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ABSTRACT 

 

 Every year, several thousand individuals suffer spinal cord injury (SCI) in North 

America, while 1.5 million suffer traumatic brain injury in the U.S.A. alone.  Primary 

mechanical trauma to the CNS is followed by a complex pathology, including vascular 

dysregulation, ischemia, edema and traumatic hemorrhage. Secondary damage is to a large 

extent caused by oxidative stress and inflammatory processes, resulting in necrosis and 

apoptosis of neural cells. If secondary tissue injury could be limited by interference with any 

of the pathomechanisms involved, preservation of structure and function would increase the 

potential for functional recovery.   

 Experiments performed in other laboratories have shown that the polyphenolic 

flavonoid quercetin acts as an anti-oxidant and anti-inflammatory, reduces edema formation 

and apoptotic cell death. Quercetin is also an excellent iron chelator. This action profile 

suggested a high therapeutic potential for acute CNS trauma. Therefore, I used models of both 

spinal cord injury and head trauma in adult male rats to test the hypothesis that administration 

of quercetin is beneficial for the therapy of acute traumatic CNS injury. While the primary 

focus of my work was on therapy of acute traumatic spinal cord injury, quercetin was also 

evaluated in the settings of chronic SCI and acute head trauma.   

 I found that, in a rat model of mid-thoracic spinal cord compression injury, 1) 

administration of quercetin, starting 1 hr after injury and continued every 12 hr, improved 

recovery of motor function in the hind limbs in more than half of the injured animals to a 

degree that allowed previously paraplegic animals to step or walk. The minimum quercetin 

dose that was efficacious was 5 µmol/kg.  The minimum treatment duration for optimal 

outcome was determined to be 3 days. In control animals, some spontaneous recovery of 
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motor function did occur, but never to an extent that allowed animals to step or walk. 

Quercetin administration was associated with more efficient iron clearance from the site of 

injury, decreased inflammatory response as reflected in decrease of myeloperoxidase activity 

and decreased apoptosis of neural cells at the site of injury.  2) Quercetin administered in the 

same injury model as late as 2 weeks after injury, given in a higher dose than that used for 

treatment in the acute phase, still resulted in significant recovery of motor function in 40% of 

the injured animals, although at a lower level of performance, when compared to early onset 

of treatment. 3) Quercetin administered after moderate fluid percussion brain injury resulted 

in decreased oxidative stress, as reflected in higher tissue glutathione levels at the site of 

injury. In animals receiving quercetin, the amplitude of compound action potentials was 

significantly better maintained at 24 hr and 72 hr after injury than in saline-treated control 

animals.  

My experiments have shown that the flavonoid quercetin is neuroprotective in a rat 

model of brain trauma and in a rat model of spinal cord injury. My data show that 

administration of quercetin after CNS trauma promotes iron clearance, decreases oxidative 

stress and inflammation. Quercetin also decreases apoptotic cell death following neurotrauma. 

These results suggest that quercetin may be a valuable adjunct in the therapy of acute CNS 

trauma. There is a possibility that administration of quercetin may be beneficial even in 

certain settings of chronic CNS trauma. These conclusions are based solely on the results 

from animal experiments. However, the fact that few adverse reactions have been noted to 

date in either animal experiments or human trials targeting other diseases is encouraging for 

the progression to human clinical trials for patients with spinal cord injury. 
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HYPOTHESES 

 

 

1) Because of its ability to chelate ferrous iron (Fe2+) and decrease the intensity of 

inflammatory processes, administration of the flavonoid quercetin will promote 

significant functional recovery after neurotrauma. 

 

 

2) Administration of quercetin in the acute phase after injury is neuroprotective, while no 

neuroprotective effect is expected with administration beyond the acute phase of injury. 

