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Abstract

Over the past few years, with the rapid development of mobile technology, more people use mobile social

applications, such as Facebook, Twitter and Weibo, in their daily lives, and there is an increasing amount

of social data. Thus, finding a suitable storage approach to store and process the social data, especially for

the large-scale social data, should be important for the social network companies. Traditionally, a relational

database, which represents data in terms of tables, is widely used in the legacy applications. However, a

graph database, which is a kind of NoSQL databases, is in a rapid development to handle the growing amount

of unstructured or semi-structured data. The two kinds of storage approaches have their own advantages.

For example, a relational database should be a more mature storage approach, and a graph database can

handle graph-like data in an easier way.

In this research, a comparison of capabilities for storing and processing large-scale social data between

relational databases and graph databases is applied. Two kinds of analysis, the quantitative research analysis

of storage cost and executing time and the qualitative analysis of five criteria, including maturity, ease of

programming, flexibility, security and data visualization, are taken into the comparison to evaluate the

performance of relational databases and graph databases when handling large-scale social data. Also, a

simple mobile social application is developed for experiments. The comparison is used to figure out which

kind of database is more suitable for handling large-scale social data, and it can compare more graph database

models with real-world social data sets in the future research.
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Chapter 1

Introduction

In recent years, there has been increasing importance in storing and processing data in the form of graphs,

which is one of the basic data structures in computer science. According to Mashaghi[52], it can use graphs

for modeling purposes in many types of relations and processes in physical, biological, social and information

systems, and also for representing many practical problems. Meanwhile, several companies, especially the

social media companies, which are interested in representing social networks in graphs, are trying to apply

graph models for practical applications.

A graph contains lots of nodes and edges[77], and in a social graph, the nodes refer to the social actors

in the social network, and the edges represent the social relationships between the social actors. An edge

can describe what it is, where it comes from, and where it goes to. Lots of social information is implicit

in social graphs. Also, graph structure can enable users to process several graph operations, such as graph

transposing, graph complement, graph product and graph minor, on the social data[77]. These operations

offer more possibilities to process the social data to explore more social information. Therefore, there is an

increasing need to store and query the graphs.

Figure 1.1: Social Graph[49]
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In these contexts, it may be unsuitable to use the relational database management systems, which is a

traditional storage approach storing data in terms of tables, to handle the graph data, since they hardly

represent the inherent graph structure, and even the best relational database systems so for may not match

the requests for serving social graph data, although they are ACID (Atomicity, Consistency, Isolation, and

Durability) compliant and have high performance when handling large-scale data. Meanwhile, a new storage

approach, called GDBs (Graph Database Systems), is emerging to provide a solution for storing and working

with graphs.

Graph databases, the new storage model, have been adopted in the past few years. They use graph

structure to represent and store data, and enable consequently semantic queries with nodes, edges and

properties[7]. Thus, a graph database can offer a cost-saving solution for storing graph-like data, compared

with the relational model. For example, processing some graph operations to query data from relational

databases can be very inefficient, because it may need complex join operations or subqueries to assist. On

the other hand, it can be easily handled in graph databases.

This research provides a benchmark study to compare the performance and capabilities of the relational

databases and the graph databases on storing and processing large-scale social graph data. The main high-

lights of this thesis will include the following three points:

• 1. By comparing the performances of relational database systems and graph database systems on storing

and processing large-scale social graph data, this thesis highlights the capabilities of the relational

databases and the graph databases.

• 2. The designed queries can be used to implement a database benchmark for analyzing the capabilities

of relational databases and graph databases for storing and processing large-scale graph data.

• 3. This research implements a simple mobile social application, which applies relational databases and

graph databases as the backend data storage approaches. It can be used to simulate the practical social

applications for evaluating the performances of relational databases and graph databases in real-world

social applications.

The rest of this thesis is organized as follows: Chapter 2 discusses the problem definition. Chapter 3

provides the literature review associated with relational databases, graph databases, database benchmarks

and other work related to the thesis. Chapter 4 describes the database setup and the kernels of the bench-

mark. Chapter 5 focuses on social graph generation and implementation of the social mobile application and

the middleware. Chapter 6 provides the experiments, experimental results, and evaluation and discussion.

Chapter 7 concludes this thesis with directions for future work.
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Chapter 2

Problem Definition

This research is focusing on comparing the performances and capabilities of graph databases and relational

databases on storing and processing large-scale social graph data. Besides comparing the storage cost and

query performance, the proposed simple mobile social application can be used to evaluate relational databases

and graph databases in real-world applications with qualitative analysis based on five subjective judgments,

including maturity and level of support, ease of programming, flexibility, security and data visualization.

In order to achieve the goal of this research, the following key questions should be answered in this thesis:

• 1. What are the advantages of applying the graph databases and the relational databases to store and

process large-scale social graphs data?

1. From the hardware perspective, which kind of the storage approaches can reduce the storage cost

for storing large-scale social graph data?

2. Which kind of the storage approaches has better query performance, specifically, shorter execution

time?

• 2. How is the performance of the relational databases and the graph databases on the reliability?

1. Which storage approach has the higher maturity and more support for storing and processing

large-scale social data?

2. How is the performance of both relational databases and graph databases on enforcing the data

security?

• 3. How practicability are the relational database systems and the graph database systems?

1. Which the storage approach, the relational database or the graph database, is easier for developers

to apply in the practical applications?

2. Which kind of database systems is more flexible for handling the unstructured or semi-structured

data, especially for the graph-like data?

3. How can relational databases and graph databases support the data visualization?

In order to answer these questions, three challenges should be addressed:

3



• Challenge 1: Graphs Generator: Normally, the nodes and edges in random graphs can be similar.

However, in this research, the stored and processed graphs should be large-scale social graphs, and such

graphs are highly right-skewed, meaning the large majority of nodes have low degrees and only a small

number of nodes have high degrees[78]. Thus, the nodes should be different in a graph, and it makes

the social graphs different to the random graphs. Thus, generating large social graphs, which meet this

property, is the first challenge in this research.

• Challenge 2: Cross-Platform Mobile Social Application: With the development of mobile technology,

mobile applications become more common in people’s daily life, especially for the social applications.

The mobile social applications are highly interested in storing and processing the social data in terms

of graphs. Besides the quantitative analysis, which is based on the performance on storage cost and

query execution time, the qualitative analysis should be necessary to complete the understanding of

the storage approaches. Moreover, building a simple mobile application to simulate some practical

functions should be significant for both quantitative analysis and qualitative analysis, and it also is a

challenge in this research.

• Challenge 3: Evaluation Criteria: The core of this research is comparing the performances of the

relational database (RDB) and the graph database (GDB) on storing and processing large-scale social

graph data. Therefore, it is essential to benchmark the performance of the database systems. Although

there are several benchmarks of relational databases or graph databases, it lacks unified criteria for

evaluating the performances of relational databases and graph databases in one case. Therefore, the

third challenge here is to propose sufficient criteria to compare the different types of database systems.

Besides the main goal of thesis, the follows list two sub-goals that should be achieved in this study as

well:

• Goal 1: To develop a simple hybird mobile application, which can run on different mobile devices, to

be familiar with the cross-platform mobile application development.

1. Cross-platform mobile application running on various mobile platforms

2. Hybrid application applying the Web-technology with the native shell

3. Applying jQuery Mobile and PhoneGap

• Goal 2: To construct a database benchmark for evaluating database performance on storing and pro-

cessing large-scale graph data

1. Large-scale social graph data

2. Suitable for graph databases and relational databases

3. Robust, reliable, repeatable benchmark

4



Chapter 3

Literature Review

The literature review is organized as follows:

The first section, Section 3.1, introduces the relational database, which is a key point in this research.

After reviewing the related literature, it provides the basic knowledge about the relational databases. In this

section, it reviews several important technologies or terminologies about the relational databases including

ACID (Atomicity, Consistency, Isolation, and Durability), which is a set of properties that guarantee the

reliability of database transactions; Primary Key and Foreign Key, which are the key concepts to build

relationships in a relational database; Database Normalization, which is a process to decompose the data

into smaller relations to minimize the data redundancy.

In addition, Section 3.2 talks about the graph databases, which is another focus of this research besides

the relational databases. Firstly, the concept of the NoSQL databases is introduced in subsection 3.2.1. In

addition, the three types of graph model in the graph databases: property graph, hypergraph, and RDF

Triple, are reviewed in subsection 3.2.2, 3.2.3 and 3.2.4.

Moreover, the database benchmark is important for evaluating the performance of databases, and Section

3.3 represents the works about benchmarking the databases.

Furthermore, a key concept in this research is the social network, so Section 3.4 is talking about the

knowledge about the social network. Specifically, subsection 3.4.1 describes the social network analysis to

express the importance of social relationships in the research.

Finally, in order to show the impacts of mobile technology on computing, the information about mobile

computing is reviewed in Section 3.5. Additionally, this research needs to build up a cross-platform mobile

application that can run on different mobile OSs. Therefore, subsection 3.5.1 introduces the cross-platform

mobile application development technologies.

3.1 Relational Database

How to store and access data safely and securely has been a challenging topic for a long time. In 1970, Edgar

Codd [19] proposed the idea about the relational model, and since then the relational model has almost

maintained the entire database market, and dominated the database development until the emergence of

NoSQL technologies. Currently, there are many different commercial vendors of the relational database
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management systems (RDBMs), and their products vary significantly in capabilities and cost. Some leading

vendors are listed as follows:

• Computer Associates: INGRES

• IBM: DB2

• INFORMIX Software: INFORMIX

• Oracle Corporation: Oracle

• Microsoft Corporation: MS Access

• Microsoft Corporation: SQL Server

• MySQL AB: MySQL

• PostgreSQL Dvlp Grp: PostgreSQL

• Sybase :Sybase 11

The relational model, as proposed by Codd[21], organizes data into one or more tables of rows and

columns, and each row should be identified uniquely. The relational model stores information using tables

(relations) to enable software storing, accessing and modifying data that stored in the server side. Table 3.1

represent an example table in a relational database.

Table 3.1: Relational Database Example

FirstName LastName Gender Age Hometown

Tom Smith Male 25 2

Roy Brown Male 51 4

Odie Howard Male 42 3

Yaowen Chen Male 28 5

Nan Chen Male 29 6

Ruyu Zhang Female 51 1

Shengzhan Chen Male 54 1

There are five relational attributes, including “FirstName”, “LastName”, “Gender”, “Age” and “Home-

town”. Each attribute is assigned with value, and a row of data, such as “Yaowen”, “Chen”, “Male”, “28”
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and “5”, represents a tuple. The number of tuples is called cardinality, and the number of attributes is

called degree, so the cardinality of Table 3.1 is 7, and the degree is 5. In addition, Table 3.2 is showing more

relational model terminologies with their explanations[21].

Table 3.2: Relational Model Terminology

Relational Model Terminology Explanation

Relation Table in a database

Domain Type of column in a table

Attribute Column of a table

Attribute value Column value

Tuple Row of a table

Entity Name of a table

Degree Number of columns in a table

Cardinality Number of rows in a table

Moreover, Codd represented the properties of the relations in [21][19] as follows:

• A row in a table represent a tuple in a relation.

• Each row should be distinct to avoid duplicate row in a table.

• The order of rows should be meaningless.

• The order of columns should be meaningless.

• All table values should be atomic.

3.1.1 ACID

In database systems, a transaction refers to a single logical operation on the data, for example, inserting data

into a database. In order to attain the reliability of a transaction, a set of properties, including Atomicity,

Consistency, Isolation and Durability (ACID), were proposed in 1983[36].

• Atomicity

Each transaction should be atomic (all or nothing)[27], which means a transaction should be viewed as

a whole unit. If any part of the transaction fails, the whole transaction should fail without making any

changes on the databases.
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• Consistency

Consistency property ensures a transaction should bring the database from one valid state to another

after the transaction processes completely and successfully[61]. No matter whether the transactions is

correct or not, it needs to keep the database consistent.

• Isolation

Isolation property determines each running transaction should be independent on other concurrent

transactions until one has been completed and committed successfully[36]. Thus, the effects of incom-

plete transactions should be invisible to other transactions.

• Durability

Durability means once a transaction commits, the changes in the database should remain the same,

even in the case of system crashes, power loss or error[27]. This property ensures the execution results

can be recorded permanently.

Although the relational databases guarantee the reliability of a transaction through ACID, with the de-

velopment of web technologies, the data storage techniques have processed revolutionary changes. Scalability

and availability, especially in distributed environments, have played a more important role than before. Be-

cause the web-based data is very huge data and distributed naturally in the most cases, it may be challenging

for RDMSs to store and process, and this leads to the inception of the NoSQL databases.

3.1.2 Primary Key and Foreign Key

A Primary Key (PK) in a table is a single or a set of columns with unique values that can be used to identify

each record in the table uniquely[60]. The value, or the combination of values, of the PK attributes for a

tuple should be unique, and not be repeated by other tuples in the table to identify the tuple. Usually, the

database management system can assign a constraint to ensure the uniqueness of the Primary Key. The

Primary Key can reduce the redundant data in the database.

The Primary Keys need to work with the Foreign Keys in a relational database. A Foreign Key (FK) in

a table is a field representing a reference to the Primary Key of another table[60]. In addition, there could

be multiple FKs in a table to point to multiple PKs in multiple tables.

Figure 3.1 shows a complex data schema of a relational database. There are six tables, namely “Students”,

“students classes”, “teachers”, “Classes”, “sections” and “departments”. Each table has its own Primary

Key, the “id” attribute in each table. The attributes “student id”, “class id” and “section id” in table

“students classes” are the Foreign Keys and referencing to the “id” of “Students”, the “id” of “Classes” and

the “id” of “sections” respectively. The attributes “teacher id” and “department id” in table “Classes” are

the Foreign Keys and referencing to the “id” of “department” and the “id” of “teachers” respectively. Also,

the attributes “class id” and “teacher id” in table “sections” are the Foreign Keys and referencing to the

“id” of “Classes” and the “id” of “teachers” respectively.
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Figure 3.1: Primary Key and Foreign Key Example[79]
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3.1.3 Database Normalization

In a database system, when a field repeated in two or more tables, data redundancy may occur. For example,

as shown in Table 3.3, data redundancy is occurring in the “CourseID” and “TeacherID” column. Amount

of data, such as “CMPT101”, “CMPT102”, “ARGI100” and“CHIN101”, appears several times in the table.

The redundancy of data may cause data inconsistency because the same attribute may store with different

values, once they do not update consistently. Also, data redundancy increase the required amount of storage.

In order to minimize data redundancy, Edgar Codd [20] introduced a concept of database normalization,

meaning the process of organizing the attributes and tables of a relational database to minimize data redun-

dancy. In addition, normalization broke down a complex domain into independent sub-domains, and each

sub-domain can be linked with each other through the Primary Key-Foreign Key relation[23].

