
Beaverlodge. Each data point represents mean ± standard error. Root length of control 
plant (0 µg kg–1) was set to 100%, and the root length of the treated plants were 
expressed in terms of a proportion (%) relative to the root length of control (= 100%). 
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5.2.3 The effect of flucarbazone application on the native rhizobial population 

5.2.3.1 Plant infection most probable number of native rhizobial population 

The population size of the native strains of R. leguminosarum bv. viceae in the 

field soil samples collected prior to field pea seeding in year 2 (2006) from Goodale and 

Beaverlodge was determined using the plant infection count, also known as the most-

probable-number method (MPN) (Weaver and Frederick, 1972). This method uses a host 

leguminous plant to ‘trap’ compatible rhizobial strains and thereby enumerate the 

number of viable and infective rhizobia in a given soil sample in the presence of other 

microorganisms. For the present experiment, 10 g of sieved composite soil samples from 

each treatment (0, 20, and 30 g a.i. ha–1 of flucarbazone applied in year 1) were 

successively diluted in glass bottles containing 95 mL of sterile phosphate buffer 

solution (PBS) over the dilution range of 10–1 to 10–6. Surface sterilized and pre-

germinated field pea seeds (Pisum sativum cv CDC Mozart) were then inoculated with 

each dilution at 1 mL per seed, and grown in a growth pouch (Mega International, West 

St. Paul, MN) containing sterile Fahraeus N-free nutrient solution (1957). The growth 

pouches were kept in a growth chamber with a 16 h photoperiod and day/night 

temperatures of 22/18 ºC, during which time the development of the plants and nodules 

were observed daily, and the N-free nutrient solution was replenished as required. 

Nodulation was evident after 2 wk, and the final observation was made after 4 wk to 

record presence or absence of root nodules on the four replicated plants for each dilution. 

The MPN of the native R. leguminosarum bv. viceae strains present in a gram of field 

soil sample was then computed according to Somasegaran and Hoben (1994) using the 

appropriate statistical tables for the dilution and number of replications for the present 

study. 
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5.2.3.2 Colony forming unit plate count of total viable soil microbial population 

Above mentioned serially-diluted soil solutions prepared for the MPN 

assessment were used to enumerate total viable soil microbial population by the plate 

count of colony forming units (CFU). Detailed procedures are described by Page (1982). 

Briefly, for each dilution of a given soil sample (10–1 to 10–6), 0.1 mL of soil solution 

was evenly spread on a 1/10 strength tryptic soy agar (1/10 TSA) plate in quadruplicate 

and incubated at room temperature. After 3 d of incubation, the dilution that yielded 

from 30 to 300 colonies per plate was selected and colonies were counted to compute the 

number of CFU per one gram of field sample soils. The CFU count of each soil sample 

was conducted twice to ensure the accuracy of the results. 

 

5.3 Results 

5.3.1 Mustard bioassay 

The results from the mustard bioassay and chemical extraction are summarized 

in Table 5.2. Bioassay results for both field sites (Goodale and Beaverlodge) indicated 

that there were no statistically detectable differences (ANOVA; P < 0.05) in the root 

length of oriental mustard grown in soil samples representing three treatments (i.e., 

application of 0, 20, and 30 g a.i. ha–1 of flucarbazone in year 1 in wheat), thus it was not 

necessary to utilize the estimated values obtained from the standard curves (i.e., C, 

I50 ,and b in Table 5.1). The lack of root growth inhibition in this experiment indicates 

that the mustard bioassay did not detect any residual flucarbazone in the treated plots at 

both field sites in year 2.  

Although, the comparison of standard curves between field sites was not the 

focus of the present experiment, the difference was noted where considerably more root 

length inhibition occurred in Goodale soils relative to Beaverlodge for a given 

flucarbazone spiking concentration (Fig. 5.1). In fact, it only took an average of 2.6 µg 
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kg–1 of flucarbazone to cause 50% root length inhibition in Goodale soil, whereas the 

Beaverlodge soil required over three times the concentration (8.9 µg kg–1 on average) of 

flucarbazone to have the same root length inhibition (Table 5.1). 

 

 

 

 

Table 5.2  Concentration of soil residual flucarbazone one year after application 
detected by mustard bioassay and chemical extraction. 
 

 Mustard Bioassay  

Chemically extracted residual 

flucarbazone (µg kg-1) 

 

Root length 

± SE (cm) 
 

Detection amounts 

(µg kg-1) 
  

Goodale:      

Control 8.1 ± 0.1  0†  n.a. 

20 g a.i. ha-1 8.6 ± 0.6  Undetectable  0.4 

30 g a.i. ha-1 8.6 ± 0.3  Undetectable  0.5 

Beaverlodge:      

Control 8.4 ± 0.6  0†  n.a. 