 

 

 

These hypotheses were tested in models of mid-thoracic spinal cord compression injury and 

head trauma in the adult rat. 
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Chapter 1 

 

The Pathology of Spinal Cord Injury 
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  From a clinical aspect, damage and recovery after acute trauma to the CNS include 

three characteristic phases. The acute phase, immediately following the mechanical impact, 

the intermediate, the post-acute phase and the chronic phase (Herrmann and Stancil, 1977; 

Tator, 1995 and 1998; Hulsebosch, 2002). The acute phase is characterized clinically by a 

state of spinal shock and neuropathologically by an increase in the volume of tissue injury, 

caused by a complex of pathological processes referred to as secondary injury (Tator and 

Fehlings, 1991; Tator and Koyanagi, 1997; Carlson et al., 1998; Beattie and Bresnahan, 

2000). The term secondary injury is used to distinguish the damage caused by the primary 

injury, describing the original mechanical impact, from the damage caused by subsequent 

changes in the extracellular milieu (Tator, 1995; Sekhon and Fehlings, 2001). Since the 

intensity of characteristic pathologic processes involved in injury varies considerably over 

the course of time, it has become customary to distinguish between acute and chronic spinal 

cord injury.   

 

1.1 The epidemiology of spinal cord injury 

The reported incidence of spinal cord injury varies between 15 and 71 cases per 

million, depending on the mode of reporting (Tator, 1995; Sekhon and Fehlings, 2001). 

Studies reporting higher numbers might describe the situation more accurately, because they 

take into account immediate deaths before hospital admission (Sekhon and Fehlings, 2001; 

Kirshblum et al., 2002). It is estimated that of the 12,000 new cases of paraplegia and 

quadriplegia that occur in the United States each year, 4,000 die before reaching the hospital 

(Sekhon and Fehlings, 2001). According to the estimates of the Canadian Paraplegic 
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Association, about 35 new cases per million population are seen each year in Canada. Men 

are afflicted four times as often as women, and about 60% are 30 years or younger (Go et al., 

1995). The consequence of those statistical data, besides putting figures on personal 

tragedies, is that for the afflicted patients the major part of economically active life is 

severely compromised. A long-term outcome study of patients aged 25-34, who had suffered 

acute traumatic spinal cord injury (SCI) while still in the pediatric age group showed that the 

employment rate was only 54%, while the employment rate in the general population for the 

same age group was 84% (Vogel et al., 1998). For society as a whole, this results in double 

economic loss: not only are the economic contributions of those young people lost, but heavy 

expenses are required to pay for special life long care. In 1990, the costs incurred for society 

from acute and long-term care of surviving spinal cord injury victims were estimated at 4 

billion dollars annually in the U.S.A. alone (Stripling, 1990). Before the practice of 

intermittent catheterization and skin care through positional changes were introduced by 

Ludwig Guttmann and others in the 1940s, post-hospitalization mortality of patients with 

spinal cord injury was mainly due to sepsis and urologic complications (Thomson-Walker, 

1937; Sutton, 1973). Mortality from those causes has decreased significantly since. While 

respiratory complications are now perceived as the leading cause of death in patients 

admitted with SCI, the runners up are heart disease, septicemia, pulmonary emboli, suicide 

and unintentional injuries (DeVivo et al., 1989). With regard to specialized care of the patient 

with spinal cord injury, prevention of medical complications is the primary focus, starting on 

the day of injury. Measures include pressure relief for the skin to prevent pressure sores as 

potential source of infection, thromboembolism prophylaxis, prevention of gastric ulcers, 
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Foley catheter drainage to prevent urinary retention as source of infection and urosepsis, and 

bowel care to prevent colonic impaction (Kirshblum et al, 2002).   

While survival of patients after reaching the hospital alive has increased dramatically 

since the 1940�s, chances of reaching the hospital alive with spinal cord injury have only 

slightly improved. As an example, a study of incidence of spinal cord trauma in Olmstead 

County, Minnesota, U.S.A., showed the overall incidence of acute traumatic SCI tripling 

between 1935 and 1974. Yet, the number of patients reaching the hospital alive has only 

increased three-and-one-half times over the same period in the same jurisdiction (Griffin, 

1985; Sekhon and Fehlings 2001). Having said this, it is worth mentioning that the 

percentage of complete spinal cord injury on arrival at the hospital has been significantly 

decreasing over the last decades (Sekhon and Fehlings, 2001; Tator et al., 1993). Increased 

public awareness of risk factors leading to head trauma and spinal cord injury, the 

introduction of mandatory use of safety belts and the installation of air bags in cars as well as 

widespread First Medical Aid instruction have certainly contributed to the decreased 

incidence of complete spinal cord injury.  While Kossuth is credited with having developed 

the concepts of protecting and immobilizing the cervical spine during extrication from a 

vehicle and rescue from the accident scene, many others have championed the idea (Kossuth, 