Table 3.3: Data Redundancy Example

ID FirstName LastName CourseID TeacherID

1 Yaowen Chen CMPT101

CMPT102

ECON203

STAT245

TEACH1001

TEACH2003

TEACH3231

TEACH4013

2 Sam James CMPT101

HIST204

ECON403

MATH205

TEACH1001

TEACH2243

TEACH3724

TEACH3053

3 Mike Tom CMPT204

ARGI100

CHIN101

MATH205

TEACH1341

TEACH2183

TEACH1291

TEACH3053

4 Ryan Jackson CMPT101

CMPT102

ARGI100

CHIN101

TEACH1001

TEACH2003

TEACH2183

TEACH1291

Furthermore, Codd [19][20] introduced three type of normal form, First Normal Form, Second Normal

Form and Third Normal Form. Currently, the most of the relational databases meet the requirements of these

three normal forms sufficiently, and the other normal forms, such as EKNF (Elementary Key Normal Form),

BCNF (BoyceCodd Normal Form), ETNF (Essential Tuple Normal Form), and DKNF (Domain/Key Normal
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Form) are more for academic purposes. Figure 3.2 represents a clear process of database normalization.

• First Normal Form

First Normal Form (1NF) was defined by Edgar Codd [19] in 1971. If a relation is in the First Normal

Form, each attribute of the relation should contain atomic values only, and the value of the attributes

should be a single value. It ensures the repeating values are eliminated in an individual table, and each

set of related data can be stored in a separate table.

• Second Normal Form

Second Normal Form (2NF) is the second step to normalize the databases, introduced by Edgar Codd

in 1971[20]. Besides following the 1NF, the Second Normal Form requires the every non-prime attribute

of the table should be fully dependent on the entire primary key.

• Third Normal Form

Third Normal Form (3NF) is designed to reduce the duplication of data and enforce referential integrity[20].

A relation is in Third Normal Form if and only if it is in 2NF and every attribute in the table is only

dependent on the primary key and not on any non-prime attributes.

Figure 3.2: Database Normalization Process[1]

The database normalization enhanced the relational model and had an important effect on the success

of the relational databases. This process decomposes the data into smaller relations and establishes more
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meaningful relationships between them to reduce the need for restructuring the relations and make the

relational model more informative to users[70]. Moreover, although database normalization process is widely

used in RDMSs, it cannot be applied in every situation. Due to the scalability of the relational databases,

it may need to add redundant copies of data to improve the readability sometimes. This process is called

denormalization, and can improve the performance of database queries.

3.2 Graph Database

3.2.1 NoSQL

Because of the development of cloud computing with large-scale web applications, a new kind of database

systems, namely NoSQL, has been adopted in the last decades[38]. NoSQL refers to “non SQL” or “non

relational”, so typically, the NoSQL databases apply a different mechanism for storage and retrieval of data

other than the tabular relations, which is used in the relational databases[53]. NoSQL databases are becoming

common in daily lives and used in more fields, and there are four major types of NoSQL databases, including

key-value stores, column family stores, document stores and graph databases. Figure 3.3 represents the four

categories of NoSQL graphically. Besides the graph databases, the other types of NoSQL are introduced as

below:

• Key-value Stores

Key-Value Stores store data as a typical hash table in a schemaless way[11]. The hash table contains

two fields, a key with its value, so data is normally represented as a collection of Key-Value pairs in

this model. Since the keys are the unique identification of the record, the data can be quickly found

within the database by searching for the key. Because of the simple structure of this storage model,

it provides high availability and scalability, and it is ease to use in applications, so it is very useful in

distributed environment.

• Column Family Stores

Column Family Stores store data in columns instead of rows, comparing with the relational databases.

Also, it stores data in a Key-Value pair, but the key is two dimensional with a column key and a row

key[42]. A column contains three elements: unique name (used to reference the column), value (the

content of the column) and timestamp (used to determine the valid content). A Column Family is a

collection of rows containing a number of columns, so the database can be viewed as one big table.

Moreover, a row-by-row approach stores all data in a single entity, and a column-by-column approach

ensures the information relating an attribute[56]. Thus, this database model is suitable for dealing with

large-scale distributed data.

• Document Stores

Document Stores allow applications to store data in terms of documents. The documents are indepen-
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dent of each other, just like the rows in a relational database, but without any restrictions and not

belonging to any schema[56]. Similar to the Key-Value Stores, the Document Stores take advantage

from applying hash table. On the other hand, unlike relational databases, in which every instance of

data has the same format as others, Document Databases store all related data together, and every

instance of data can be different to others[15]. In addition, due to the semi-structure of the document,

Document Stores offer good performance for large data sets and are flexible in dealing with data.

Figure 3.3: NoSQL Databases[67]

Besides these three types of NoSQL databases, the Graph database is another type of NoSQL databases.

The Graph database applies graphs, which consist of nodes and edges, to store and manage data, instead

of storing data in tables in a relational database[7]. Also, data can be stored as properties of nodes and

edges in graph databases. The structure of graphs offers a high accessibility and scalability in a distributed

environment.

Figure 3.4 represents a typical graph database example. There are three nodes in the graph, and each

node contains its property, like Id, Name and Age. Also, there are six edges connecting the nodes with

others to represent the relationship between nodes. An edge has its property as well, and in this case, the

properties are Id, Label and timestamps. Remarkably, these edges can be directional, so the relationships
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can be represented directly.

Figure 3.4: Graph Database Example[4]

Graph databases store data in term of graphs, which are a kind of highly interconnected data structure[33].

It is very useful for social networking websites, such as Facebook and Twitter, since it is easy to represent

social actors as the nodes, edges as the relationship between users, and properties as the social information

about users.

Currently, there still is very limited number of studies having been done about modeling data in the graph

database domain, so it is difficult to provide hard rules based on practical applications. Robinson, Webber

and Eifrem[65] suggest some general rules, including:

• Nodes can be used to represent entities.

• Edges can be used to represent relationships to connect the entities and to establish the semantic

context for each entity.

• Node properties can be used to represent entity attributes.

• Edge properties can be used to express the strength, weight, or quality of a relationship.

• Relationship direction can clarify relationship more semantically. For bidirectional relationships, direc-

tion can be ignored.

Graph database is a type of databases, and there are three main group graph databases with different

models, which are introduced in the following subsections:

• Property Graphs

• Hypergraphs

• Resource Description Framework (RDF) triples
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3.2.2 Property Graphs

The property graph model is a model that is widely used in the most graph database systems. A property

graph has the following elements[65]:

• A set of vertices:

1. Each vertex has its unique identifier

2. Each vertex has a number of incoming edges

3. Each vertex has a number of outgoing edges

4. Each vertex has a number of properties associated with it, defined by a map from key to value

• A set of edges:

1. Each edge has its unique identifier

2. Each edge has an incoming head vertex

3. Each edge has an outgoing tail vertex

4. Each edge has a number of properties associated with it, defined by a map from key to value

5. Each edge has a label to denote the relationship between the incoming vertex and outgoing vertex.

Figure 3.5 represents an example of a property graph. It contains three social actors: “Alice”, “Bob”

and “Chris”. They are nodes in the graph, and their information, such as name and age, are stored as the

properties of nodes. Meanwhile, they are connected by edges, and the information about the relationships is

stored as the properties of edges. It provides a clearer explanation of the relationships than the hypergraph,

which is introduced in the following subsection.

Figure 3.5: Property Graph[3]
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3.2.3 Hypergraphs

Basically, graph databases store and represent data in terms of graphs, which comprise of nodes and edges,

but unlike the property graph, which is an one-to-one relationship, a hyper edge can connect multiple nodes

in the hypergraph model[45]. The graph model can easily store and process the many-to-many relationships,

which is hard to handle in a property graph.

Figure 3.6 represents a hypergraph example. There are six vertexes in the graph, v1, v2, v3, v4, v5 and

v6, four hyper edges, e1, e2, e3 and e4, connecting these nodes. e1 connects v1, v2, v3 and v4; e2 connects

v1, v3 and v5; v3, v4 and v7 are connected by e3; similarly, e4 is the link between v5, v6 and v7.

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

Figure 3.6: Hypergraph Example

Clearly, this model is very simple, but may require description for understanding the relationship. Also,

because hyper edges are multidimensional, hypergraphs is a very general model, and it can be translated into

a property graph with more relationships, but it increases the cost of storage.

3.2.4 RDF Triples

The Resource Description Framework (RDF) is a standard model for data interchange on the Web[62][8]. It

has been used as a general method for conceptual description or modeling of information that is implemented

in web resources, using a variety of syntax notations and data serialization formats. In addition, it decomposes

any types of knowledge into small pieces, with some rules of the semantics, or meaning, of those pieces. There

are some facts about the RDF format[62][48][59]:

• It is a data model in which the basic unit of information is known as an RDF triple (see Figure 3.7).

• The RDF represents information based upon the idea of subject-predicate-object expressions. It also

could be considered as a resource identifier, an attribute or property name, or an attribute or property
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value.

• To remove any ambiguity from the information stated by a given triple, the triple’s subject and predicate

must be URIs.

Figure 3.7: RDF Triple[2]

If converting the graph of the RDF triple in the Figure 3.7 into the “ subject-predicate-object”, it will be

as follows:

Table 3.4: RDF subject-predicate-object

Subject Predicate Object

Sofeware hasManual Document

Sofeware requires Library

Document isBasedOn Document

Document subject Topic

Image inPartOf Document

Document hasAuthor Person

Person livesAt Place

Currently, RDF is one of the three foundational Semantic Web technologies, and widely used in the Se-

mantic Web as a graph database. On the Semantic Web, there may be no sufficient information to determine
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if two nodes are same or not. In order to resolve the identity problem, RDF applies the notion of the URI.

URIs work very well for expressing identity on the WWW, so using the URI as a standard for global identi-

fiers allows for a worldwide reference for any symbol[12]. It means that people can identify whether any two

users in the anywhere in the world are referring to the same thing. This property of URI provides a simple

way for a standards organization to specify the meaning of certain terms. The World Wide Web Consortium

(W3C) has defined a number of standard namespaces for use with Web technologies including xsd: for XML

schema definition; xmlns: for XML namespaces; and so on[62][8].

RDF uses the infrastructure of the Web to represent agreements on how to refer to a particular entity.

The RDF standard itself takes advantage of the namespace infrastructure to define a small number of stan-

dard identifiers in a namespace defined in the standard, a namespace called rdf. rdf:type is a property that

provides an elementary typing system in RDF. rdf:Property is an identifier that is used as a type in RDF to

indicate when another identifier is to be used as a predicate rather than as a subject or an object[8][59]. In

a social network, a typical RDF file that is written by XML can be shownas follows:

$<$?xml v e r s i o n = ‘ ‘1 .0 ’ ’ ? $>$

$<$rd f :RDF

xmlns : rd f = ‘ ‘ http ://www. w3 . org /1999/02/22− rdf−syntax−ns \# ’ ’

xmlns : company= ‘ ‘ http :// company/ Superv i so r \# ’ ’$>$

$<$rd f : De s c r ip t i on

rd f : about = ‘ ‘ http :// company/ Superv i sor ’ ’ $>$

$<$Superv i so r : name$>$Superv i so r A$<$/ Superv i so r : name$>$

$<$Superv i so r : country$>$USA$<$/ Superv i so r : country$>$

$<$Superv i so r : company$>$Company A$<$/ Superv i so r : company$>$

$<$Superv i so r : gender$>$ Male$<$/ Superv i so r : gender$>$

$<$Superv i so r : age$>$36$<$/ Superv i so r : age$>$

$<$/ rd f : Descr ipt ion$>$

$<$rd f : about = ‘ ‘ http :// company/ Superv i sor ’ ’ $>$

$<$Superv i so r : name$>$Superv i so r B$<$/ Superv i so r : name$>$

$<$Superv i so r : country$>$USA$<$/ Superv i so r : country$>$

$<$Superv i so r : company$>$Company A$<$/ Superv i so r : company$>$

$<$Superv i so r : gender$>$ Male$<$/ Superv i so r : gender$>$

$<$Superv i so r : age$>$45$<$/ Superv i so r : age$>$

$<$/ rd f : Descr ipt ion$>$

$<$/ rd f :RDF$>$
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3.3 Database Benchmark

Performance can be viewed as one of the major issues when evaluating different database hardware, software

and configurations, and database benchmarks, which usually are running several of standard tests, are an

important tool to assess the performance of databases. Benchmarking is a continuous and systematic process

to compare the performance of applications, services and processes in order to improve the outcomes by

identifying and implementing the best practice approaches. According to Lee and Jeong[46], the database

benchmark normally can be classified into two categories: the generic benchmark and the custom benchmark:

• Generic Benchmarks

This kind of benchmark is created to measure the performance and processes of organizations in un-

related industries. Because a generic benchmark is developed to be a domain specific benchmark to

focus on a particular application domain, it can be generally used by a large group of customers with

the applications to improve performance and processes as well as create new standards.

• Custom Benchmarks

A custom benchmark is implemented by a particular customer for a specific application. It can measure

the performance of a database precisely based on customer’s need. However, because it is for a specific

application, it cannot be used generally; the cost of designing and implementing the benchmark may

be very expensive.

In recent years, because of the development of graph databases techniques, more graph database systems

have emerged, so more work about the comparison on the performance of different graph databases has been

done. In [26], Neo4j is compared with other scalable graph databases: Jena, HypergraphDB and DEX. The

HPC scalable graph analysis benchmark tests the performance of each database for different typical graph

operations and graph sizes. Although it tests 1k, 32k and 1M nodes from 9k relationships to 8.4 million, it

is still a small amount of a large social network.

Also, Renzo Angles[7] proposed a way to compare current graph database models. That work compares

some basic features of nine graph data stores, including AllergroGraph, DEX, Filament, G-Store, Hyper-

GraphDB, InfiniteGraph, Neo4j, Sones and vertexDB. But the features about data storing and querying, like

the data structures, query languages and constraints just provide a general view about the database systems.

It is hard to know the performance of graph database systems on dealing with graph data.

In addition, there is some work comparing the performance of graph databases and relational databases.

LinkBench is a recently developed benchmark, which is based on traces from the databases storing social

graph data from Facebook, which is a major social networking website[9]. This work characterizes the data

and query workload to construct the benchmark, LinkBench. Although this work has compared the per-

formance of Neo4j with MySQL on storing social graph data in some fields, it lacks the comparison on the

database properties.
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Moreover, based on the artificial data model to simulate users of a social networking, the benchmark, BG,

is used to evaluate interactive social networking actions[10]. Since there are numbers of interactive actions

in a social networking application, such as posting new photos, browsing a profile, and generating a friend

request, comparing such performances can be valuable in practical usage. However, BG compares SQL-X,

MongoDB and CASQL, without any graph database systems, and it does not measure the capability of

handling graph-type data.