20 g a.i. ha-1 8.4 ± 0.4  Undetectable  BDL‡ 

30 g a.i. ha-1 8.8 ± 0.3  Undetectable  BDL‡ 
† Zero by definition. 
‡ BDL denotes Below Detection Limit. Flucarbazone-sodium was not present at concentrations greater 

than the detection limit of 0.1 µg kg-1. However, the flucarbazone degradation product, sulphonamide, 

was detected in Beaverlodge soil samples at 2.3 and 4.0 µg kg-1 for 20 g and 30 g a.i. ha-1 soil, 

respectively.  
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5.3.2 Chemical extraction analysis 

The chemical extraction detected residual flucarbazone and its metabolite in the 

flucarbazone treated soil samples collected from Goodale and Beaverlodge (Table 5.2). 

The concentration of residual flucarbazone at Goodale was found to be 0.4 and 0.5 µg 

kg–1 for the 20 and 30 g a.i. ha–1 flucarbazone treated plots, respectively. At Beaverlodge, 

flucarbazone residue in soil was found to be below the detection limit of 0.1 µg kg–1 for 

both treatments (20 and 30 g a.i. ha–1).  

Degradation products of flucarbazone were not found in Goodale soil samples of 

both treatments at concentrations greater than the detection limit. In contrast, one of the 

flucarbazone degradation products, sulphonamide, was present in soils of Beaverlodge at 

2.3 and 4.0 µg kg–1 for the 20 and 30 g a.i. ha–1 flucarbazone treated plots, respectively. 

 

5.3.3 Plant infection most probable number of native rhizobial population and colony 

forming unit plate count of total viable soil microbial population 

There were no statistically detectable differences (ANOVA; P < 0.05) in the 
results of plant infection MPN and total microbial CFU count when each experiment was 
conducted on the soil samples representing all of the treatments (0, 20, and 30 g a.i. ha–1 
of flucarbazone applied in year 1) of both Goodale and Beaverlodge sites (Table 5.3). 
Relatively low total microbial populations at Goodale and Beaverlodge may reflect the 
impact of dry soil conditions at the time of soil sampling in late April 2006 at these 
locations.
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 Table 5.3  Native rhizobial and total microbial population one year after flucarbazone application 
approximated by plant infection MPN and total microbial CFU count. 
 

 

Native pea rhizobial 

population (per g soil)  

Total microbial 

population (per g soil) 

Goodale:    
Control 1.0 x 103  1.6 x 106 
20 g a.i. ha-1 5.8 x 102  1.5 x 106 
30 g a.i. ha-1 5.8 x 102  1.5 x 106 

Beaverlodge:    
Control 1.0 x 102  1.2 x 106 
20 g a.i. ha-1 1.0 x 102  1.2 x 106 
30 g a.i. ha-1 1.7 x 102  1.1 x 106 
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5.4 Discussion 

5.4.1 Mustard bioassay and chemical extraction results, and their implications on field 

pea production 

According to the chemical extraction results, the concentration of residual 

flucarbazone one year after application at Goodale was found to be 0.4 and 0.5 µg kg–1 

for the 20 and 30 g a.i. ha–1 flucarbazone treated plots, respectively. In contrast, residual 

flucarbazone was not found in Beaverlodge soil samples at concentrations greater than 

the detection limit of 0.1 µg kg–1 for both treatments of 20 and 30 g a.i. ha–1. Such 

concentrations of residual flucarbazone at both field sites were not high enough to cause 

any inhibitory effects on the root development of oriental mustard grown in these soils. 

These results were consistent with the findings of Szmigielski et al. (2008) who 

evaluated the use of mustard root-length bioassay in predicting crop injuries from soil 

residual flucarbazone, and reported that the detection limit of the bioassay to be 

approximately 1 µg kg–1. 

As reviewed in Section 2.2.3, plant species vary in their sensitivity to AHAS 

inhibitors. In an unpublished field experiment, Sapsford et al. (2006) compared the 

sensitivity of fifteen crops to residual flucarbazone in field plots in western Canada, 

eleven months after the initial application of the herbicide at various rates. They reported 

the presence of visually observable injury in two varieties of mustard (Brassica juncea) 

when they were grown on soils that received two-thirds of the recommended rates (20 g 

a.i. ha–1) of flucarbazone in year 1. Field pea, on the other hand, had much greater 

tolerance than these mustard varieties where no injury was observed when grown on 

plots that received 40 g a.i. ha–1 of flucarbazone in year 1 (Sapsford et al., 2006). 