1965 and 1967). Although, for ethical reasons, no clinical trial yielding class I or class II 

evidence to support cervical spine immobilization is conceivable, the fact that the percentage 

of patients with multiple injuries who suffered complete spinal cord injury decreased from 

55% in the 1970s to 39% in the 1980s speaks for itself (Garfin et al., 1989). Since the time 

period of declining incidence of complete spinal cord traumata coincides with the 

popularization of cervical spine immobilization during the pre-hospitalization phase, this 
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could be considered indirect evidence for the ability of immobilization to prevent delayed 

mechanical injury to the spinal cord. The most important predictive factors of survival after 

acute traumatic SCI are patient age, the level of injury and neurologic grade (Claxton et al., 

1998). With grading systems, such as the American Spinal Injury Association (ASIA) motor 

index and FIM (Functional Independence Measure) score, standardized methods of 

assessment have been developed for assessment of the level of temporary neurological 

dysfunction as well as for neurological recovery.  

The most common mechanism of spinal cord injury is fracture-dislocation, with 

anterior fracture-dislocation being more common than either posterior or lateral injuries. 

Although the overall percentage of cervical spine injuries is higher than that for thoracic 

injuries, the percentage of associated complete spinal cord injury is, at 77.5% (vs. 60.4% for 

cervical and 64.7% for lumbar spine), highest with injury to the thoracic spine (Tator, 1983). 
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1.2 The value of evidence-based medicine, clinical trials and guidelines 

With increasing specialization in the medical field and a host of new data available in 

ever shorter periods, there is a necessity to create treatment guidelines which cover the most 

common clinical situations. Besides being informative, such guidelines can also be seen as 

important protection against the unfortunately increasing tendency of patients to use 

litigation in order to achieve compensation for real or perceived shortcomings in medical 

treatment. Guidelines should be based on clinical evidence supporting the claim that the 

therapeutic approaches recommended are, according to current knowledge and opinion, the 

best available to the patient. Medical evidence comes in different categories, ranging from 

anecdotal reports to large-scale randomized trials. While anecdotal reports may pique our 

interest and, occasionally, trigger a research project, it is evidence from the large randomized 

trials that is increasingly used to develop guidelines for clinical practice. In 1990, some key 

concepts for the creation of guidelines for clinical practice were published on behalf of the 

Institute of Medicine in Washington, DC (Field and Lohr, 1990). Those key concepts 

included the request 1) that a thorough review of the available scientific literature should 

precede the development of guidelines, 2) that claims made in scientific publications should 

be evaluated with regards to validity, and 3) that the strength of recommendations in the 

guidelines should reflect the strength of this evidence. This sounds like common sense, but 

especially in medico-legal disputes it can be essential whether any specific treatment 

approach is considered standard, recommended or optional by the medical community and 

it�s advisory boards. Also, it was requested that empirical evidence take precedence over 

expert judgement. Agreements are required to judge the value of evidence presented in 
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clinical trials. Currently, in the concept of evidence-based medicine, evidence presented in 

any study is classified in three levels. Strongest evidence is signified by level I, which 

describes evidence arising from randomized, placebo-controlled clinical trials. In this type of 

study, prospectively, adherence to strict study protocols and availability of a 

contemporaneous control group all reduce the sources of systematic bias (Hadley et al, 

2002). Random error is reduced by the randomization process, since this reduces the chance 

that unrecognized aspects of triage might influence the outcome. Good but somewhat weaker 

evidence is represented at level II, which describes the value of prospective non-randomized 

cohort studies and case-control studies.  In prospective cohort studies, patients with similar 

injury patterns are placed in either treatment group consciously, and the difference in 

outcome is studied. While case-control studies are typically retrospective, patients are 

grouped by outcome, and research focuses on a possible link between the different outcomes 

and different treatments. Class III evidence is presented by published case series, case reports 

and expert opinions based on observations and personal experience.  

 Another important consideration is assessment of the strength of diagnostic tests used 

in a study. To yield valuable results, a test must be reliable (come up with similar results 

under similar circumstances), valid (reflecting the true state of affairs or comparable results 

when measured against a �gold standard�) and accurate (acceptable ability to distinguish 

between patients who have and those who do not have the disorder which is tested for) 

(Hadley et al, 2002). Sensitivity, specificity, positive and negative predictive values therefore 

are important characteristics of a diagnostic test.  