Also, since there are different query languages available for different graph database systems, such as

SPARQL for AllegroGraph (RDF Triple Store), Cypher for Neo4j (a widely used graph database) and

GraphQL for some designed client applications, Holzschuher and Peinl[43] proposed a benchmark to per-

formance of query languages running on different database systems. The query language is a great part in

the success of a database system, but this benchmark does not focus on the performance of the database,

which is the key to this study.

3.4 Social Network

A social network is a social structure made up of a set of actors such as individuals, groups and organizations,

and a complex set of the edges tying between these actors[75][69]. The concepts of social networks can be

applied in conjunction with the semantic web technology to form the Semantic Social Network. In this

context, the social network perspective provides a clear way to analyze the structure of whole society[13].

Like the other networks, a social network also could be represented as a graph (Figure 3.8), G = (V, E), where

V is the set of nodes representing people and E is the set of the edges. (V * V) means the relationships, such

as friendship, kinship, and conflict, among the nodes, or saying people in the network. The social network is

a map of all of the relevant ties between the nodes[30][69]. In a social graph, there can be strong ties, weak

ties, and positive ties and negative ties.

Figure 3.8: A Social Network in a Graph[25]
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Definition: Strong Ties

Strong ties are the relationships that people are linked within the same community and involve frequent

interactions[50][57][66]. People usually share the same body of knowledge and are able to transfer information

quickly through the strong ties, because of the frequent interactions.

There is a hypothesis about strong ties that was defined by David Krackhardt[50]. Basically, strong ties

can play a very important role in severe change and uncertainty. “People resist change and are uncomfortable

with uncertainty. Strong ties constitute a base of trust that can reduce resistance and provide comfort in

the face of uncertainty. Thus, it will be argued that change is not facilitated by weak ties, but rather by

a particular type of strong tie[50].” This particular type of strong tie needs to fulfill the following three

necessary and sufficient conditions[50]:

• Interaction: if A and B can be a strong tie, A and B must interact with each other.

• Affection: if A and B can be a strong tie, A must feel affection for B.

• Time: if A and B can be a strong tie, there must be a history of the interactions between A and B,

and the interactions must be lasting over an extended period of time.

Definition: Weak Ties

Weak ties are relationships among people, who are not in the same community or coalitions. They are

characterized with relatively infrequent interactions[32][31]. There is a hypothesis about the weak tie that

was originally stated by Anatol Rapoport[63], a Russian-born American mathematical psychologist, in 1957.

The hypothesis argues that if A is linked to both B and C, then there is a greater-than-chance probability

that B and C are linked to each other (See Figure 3.9).

Figure 3.9: Strong Ties and Weak Ties
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More specially, there are two randomly selected individuals, for example, A and B, from a set S, which

contains A, B, C, D, E etc. of all persons with ties to either or both of them. If A have strong ties with both

B and C, then, basing on the probability arguments, the B always has a tie with C. In other words, given

the other two strong ties, the B-C tie is always presenting, whether weak or strong. The benefit of knowing

people with weak ties is that the weak ties can function as the crucial bridges between any two dense clusters

of close friends.

Definition: Positive Ties and Negative Ties

In most cases, acquaintanceship is a positive tie. On the other hand, animosity among persons could be

a negative tie[63]. In order to represent both positive and negative relations, a model called signed graphs

is created. Frank Harary[41][14] stated an important structure theorem for signed graphs. A signed graph

is balanced if the product of the signs of all relations in every cycle is positive. On the other hand, if the

product is ever negative, it will be unbalanced. The theorem represented that if a network of interrelated

positive and negative ties is balanced, then it consists of two subnetworks such that each has positive ties

among its nodes and negative ties between nodes in distinct subnetworks. In other words, “my friend’s enemy

is my enemy”. Therefore, this theorem could be applied into the social analysis to find potential competitors.

In the social networks, there is a type of graphs in which most nodes can be reached from every other by

a small number of steps. This kind of social network is defined as small-world network. According to [35][54],

in the late 1960’s, Stanley Milgram did a sociology experiment to investigate social networks. Milgram ad-

dressed letters to a particular stockbroker in New York and gave them to people randomly picked at various

locations in the U.S.A, and far away from the receivers in that experiment. People could send the letters to

people who they knew personally by first name. Eventually, most of the letters reached the destination, and

the average number of steps was around six. That phenomenon was called “six degrees of separation”. This

kind of network, in which people are linked to each other by only a few links in a social network is known as

a “small world network”. This theory could be applied into social network analysis to find the links between

people[76].

Moreover, the social network benefits people in their everyday lives, especially for the information trans-

ferring and searching. People could share information with their friends, and the friends will share this

information with their friends as well, so there will be an exponential transfer of information. Especially

on the Internet, people share lots of social information on the social network sites, and the information is

spreading very quickly. For example, the followers retweeting a message on Twitter could easily make the

message known by more and more users on Twitter.

On social network sites, there are some common social network features listed as follows[73]:

• Social actors:

Every user must register a user account and log into the social network site when they are using the

social network site. The social networking site should support several actor types besides users, such
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as groups, organizations or companies.

• Social relations:

There are several different types of social relations existing in current social networking sites. A user

may need to confirm a relation when it is bidirectional such as the friendship in Facebook, but for the

followers in Twitter, it is a unidirectional relation, which cannot be confirmed. Furthermore, the other

types of relations between social actors are also noticeable such as blocking other users.

• Content:

There could be multiple types of content being managed by social networking sites such as text posts,

pictures, videos, events and links to external sites. Also, some content-oriented social networking sites

may provide specific kinds of content. But the social networking sites are supposed to provide support

for the most common content types. Furthermore, content visibility should support several options

including keeping content private, sharing with contacts, sharing with specific users and sharing the

content publicly.

• Activities timeline:

The activities timeline is the stream of more-recent ordered actions performed by social actors. For

example, “Yaowen posts a new status”, “Yaowen uploads a new photo”, and “Yaowen shares a video”.

The most popular timeline is the home activities timeline made up of all the activities in which the

social actor?s followings are involved.

3.4.1 Social Network Analysis

Social network analysis is the analysis of social networks. It will view the social relationships in terms of the

network theory. Therefore, the nodes will represent individual actors within the social network, and ties will

represent relationships between the individuals, such as friendship, kinship, organizations etc. In addition,

according to Scott in 1988, “Social network analysis has emerged as a set of methods for the analysis of

social structures, methods which are specifically geared towards an investigation of the relational aspects of

these structures. The use of these methods, therefore, depends on the availability of relational rather than

attribute data[68].”

Therefore, the social network analysis is the study about the social relationships among a set of actors. It

depends on the assumption of the importance of relationships among the social actors in the social network.

There are lots of studies of social network analysis focusing on the relationships among social entities and the

patterns and the implications of the relationships. As Wasserman described, “the social network perspective

encompasses theories, models, and applications that are expressed in terms of relational concepts or processes.

Along with growing interest and increased use of network analysis has come a consensus about the central

principles underlying the network perspective[75]”. Therefore, excepting the relational concepts, the following

concepts are important[75]:
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• Actors and their actions are regarded as interdependent rather than independent, autonomous units.

• Relational ties between actors are channels for the resources transfer or flow (either material or non-

material).

• Network models focusing on individuals treat the network structural environment as providing oppor-

tunities for constraints on individual action.

• Network models conceptualize structures such as social, economic, political and so on, as lasting patterns

of relations among actors.

As Robert A. Hanneman[39][40] stated, the social network analysis is more a branch of mathematical

sociology than of statistical or quantitative analysis. Mathematical approaches to network analysis tend to

consider the data as conclusive, which means the measured relationships and relationship strengths are re-

garded as accurately reflecting the final status of the network. Also it assumes the observations are regarded

as the population of interest rather than a sample of some larger population of possible observations. On the

other hand, statistical analysts tend to treat the particular scores on relationship strengths as probabilistic

realizations of an underlying true tendency or probability distribution of relationship strengths. Additionally,

it tends to consider a particular set of network data as a sample of a larger set or population of such networks

or network elements.

There are lots of strategies for deciding how to collect measurements on the relations among the people

within the social network. One of those approaches, full network method, can yield the maximum of informa-

tion, but it will be costly and hard to execute; also, it may be difficult to generalize. The full network method

needs to collect information about each actor’s relationships with all other actors. This approach is taking

a census of all ties in a population of actors, rather than a sample in fact. Because it collects information

about ties between all pairs, full network data provides a detailed view of relations in the social network.

Full network data is necessary to properly define and measure many of the structural concepts of network

analysis[40].

The full network method tries to describe and analyze the social structures completely. However, the

data of the full network is very expensive and difficult to collect, unfortunately. It is very difficult to obtain

data from everyone in a group, and it is very challenging for every member to rate every other member. It

only is possible in a very small group. When there is a limited number of specific individuals with whom

they are tying with, the full network method will be more manageable. However, if the population of the

social network is very large, the method is impossible to execute in the real world[40].

On the other hand, the snowball method gets considerably less information about the network structure,

but it is less costly. Also, it allows easier generalization from the observations in the sample to some larger

populations. This approach begins with a focal actor or a set of actors. Each of these actors is asked to

name some or all of the actors who they are tying with. Then, the actors being named go to name the actors

who they are tying with. The process continues until all actors are named[40][47]. Remarkably, with the
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development of the Big Data technology, the large social companies, like Facebook, have more capability to

process such approach to deeply analyze the social network to get more social information.

But there are two major potential limitations and weaknesses of the snowball method. First, there may be

some actors having no connection with others, namely isolates. They cannot be located by this approach, so

that the connectedness may be over-stated. Meanwhile, the presence and the number of isolates may be very

important features of populations for some analytic topics. Second, there is no guaranteed way of finding all

of the connected individuals in the group. It is important to start at a right place. Otherwise, it may miss a

whole sub-set of the actors, who are connected but not attached to the starting points. One remarkable fact

is that snowball method can be strengthened by selecting good initial nodes. In many studies, there may be

a natural starting point. Although this approach may miss the isolators, the approach is very effective to

capture the information of network[40][47].

3.5 Mobile Computing

According to Tomasz Imielinski and Henry F. Korth[44], the rapidly expanding technology of cellular com-

munication, wireless LANs, and satellite services, has allowed information be accessed from anywhere at any

time. This fact encourages more people to use laptops, mobile phones and tablets in their daily life. Regard-

less of size, the mobile devices can be equipped with a wireless connection to the fixed part of the network, or

connect with other mobile devices. The resulting computing environment is called mobile computing that no

longer requires people to maintain a fixed and universally known position in the network and enables almost

unrestricted mobility. As James Bryan Zimmerman[80] pointed out, mobile computing enables improvements

in information quality, information accessibility, operation efficiency, and management effectiveness.

• Information Quality:

First of all, mobile computing enables information to be captured at its point of creation, once it has

been created. Meanwhile, complex and complete information can be captured more quickly and easily

than before. Therefore, the accuracy, relevance, completeness, conciseness, and scope of information

will be improved in content dimension.

Additionally, mobile computing has specifications for hardware and software, so that information can

be viewed in the format that is easy for the mobile users to use and unambiguous to improve the form

dimension of information quality by improving the characteristics of clarity, detail, order, presentation,

and media. Therefore, mobile computing improves the time, content and form dimensions of information

quality. Although the fidelity of mobile devices may be weak sometimes, for example, when there is

the audio on phone calls, which results in very poor quality; or when the mobile device is out of range

of the internet, generally speaking, the resulting overall quality of information generated is improved,

since the most dimensions of information are improved.

• Information Accessibility:
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Additionally, mobile computing improves the information accessibility as well. Mobile computing tech-

nology offers a wide range of options to fit the different needs of each individual. The improvements

in information accessibility cause improved information flow both to and from the central fixed infor-

mation system. When the mobile users transmit data to the fixed information system, the data can

be processed in the information system, and then, the data will be available for all other users. Also,

mobile computing can increase the information accessibility for the media such as facsimile, audio files,

and images.

• Operation Efficiency:

Moreover, operation efficiency can be improved from mobile computing. Mobile computing integrates

the technology into the fixed information system, which allows the computing power and information

contained within the fixed information system to be structured around the optimum workflow of a

mobile worker, rather than altering the mobile worker?s workflow to meet the optimum configuration for

computing. The example of news reporting, hotel operations, and health care show mobile technology

can be applied to a diverse range of problems and achieve a similar improvement in operational efficiency.

• Management Effectiveness:

Furthermore, mobile computing can improve the management effectiveness, based on the improved

information quality, information accessibility, and operation efficiency. Mobile devices can provide more

available updated and accurate information to managers, so that they can improve their ability to track

work, which is in progress, and the capability to communicate with mobile personnel. Additionally,

mobile devices also provide better information to mobile employees. The mobile devices allow them to

make more informed decisions locally and minimize the cost and need for management decisions.

Because of the mobility of the mobile devices, people can benefit from using mobile computing, especially

in the business. According to IT Policy Compliance Group[34], the biggest benefits of using smartphones

and tablets include being able to access business information from anywhere, at any time, access to business

applications, access to suppliers and partners from any location, and improve communication capability. On

the other hand, although the mobile computing has advantage in mobility, it also has several limitations as

follows[17][29][58]:

• Security Risks:

Mobile devices are dependent on the public network normally, which can be accessed by lots of people.

The mobile devices are easily attacked through a large number of networks interconnected. In addition,

the security issue may be further complicated if users install unknown sources applications. Therefore,

security is the main concern when considering mobile computing.

• Power Issue:

Mobile devices are entirely dependent on battery power if external power is not available. Considering
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the compact size of the many mobile devices such as smartphones and tablets, it is hard to obtain the

necessary battery life in daily usage.

• Human Interface with Devices:

Screens and keyboards are relatively small, due to the small size of the mobile devices. Meanwhile,

some people may not be able to operate the screen-touch mobile devices accurately. These facts may

cause the mobile devices to be hard to operate. Also, the alternate input methods, such as speech

recognition, may still need to develop.

• Transmission Interfaces:

Weather, terrain, and the range from the nearest signal points can have an effect on the signal reception

of the mobile devices. Therefore, when in tunnels, some buildings, and rural areas, the reception can

be very weak.

• Potential Health Issues:

Some people, who use mobile devices when they are driving may be distracted from driving, and it may

cause traffic accidents. Also, cell phones may interfere with sensitive medical devices. Moreover, there

is a growing number of questions about cell phone signals causing the health problems.

• Range and Bandwidth:

Mobile devices access to the Internet via the GPRS, HSDPS and LTE network currently. Generally,

it is slower than direct cable connections, and available with a range of commercial cell phone towers.

Additionally, high-speed wireless LANs only have very limited range.