Sapsford et al. (2006) reported that visually observable injury was only present in field 

pea when it was grown on those plots that received double the recommended 

concentration (60 g a.i. ha–1) of flucarbazone in year 1.  
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Given the lack of published data, it was not possible to directly compare the 

AHAS inhibitor tolerance among mustard varieties used in the present experiment and 

those tested by Sapsford et al. (2006). However, it is expected that any variety of 

mustard of the same species (i.e., Brassica juncea) would behave in an identical or very 

similar manner to the presence of residual herbicide. Therefore, it is safe to assume that 

field pea has much greater tolerance to the presence of soil residual flucarbazone than 

oriental mustard used in the present bioassay. Thus the results of the bioassay and 

chemical extraction support the results from our field experiment (Chapter 4) shows that 

the use of flucarbazone in wheat in year 1 (2005), up to the field recommended 

application rate of 30 g a.i. ha–1, did not influence the production and nodulation success 

of field pea in the subsequent cropping season. 

 

5.4.2 Influence of soil characteristics and precipitation on flucarbazone persistence 

Aside from the lack of residual herbicidal influence on mustard root growth in 

soils from both locations, there were some other noteworthy observations. Firstly, the 

difference was noted during the standard curve construction where considerably more 

root length inhibition occurred in Goodale soils relative to Beaverlodge for a given rate 

of flucarbazone application (Fig. 5.1). Secondly, the concentrations of chemically 

extractable residual flucarbazone were greater in Goodale soils than Beaverlodge, while 

one of the metabolites (sulfonamide) was only detected at Beaverlodge (Table 5.2). Such 

differences did not influence the bioassay results and the analyses of such differences 

between locations was not the objective of this experiment. However, the factors causing 

such variations among locations can have practical and agronomical implications. 

As reviewed in Section 2.2.2, sorption–desorption interactions of herbicides with 

soil determine the availability of the chemical in soil (Koskinen et al., 2006). It was 

reported that the bioavailability of herbicide in soil is strongly influenced by the soil 
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organic matter (SOM) content because soils with high SOM content have increased 

herbicide retention capacity due to the presence of a large number of adsorption sites 

(Loux et al., 1989). The SOM contents of Goodale and Beaverlodge were 2.2 and 3.9%, 

respectively, and the lesser concentration of SOM at Goodale may partly explain the 

existence of greater root length inhibition in Goodale soil relative to Beaverlodge soil 

when soils were spiked with herbicide. Though generally considered to have less 

influence on chemical adsorption than SOM, soil texture (relative composition of sand, 

silt, and clay) also play an important role in herbicide adsorption (Griffin, 2006) because 

clay provides a much greater soil surface area than sand for chemical adsorption (Calvert, 

1980; Peter and Weber, 1985). The clay contents of Goodale and Beaverlodge were 23 

and 51%, respectively. Together with the lesser concentration of SOM at Goodale, the 

lesser proportion of clay present in Goodale soil might have contributed to the greater 

root length inhibition in Goodale soil during standard curve construction, relative to 

Beaverlodge. 

Regarding the differences in the concentrations of chemically extractable 

residual herbicide and metabolite at the two field sites, the interpretation of such 

locational variation was not straightforward due to the potential influence exerted by 

both soil and climatic conditions. As reported previously, the concentrations of 

chemically extractable residual flucarbazone were greater in Goodale soils than 

Beaverlodge, except for one of the metabolites (sulfonamide), which was only present in 

greater concentrations at Beaverlodge (Table 5.3). This may indicate that flucarbazone 

was degraded relatively slowly at Goodale such that residues were detected, one year 

after application, in the form of flucarbazone. Meanwhile, it is also possible that 

flucarbazone degradation proceeded much more rapidly at Beaverlodge so that 

flucarbazone and other further-degradable metabolites had dissipated, leaving 
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sulfonamide, which is resistant to aerobic metabolism in soil (EPA, 2000), to accumulate. 

The relevance of this hypothesis is examined and presented below. 

As reviewed in Section 2.2.1, the primary route of degradation for flucarbazone 

is believed to be microbial (Santel et al., 1999). Generally, environmental factors such as 

adequate soil moisture and high SOM encourage microbial growth and reproduction 

(Griffin, 2006), which in turn provides an ideal environment for microbial degradation of 

herbicides. In support of such observations, Eliason et al. (2004) studied flucarbazone 

degradation in soils of western Canada and reported that flucarbazone dissipation 

occurred more rapidly in wetter soils with higher organic C content. 

As described in Section 4.3.1, the precipitation data indicates that Goodale soil 

received more rainfall than Beaverlodge for both year 1 and 2 growing seasons which, 

contrary to our hypothesis, may have favoured degradation of flucarbazone at Goodale. 

However, periodic observations were not made to monitor the exact change in soil 

moisture availabilities during the course of field experiment. Given the differences in 

soil characteristics at the two locations, it was not possible to conclusively state that the 

greater rainfall led to greater soil moisture availability throughout the growing seasons. 