Furthermore, an important criterion to classify the evidence of any study is the 

strength of patient assessment for the study, both for the initial condition and outcome. 
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Again, we are looking at reliability, which is assured by calibration of instruments in regular 

intervals or verification of agreement between different observers of the same process. To 

assure that inter-observer agreement did not occur purely by chance, a concordance index 

(kappa index) has been developed (Cohen, 1960; Landis and Koch, 1977). The Bayesian 2x2 

table can be used in the following way to calculate the concordance index (Table 1.1): 

 

 

Observer 1 Observer 2  

Yes Agree 

(a) 

Disagree 

( b ) 

(a+b) = f1 

No Disagree 

( c ) 

Agree 

(d) 

(c+d) = f2 

 (a+c) = n1 (b+d) = n2 (a+b+c+d) = N 

 

Table 1.1 Bayesian table to calculate concordance index. 

From: Hadley et al., 2002 

 

From these numbers, kappa is calculated by: 

 

            N (a+d) � (n1f1 + n2f2)  

  Kappa   = ──────────────── 

                    N2 � (n1f1 + n2f2) 
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or 

                 2 (ad �bc) 

  Kappa   = ────────── 

           (n1f1 + n2f2)      

 

 

 

The following values for kappa refer to qualitative assessment of inter-observer agreement: 

 

Kappa value Level of evidence Strength of agreement 

< 0 Class III evidence Poor  

0 � 0.20 Class III evidence Slight  

0.21 � 0.40 Class III evidence Fair 

0.41 � 0.60 Class III evidence Moderate  

0.61 � 0.80 Class II evidence Substantial  

0.81 � 1.00 Class I evidence Almost perfect 

 

Table 1.2 Qualitative assessment of inter-observer agreement. 

From: Hadley et al., 2002 
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1.3 The acute phase of traumatic spinal cord injury 

In the acutely traumatized spinal cord, several mechanisms of destruction are 

observed, contributing to primary or secondary loss of function and structure. The primary 

injury, caused by the initial traumatic impact on the spinal cord, includes mechanisms such as 

contusion, compression and partial or complete transection. Instability of membrane function 

and frank membrane disruption, vascular damage with consecutive hemorrhages and 

ischemia follow.  Primary complete transection of the spinal cord appears to be relatively 

infrequent, compared to presentations containing a blunt injury with elements of contusion, 

compression and possibly partial transection (Kakulas, 1984). However, secondary 

pathomechanisms may result, at a later point, in complete loss of functional spinal cord tissue 

across the complete cross-sectional surface of the spinal cord at the site of injury (Tator and 

Rowed, 1979; Fehlings and Tator, 1988). Those pathological processes have been 

summarized under the term �secondary injury�. Hematomas obviously contribute to internal 

or external spinal cord compression at macroscopic level, thus increasing the vicious circle of 

ischemia, acidosis and edema (Hughes, 1988). However, a number of pathologic processes at 

the cellular level, such as inflammation, lipid peroxidation as expression of oxidative stress, 

calcium influx and excitotoxic cell death contribute further to the developing tissue injury 

(Sharma and Winkler, 2002; Hausmann, 2003; Wingrave et al., 2003). While ischemic and 

excitotoxic cell damage may be difficult to quantify in the clinical situation, the 

consequences of those processes are apparent, with some delay, as edema in imaging 

procedures and as secondary loss of function detected during neurological assessment.  
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Initial management of acute traumatic spinal cord injury includes establishment of 

oxygenation, circulation, radiographic evaluation for spinal instability and re-establishment 

of spinal alignment (Kirshblum et al., 2002). The non-operative management of patients with 

spinal cord injury should be directed at the prevention of secondary injury and prevention of 

systemic physiological derangement resulting from the injury to spinal cord and adjacent 

structures of the nervous system, such as the sympathetic chain. Immobilization of the spine, 

to prevent further mechanical trauma, adequate oxygenation and sufficient tissue perfusion 

are presently the mainstay of treatment. The problem with satisfying the latter requirement is 

that, while there is sufficient knowledge regarding the blood pressure necessary for adequate 

perfusion of kidneys, brain and viscera, hardly any data exist to indicate the optimal blood 

pressure for adequate perfusion of the spinal cord (Ball and Nockels, 2001). Therefore, 

inadequate support of spinal cord perfusion might contribute significantly to secondary injury 

after SCI.  