3.5.1 Cross-platform Mobile Application development

In the past few years, there is a great evolution of the mobile computing industry; and there are lots of power-

ful mobile devices emerging with the mobile operating systems having better functionalities. Thus, there are

many useful features for people such as Global Positioning System (GPS), Music, Camera, Accelerometer,

etc., besides the normal tasks like making phone calls and sending text messages[64][71]. These kinds of

built-in features make the mobile devices such as smartphones and tablets, more popular in people’s daily

lives[28].

Additionally, as mobile applications become increasingly popular with the growth of the mobile industry,

the demand for high-performance mobile applications is increasing as well. However, with the emergence of

different mobile OSs, such as iOS, Android and Windows Phone, it is really challenging for developers to

build applications that can run on different OSs, since each OS has its own language, different API (appli-

cation programming interface), and unique Integrated Development Environments (IDE)[37][6]. Therefore,

the demand for cross-platform mobile application development frameworks is growing, in order to develop

the applications for multiple OSs from the single code base. The main benefits from those frameworks

include[55][6][71][72]:
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• Reduction of Programming Complexity

Since the different OSs may require developers to write the applications in specific programming lan-

guages, such as Objective-C for iOS and Java for Android, to build the native applications, developers

need to be familiar with the different languages before writing applications for different OSs. If apply-

ing the cross-platform mobile application development frameworks, developers can develop applications

using one programming language. It reduces the programming complexity for developers.

• Code Reusability

The cross-platform mobile application development frameworks enable the applications to be compiled

for different OSs from the single code base. Therefore, developers can reuse the existing code rather

than taking time to rewrite it. Thus, applying cross-platform development can reduce the time and

cost for development.

• Reduction of Long-Term Maintenance Cost

Since the cross-platform mobile application development frameworks compile the mobile applications

from the single code base, developers do not need to debug for several different code bases, and applying

cross-platform development does not need to maintain a large staff to support each platform, so it

reduces the long-term maintenance cost.

• Decrement of Required Knowledge

For cross-platform development, developers do not need to know the specification of each platform,

like API and IDE. Instead, they only need to be familiar with knowledge of the selected framework for

development.

• Sharing the Strengths of Technology

Some technologies have strengths in some tasks to make them easier than others. For example, the

programmatic drawing may be easier to be written in HTML and JavaScript than in Java or C#.

Developing equivalent applications in the native code may be more complex and time-consuming than

applying the cross-platform mobile application development frameworks on development.

• Increment of Market Share

An application for a particular mobile OS may face a limited number of corresponding users. If the de-

velopers develop the applications using the cross-platform mobile application development frameworks

for multiple OSs, the number of users must be increasing due to the larger user base. Therefore, the

occupation of market share will increase as well, and developers can get more from the development of

applications.

In the past few years, a lot of cross-platform mobile application development frameworks have emerged.

Meanwhile, there has been an explosion of improvement in the mobile application development, because of

wide adoption of mobile devices and the fast-growing mobile application market. Those mobile applications
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can be categorized into three types: the native application, the Web-based application, and the hybrid

application[18][6][72] (See Figure 3.10).

Figure 3.10: Different Kinds of Mobile Application[72]

Native applications development for a mobile OS is the traditional way to build the mobile applications.

The native applications have binary executable files that can be downloaded from the app stores, such as

Apple’s App Store, Android’s Play Store and BlackBerry’s App World, and installed on the devices. Once

the native applications have been installed, users can launch the applications like the other services that the

device provides, since the native applications interface with the OS directly, without any intermediary or

container[6][72]. Also, the native applications can access all of the device’s capabilities, like GPS, Music, and

NFC, by mobile platform vendor. Users benefit from this, especially for the unique features and functionalities

that are typical of some particular mobile OS.

For native application development, developers need to write the source code with the additional resource,

like images, audio, and various OS-specific declaration file, and then, the source code is compiled in order

to create an executable in binary form that can be packaged with the other resource and deployed into the

devices.

In addition, the modern mobile devices, normally, have powerful browsers that support HTML5 capability,

Cascading Style Sheet 3 (CSS3) and advanced JavaScript. It enables developers to build browser-based

applications by using web technologies. One of the most prominent advantages of web-based development is

its low barriers of entry. Because the web-based applications are entirely based on the web technologies, such

as HTML5, CSS3 and JavaScript, rather than the other complex programming languages, like C#, Ruby

or Objective-C, which may be challenging for unskilled developers, more experienced web developers can

develop the mobile applications in standard web languages[28][51][37]. Also, this characteristic of web-based

applications lowers the cost of development and maintenance.

However, unlike native applications, which interface with the OS directly, web-based applications run
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within the browser, so there may be a limited number of the OS APIs that are exposed to the web-based

applications that run inside the browsers. Compared with the native applications, which have full access to

the device capabilities, many device capabilities are only partially available, even unavailable, for the web-

based applications[18][6]. Although web-based applications may develop due to the improvement of HTML5,

it still is the major limitation for web-based applications currently.

Furthermore, combining the native development with web technology provides the third type of mobile

applications: hybrid applications. Remarkably, using the hybrid approach enables developers to benefit from

both native development and web technology. On the one hand, the native shell allows applications to access

the native APIs to take advantage of the device capabilities that the device offers[18][6]. On the other hand,

the code can be written using web language and shared among the different OS, which makes the development

and ongoing maintenance process shorter and cost-effective[72].

However, the hybrid applications cannot allow users access when the devices are not connected to the

network, as the content is not accessible when offline. In addition, although packaging the web code into

the native shell enhances the performance and accessibility, it does not support remote updates for the

content[72][51]. Furthermore, since the hybrid approach does not produce truly native applications, the

performance of these applications will not be on par with the native applications, although they can still be

very good.

3.6 Summary

After reviewing the literature, there are lots of technologies that can be employed in my thesis research to

address several problems, and the major finding from the literature review are listed in Table 3.5.

• What are the advantages of applying graph databases?

Since graph databases store and process data in term of a graph, they provide high accessibility and

scalability. In addition, since social data is suitable to store and process in term of a graph, the graph

database can be applied in the social applications to handle graph-related operations.

• How to compare the performance of different databases?

When benchmarking the database, it is necessary to develop some tests for evaluation. Based on the

evaluation targets, we can design some tests to evaluate the databases. In addition, simulating social

actions of a social application can provide more information about the performance of databases in

practical usage.

• How to enable portability for mobile client sides?

Applying the cross-platform mobile application development frameworks to develop the mobile appli-

cations can generate applications that can work on different mobile devices. These applications provide

same features and functionalities for the clients, even though they are running on different mobile OSs
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and mobile devices.

Table 3.5: Literature Summary

Area Finding

Relational Databases

The relational model stores data into one or more tables

of rows and columns[12][8].

Primary Key is a single or a set of columns with

unique value for identifying each record[60].

Foreign Key is a field representing a reference to a

Primary Key of another table [60].

ACID

ACID (Atomicity, Consistency, Isolation and Durability) are a set

of properties guarantee the reliability of database transactions[36][27].

Atomicity means a transaction should be viewed as a entire unit[27].

Consistency means after transactions complete, the database

should be from one valid state to another [61].

Isolation ensures each transaction should be independent to others[36].

Durability guarantees the changes in database remain the same

once a transaction commits[27]

Continued on next page
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Table 3.5 – Continued from previous page

Area Finding

Database Normalization

Database normalization is the process of organizing the

attributes and tables of a relational database to minimize

data redundancy[19][20].

In 1NF, each attribute of the relation contains atomic

values only[19].

In 2NF, each non-primary attribute of the tables should be fully

dependent on the primary key[20]

In 3NF, each attribute in the tables is only dependent on the primary

key and not on any non-prime attributes[20]

Graph Database

Graph databases store and process data in term of a graph,

which consists of nodes and edges [33][65].

There are three main group graph databases with different models:

property graph, hypergraph, and RDF triple[65].

Hypergraph

Hypergraph applies hyper-edges to connect multiple nodse with

one hyper-edge[45].

Hypergraph model can easily store and process

many-to-many relationships [45].

RDF

RDF is a general method to decompose the knowledge into small pieces to

describe or model the information as a RDF triple

(subject-predicate-object)[62][48][59].

RDF applies the notion of the URI to determine the uniqueness

of information on the World Wide Web[62][8].

Continued on next page
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Table 3.5 – Continued from previous page

Area Finding

Social Network

Social network could be represented as a graph with nodes

and edges[75][69].

David Krackhardt[50] defined a strong ties hypothesis that strong ties

are important in severe change and uncertainty.

Anatol Rapoport[63] stated the weak tie hypothesis that argues that

if A is linked to both B and C, and then there may be

a connection between B and C.

Frank Harary[41][14] stated a signed graph is balanced if the product

of the signs of all relations is positive. Otherwise, it

is unbalanced.

Stanley pointed out the “six degrees of separation”, which means

people are linked to each other by only a few links

in social network[35][54].

Social Network Analysis

Social network analysis will more focus on

the social relationships[68].

Full network method collects information about each of actors connecting

with all other actors to describe and analyze the social

structure powerfully and yield maximum of information, but it is

costly and difficult to execute[39][40].

Snowball method only asks the connected actors of the beginning

node continuously. Though it may be less costly and easy

to operate, it gets less information about the network structure,

and may face the isolate problem[39][40].

Continued on next page
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Table 3.5 – Continued from previous page

Area Finding

Mobile Computing

James Bryan Zimmerman[80] stated mobile computing enables

improvements in information quality, information accessibility,

operation efficiency, and management effectiveness.

Security risks, power issue, human interface with devices, transmission

interfaces, potential health issues and range and bandwidth may

be the limitations of the mobile computing[17][29][58].

Cross-platform mobile

application development

Due to the specifications of different mobile OSs, there is an increasing

demand for cross-platform mobile application[72][6].

Cross-platform mobile application development enables reduction of

required skilled, code reusability, reduction of long term maintenance cost,

decrement of required knowledge, sharing the strengths of technology and

increment of market share[55][6][71][72].

Native applications offer better performance and the ability to access the

device capabilities[72][6].

Web-based applications apply the HTML5 technology to lower the barriers

of entry and the cost[72][6][29].

Hybrid applications share the advantage of native applications and web

-based applications, but may not be on par with them[72][6].

However, there are still some open questions related to the research that need to be resolved, namely:

• How can enough social data be generated, especially the social graphs that are used for storing and

processing?

• What are suitable criteria to measure database performance?

• Which capabilities of databases are important to deal with large-scale data?
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Chapter 4

Design and Architecture

4.1 Data Generation

One key point in this research is to store and process large-scale social graph data. Unlike the random graphs,

the social networks or social graphs are normally considered as highly right-skewed, which means only a small

number of nodes are highly connected, called “hubs”, and the large majority of nodes have a low degree,

where the degree of a node is the number of its connections with other nodes[78]. The “hubs” play a very

important role in the graphs, which are very different from random graphs. Figure 4.1 shows a normal social

graph and a random graph. Clearly, in the social graph, there are several nodes having a high degree, and

most of nodes in the graph can be reached via these nodes. On the other hand, in the random graph, each

node has similar degrees, and the nodes are randomly connected.

Figure 4.1: Scale-free Graph and Random Graph[22]

In this research, an algorithm called Recursive Matrix (R-MAT)[16] is applied to generate the social

graphs, which have the “hubs” with a high degree. This algorithm starts at an empty N * N adjacency

matrix A, where the matrix A represents a graph containing N nodes with the entry a (i, j) = 1 when the

edge (i, j) exists, and 0 otherwise. The basic idea of the algorithm is to recursively subdivide the matrix into

four equal-sized partitions, and add an edge into these partitions with unequal probabilities. Each generated
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edge is distributed into one of the four partitions with probabilities α, β, γ, δ respectively, and α+β+γ+δ=1.

The chosen partition is subdivided into four smaller partitions recursively until it reaches the smallest cell,

in this case, a 1 * 1 partition in the matrix, and the entry of this cell in the adjacency matrix will be changed

to 1, meaning the cell is occupied by the edge. The procedure will process M times to generate M edges in

the graph.

Algorithm 1 R-MAT Algorithm

1: procedure R-MAT(α, β, γ, δ, A=aij) . Input five parameters, α, β, γ, δ are the possibilities, and

α+ β + γ + δ=1, A is a matrix containing N * N nodes

2: if i == 1 AND j == 1 then

3: Aij = 1 . Basic Case in the recursive

4: Subdividing matrix A into four equal size sub-matrix Aa, Ab, Ac, and Ad

5: Generate a random double r . For comparing with the α, β, γ, δ

6: if r >= 0 AND r<α then . Processing the algorithm into partition a of the matrix

7: R-MAT(α, β, γ, δ, Aa)

8: if r>=α AND r<α+ β then . Processing the algorithm into partition b of the matrix

9: R-MAT(α, β, γ, δ, Ab)

10: if r>=α+ β AND r<α+ β + γ then . Processing the algorithm into partition c of the matrix

11: R-MAT(α, β, γ, δ, Ac)

12: if r>=α+ β + γ AND r<1 then . Processing the algorithm into partition d of the matrix

13: R-MAT(α, β, γ, δ, Ad)

Besides the large-scale social graph data, the social information of social actors in the social graphs should

be generated as well. The social information contains first name, last name, age, gender, email and address.

The first name and last name are 5-10 characters long, age is an integer between 0 and 100, and the gender

is male or female. The email and address should be randomly generated as a string. Each social actor in

the social graphs should be assigned an ID number. Also, the social relationship data would be generated

as well. The social relationship data contains the Foreign Keys pointing to the people in the relationships, a

string representing the type of relationships, and the date of the beginning time of the relationships.

4.2 Mobile Social Application

In order to simulate a practical social application, a simple mobile social application is proposed. This

application should realize the fundamental functions of a mobile social application. The architecture of

the application consists of three parts, including mobile client application, HTTP server, and the database

backend, as shown in Figure 4.2.
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Figure 4.2: Architecture of Application

4.2.1 Architecture

The architecture of the simple mobile social application can be divided into three layers:

• Mobile Client Application:

The client-side mobile application acts as the HTTP client side. Users can provide context information,

view the social information, and send queries through the client application, so the main functionalities

of this mobile application include capturing context information, sending requests to web server, and

receiving the query data from the server side.

Because currently, there are two major mobile OSs, iOS and Android, this application is implemented

to enable users running it on difference mobile devices such as smartphones and tablets and various

mobile OSs. Thus, the application will be developed with jQuery Mobile and PhoneGap, which is a

set of JavaScript libraries for building mobile applications. The resulting application is cross-platform,

which means it can run on different mobile devices and mobile OSs.

• HTTP Server:

The server side is implemented by using Apache Tomcat, which is an open source web server and servlet

container. The clients send the requests using Hypertext Transfer Protocol (HTTP) to the web server,

and then the web server responds to each request, like capturing data from clients and returning query

results to clients. Also, the server side needs to connect with the database backend. Moreover, the web

service should be RESTful to provide scalability of component interactions and generality of interfaces.