As for the influence of soil properties on flucarbazone degradation, greater SOM 

content in Beaverlodge soil is in agreement with the above hypothesis. On the other hand, 

it has been reported that herbicide dissipation rates are generally slower in heavier 

textured soils because of increased adsorption (Walker, 1991). Since Beaverlodge had 

much greater clay content (51%) than Goodale (23%), the soil texture does not support 

the above hypothesis. 
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5.4.3 Plant infection most probable number of native rhizobial population and colony 

forming unit plate count of total viable soil microbial population 

There were no statistically detectable differences in plant infection MPN and 

total microbial CFU counts when each experiment was conducted on the soil samples 

representing all of the treatments (0, 20, and 30 g a.i. ha–1 of flucarbazone applied in year 

1) of both field sites. The lack of detectable differences among treatments indicated that 

the use of flucarbazone up to the field recommended application rate (30 g a.i. ha–1) in 

the present experiment did not have a lasting negative influence on the total microbial 

population and the native rhizobial population, which can be detected a year after 

application. This does not imply that flucarbazone application did not have any influence 

in year 1 at the time of herbicide application in wheat when flucarbazone solution came 

in direct contact with the soil and its microbial inhabitants. Rather, the results from 

infection MPN and total microbial CFU count indicate that any influence of 

flucarbazone on soil microbial populations at the time of herbicide application did not 

persist into the subsequent cropping season given the soil and environmental conditions 

which were present during our field experiment. 

To date, the existence of side effects on the soil bacterial population caused by 

the AHAS inhibitors or the variable sensitivity of bacteria to AHAS inhibitors have not 

been adequately investigated in the field. Also, our experiment did not examine the 

potential shift in microbial community structure caused by the herbicide application. 

Therefore, the results from the present experiment pointing to the lack of herbicidal 

influence on soil microbial population need to be interpreted with caution. 

Finally, concerning one of the metabolites (sulfonamide), Accinelli and 

Koskinen (2007) studied the environmental fate of sulfonamide antimicrobial agents in 

soil and reported that concentration of sulfonamide up to 10,000 μg kg–1 had no effect on 

the soil microbial community. Therefore, it is likely that the detected concentrations of 
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sulfonamide in flucarbazone-treated soil samples of Beaverlodge (Table 5.2; 2.3 and 4.0 

μg kg–1 of sulfonamide was chemically extracted from 20 and 30 g a.i. ha–1 flucarbazone 

treated soils, respectively) were not high enough to negatively influence the native 

rhizobial and total microbial populations. The report by Accinelli and Koskinen (2007) 

was one of the few published reports available which dealt with the influence of AHAS 

herbicides or their metabolites on soil bacterial inhabitants, and it warrants further field 

studies into the potential influence of AHAS inhibitors on soil microbial populations. 

 

5.5 Conclusions 

A mustard bioassay and chemical extraction were conducted on the field soil 

samples to test for the presence of residual flucarbazone one year after its application in 

the field. Even though the chemical extraction detected the presence of residual 

flucarbazone and its metabolite, the concentrations were not high enough to cause root 

growth inhibition in mustard. As field pea was found to be more tolerant to a given 

concentration of residual flucarbazone than mustard, it is not surprising that no effects of 

residual flucarbazone on the plant development were observed in our field experiments 

(Chapter 4). 

Despite the presence of various concentrations of chemically extractable 

flucarbazone and its metabolite, no statistically significant differences in the native 

rhizobial and total soil microbial population were detected among the flucarbazone-

treated field soil samples. Based on the results from the field experiment, bioassay, and 

chemical extraction, it can be concluded that the soil residual flucarbazone and its 

metabolite were not present at high enough concentrations in Goodale and Beaverlodge 

soils to negatively influence the growth of host plants or the nodulation success of 

inoculum rhizobia in year 2. 
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When standard curves were constructed for the bioassay using the two different 

soils, it was noted that the phytotoxicity of flucarbazone of a given concentration was 

much greater in soil with less SOM and clay contents. Such findings emphasize the 

influence of soil characteristics on carryover injury caused by herbicides with residual 

properties. It can be speculated that if the soil with low SOM and clay content is 

combined with environmental conditions that favour herbicide persistence in soil, the 

producers may observe carryover injury from flucarbazone in their rotational field pea 

crops. In order to minimize such risk, producers are advised to adhere to the herbicide 

application instructions provided by the manufacturer, and be mindful of the 

environmental and soil conditions that may reduce the rate of herbicide degradation.
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6 SUMMARY AND CONCLUSION 

 

This study was conducted to elucidate the effect of residual AHAS-inhibiting 

herbicide, flucarbazone, on the success of inoculation in field pea production in western 

Canada. Specifically, this study tested the following null hypothesis: The presence of 

residual flucarbazone in soil does not affect nodulation of field pea by inoculum rhizobia.  