Frequently encountered clinical problems in patients with spinal cord injury include 

respiratory insufficiency, apnea, paralysis and spasticity. Contributing is the following spinal 

cord pathology: 

1) motor control: Transmission of stimuli and voluntary control of muscle function 

below the level of injury are lost because of injury to the anterior and lateral corticospinal 

tracts as well as extrapyramidal pathways.  

2) sensation: Proprioceptive impulses from muscle spindles and receptors in joints do 

not reach the brain due to injury to the dorsal colums. 

3) local reflex circuits: functional loss of local reflex circuits is due to destruction of 

gray matter at the site of injury. 
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Autonomic nervous system dysregulation: A good summary of the general effects of 

acute traumatic spinal cord injury on the autonomous nervous system can be found by Cull 

and Hardy (1977). In the healthy, uninjured spinal cord, spinal cord function is controlled on 

two levels: autonomous spinal cord function, based on local circuitries, and suprasegmental 

control. If the spinal cord is transected above T1, suprasegmental control of the sympathetic 

nervous system is lost, while transection below T2 leaves some of the sympathetic system 

intact, though impaired. Immediately after spinal cord injury, spinal cord reflex activity 

below the lesion transecting the cord is lost transiently. This state, also termed �spinal shock�, 

is transient and may continue as long as two or three months after injury. One of the 

consequences is the loss of vasomotor tone, with dependent pooling of blood. Cardiovascular 

output is reduced, which causes hypotensive crises in the newly injured. At the same time, 

autonomic hyperflexia is seen in those patients with cord injuries at T5 level and above. 

Characteristic is a marked rise in blood pressure as consequence of a massive sympathetic 

reflex response to stimuli arising in the pelvis from overdistension of bladder and rectum. 

While the loss of thoracic nerves from T1-6 results in paralysis of the intercostal muscles, the 

functional loss of T7-L1 nerves is seen in the abdominal muscles (Cull and Hardy, 1977).  

Excessive sweating, reflecting post-traumatic changes in thermoregulation, is 

encountered in both human patients and experimental animals in the first few days after 

trauma.  �Sweating is the result of stimulation of the sympathetic nervous system, and may 

occur on a segmental reflex basis as a result of over distension of bowel and bladder� (Cull 

and Hardy, 1977).  
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Problems associated with micturition: In the adult healthy, uninjured subject, the bladder is 

under cortical control. This inhibits or facilitates the spinal reflex activity in the conus 

medullaris (S3-4) and thus allows continence. Because of the loss of cortical influence and 

the initial flaccidity of the detrusor muscle immediately after trauma, artificial drainage of 

urine by catheterization is required. However, once the areflexic period of spinal shock has 

passed, the bladder reverts to a primitive pattern of emptying, and reinstitution of voiding 

may occur. Bors classified bladder function after spinal cord injury into three categories. 

 

   1.  Upper motor neuron type: This is typical for lesions above the conus medullaris (S2-3). 

Lesions result in a reflexic, automatic, spastic voiding pattern. Credé maneuver or straining is 

usually not required, and bladder capacity is limited to below 400 cc (normal capacity 500 �

600 cc). 

 

    2. Lower motor neuron type: This type of bladder dysfunction is seen with lesions to the 

conus medullaris, or to the lower sacral roots. The spinal reflex arc needed for detrusor tonus 

and integrated detrusor emptying contraction is interrupted. Bladders are flaccid, have an 

increased capacity, up to 1000 cc, and depend on external pressure for emptying. 

 

    3. Mixed type: With this type of lesion, bladders have the partial ability to empty by 

reflex, and may require assistance by Credé maneuver. This is possible due to the partial 

innervation of the bladder by pelvic or pudendal nerves. True reflex automaticity is lacking. 