• Database Backend:

There would be two versions of this mobile application; one applies the relational databases as the

data storage, and the other one uses the graph databases to store and process data. Specifically, in

this case, MySQL is used in the relational databases version, and Neo4j is used as the backend graph
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databases. Therefore, based on the performance of the different versions of this mobile application, the

capability of the relational databases and the graph databases on handling large-scale social graph can

be compared and evaluated.

4.2.2 Design Requirements

In order to achieve the goal of this research, this mobile application must meet the following requirements.

• HTTP:

In the system, the client-side application should be able to GET and POST the social information to

the server. Meanwhile, it also needs to support the push mechanism for the server side to return the

data to the client side. Hypertext Transfer Protocol (HTTP) is an application-level protocol for the

distributed hypermedia information system to format and transmit data. Also, it is the foundation

of data communication on the World Wide Web (WWW). The application should be HTTP-based to

enable the system exchanging and transferring the data.

• Reliability:

Reliability guarantees the delivery of messages to the recipients in the context of distributed protocols.

In this system, reliability is required to ensure the information delivery. The users send the social

information to the server side, and when the server receives the information, it can store and process

the information.

• Web Service:

In order to provide a standard meaning of the interoperations between the mobile client applications

that running on distributed devices, the server side of the system must be implemented in a RESTful

way, which can be called RESTful API.

• Consistency:

The consistency ensures the data from one valid state to another. Since the information will come

from different clients, once the data is updated on the server side, the updated information should be

disseminated to all corresponding client sides in time to keep the consistency of information.

• Well Organized Information:

The entire information transferring on the networks must be in JSON format to keep the data organized,

so the system does not need to transform the data format when processing it. It can reduce the time

cost and increase the efficiency of the system.

• Thin Clients:

A thin client means that the program depends on some other computers to fulfill its computational

roles. In this system, the main functions are handled by the server side, and the front-end application
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only needs to receive data, send data, and interact with the users. There is no complex computing logic

that should be implemented on the client side.

• Portability:

Portability refers to the usability of the same software in different environments. When this mobile

application with the same functionalities is developed to run on various platforms, portability is the

key issue on reducing development cost. In this research, the front-side client application is aiming to

run on different mobile OSs such as Google’s Android and Apple’s iOS, so it needs to focus on the

portability of the mobile application.

4.3 Kernel Description

This comparison is composed of six kernels, and each kernel involves a database operation whose performance

is evaluated. The data used in the evaluation is generated by the mentioned algorithm above. The six kernels

are described as follows:

4.3.1 Kernel One

The first kernel measures the performance of RDBs and GDBs on data insertion, and specifically, in this

research, the data is the nodes and edges of the social graphs, and related properties. The data insertion

operation is a very common in a database. For example, once a newcomer joins a social graph, the related

personal information and the involving relationships should be inserted into the databases. The time spent

to insert is the significant criterion of evaluation. Remarkably, the loading data should be generated before

insertion, and the data generation time is not counted in this timing. In addition, the inserted data can be

used for the following kernels to speed up the experiments.

The query used to insert personal information into MySQL could be:

Listing 4.1: Add people into MySQL

INSERT INTO People

( IdPeople , FirstName , LastName , Gender , Age , Email , Address )

VALUES

(1 , ‘Yaowen ’ , ’Chen ’ , ’ Male ’ , 27 , ’ test@emai l . com ’ , ’ t e s t address ’ ) ;

and the query used to insert a relationship into MySQL could be:

Listing 4.2: Insert relationship into MySQL

INSERT INTO R e l a t i on s h i p s

( IdRe la t ionsh ip , FromPeople , ToPeople , Type , S ince )

VALUES
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(1 , 1 , 2 , ‘ knows ’ , ’1990−03−30 ’);

The query used to create a node containing same data in Neo4j is:

Listing 4.3: Create nodes into Neo4j

CREATE (n : Person

{ id : 1 , FirstName : ’Yaowen ’ , LastName : ’Chen ’ ’ , Age : 27 ,

Email : ’ test@emai l . com ’ , Address : ’ t e s t address ’ } )

and the query used to insert the same relationship into Neo4j is:

Listing 4.4: Insert relationship into Neo4j

MATCH ( a : Person ) , ( b : Person )

WHERE a . id = x AND b . id = y

CREATE ( a)−[ r : Re l a t i on sh ip { id : 1 , FromPeople : 1 , ToPeople : 2 ,

Type : ’ knows ’ , S ince : ’1990−03−30’]−>(b)

RETURN r

4.3.2 Kernel Two

This kernel measures the data searching performance of RDBs and GDBs. As mentioned above, the nodes

and the edges of social graphs contain an amount of information. For example, the “hub” nodes are the

nodes with high degrees, and searching such nodes may be a normal operation in lots of applications. This

kernel is querying a set of edges that meet a condition; in this case, it tries to find all edges having types

“know”. The performance is evaluated based on the time spent to query.

The query used to find the requested edges from MySQL is:

Listing 4.5: Finding edges from MySQL

SELECT Re la t i on sh ip . FromPeople , Re l a t i on sh ip . ToPeole

FROM Re la t i on sh ip

WHERE

Re la t i on sh ip . Type=‘knows ’ ;

The query used to find the same edges from Neo4j is:

Listing 4.6: Finding edges from Neo4j

MATCH ( people1 )− [ : type : ’ knows ’]−>( people2 )

RETURN people1 . id , people2 . id
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4.3.3 Kernel Three

This kernel measures the performance of the relational databases and the graph databases on graph traversal.

According to the “six degrees of separation”, everyone is six or fewer steps away from any other person in the

world. People may be interested in how can they meet somehow based on the chain of “friend of a friend”,

and it can be very interesting in a social recommendation system. Simply, finding the shortest path between

two people in a social graph can be a valuable strategy. In addition, breadth-first search is a basic algorithm

for finding the shortest path in a graph. Therefore, this kernel is simply evaluating the performances on

processing the breadth-first search in RDBs and GDBs. Remarkably, because recursion is difficult to handle

in MySQL and it needs a sub-query to provide the related data to achieve breadth-first search, the lines of

code increase exponentially (shown in the following queries). Therefore, in this test case, it will query data

at level three and level four in the relationships from the MySQL database to simulate the graph traversal to

simplify the evaluation. On the other hand, the similar graph traversal is processing in GDBs as well. Also,

the spending time is used to evaluate the performance.

There are several queries needed to process BFS in MySQL, and the queries needed to BFS at depth three

are listed as follows:

Listing 4.7: BFS at depth 1

SELECT Re l a t i o n s h ip s . ToPeople AS depth1

FROM R e l a t i o n sh i p s

WHERE Re l a t i on s h i p s . FromPeople = 1 ;

Listing 4.8: BFS at depth 2

SELECT DISTINCT R e l a t i on s h i p s . ToPeople AS depth2

FROM R e l a t i o n sh i p s

WHERE Re l a t i on s h i p s . FromPeople IN

(SELECT R e la t i o n sh i p s . ToPeople AS depth1

FROM R e l a t i o n sh i p s

WHERE Re l a t i on s h i p s . FromPeople = 1

)

Listing 4.9: BFS at depth 3

SELECT DISTINCT R e l a t i on s h i p s . ToPeople AS depth3

FROM R e l a t i o n sh i p s

WHERE Re l a t i on s h i p s . FromPeople IN

(SELECT DISTINCT R e l a t i o n s h ip s . ToPeople AS depth2

FROM R e l a t i o n sh i p s
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WHERE Re l a t i on s h i p s . FromPeople IN

(SELECT R e la t i o n sh i p s . ToPeople AS depth1

FROM R e l a t i o n sh i p s

WHERE Re l a t i on s h i p s . FromPeople = 1

) )

The query used to process BFS in Neo4j is much simpler:

Listing 4.10: BFS in Neo4j

START n=node (1 )

MATCH p = n−[∗1..]−>m

RETURN p , l ength (p)

ORDER BY length (p) ASC

Meanwhile, in Neo4j, it can use the existing function shortestPath to find a single shortest path between

two nodes:

Listing 4.11: Finding shortest path in Neo4j

MATCH ( person1 : Person { id : 1 } ) , ( person2 : Person { id : 2 } ) ,

p = shortes tPath ( ( person1 ) − [∗ . . 15 ] − ( person2 ) )

RETURN p

4.3.4 Kernel Four

This kernel measures the performance of built-in functions of relational databases and graph databases. Both

database system provides several built-in functions for querying data, and these functions offer users an easy

way to operate the queries. In addition, the most functions that MySQL provides are different to the functions

that Neo4j provides. In this research, two similar functions are chosen for comparing the performance. One

is Ucase() (upper() in Neo4j), which returns a string or character converted to uppercase, and the other one

is Lcase() (lower() in Neo4j), which returns a string or character converted to lowercase. The performance is

evaluated based on the time spent to query.

The query uses Ucase() Function to convert the value of a field to uppercase in MySQL:

Listing 4.12: Using Ucase() in MySQL

SELECT UCASE( People . name)

FROM

People

and the query uses Lcase() Function to convert the value of a field to lowercase in MySQL:
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Listing 4.13: Using Lcase() in MySQL

SELECT LCASE( People . name)

FROM

People

Similarly, the query uses UPPER() Function to convert the value of a field to uppercase in Neo4j:

Listing 4.14: Using upper() in Neo4j

RETURN upper ( o r i g i n a l )

and query uses lower() Function to convert the value of a field to lowercase in Neo4j:

Listing 4.15: Using lower() in Neo4j

RETURN lower ( o r i g i n a l )

4.3.5 Kernel Five

This kernel measures the performance of uniting two queries results from RDBs and GDBs to provide a

complete query result. Everyone has its own social network, and it can be represented as a social graph.

These graphs may contain lots of same nodes (social actors), so there is a possibility to unify the two small

social graphs to generate a completed social graph. A graph union operation can achieve the target. In order

to process graph union, another social graph will be loaded into the RDBs and GDBs. In addition, the time

spent is measured to evaluate the performance.

The query used to unify query results in MySQL:

Listing 4.16: Union in MySQL

SELECT people1 . FirstName

FROM people1

UNION

SELECT people2 . FirstName

FROM people2

The query used to unify query results in Neo4j:

Listing 4.17: Union in Neo4j

MATCH (n : people )

RETURN n . FirstName AS name1

UNION

MATCH (n : people )

RETURN n . FirstName AS name2
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4.3.6 Kernel Six

This kernel measures the capability of the relational databases and the graph databases on intersecting two

graphs to find the same nodes between the graphs. Similar to the Kernel Five, this kernel is aiming to

measure the performance of the relational databases and the graph databases on another common graph

operation, graph intersection. People may have mutual friends, and they may appear in different individual

social graphs. The graph intersection operation can query the same nodes, which are the mutual friends,

from the two graphs. The loaded graphs in Kernel Five are used in this kernel as well, and the criterion of

the performance is the execution time.

The query used to intersect in MySQL is:

Listing 4.18: Intersection in MySQL

SELECT people . id

FROM people1

WHERE people . id = 1

INTERSECT

SELECT people . id

FROM people1

WHERE people . id = 1 ;

The query used to interest in Neo4j is:

Listing 4.19: Intersection in Neo4j

MATCH (n {name : ’ a ’ } ) , (m {name : ’ b ’ } )

RETURN FILTER( x IN n . knows WHERE x IN m. knows )

4.4 Summary

This chapter firstly introduces an algorithm called R-MAT to generate the social graphs that are used in

the experiments. In order to generate the graphs matching the properties of the social graphs, the R-MAT

algorithm is used to generate the highly right-skewed graphs.

Also, the architecture of the simple mobile social application is introduced as well. The application

consists of three main components: mobile client application, HTTP server, and database backend. The

functionalities of each component are explained with the design requirements.

Moreover, this chapter provides a detail explanation of the kernels of the database benchmark. The

kernels contain six main operations: data insertion, data searching, graph traversal, database function, data

union, and data intersection. Based on the performances of the relational databases and the graph databases
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on such operations, it is easy to evaluate the capabilities of databases on storing and processing large-scale

social graph data.
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Chapter 5

Implementation

This chapter consists of three sections: workload characterization, hardware and software setting, and

mobile application implementation. Workload characterization introduces the data schema of the relational

databases and the corresponding graphs that are stored in the graph databases. In addition, the hardware

and software setting section provides information about the hardware environment, and software tools that

are used in the thesis research. Moreover, the mobile application implementation section describes the

implementation of the cross-platform mobile social application. More information is in the following sections.

5.1 Workload Characterization

The generated social graphs that are used to be stored in the relational databases and the graph databases

comprise many social actors, which are represented as the nodes, relationships, which are represented as the

directed edges, and attributes, which are represented as the properties of nodes and edges. The relational

database schema, which is representing social actors and social relationships, is showing in Figure 5.1. In

order to simplify the relationships, in this thesis research, there are two tables that follow the 3NF storing

in the relational databases. The People Table is used to store the data related to the social actors, and the

Relationship Table is used to store the relationship data.

Figure 5.1: Data Schema

In the People Table, the IdPeople is the unique primary key of the People table; FirstName and LastName

46



are character strings that store the name of the social actors; there are two options, Male and Female, for

users to store Gender; Age is an integer that stores the age of people. Email is a string to store the email

address, and Address is a string to store the address of people.

Additionally, in the Relationship Table, besides the primary key of the table, IdRelationship, there are

four attributes, including FromPeople, ToPeople, Type and Since. FromPeople and ToPeople are two foreign

keys in the table referring to the primary key of the People Table for identifying the direction of the rela-

tionship and people involved in the relationship. Type is used to show the relationship type, such as know,

employers, and friends. Since is a date data field to show the beginning time of the relationship.

Although the data stored in the relational databases and the graph databases is the same, the representa-

tion is totally different. A typical representation of data storing in the graph databases is showing in Figure

5.2, and all of the data is represented as the nodes and edges.

Figure 5.2: Graph data example

5.2 Hardware and Software Setting

In this thesis research, there are two devices, iPhone 6s running iOS 9.2.3 and Nexus 5 running Android 5.0,

installing the cross-platform mobile social application, and being used in the experiments. The reason to use

two devices is to test the performance of the mobile application on both mobile OS. Meanwhile, the HTTP

server side is prepared as well. It runs on a Lenovo desktop with the following specifications:
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Windows Edition:

Windows 10 Pro

System:

Processor: Inter(R) Core(TM) 2 Quad CUP Q9450 @ 2.66GHz

Installed memory (RAM): 4.0 GB

System type: 64-bit Operating System

Meanwhile, the graph databases (Neo4j) and the relational databases (MySQL) are running on another

Lenovo desktop with the following specifications:

Windows Edition:

Windows 10 Pro

System:

Processor: Inter(R) Core(TM) i7-3770 CUP @ 3.40GHz

Installed memory (RAM): 16.0 GB

System type: 64-bit Operating System

5.2.1 Neo4j

The graph database, Neo4j, provides an Admin Web Console for users to accomplish the functions of

databases, such as creating data, running queries and searching data graphically, to control the database.