Firstly, a growth chamber experiment (Chapter 3) was conducted to reveal the 

negative influence of flucarbazone on plant growth and nodulation. Field pea was grown 

in soils spiked with a wide range of flucarbazone concentrations (0 to 40 µg kg–1 range 

in 5 µg kg–1 increments). The concentration range of flucarbazone application was 

chosen to ensure that sufficient herbicide would be present in at least some of the 

treatments to cause a negative impact, which would allow us to establish the 

approximate critical level of soil flucarbazone concentration at which negative effects on 

field pea growth and nodulation would be evident. 

The findings from the growth chamber study clearly demonstrated the 

susceptibility of field pea to the presence of flucarbazone in soil where the lowest 

concentration of flucarbazone amendment (5 μg kg–1) significantly reduced the plant 

growth (i.e., above-ground and root biomass). Further addition of flucarbazone (10 to 40 

µg kg–1) did not result in incremental changes in plant growth parameters. Similar to the 

plant growth parameters, a considerable reduction in nodule formation (i.e., total number 

and weight) was observed in the flucarbazone-treated plants (5 and 10 μg kg–1 spiked 

plants). When the soil flucarbazone concentration was increased to 15 μg kg–1, the plant 

was still alive, yet nodulation was eliminated. Such devastating influence of 
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flucarbazone on nodulation was manifested in the source of N incorporated into plant 

tissue where the analysis of natural abundances (δ) of the stable isotope pair 15N/14N in 

the above-ground biomass indicated that the control plants with abundant nodules met 

their N demand via symbiotic N2-fixation. The flucarbazone-treated plants with minimal 

or no nodules satisfied N requirements by taking up N from the soil. Therefore, it was 

speculated that if the environmental conditions are such that the concentration of residual 

flucarbazone in soil approaches 5 μg kg–1 (approximately 25% of recommended field 

application rates), a producer would likely notice a significant reduction in plant growth, 

nodulation, and N benefits from field pea production. 

The findings from the growth chamber study led to the field experiment (Chapter 

4). The focus of the field experiment was to examine whether field-aged, one-year-old 

residual flucarbazone negatively influence field pea production and nodulation as 

observed in the growth chamber study. Specifically, an attempt was made to elucidate 

whether flucarbazone applied at the field recommended rate during wheat production in 

a given year would persist into the following season at high enough concentrations to 

negatively influence both the growth of subsequently cropped field pea and the 

inoculation success. In order to simulate flucarbazone carryover during crop rotation, 

wheat was grown in 2005 (year 1) at field sites in Saskatchewan and Alberta, and it was 

treated with three rates of flucarbazone-sodium (0, 20, 30 g a.i. ha–1) to control weeds, 

where the recommended field rate is 30 g a.i. ha–1 (≈ 20 µg kg–1). The control plots that 

received no flucarbazone were treated with non-residual herbicides containing no AHAS 

inhibitor at the field recommended application rates. At each site, all treatments were 

replicated four times, and arranged in a randomized complete block design. 

When various parameters of field pea production and nodulation were observed 

at two field locations, no statistically detectable differences originating from the use of 

flucarbazone were identified. Specifically, statistically detectable differences were not 
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found in: shoot and root weight, seed yields, nitrogenase activity (ARA), total nodule 

number and weight, and N concentration and δ15N of above-ground plant material. Such 

results implied the absence of soil residual flucarbazone one year after application, or the 

amount of flucarbazone carried over into the following season was too low to influence 

plant and nodule development. Regardless of the actual concentrations of the residual 

flucarbazone in the test plots, these findings from the field experiment led to the 

conclusion that flucarbazone applied at the field recommended rate during wheat 

production in a given year would not persist into the following season to negatively 

influence field pea production and inoculation success, if soil and environmental 

conditions promote flucarbazone degradation. 

To confirm the findings of the field experiment, the soil samples collected from 

the field sites were analyzed for flucarbazone (Chapter 5). Firstly, the concentration of 

soil residual flucarbazone and its metabolites in the soil samples was determined using a 

mustard bioassay and chemical extraction. The chemical extraction conducted on the 

flucarbazone-treated field soil samples detected various concentrations of residual 

flucarbazone and its metabolite; however, the concentrations were not high enough to 

inhibit root growth of mustard grown in these soils (i.e., mustard bioassay; Chapter 5). 

As field pea was found to be more tolerant to a given concentration of residual 

flucarbazone than mustard, the results from bioassay and chemical extraction supported 

the results of the field experiment where field pea grown in the flucarbazone-treated field 

plots showed no signs of herbicidal influence in any of the parameters observed (Chapter 

4).  