The musculature can not be categorized as either spastic or flaccid. (Cull and Hardy, 1977). 
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1.3.1 The secondary injury theory 

 Secondary injury has been recognized as a central theme in the natural course of 

traumatic CNS lesions (Tator, 2002). One of the key observations concerns the fact that a 

significant number of cells, both in the epicenter of injury and in adjacent tissue sections, 

apparently survive the initial impact, but die at a later stage due to deterioration of the 

extracellular milieu and loss of membrane integrity. The concept of secondary injury is based 

on the observation that, hours to weeks after the trauma, cell death by necrosis or apoptosis is 

induced in cellular structures previously undamaged by the primary mechanical impact, and 

that damage becomes permanent in tissue structures which potentially could have recovered 

(Crowe et al., 1997; Shuman et al., 1997). The fact that the volume of tissue injury is 

increasing continuously for a certain period of time after primary trauma to the spinal cord 

has been reported as early as 1911 by Allen and 1923 by McVeigh. Allen found that, in a dog 

model of acute traumatic spinal cord injury, removal of the post-traumatic hematomyelia 

resulted in significantly improved recovery of motor function (Allen, 1911). Since then, 

increasingly sophisticated investigation techniques have allowed more and more detailed 

dissection of the pathologic cellular mechanisms that result in secondary tissue injury. 

Numerous experiments have resulted in more detailed knowledge about the secondary tissue 

injury developing at the site of injury, in immediately adjacent and in more distant tissue 

sections. Mechanisms contributing to increase the secondary damage include contusional 

hemorrhage, vascular dysregulation and ischemia, edema formation, oxidative stress and 

inflammatory processes. Damage caused by those pathomechanisms will subsequently 

contribute to a significant secondary increase of lesion volume in both acute spinal cord 
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injury and head trauma (Tator and Fehlings, 1991; Wahl et al., 1993; Carlson et al., 1998; 

Juurlink and Paterson, 1998; Schnell et al., 1999; Tator, 2002).    

It has been shown in rat as well as in monkey models that both neurons and glia can 

die by apoptosis (Beatty et al., 1998; Crowe et al., 1997; Liu et al., 1997). Apoptotic cell 

death is expected to contribute to the increasing volume of secondary injury, probably weeks 

to even months after injury (Johnson et al., 1995). Activation and consequent apoptosis of 

microglia have been shown in a rat model (Shuman et al., 1997). Whether microglial 

activation is a cause for or rather a consequence of apoptosis of oligodendroglia, is still 

debated.  The majority of apoptotic cells have been found in the white matter tracts, and more 

so in ascending than in descending tracts. This has been shown in the animal model as well 

as in human spinal cord injury (Hayes and Kakulas, 1997; Shuman et al., 1997; Emery et al., 

1998; Beattie et al., 2000). Those apoptotic cells are typically found in oligodendrocytes and 

microglia, in regions of Wallerian axonal regeneration. This loss of oligodendrocytes 

probably contributes to the demyelination seen after acute spinal cord trauma. 

A consequence of mechanical trauma and ischemia on spinal cord tissue consists in 

the release of glutamate into the extracellular space from injured neurons and astrocytes 

(Strjibos et al., 1996; Benveniste et al., 1984). The increase of extracellular glutamate levels 

leads to a significant increase of intracellular Ca 2+ levels, which can stimulate the expression 

of nuclear cell death genes (Kroemer et al., 1995). Increased intracellular Ca 2+ levels have 

been associated with ROS (reactive oxygen species) production and phospholipid membrane 

degeneration (Werling and Fiskum, 1996), and with increased permeability of the inner 

mitochondrial membrane (Bernardi et al., 1998). The latter process has been associated with 
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the production of reactive oxygen species and osmotic mitochondrial swelling, promoting the 

release of apoptogenic mitochondrial proteins (Fiskum, 2001). 

The next consideration is given to the processes of ischemia and re-perfusion injury. 

Ischemia and re-perfusion phenomena initially were intensely studied in the context of stroke 

and cardiac disease (Fiskum, 1985; Zweier, 1988; Das et al., 1989). It was determined that 

mitochondria are the main location of free radical production during the reperfusion phase 

after ischemia, consequent to a reduction of components of the electron-transport chain and a 

decrease in superoxide dismutase activity (Grill et al., 1992; Szweda et al., 2001; Ferrari, 

1996). In the normal state, the electron transport chain in the mitochondria controls the redox 

energy required to generate the mitochondrial membrane potential. Electrons derived from 

various substrates are stored in the substrate NADH, from where about 95% of the electrons 

are passed down the respiratory chain to reduce oxygen to water. However, even in the 

undisturbed state, some electrons combine with oxygen at intermediate steps of the 

respiratory chain to produce the superoxide radical O2
·- (Kowaltowski and Vercesi, 2001). 