The main page of the Admin Web Console is showing in Figure 5.3. In addition, the Admin Web Console

can provide some metadata about existing data that stored in the databases. Clearly, the number of nodes,

relationships, properties and relationship types are representing directly. Also, the database disk usage and

logical log disk usage are clear for users.

Neo4j also offers web browser to view the data. Users can query data and view the results in the browser

directly. Fox example, when users try to find the people storing in the graph databases, the results are

showing in Figure 5.4.
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Figure 5.3: Neo4j Web Admin Consolo

Figure 5.4: Neo4j Web Browser
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5.2.2 MySQL

On the other hand, in order to manage the MySQL databases, this research applies MySQL Workbench,

which is a visual database tool for integrating SQL development administration, database design, creation

and maintenance of the MySQL database system into a single integrated development environment (IDE).

Figure 5.5 shows the interface of the MySQL workbench.

Figure 5.5: MySQL workbench

5.3 Mobile Application Implementation

In my research, a cross-platform mobile social application is developed by applying PHP+Database sys-

tem+Apache, jQuery Mobile, and PhoneGap. First of all, PHP + Database system + Apache form the

development environment for the mobile application. PHP is a widely-used open source general-purpose

scripting language that is especially suited for Web development because it can produce dynamic Web pages

and be embedded into HTML. Also, the database system is used to manage the data storage, and the Apache

HTTP Server is a web server software playing a key role in the web application implementation. The mobile

application is implemented by using PHP as the building language, and Apache as the web server.

Remarkably, because this research aims to compare the capability of the relational databases and the

graph databases on storing and processing the large-scale social graph data, this mobile social application

has two versions. One applies the relational database, MySQL, as the data storage, and the other one applies

the graph database, Neo4j. Besides the backend storage, the other features of the two versions are almost
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the same.

In the MySQL version, the application applies the following code to access the databases:

<?php

$host=” l o c a l h o s t : 3 3 0 6 ” ; // Host name

$username=”root ” ; // Mysql username

$password =””; // Mysql password

$db name=”SocialJudgement ” ; // Database name

$tbl name=”UsersLogin ” ; // Table name

// Connect to s e r v e r and s e l e c t databse .

mysql connect (” $host ” , ”$username ” , ” $password ”) or d i e (” cannot connect ” ) ;

mysql select db (”$db name”) or d i e (” cannot s e l e c t DB” ) ;

?>

Also, the system needs to use MySQL to query data from the relational databases. For example, the following

code is used to check the login information:

<?php

// username and password sent from form

i f ($ POST[ ’ username ’]==””){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ P lease ente r an username ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> h i s t o r y . go (−1); </Scr ipt >”;

} e l s e {

$username=$ POST[ ’ username ’ ] ;

}

$password=$ POST[ ’ password ’ ] ;

$ s q l=”SELECT ∗ FROM $tbl name WHERE UserName=’$username ’ and

Password=’$password ’ ” ;

$ r e s u l t=mysql query ( $ s q l ) ;

$db f i e ld = mysql fetch assoc ( $ r e s u l t ) ;

// Mysql num row i s count ing ta b l e row

$count=mysql num rows ( $ r e s u l t ) ;

// I f r e s u l t matched $myusername and $mypassword , t a b l e row must be 1 row

i f ( $count==1){

$ SESSION [ ? user ?]= $db f i e ld [ ’ idUsersLogin ’ ] ;

$ SESSION [ ? name?]= $username ;

$ SESSION [ ? log ?]=” true ” ;

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ Login S u c c e s s f u l l y ’ ) ;
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</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’main . php ’ ;

</Scr ipt >”;

} e l s e i f ( $password !=””){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’Wrong Password ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’ index . html ’ ;

</Scr ipt >”;

} e l s e i f ( $password ==””){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ P lease ente r Password ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’ index . html ’ ;

</Scr ipt >”;

}

?>

On the other hand, the Neo4j version uses the following code to connect with the graph databases:

<?php

use Everyman\Neo4j\Client ,

Everyman\Neo4j\Transport ,

Everyman\Neo4j\Node ,

Everyman\Neo4j\Re la t i on sh ip ;

$host=” l o c a l h o s t : ” ; // Host name

$port =”7474”; // Port number

$username=”root ” ; // Neo4j username

$password =””; // Neo4j password

$ c l i e n t = new Everyman\Neo4j\Cl i en t ( $host , $port ) ;

$ c l i e n t−>getTransport ( )

−>setAuth ( $username , $password ) ;

?>

In addition, the following code is using Cypher to query data to achieve the login function which is the same

as the MySQL version:

<?php

// username and password sent from form

i f ($ POST[ ’ username ’]==””){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ P lease ente r an username ’ ) ;
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</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> h i s t o r y . go (−1); </Scr ipt >”;

} e l s e {

$username=$ POST[ ’ username ’ ] ;

}

$password=$ POST[ ’ password ’ ] ;

//Get password from Neo4j

$passwordInDB−>getProperty ( $username )

i f ( $password==$passwordInDB ){

$ SESSION [ ? user ?]= $db f i e ld [ ’ idUsersLogin ’ ] ;

$ SESSION [ ? name?]= $username ;

$ SESSION [ ? log ?]=” true ” ;

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ Login S u c c e s s f u l l y ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’main . php ’ ;

</Scr ipt >”;

} e l s e i f ( $password !=$passwordInDB ){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’Wrong Password ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’ index . html ’ ;

</Scr ipt >”;

} e l s e i f ( $password ==””){

echo ”<S c r i p t language =’ JavaScr ipt ’> a l e r t ( ’ P lease ente r Password ’ ) ;

</Scr ipt >”;

echo ”<S c r i p t language =’ JavaScr ipt ’> window . l o c a t i o n =’ index . html ’ ;

</Scr ipt >”;}

?>

In addition, jQuery Mobile has been used to develop the mobile application running on the mobile devices.

jQuery Mobile is a touch-optimized web framework that is compatible with a wide variety of smartphones and

tablets[?]. Also, the jQuery Mobile framework is compatible with other mobile app frameworks and platforms

such as PhoneGap. Thus, it provides the opportunity for applying both jQuery Mobile and PhoneGap in a

project. The following Figure 5.6 is a screenshot of the login page.

Basically, the core of implementation the website using jQuery Mobile is linking jQuery Mobile Libraries

and stylesheet (CSS file) on every page. Thus, when applying JQuery Mobile, it needs to include the related

lib in the file. The following codes of login page include jquery.mobile-1.4.5.min.css, jquery-1.11.1.min.js and

jquery.mobile-1.4.5.min.js in the head.
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Figure 5.6: Login Page
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<!DOCTYPE html>

<html>

<head>

<meta cha r s e t=”utf−8”>

<t i t l e >S o c i a l Network Judgment</ t i t l e >

< l i n k r e l =”s t y l e s h e e t ”

h r e f=”http :// code . jquery . com/ mobile / 1 . 4 . 5 / jquery . mobile −1 . 4 . 5 . min . c s s ” />

<s c r i p t s r c=”http :// code . jquery . com/ jquery −1 .11 . 1 . min . j s ”>

</s c r i p t>

<s c r i p t s r c=”http :// code . jquery . com/ mobile / 1 . 4 . 5 / jquery . mobile −1 . 4 . 5 . min . j s ”>

</s c r i p t>

</head>

<body>

<div data−r o l e=”page” id=”l o g i n”>

<div data−r o l e=”header”>

<h1>Welcome</h1>

</div>

<div data−r o l e=”content ” data−i n s e t=”true”>

<form id=”loginForm ” ac t i on=”check l og in . php” method=”post”>

< f i e l d s e t >

< l a b e l f o r=”username”>Username:</ l abe l>

<input type=”text ” name=”username” id=”username” value=”” />

< l a b e l f o r=”password”>Password :</ l abe l>

<input type=”password” name=”password” id=”password” value=”” />

<input type=”submit” value=”Login ” id=”submitButton”>

<input type=”button ” value=”Reg i s t e r ” id=” r e g i s t e r ”

o n c l i c k=”window . l o c a t i o n =’ r e g i s t e r P a g e . html ’”>

</ f i e l d s e t >

</form>

</div>

<div data−r o l e=”f o o t e r”>

<h4>S o c i a l Network Judgment</h4>

</div>

</div>

</body>

</html>
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Moreover, in order to enable the social application running on the mobile devices, I apply PhoneGap, which

is an open source mobile development framework, in the cross-platform mobile social application. PhoneGap

enables software programers to build applications for mobile devices by using JavaScript, HTML5, and CSS3,

instead of device-specific languages such as Object-C for the iOS system and Java for the Android system,

and the resulting applications are hybrid. Therefore, the resulting apps are not truly native, because all

layout rendering is done via web views instead of the platform’s native User Interface framework. Also, they

are not purely web-based applications, because they are not just web apps, but are packaged as apps for

distribution and have access to native device APIs. PhoneGap enables the application running on lots of

the mobile operating systems, such as Apple iOS, Google Android, and Microsoft Windows Phone. In this

project, I apply Adobe PhoneGap Build, which packages mobile apps with PhoneGap in the cloud.

The application workflow is basically shown in the following graph.

Figure 5.7: Application Workflow

More details about each page is shown as follows:

• Login Page:

This page is used for users to login with their username and password. After users login, the page will

jump to the main page. If users have no account, they could go to the register page to register.

• Register page:

This page is used for users to register. Users need to provide their age, Email and gender when they
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register. After users register successfully, the system will jump to the login page.

• Main Page:

This is the main page of the application, and there are three options, Modify Login Information, View

People, and Modify Relationship, for users to do.

• Modify Login Information:

In this page, users could change their login information, such as the password.

• View People:

This page provides a list of people having stored in the databases. Users could click one to view more

specific information.

• Modify Relationship:

In this page, users could manage the relationships they have added. There are three options, add,

update, and delete.

• View Personal Information and Relationship:

In this page, users could view the personal information and the involving relationships.

• Add Relationship:

If users want to add a new relationship with others, they will use this page.

• Update Relationship:

If users make any mistake when they add a relationship, they could fix the mistake in this page. Also,

once the relationships are changing, users can update as well.

• Delete Relationship:

Also, users can delete the relationships, which they added in the system.

• View Specific Relationship:

In this page, users could view the judgments and votes from others.

• Add Person:

If the subject person is not in the system, users could add them by providing the information of the

subject person.
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Chapter 6

Experiments

In order to evaluate the performance of the relational databases and the graph databases for handling

the large-scale social graph data, two kinds of analytics are taken into the comparison to provide a complete

view of the capabilities. Firstly, the quantitative analysis is applied to analyze the measurable and verifiable

data and statistics, like storage cost and execution time, which are collected from the experiments, to develop

and employ theories about the storage approaches. Secondly, the qualitative analysis is used to provide the

empirical support for the performance evaluation based on the analysis of the performance of the relational

databases and the graph databases on five fields, including maturity and level of support, ease of programming,

flexibility, security, and data visualization.

6.1 Quantitative Analysis

Two kinds of measurable and verifiable data, the storage cost and the execution time, are collected from the

experiments for quantitatively evaluating the performance of the relational databases and the graph databases

when processing large-scale social data. Firstly, the storage cost should be considered as an important

criterion in evaluating the performance of a storage approach, since it can influence query performance.

Also, the execution time is another important metric in the evaluation, and a storage approach has better

performance with shorter execution time.

6.1.1 Storage Cost

Firstly, the storage cost can impact the database performance, so the storage usage should be an essential

metric on the database performance. Each time users need to read a piece of data from a database, it also

needs to retrieve the data from disk, which will cause a disk I/O operation. Also, the data storing in the

database is located in a number of different physical pages, which are the basic internal structure that or-

ganizes the data in the database files, and an I/O operation is required to retrieve the data for every page.

Therefore, minimizing the record size storing in the database can maximize the number of records that each

data page can store, and then improve the retrieving efficiency to increase the query performance.

For example, the default single physical page is 4k bytes long in a MySQL server, so when it needs to

retrieve 10,000,000 records from a table in a MySQL Server and each record is 400 bytes long, the entire
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10,000,000 records require 1,000,000 data pages, and each data page can store ten different records. Because

an I/O operation is required for every data page, it needs 1,000,000 I/O operations to read every record in the

large table. When the data size become smaller, for example, saving 40 bytes for every record to make each

record 360 bytes long, each data page can store 11 different records to reduce the number of I/O operation

to be 909,090. Clearly, saving the data size of data from each record stored in the databases to reduce the

storage size can improve the database performance. The more data storage saving, the more the performance

can improve.

Table 6.1: Databases with Size

Nodes Number Edges Number MySQL Size Neo4j Size

1000 3000 0.32 MB 1.08 MB
5000 15000 1.61 MB 2.73 MB
10000 30000 3.37 MB 3.90 MB
50000 150000 15.87 MB 16.3 MB
100000 300000 31.87 MB 31.55 MB
500000 1500000 153.37 MB 148.45 MB
1000000 3000000 305.47 MB 291.26 MB

In this case, the size of seven databases is listed in Table 6.1. The size of the databases is measured in

MB, and seven databases store different size social graphs. Remarkably, there are three edges for each node,

since normally, in some social networks, the scale is between 2 to 5, for example, in YouTube, the scale is

about 3.5[5], in this research, the scale is set as 3. Since Clearly, when the social network is small, Neo4j

needs more space. When the nodes and edges in the graph increase to 100000 and 300000, Neo4j costs 31.55

MB, and is less then MySQL, which costs 31.87 MB. With more nodes and edges stored in the database,

Neo4j uses much less space, so it should has better performance when storing the large-scale social graph.

Remarkably, the size of MySQL database is almost linearly related to the number of nodes and edges

storing in the databases. This is because the structure of the relational database is fixed, and when defining

the tables, the data type of each attribute is defined as well. Consequently, when inserting data into the

tables, the increment of database size should be roughly based on the defined data type and the number of

nodes and edges that inserting in the database.

On the other hand, although Neo4j requires more storage when the social network is small when there

are more nodes and edges stored in the database, the graph database is beneficial from the flexible database

schema. The graph database can easily add nodes and edges into the database without restructuring the

database. The high flexibility enables the graph database having a high ability to adapt to the dynamic

social graphs. The increment of database size should be mainly related to how much new data is inserted

only. Thus, we can say for large-scale social data, graph database, like Neo4j, may cost less storage than the

relational database, due to its flexible database structures. Although the gap between the relational database

and graph database is relatively small in this case, but based on the analysis above, when the graphs become
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huge big, the gap will increase as well, and have serious effects on the performance of the database system.