Secondly, despite the lack of detectable herbicidal influence on plant growth and 

nodulation in the field experiment (Chapter 4), it was still possible that the native 

rhizobial population was influenced by the use of flucarbazone either through direct 

contact of herbicide with native rhizobia at the time of herbicide application and/or by 
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the potential presence of trace amount of residual flucarbazone which may be enough to 

negatively influence the native rhizobial population. Since the population of native 

rhizobia can compete against inoculum rhizobial strains for infection sites and influence 

inoculation success, the size of native rhizobial population also was determined in the 

soil samples collected from all three treatments (0, 20, and 30 g a.i. ha–1 flucarbazone-

treated plots) prior to seeding pea in year 2. The results from the plant infection MPN 

(for native rhizobial population) and CFU plate count (for total viable soil microbial 

population) confirmed that the use of flucarbazone in year 1 up to the recommended 

field rate and the resultant presence of residual flucarbazone and its metabolites in year 2 

(as detected by chemical extraction) had no detectable influence on the native rhizobial 

and total soil microbial population size at the time of field pea production in year 2 

(Chapter 4). 

The interpretation of the findings from the present study with regards to the 

hypothesis statement (The presence of residual flucarbazone in soil does not affect 

nodulation of field pea by inoculum rhizobia) depends on the concentration at which 

residual flucarbazone is present in soil. As previously mentioned, if the soil residual 

flucarbazone concentrations approach 5 μg kg–1 (approximately 25% of recommended 

field application rates), plant growth and nodulation would be reduced significantly and 

overall nodulation of field pea by inoculum rhizobia would be affected. On the other 

hand, at low enough concentrations as in the present field study (Chapter 4), it is safe to 

assume that the presence of residual flucarbazone in soil does not affect nodulation of 

field pea by inoculum rhizobia. This speculation is based on the observably comparable 

inoculation success of field pea among the three treatments (0, 20, and 30 g a.i. ha–1 

flucarbazone-treated plots) as indicated by the lack of statistically detectable differences 

in plant growth, grain yields, nodulation, nitrogenase activities, plant tissue N content, 

and the size of native rhizobial population among the three treatments.  
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Having speculated the absence of residual herbicidal impact on nodulation 

success by inoculum rhizobia, a possibility was recognized that the proportion of 

nodules occupied by the inoculum rhizobial strains may differ among the three 

treatments without affecting any of the parameters measured for the present study. To 

address such uncertainties, an attempt was made to genetically identify the origin of 

nodule occupants using a molecular microbiological method (Chapter 3 and 4). Although 

the sequencing results revealed the potential overestimation on the nodulation success of 

strain R2 (Section 4.4.3) the visual classification of strain R1 appears accurate, and it was 

consistently found by the growth chamber study (Chapter 3) and the field experiment 

(Chapter 4) that the nodulation success of strain R1 is unaffected by the use of 

flucarbazone. Therefore it appears safe to conclude that the use of flucarbazone up to the 

field recommended application rate did not influence the proportion of nodules occupied 

by the inoculum rhizobial strains. 

Overall, the findings from the growth chamber study (Chapter 3), field 

experiment (Chapter 4), and field soil analyses (Chapter 5) confirmed that flucarbazone 

applied at the field recommended rate during wheat production would not persist into the 

following season at high enough concentrations to negatively influence field pea growth, 

grain yields, and the measured parameters of successful nodulation, if soil and 

environmental conditions promote flucarbazone degradation, as in the present field study. 

These findings, together with the genetic analysis of nodule occupants, point to the 

conclusion that the amount of soil residual flucarbazone found in this study did not 

interfere with the inoculum rhizobia from fulfilling their tasks of ensuring nodulation 

and N2 fixation for the host plant, field pea. From the view point of the producer, the 

findings from the present study also signify that in order to minimize the risk of 

carryover injury from flucarbazone while maximizing yields and the N benefit of 

inoculation, it is advisable to adhere to the herbicide application instructions provided by 
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the manufacturer, and be particularly mindful of the environmental and soil conditions 

that may reduce the rate of herbicide degradation.
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APPENDIX A: Recipes for the micro- and macro-nutrient solutions, and 

flucarbazone spiking solutions 
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 Micro-nutrient stock solution:   
 Molybdenum 

(Mo)  
with NaMoO4·2H2O  0.363 g   

 Boron (B)  with H3BO3 2.059 g   
 Manganese (Mn)  with MnSO4·H2O 3.692 g  Dissolve in 4 L 
 Zinc (Zn) with ZnSO4·7H2O 4.222 g  distilled H2O   
 Copper (Cu)  with CuSO4·5H2O 0.566 g   
     
 Macro-nutrient stock solution:   
 Phosphorus (P)  with Ca(H2PO4)2·H2O 29.300 g   
 Sulfur (S)  with K2SO4 58.480 g  Dissolve in 4 L 
 Potassium (K)  with KCl 41.495 g  distilled H2O   
     
 Flucarbazone spiking solutions:   
   Prepare a stock solution by dissolving 0.01 g of flucarbazone (99.1% pure)  
   in 50 mL of methanol, and by adding distilled H2O to attain the final volume 
 of 1 L. By using the stock solution, prepare a series of spiking solutions  
   containing flucarbazone at concentrations of 0, 0.5, 1, 2, 3, and 4 mg L–1. 