Under physiological circumstances, the superoxide anion is converted by superoxide 

dismutase to hydrogen peroxide, an apparently cytoprotective process (Fridovich, 1978; 

Bielski, 1985). The hydrogen peroxide then is reduced to water and molecular oxygen by 

catalase and glutathione peroxidase, the latter of which uses glutathione as an electron donor 

(Emerit, 1988; Sies and Moss, 1978). In the case of ischemia, the decrease of cytoprotective 

dismutase activity would lead to an increase in superoxide anions. Increased intracellular 

superoxide anion levels will lead to leakage of the radical into the extracellular space, where 

superoxide dismutase levels are low (Emerit, 1988). While nitric oxide (NO·) in itself is not 

toxic, it will form peroxynitrite (ONOO-) when it interacts with superoxide anions, a process 
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which in turn promotes mitochondrial lipid membrane peroxidation (Gadelha et al., 1997). 

Nitric oxide is a smooth muscle relaxing factor responsible for vasodilator response, while 

superoxide anions are considered potent vasoconstrictors, mainly because they scavenge NO· 

(Marleatta, 1989; Moncada et al., 1989).  Unchecked increase of superoxide anions, 

therefore, might cause considerable vasoconstriction, thereby aggravating the ischemic state 

(Gryglewski et al., 1986; Ischihara et al, 2001). The production of superoxide anions and 

other free radicals during the reperfusion phase is paralleled by an increased rate of lipid 

peroxidation (Kramer et al., 1994; Ambrosio et al., 1993; Cordis et al., 1993). Many of the 

compounds produced by the breakdown of polyunsaturated fatty acids in the process of lipid 

membrane peroxidation, such as aldehydes, alkenals and hydroxyalkenals, have been shown 

to be cytotoxic both in vitro and in vivo (Esterbauer et al., 1991). Therefore, it can be 

assumed that ischemic conditions during the primary impact, as well as consequent to 

developing edema, prime mitochondria for the production of free radicals, which ultimately 

results in lipid membrane peroxidation. Lipid membrane peroxidation results in structural 

and functional damage to the mitochondria and other cellular structures, so that the vicious 

circle is perpetuated and the volume of the tissue damage increases (Gogvadze et al., 2003). 

Oxidant species released by neutrophils attracted to the site of injury further contribute to 

secondary tissue injury. 

The first days after CNS injury are characterized by an influx of neutrophils and 

macrophages into the tissue at the site of injury and adjacent spinal cord segments in both 

animal model and human patients (Matteo and Smith, 1988; Anderson, 1992). Inflammation, 

lipid membrane peroxidation as expression of oxidative stress and excitotoxic processes are 

key mechanisms of secondary CNS injury, with inflammation being perhaps the most 
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controversial problem. Inflammatory responses include the invasion of traumatized 

parenchyma by neutrophils from the blood stream, commencing only hours after the injury 

with a peak at 24 hr, and the presence of phagocytic cells at the site of injury. Regarding the 

latter, we need to distinguish between blood-born macrophages and phagocytic cells derived 

from activated microglia. Microglia is activated as early as 12 hr after SCI, while monocyte 

infiltration is delayed over a period of days, with a peak around five days after injury 

(McTigue, 2000). It is not possible to distinguish histologically between cells with glial 

origin and those generated from circulating monocytes once they have reached the 

phagocytic stage. Popovich and colleagues (1999) developed a technique by which they were 

able to deplete circulating monocytes after spinal cord contusion injury in a rat model, 

without affecting resident microglia. This resulted in significant tissue sparing and improved 

recovery of locomotor function.  

Neutrophils, when stimulated, generate potent reactive oxygen species (Hampton et 

al., 1998; Winterbourn et al., 1985; Badwey and Karnovsky, 1980; Badwey et al., 1991). 

Superoxide anion radicals (O2
·-) are generated by activation of the enzyme NADPH oxidase 

and subsequently converted to other reactive species, including H2O2 (Roos, 1991a and 

1991b). The oxidant activity of H2O2 is significantly enhanced by the action of 

myeloperoxidase, a hemoprotein enzyme usually stored in the granules of neutrophils. 