6.1.2 Execution Time

Clearly, the execution time for querying data from a database is a very basic criterion for evaluating the

performance of databases quantitatively. If the database takes shorter time to query the data, it should be

considered as more efficient and has better performance. Based on the six kernels mentioned in the above

chapter, there are six experiments to process related operations to collect data about the execution time for

evaluation. In every experiment, the related queries are processed one hundred times to get the average time

for analysis. In addition, in order to simulate the operation environment of the mobile social applications,

the related query codes are embedded into the mobile social application. Once the social application is

running, the queries are executed as well, and the data is collected for analyzing, and the time is recorded

in milliseconds (ms). The longest time and the shortest time are dropped to ensure that the results are not

affected by any caching or system process activities. The data used for insertion and searching is generated

randomly, and used for both MySQL and Neo4j databases.

Firstly, data insertion is a basic data transaction for a database. Once new data is collected, the data

insertion is required for inserting the new data into the database. The time spent for data insertion is listed

in Table 6.2. Clearly, when the index of table increases, the inserting time increases as well for MySQL; on

the other hand, Neo4j has more stable performance than MySQL, even if the number of nodes and edges are

increasing. Remarkably, in this experiment, the time spent for inserting data into the relational database

is still short than the graph database, but there is an obvious trend that the graph databases would take

shorter than the relational databases. Thus, we may conclude that MySQL performs slightly better than

Neo4j at small scale, but when there is more data stored in the database, the inserting time tends to shift in

favor of Neo4j.

Table 6.2: Data Insertion in ms

Nodes Number Edges Number MySQL Neo4j

1000 3000 0.2 29.2
5000 15000 0.3 30.3
10000 30000 0.8 32.5
50000 150000 2.6 34.2
100000 300000 5.6 37.3
500000 1500000 20.3 34.5
1000000 3000000 36.1 36.2

In the second experiment, the comparison works on assessing the database performance for searching data

from RDBs and GDBs. Data searching is a typical data manipulation operation, and is commonly used in

social applications. The experiment results are shown in Table 6.3. Similarly, data searching is much faster

in MySQL when the database is small, but if the database size increases, MySQL would take more time for
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searching. Thus, the graph database Neo4j, which has more constant performance in data searching, works

massively better in bigger graphs than the relational database, and should be considered as the more efficient

database system when dealing with the large-scale social graphs.

Table 6.3: Data Searching in ms

Nodes Number Edges Number MySQL Neo4j

1000 3000 0.2 32.2
5000 15000 5.4 31.1
10000 30000 10.8 33.4
50000 150000 23.6 32.5
100000 300000 76.8 35.2
500000 1500000 255.7 36.1
1000000 3000000 316.1 36.8

In addition, the time spent for graph traversal is measured in the third experiment. Basically, applying

recursive searching to process graph traversal to collect social data should be very useful in a social application.

The experimental results are shown in Figure 6.1. Clearly, the graph database, Neo4j in this case, has much

better performance than the relational database (MySQL) for graph traversal for the given social graph.

Since the relational database requires sub-queries for processing BFS and when the BFS going deeper, the

more sub-queries is required for graph traversal, the query should more complex. In addition, due to the

relational model, the relational database has to execute several sub-queries in the query, which is equivalent

to execute exponentially more queries than executing a sign query in a graph datbase, so the execution time is

much longer than the graph database. Therefore, given a traversal of an artificial graph, the graph database

can be viewed as more optimal than the relational database MySQL.

Figure 6.1: Graph Traversal Time in ms
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Furthermore, both the graph database and the relational database provides built-in functions for querying

data. In this experiment, four common built-in functions are tested, including Max(), Min(), lower() and

upper(), and a large-scale social graph containing 1000000 nodes and 3000000 edges is stored in both a

relational database a the graph database for the experiments. As Figure 6.2 shown, the relational database

and graph database have similar performance for using built-in functions. Both the relational database and

the graph database take about 200 to 300 ms to operate the built-in functions for the data.

Figure 6.2: Built-in Function in ms

Finally, Experiment Five and Experiment Six test the performance of the union and intersection operations

in the relational database and the graph database. These two operations are very common when processing

the graph-like data. In a social network, the union and intersection operations can generate lots of social

information for users. The two experiments are using a large-scale social graph that contains 1000000 nodes

and 3000000 edges as the target, and the experimental results are shown in Figure 6.3. Clearly, in the

experiments, the graph database Neo4j has much better performance than the relational database MySQL.

Neo4j only takes 680 ms and 710 ms for processing a union operation and an intersection operation, but

MySQL requires 1328 ms and 1432 ms for same operations. In both experiments, MySQL almost takes

double time more than the Neo4j, this may be because in MySQL, a Union or Intersection operation needs

two sub-queries to get the required data for processing, but in Neo4j, a single query can complete the

operations.

The experimental results show that MySQL has better performance for data insertion and data searching

when the database size is small, but once the database size increases, Neo4j becomes more efficient. In

addition, when considering the operation related to graphs, graph traversal, the graph database is more useful

than the relational database, especially when traversing the graph with a high degree. Meanwhile, Neo4j and

MySQL have the equivalent performance for using built-in functions at an acceptable level. Moreover, when
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Figure 6.3: Data Union and Intersection in ms

comparing the performance of union and intersection operation, Neo4j has slightly better performance than

MySQL. Thus, the graph database, Neo4j, should be considered as the more suitable database system for

storing and processing large-scale social graph, according to the query performance.

6.2 Qualitative Analysis

In this section, five criteria, including maturity and level of support, ease of programming, flexibility, security,

and data visualization, are applied to the comparison to evaluate the performance of the relational database

systems and the graph database systems, in this case, MySQL and Neo4j. These criteria are significant for

developers to choose which type of databases to adopt for implementation, although they may be difficult

to quantify. Thus, the qualitative analysis is applied to provide insight about the capability based on the

subjective judgments.

These criteria are chosen for a reason. Firstly, maturity and level of support mean how stable the database

systems are, and the performance on the maturity and level of support shows the reliability of the databases.

Also, ease of programming shows how easy to use the database system in practice, or saying the coding

efficiency. Moreover, flexibility represents the capability of a database system to adjust to the different

situation. Furthermore, security is another important issue for data storage because of the increasing value

and importance of data.Finally, the performance on data visualization, which should be a common feature in

various applications, especially in social applications, is evaluated to show the practicability of the databases.

6.2.1 Maturity/Level of Support

Maturity refers to how well the particular system has been tested. Usually, a system can be viewed as a

stable system if it has higher maturity, which means the system has been tested lots of times, because the
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more tests the system has processed, the more bugs will have been identified[74]. Also, the maturity of a

system is usually proportional to the level of support. A mature system can be used by more users and in

more fields, and thus, it would be more tested to ensure stability.

Firstly, as the traditional data storage approach, the relational database systems have been widely used in

several fields for decades. Thus, it can be viewed as a more stable system with higher maturity. The relational

model, which organizes data in terms of tables of columns and rows with a unique key to identify the rows,

was proposed by E. F. Codd in 1970[19], and various relation database management system (RDBMS) are

used to maintain the relational databases. In addition, the high market share percentage of the relational

database systems enforces the financial motivation for the corporations, such as Oracle and Microsoft, to

ensure the continued performance of their relational database products.

On the other hand, the graph database systems, currently maintain less market percentage, and have

smaller commercial value usually. Thus, it may lack the financial motivation for individuals or organizations

to enforce the performance. In addition, although the concept of graph databases may appear earlier than

the relational databases, the commercial transactional graph databases, for instance, Neo4j, became available

in the late 2000s[24]. Also, because the relational database systems have a unified language, SQL, to query

data, the support for one relational database implementation can be applied to others, which enriches the

supports for the relational databases. Conversely, the most graph database systems developed their own

query languages. Therefore, support for one graph database may not work for another one, and this might

impact the level of support negatively.

In this case, MySQL and Neo4j are two good examples to show the maturity of the relational database

system and the graph database system. Firstly, MySQL has been released for 21 years since May 23, 1995,

and the last stable version was released on 11 April, 2016. Clearly, MySQL has processed many versions, and

during the version updating, the bugs in the system were fixed to ensure the system stability. Thus, it could

be viewed as a database system with high stability and maturity. Meanwhile, in the last 21 years, MySQL

and its parent company, Sun, are continuing to provide the extensive support for the commercial products.

On the other hand, Neo4j initially released in 2007, and the latest stable version was released on May

6, 2016. Currently, its commercial venture is in rapidly growing, but is still relatively small. Although the

Neo4j website: www.neo4j.org offers a reasonable amount of support for users, there is limited support from

outside of the Neo4j site. Thus, if the parent company of Neo4j collapses, the majority of support for Neo4j

would be a serious problem. However, remarkably, when considering the graph issues, Neo4j has rich support

for users to dealing with graphs. For example, it provides a specific guide for the user to convey the content

of a graph to achieve the graph visualization, which is useful in a social application. In addition, there are

three query languages supported by Neo4j, including SPARQL, Gremlin and Cypher Query, and this makes

the support for one implementation will not work for another one in Neo4j.

Therefore, it may conclude that as the time goes by, the graph databases, Neo4j in this case, are growing

and maturing, and it may be as mature as the relational database systems, for example, MySQL, in the
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future. However, currently, the relational databases are more stable database systems; on the other hand,

the graph database systems provide more support for graph-like data storage and processing.

6.2.2 Ease of Programming

When applying a database system into an application during the application development process, ease of

programming should influence the efficiency of programming for developers. Developers can work more effi-

ciently with the database system that can be programmed in an easy way. Thus, ease of programming should

be another subjective criterion for evaluating the database systems. In this case, the application program-

ming interface (API), the query language and the performance on data traversal of relational databases and

graph databases are compared to evaluate the ease of programming. API is a set of routines, protocols and

tools for building a program, which is an important component of implementation. Also, when applying the

database system in an application, it needs to use a query language to query data, so the query language

should be considered as well. Moreover, graph traversal, which is a process to visit each vertex in a graph,

is a common operation when dealing with the graph-like data, and how easy to achieve graph traversal can

be a good example of the ease of programming.

Generally, since a relational database uses Structured Query Language (SQL), which is designed for man-

aging data held in the relational database, as the default query language, the common language can make

the transitioning between implementations becoming easier than the graph database system. For example,

a company may need to change their relational database management system from Oracle to MySQL, and

because they both use SQL as the query language, there is no need to rewrite queries for the new database

management system. Clearly, it reduces the work for developers.

On the other hand, graph databases are query language-specific, and different graph database systems

have different APIs and query languages to query the relevant data for the factual questions from the database.

Table 6.4 lists ten popular graph database systems with their own APIs and query languages. For example,

AllegroGraph, an RDF and graph database, applies SPARQL, which is a query language for RDF graphs

specifically, to query data, and provides a Java Client API. OrientDB, which is open source NoSQL database

system supporting multi-model, including graph database, supports SQL queries with extensions to handle

the graphs of connected documents via the Java API. DEX is another graph database management system,

and it has its own syntax (DEX query) to query data and own API (DEX API). Moreover, ArangoDB,

another distributed open-source database with a flexible data model for documents, graphs, and key-values,

provides an SQL-like query language called ArangoDB query language via the Java RESTful HTTP API.

Clearly, since the graph database systems have different structures and standards, they use different query

languages. Thus, developers need to be familiar with the specific languages for developing when applying

a graph database management system, and it definitely will increase the difficulty of programming for de-

velopers. Consequently, it may make applying a graph database more difficult than applying a relational

database.
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Table 6.4: Graph Databases with Query Languages and API

Graph Database Query Language API

Neo4j Cypher, Gremlin, SPASQL Native Java API
AllegroGraph SPARQL Java API

Oracle Spatial and Graph SPARQL Java API
ArangoDB ArangoDB query language Java RESTful HTTP API
VertexDB JSON AJAX API

InfiniteGraph Gremlin Java API
OrientDB Own SQL-like Query Language, Gremlin Java API

Bitsy Gremlin, Pixy Blueprints API
DEX DEX query DEX API
Titan Gremlin, SPARQL Titan Graph API

Actually, the ease of programming depends on the tasks. In this case, Neo4j and MySQL are chosen to

evaluate. Neo4j applies Cypher, which is an SQL-inspired language for describing patterns in graphs visually,

to select, insert, update or delete from the graph databases. The general structure to query nodes is like:

Listing 6.1: Query in Neo4j

MATCH ( node : Label )

RETURN node . property

And similarly, the general syntax to query relationships is like:

Listing 6.2: Query in Neo4j

MATCH ( n1 : Label1 )−[ r e l :TYPE]−>(n2 : Label2 )

WHERE r e l . property > { value }

RETURN r e l . property , type ( r e l )

On the other hand, MySQL uses SQL, which is a common query language for relational databases. There

is no difference between nodes and relationships stored in relational databases. To query an attribute from

a table in a relational database by using SQL is like:

Listing 6.3: Query in Neo4j

SELECT ∗ FROM Table

WHERE ( cond i t i on )

Basically, SQL offers a simpler query language for querying data from the databases, and provides more

functions and operations for querying data than Cypher. However, when querying data from a social graph,

Cypher is more suitable to query the target data, which can be the nodes, relationships and properties. In

this case, the performance on graph traversal is compared for evaluation.

Normally, it is very difficult to traverse a graph to query the data when using relational databases, since

it is hard to represent the graph structure, and it needs to use some complex sub-queries to traverse the
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graphs. On the other hand, a graph database can easily process graph traversals due to the features of the

graph databases. Because the data stored in a graph database is stored in terms of a graph, users can take

advantage of the graph structure in a graph traversal. Specifically, in a social recommendation system, which

is very common in a social application for users to find some new friends, the friend-of-a-friend query is a

particular query that needs to traverse the graph to query the relationships with two or more degrees. For

example, A is friends with B and C. B is friends with D and E. D is friends with F and H. C is friends with

G. The distance of the relationships can be:

A = 0 (the origin)

B = 1

C = 1

D = 2

E = 2

G = 2

F = 3

H = 3

When querying the data of H, who is three degrees away from A, if applying the relational database, for

example, MySQL, the SQL query needs to use a sub-query to traverse one degree deeper in a graph. In this

case, it requires three sub-queries to query the data of H, and it is like:

Listing 6.4: Querying data with degree 3 in MySQL

SELECT node

FROM graph

Where connectedTo IN (

SELECT node

FROM graph

Where connectedTo IN (

SELECT node

FROM graph

Where connectedTo IN (

SELECT node

FROM graph

WHERE connectedTo = ‘ ‘A’ ’ )

)

)

When the graph is larger and more complex, it needs more sub-queries to define the condition, and make

the query more difficult. However, it is easy to traverse graph to query the friend of a friend relationship

67



from a graph database, in this case, Neo4j. The query is like:

Listing 6.5: Querying data with degree 3 in Neo4j

// Query f r i e n d s and f r i e n d s o f f r i e n d s , order by depth o f the r e l a t i o n s h i p

s t a r t n=node (∗ ) , person=node ({ userNode })

MATCH p = ( person )− [ :FRIEND∗1 . . 3 ] − ( f r i e n d )

re turn d i s t i n c t p order by l ength (p ) ;

Clearly, the graph database, in this case Neo4j, offers a simple query to achieve graph traversal to query

the nodes with high degrees, but it will be more complex in a relational database. MySQL requires complex

sub-queries in the query, which will increase the difficulty of programming. Thus, when handling large-social

social graph data, developing with the graph databases can enable developers simplifying programming than

applying the relational databases.