 

For example, in order to prepare a pot containing 1.2 kg of 75 % FC soil with 

nutrients and herbicide amendments at soil flucarbazone concentration of 40 µg kg–1, 

above mentioned micronutrients stock solution (20 mL), macronutrients stock solution 

(20 mL), and flucarbazone stock solution (4 mg L–1 concentration solution at 12 mL) 

were mixed in a beaker, distilled H2O was added to attain the appropriate final solution 

volume necessary to reach 75% FC moisture in 1.2 kg of a given soil. The solution mix 

was then applied to the soil in a pot, and the soil was thoroughly mixed in the plastic bag 

used to line the pot to ensure even distribution of the nutrients and herbicide throughout 

the pot. 
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APPENDIX B: An example contingency table for the statistical analysis of 

successful nodule colonization by the inoculum rhizobia  
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For each treatment, four replicated pots were present with each pot containing 

two plants. From each replicated pot, six nodules were analyzed for each region (crown 

or distal), and the presence of the inoculum strain was recorded in terms of a fraction as 

in “X/6” where X = number of nodules containing an inoculum strain. For example, the 

results from the genetic analysis of the distal nodule samples collected from 5 and 10 μg 

kg–1 flucarbazone-treated plants were recorded as below: 

 

Treatment 

(μg kg–1)  

# of nodules colonized by  

inoculum rhizobia 

  Rep.1  Rep.2  Rep.3  Rep.4 

5  2/6  4/6  1/6  4/6 

10  3/6  2/6  3/6  3/6 

 

To conduct Pearson's chi-square (χ2) test, the above table was expressed in the 

form of a contingency table as below: 

 

Treatment 
(μg kg–1)  Replication  

Colonization by 
inoculum rhizobia:  Total 

    Yes  No   

5 1 2 4 6 

5 2 4 2 6 

5 3 1 5 6 

5  4  4  2  6 

10  1  3  3  6 

10 2 2 4 6 

10  3  3  3  6 

10 4 3 3 6 

Total ─ 22 26 48 
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APPENDIX C: FAME profiling experiment
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Summary of the preliminary FAME experiment and its outcome 

To complete a part of Chapter 3 and 4, a simple and rapid method was required 

to identify the origin of rhizobial nodule occupants as either inoculum or non-inoculum 

rhizobial strains. Prior to the adaptation of the molecular microbiological method as 

described in Chapter 3 and 4, the use of FAME (fatty acid methyl ester) profiling was 

considered. As described in Section 2.5.1, fatty acid profiling utilises the variability in 

the composition and proportion of bacterial membrane lipids. Since such lipid 

biomarkers differ among microbial genera and species (Spiegelman et al., 2005), a plan 

was conceived to construct reference database entries of fatty acid profiles on inoculum 

rhizobial strains to which fatty acid profiles of unknown nodule occupants would be 

compared to identify nodule occupants as either inoculum or non-inoculum rhizobial 

strains. However, it has been reported that the overlap of fatty acid characteristics can 

occur at subspecies level among microorganisms of genetic variant or subtype (i.e., 

strains), in which case accuracy of identification may decrease (Stead et al., 2000). 

Thus, a preliminary experiment was conducted with various known strains of 

rhizobial pure cultures to determine if FAME analysis would provide sufficient 

resolution to distinguish inoculum rhizobia from non-inoculum native strains. More 

specifically, well-characterized rhizobial pure cultures were used to create reference 

database entries of fatty acid profiles. These profiles were then compared against each 

other to examine if samples of different rhizobial strains would exhibit sufficient 

difference in Euclidian Distance (ED) when plotted on a dendrogram. Simply stated, a 

dendrogram is the visual representation of the relatedness among the tested rhizobial 

strains based on their fatty acid composition, and ED refers to the distance in two 

dimensional space between any two strains on a dendrogram (Flury and Riedwyl, 1988). 

It has been reported that strains linking at ≤ 25 ED units are likely to belong to the same 

genus and those linking at ED < 10 or < 6 are likely to be the same species, or strains, 
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respectively (Sasser, 2001). Based on these guidelines proposed by Sasser (2001), the 

preliminary experiment was conducted as described in the following sections to examine 

if FAME analysis of different rhizobial strains would result in a dendrogram where they 

are linked at ED > 6. 