In conclusion, we can say applying the relational database can take advantage of the unified query language

and API to simplify programming, but when dealing with the graph-related operations, the graph databases

can enable developers programming more efficient.

6.2.3 Flexibility

Although the relational database system can be viewed as more mature and secure when compared with the

graph database, its flexibility may be less than the graph database. Since its database schema is fixed, it is

hard to represent semi-structure or unstructured data, and may be less suitable for storing the social graph

that may be extending to be a larger graph dynamically. For example, suppose that in a social network,

originally, there are two people A and B. They have their social attributes, such as name, gender, age and

address, and they are good friends; also, they post five personal statements: A posts statement a and b, and B

posts statement c, d and e. To store such information needs three tables: one for storing people information,

one for storing the relationship information, and the third one for storing statement information. When using

the relational database, for example, MySQL, the tables should be like:

Table 6.5: People Table

ID Name Gender Age Address

1 A Male 27 Address A

2 B Male 28 Address B
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Table 6.6: Relationship Table

ID PeopleA PeopleB Type

1 A B Friend

Table 6.7: Statement Table

ID Who When What

1 A Time 1 Statement a

2 A Time 2 Statement b

3 B Time 3 Statement c

For the graph database, Neo4j in this case, the information is stored in the nodes or edges, and the same

information should be represented like:

Figure 6.4: Relationship of A and B

Furthermore, the social network can extend over time, for example, a new friend, C, joins to this group,

and he has a cat, named Sweet. Since the relational database schema is fixed, when storing such information,

it needs to restructure the entire relational database schema to add a new table to store the cat information.
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After restructuring the database scheme, there should be one new table in the database, and remarkably, the

relationship between C and Sweet is stored in this table, as in Table 6.8:

Table 6.8: Pet Table

ID Name Species Owner

1 Sweet Cat C

On the other hand, when using graph database to store such data, the system just needs to add a few

edges and nodes into the graph to represent the new information, without restructuring the original graph.

In this case, it only needs to add a node for C and a node for Sweet, and some edges to link them with other

nodes in the graph to represent the new relationships:

Figure 6.5: Relationship of A , B and C

In this case, database scheme restructuring may be simple, but when more people join the network and

data sets become larger, restructuring would be very difficult and costly. Conversely, a graph database does

not need to restructure the original database schema, and it can fulfill the requirements for the network

exploration by adding the nodes and edges simply. Generally, for the most applications, a fixed database

may increase the database performance, because the designed database schema should fulfill the most re-

quirements. However, for the social applications, a flexible database is more suitable, since the social graph
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may change dynamically, and it is hard to design a database schema for the dynamical situation. Hence, we

may conclude that the graph database has a higher flexibility when compared with the relational database

for storing social graph data, which can be suitably stored in a flexible database.

6.2.4 Security

Since data is a valuable kind of resource, it is more necessary to ensure the security of the data. Generally,

protecting the sensitive data from unwanted actions of unauthorized users should be important for users,

especially for social networks, which store valuable social information for users. For example, in 2011, 77

million Sony PlayStation Network accounts were hacked, and the site was down for a month, and the leaked

information was used for credit fraud. Thus, data security is another important measure to evaluate a storage

system.

Generally, relational database systems can be considered to be providing more mature support for en-

forcing data security. Although relational database systems may face several security threats, such as SQL

injection, cross-site scripting, rootkits, and weak communication protocols, a relational database system can

adopt lots of mature mechanisms to secure the data. However, although the graph database system provides

a solution to solve problem of big data storing with the high database performance, it needs to pay more

attention to the security issue.

In this case, Table 6.9 shows the comparison between MySQL and Neo4j in some security services, in-

cluding authentication, data integrity, confidentiality and database logs. Basically, authentication is the

process of identifying an individual to control the access. Data integrity refers to maintaining and assuring

the accuracy and consistency of data over the entire life-cycle. Confidentiality is about whether the private

information that should not be publically available will be leaked or not. Quality logs are a key element for

monitoring for malicious activity and analyzing discovered irregularities.

As a typical relational database system, MySQL has good support for data security. Based on Table 6.9,

it may conclude the relational database has good performance in authentication, data integrity, confiden-

tiality and database logs to enforce the data security. On the other hand, although Neo4j can ensure the

data integrity and has completed log files, its authentication may have problems in some cases, and it has no

method to ensure the confidentiality, which may be very important in the social network. Therefore, we may

say, relational database systems have a mature mechanism in data security, and although graph database is

in rapid development, it still needs to enforce the data security.

6.2.5 Data Visualization

This research is focusing on the social data, and data visualization can communicate the social information

clearly and efficiently via information graphics, which should be very useful for a social network. Thus, the

capability to achieve data visualization is compared to show the usability of the relational databases and the

graph databases in the practice.
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Table 6.9: Security Services Comparison between MySQL and Neo4j

Security Services MySQL Neo4j

Authentication MySQL applies Old Password Au-

thentication and Secure Password

Authentication to authenticate the

connections. The user-password

scheme prevents access from un-

wanted or untrusted users.

In Neo4j, SSL protocol is used to en-

able clients to authenticate with the

database, but there is no method to

secure the operating environment to

ensure the server authentication.

Data Integrity As a relation database system,

MySQL uses ACID properties to en-

sure the database transactions are

processed reliably, and then the data

integrate is ensured.

Neo4j is a transactional database

so that operations can be per-

formed within transaction bound-

aries only. Also, Neo4j fully support

ACID properties to maintain data

integrity and ensure reliable trans-

actional behavior.

Confidentiality MySQL offers a number of cryp-

tographic and hashing functions,

such as AES ENCRYPT(), AES -

DESCRYPT(), DES ENCRYPT(),

DES DECRYPT(), and SHA(), to

encrypt or decrypt data directly in

queries. Therefore, confidential data

can be stored or returned in a secure

way, and data confidentiality is en-

sured.

In Neo4j, data is stored clearly so

that data confidentiality may be not

achieved.

Database Logs MySQL offers two types of logs:

the general log and error log.

The general log contains connec-

tion attempts with the basic details,

queries and other miscellaneous op-

erations performed by clients. Also,

the error log contains the problem

notifications. In MySQL, the most

activities can be logged for monitor-

ing.

There are five log files in Neo4j,

including neo4j.log storing gen-

eral information about Neo4j, de-

bug.log storing useful information

for debugging problems with Neo4j,

http.log storing request log for

the HTTP API, gc.log storing the

Garbage Collection logging provided

by the JVM, and query.log storing

information about executed quires.

There log files can record most in-

formation about Neo4j.
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Although a textual display of data may be a lot clearer in some cases, data visualization can enable

users to view data directly and have a clear view of the data. Users can communicate information clearly

and efficiently via the graphs, especially for data of the social network, in which data can be represented as

graphs. For example, The graph in Figure 6.6 represents the data stored in Table 6.10, 6.11, 6.12 and 6.13.

Once the social network is visually represented, users can easily know the relationships, which should be a

very convenient way for users have a clear view about the social network. Thus, when handling the social

graph data, visualizing data should be better than displaying the data textually.

Figure 6.6: Data visualization example

Table 6.10: People Table

ID Name Gender Age Address

1 A Male 27 Address A

2 B Male 28 Address B

Table 6.11: Relationship Table

ID PeopleA PeopleB Type

1 A B Friend
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Table 6.12: Statement Table

ID Who When What

1 A Time 1 Statement a

2 A Time 2 Statement b

3 B Time 3 Statement c

Table 6.13: Pet Table

ID Name Species Owner

1 Sweet Cat C

The most graph database systems provide support for data visualization. Since in the graph database,

data is stored in term of the graph, the database system can easily convey the content of graphs. In this case,

Neo4j offers a customizable data visualization tool based on the built-in D3.js library, called screencast. It

can demonstrate how to style nodes and relationships in the Neo4j Brower visualization, and set the colors,

sizes and titles for the data in the graph.

However, the relational database has little support for data visualization. Because the relational database

structure, which is representing data in term of tables, is fixed, it is hard to translate the structure of the

relational database into other forms, like graph or plots, for visualization. Thus, we may conclude that graph

database has more ability to provide support to visualize data for database users than the relational database.

6.3 Summary

In this chapter, two kinds of analysis, the quantitative analysis and the qualitative analysis, are used to

evaluate the performance of the graph database, Neo4j, and the relational database, MySQL, when handling

large-scale social graph-like data. Firstly, Neo4j should be viewed as a more useful database system based on

the quantitative analysis. Basically, due to the flexible database schema, a graph database can take advantage

to reduce the storage cost for storing large-scale social graphs, although it may require more space when the

size of the social graph is small. In addition, I performed six experiments about execution time, which

were very informative for evaluating the performance of the databases, based on the mentioned six kernels.

According to the experimental results, we can say that normally, when the size of the database increases to

a large-scale, a relational database takes more time to insert or search data than a graph database. Also,

a graph database has absolute better performance in using built-in functions and union and intersection

operations. Moreover, when traversing the graph, if the depth of traversing increases, a graph database

spends much shorter time to query the data. Thus, generally, a graph database has better performance
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objectively when handling large-scale social graph data.

On the other hand, the qualitative analysis shows the graph database is better in some areas than the

relational database, although the relational database is better in maturity, ease of programming and security.

Basically, a relational database should be considered as a more mature way to store data with more support

than a graph database. Also, since it applies SQL as the uniform query language, the relational database

makes it friendlier to the developers, although a graph database may be a better choice for handling graph-

related applications. In addition, a relational database is securer than a graph database to ensure the

data security for users. On the other hand, since the database schema of the relational database is fixed, the

graph database comparatively has more flexibility for storing unstructured or semi-structured data, especially

the social graph data. Finally, a graph database can help users to handle data visualization to get better

performance, whereas a relational database lacks such support.
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Chapter 7

Conclusion and Future Work

All in all, after comparing the performance of the graph database and the relational database when

handling large-scale social data, we can answer the key research problems defined in the second chapter.

Firstly, unlike the relational database that has fixed database schema, which causes the database size to have

a linear relationship with the number of nodes and edges stored in the tables, a graph database, which is

more flexible, can reduce the storage cost to increase the performance, especially for large-scale social graph

data. Also, according to the experimental results, a graph database, basically, has better performance in

execution time for querying data from the database. Thus, a graph database should be considered having

better performance objectively in storing and process large-scale social data.

Secondly, based on the performance on maturity and level of support and security, the relational database

system should be viewed as the highly reliable database system, compared with the graph database system.

First, the relational databases are more mature than the graph databases. Because of the longer development

history and more released versions, the relational databases can provide more support for users, although

the graph databases are rapidly developing. Also, a relational database is a securer storage approach than

a graph database. A relational database provides more support to ensure data security, whereas a graph

database lacks such support; therefore, the users may be more confident with the relational database in data

security.

Thirdly, a graph database has advantage in flexibility and data visualization, so it is a storage approach

with high practicability compared with a relational database, although a relational database may be easy

to program in some cases. First, it may be easier for developers to use a relational database than a graph

database, although a graph database may be more useful to handle graph-related operation, such as graph

traversal. The relational databases apply a uniform query language, SQL, but each graph database may

have its own query language and API, which makes programming more difficult. Second, since the database

schema of a relational database is fixed, it may be unsuitable to store unstructured or semi-structured data;

on the other hand, a graph database offers more flexibility to handle such data, especially the graph data.

Thus, the graph database can be more useful to handle the large-scale social graph data. Third, a graph

database can enable data visualization to provide a clearer way to view the data, but a relational database

lacks such support on it. Thus, a graph database can offer more features when applying the data visualization

in a social application.
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Therefore, in conclusion, a graph database could be considered as a better choice for handling social

graph data, especially when the dataset size is very large. Developers can take advantage of using the graph

databases in several areas, such as storage cost, query time, flexibility, and data visualization, although

the relational database is still a good storage approach and has its own advantage in ease of programming

and data security. A graph database enables users to handle large-scale social graphs in an easier way and

provides more useful functions to use the graph data.

7.1 Future Work

7.1.1 Database Benchmark

Although there are several database benchmarks, there is no benchmark for evaluating the performance of

databases to store and process large-scale social graph data. This work designs several queries to evaluate

the capabilities on processing graph data, and these queries can be used to measure the performance of the

databases. As social applications, such as Facebook, Twitter, and LinkedIn are becoming more common in

daily social lives, there is an increasing need to handle large-scale social graph data, so a reliable, repeatable

benchmark test suite is needed for evaluating the databases. The designed queries in this research can be

implemented as a benchmark to test the main capabilities of RDBs and GDBs. However, the work on this

is still incomplete, and for future work, I will implement more queries to complete this benchmark to offer

an open source database benchmark for evaluating the performance of databases on storing and processing

large-scale social graph data.

7.1.2 Comparing More Database Systems

This thesis research measures and compares the performance of relational databases (RDBs) and graph

databases (GDBs) on storing and processing large-scale social graph data, and I choose MySQL as the typical

RDB and Neo4j as the typical GDB. Currently, with the development of the graph database technology, there

are several graph database systems, such as AllegroGraph, DEX, InfoGrid, and FlookDB, and unlike relational

database systems, which have the similar basic structure, many graph databases have their own structures

and different standards, so Neo4j may not be representing all graph databases. Therefore, in future work,

more graph database platforms should be compared to offer a more complete view of the capabilities of the

graph database on handling large-scale social graph data.

7.1.3 Storing and Processing Practical Social Graph Data

In order to store and process large-scale graph data, this work applies the R-MAT algorithm to generate the

social graphs for evaluation. Although the generated graphs may be large enough and meet the properties for

a scale-free network, they are very simple social graphs with only a few of the attributes or properties of the
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social actors (nodes). In practical applications, the social graphs would be more complex with more data types

and properties. Meanwhile, lots of social network companies such as Facebook and Twitter provide several

datasets for research purposes. The next step of my research may incorporate such datasets into evaluations.

But, the existing graph datasets are normally only for GDBs, rather than RDBs. How to transform such

data into relational database form for evaluation may be an issue in future studies. As analyzed in Chapter 6,

the graph databases have a highly flexible database schema, so transforming a relational database to a graph

database needs to organize the unstructured or semi-structured data structurally. A designed transformation

for a particular database may work, but a general solution for transforming the database is hard to develop.

By doing such a transformation, we can have the same, real world and thus realistic, databases to compare.

This can improve the validity of the evaluation, and benefit the other related work.
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