Examination of the dendrogram (figure not shown) revealed that except for the 

chickpea rhizobia (Rhizobium sp. Cicer strain USDA4794), all four R. leguminosarum 

rhizobia tested (i.e., R. leguminosarum bv viceae strains R2 and ATCC10004 and R. 

leguminosarum bv phaseoli strains ATCC14482 and USDA2667) were linked at ED < 6, 

indicating that FAME profiles of these strains were too similar to be identified as distinct 

strains. Since strain level identification was necessary for the present study, the use of 

FAME analysis was not explored further, and molecular biological method was adopted 

instead. 

 

Materials and methods 

Bacterial strains 

The rhizobia used in this experiment included two named strains of field pea 

rhizobia (Rhizobial leguminosarum bv viceae strains R2, and ATCC10004), two strains 

of bean rhizobia (R. leguminosarum bv phaseoli strains ATCC14482 and USDA2667) 

and one strain of chickpea rhizobia (Rhizobium sp. Cicer strain USDA4794). R. 

leguminosarum bv viceae strain R2 was one of the two strains present in a commercial 

peat inoculant (NitraStik-C®; EMD Crop BioScience, WI) which was used in the field 

experiment (Chapter 4). The pure culture of the inoculum strain was generously provided 

by EMD Crop BioScience. Rhizobia denoted with ATCC and USDA refer to the well-

characterized pure culture collections obtained from American Type Culture Collection 
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and United States Department of Agriculture, respectively, which are maintained at the 

University of Saskatchewan soil microbiology laboratory.  

Extraction of cellular fatty acids 

Each of the aforementioned bacterial pure culture was streaked on modified 

tryptone yeast extract agar plates (MTY: tryptone , 5.0 g; yeast extract, 3.0 g; CaCl2, 0.87 

g; mannitol, 1.0 g; agar, 15.0 g; distilled water, 1.0 L) (Beringer, 1974), and grown at 

28 °C for 48 h. A standard procedure established by Sasser (Sasser, 2001) was used in 

extraction and preparation of bacterial fatty acids. From each MTY plate, 40 mg of 

bacterial cells (the second and third quadrant streak of growth) were collected by using 

an inoculation loop, and the cells were placed at the bottom of a screw cap test tube. 

Enough MTY plates were prepared to have nine replicated tubes per strain so that nine 

sets of replicated fatty acid profile data would be available to create one profile entry for 

each strain.  

To saponify the bacterial cells, 1 mL of sodium hydroxide solution (sodium 

hydroxide, 45 g; methanol, 150 mL; distilled water, 150 mL) was dispensed into each 

test tube, vortexed for 10 s, heated in a boiling water bath for 5 min, vortexed again for 

10 s, then incubated in a boiling water bath for 25 min. When the tubes were cooled, 

methylation was conducted to form fatty acid methyl ester (FAME). Two millilitres of 

hydrochloric acid solution (6.0 N hydrochloric acid, 325 mL; methanol, 275 mL) was 

added, vortexed for 10 s, incubated for 10 min at 80 °C, and cooled immediately in a 

water bath. Following methylation, 1.25 mL of organic solvent (1:1 hexane:methyl 

tertiary butyl ether) was added to each tube, gently shaken for 10 min, and aqueous 

phase was pipetted out, leaving FAME in the solvent phase. Finally, the solvent 

remaining in the tube was washed by gently shaking for 5 min with 3 mL of sodium 

hydroxide solution (sodium hydroxide, 10.8 g; distilled water 90 mL), and the organic 
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phase was transferred into a gas chromatography (GC) vial for analysis. FAMEs in the 

organic phase were analysed with a Hewlett-Packard 5890 Series II GC fitted with 25 m 

of phenyl methyl silicone capillary column and a flame ionization detector (FID). The 

extract was split 100:1 prior to passing through the column to the FID. The column was 

programmed to change from 170 to 270 °C at a rate of 5 °C min–1 to allow separation of 

the fatty acids and comparison to known standards for naming the peaks. The GC was 

attached to a microprocessor containing Hewlett-Packard Microbial Identification 

System software (Mendala, 1990). 

 

Construction of a reference FAME database 

Based on the GC analysis data revealing the unique combination and proportion 

of various fatty acids present in each FAME sample, a reference FAME profile entry was 

created for each rhizobial strain using MIDI Library Generation Software developed by 

MIDI/Hewlett-Packard Microbial Identification System (Mendala, 1990). A reference 

FAME profile entry for each strain consisted of nine replicated FAME profiles.   

 

Data analysis 

Once the reference FAME profile entries were created for each strain, a 

dendrogram was constructed to examine if rhizobia of different strains would be linked 

at ED > 6. A dendrogram was constructed by using a built-in function of the 

aforementioned MIDI Library Generation Software. 