Myeloperoxidase has been described as key regulator in the oxidant production by cellular 

mediators of inflammation (Kettle and Winterbourn, 1997). In the presence of Cl- or other 

substrates acting as electron donors, myeloperoxidase catalyzes the reaction of hydrogen 

peroxide and cloride anions, generating chloramines and hypochlorous acid (HOCl), which 

has a reactivity about two orders of magnitude higher than that of H2O2 alone (Weiss et al., 
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1982; Weiss, 1985; Thomas et al, 1983; Pincemail et al., 1988; Rodrigues et al., 2002; Gaut 

et al., 2001).  This reaction appears to be dependent on the availability of ferric iron (Fe+3) 

(Rao et al., 1988). Hypochlorous acid, when released into the extracellular space, will react  

with tissue structures adjacent to the site of injury and thus increase the volume of secondary 

tissue damage (Prutz, 1996; Selloum et al., 2001) (Fig. 1.2). Chlorinated structures can be 

restored to their unchlorinated state by reduction with GSH (Prutz, 1998). However, the 

increased demand for repair will quickly deplete the cytoprotective GSH pool after CNS 

injury, so that the potentially reversible damage becomes permanent (Juurlink and Paterson, 

1998). 

 

(1)  2O2
• - + 2H+ ⇒ H2O2    + O2 

 

(2) H2O2 + Cl-   +    H+     ⇒ HOCl     + H2O 

 

(3a) myeloperoxidase (Fe3+ )   +    H2O2  !  myeloperoxidase-compound I 

 

(3b) myeloperoxidase-compound I   +  Cl- !  myeloperoxidase (Fe3+ )   + OH-  +   HOCl 

 

(4) HOCl     + R-NH2  ⇒ RNH-Cl + H2O 

 

FIGURE 1.1: Neutrophils, when activated, generate reactive oxygen species and 

hypochlorous acid. Hypochlorous acid causes tissue damage.   
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  Busse and colleagues have demonstrated that flavonoids inhibit the release of 

reactive oxygen species by human neutrophils (Busse et al., 1984). 

While measurement of protein carbonyl content offers an indirect method to assess 

the extent of cellular protein reaction with HOCl (Chapman et al., 2000), most commonly the 

capacity of myeloperoxidase to form hypochlorous acid from hydrogen peroxide and 

chloride ions is used. Myeloperoxidase activity has become an accepted marker of neutrophil 

activity. Carlson and colleagues have assayed myeloperoxidase activity in the spinal cord of 

rats between 4 and 48 hr after acute spinal cord contusion injury (Carlson et al., 1998). They 

found that MPO activity peaked at 24 hr after injury, with the center of activity found 

between 4 mm rostral and caudal to the site of injury. Quercetin has been shown in vitro to 

decrease myeloperoxidase activity in human neutrophils in a dose-dependent manner, 

thereby intercepting and limiting the development of pathology just described (Pincemail et 

al., 1988).  

In order to understand the complexity of post-traumatic inflammatory processes, we 

should distinguish between two phases of inflammatory response, an �early� and a �late� 

phase (Bethea, 2000). The �early� phase begins within hours of the injury, includes elevation 

of TNF-α and monocyte chemoattractant protein (MCP-1) and peaks approximately 1 day 

later (coinciding with the peak of neutrophil presence at the injury site). The �late� 

inflammatory response is characterized by the infiltration of macrophages into the site of 

injury, which peaks between days two and three post injury (Bethea, 2000). The presence of 

macrophages in the spinal cord can persist for several weeks, even months after the injury. 

Macrophages secrete growth factors, proteolytic enzymes and cytokines essential for the 

remodeling process after SCI. T-lymphocytes are essential for activation of macrophages, 
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and in fact it has been shown in a rat model that they enter the injured tissue as early as 2-3 

days after injury, with a peak presence at 1 week after injury (McTigue, 2000). The presence 

of T-cells in the spinal cord tissue persists for several weeks after the injury (Popovich et al., 

1997). It has been shown that the influx of neutrophils and T-cells and the presence of 

phagocytic cells corresponds temporally with the expression of chemokines, a family of pro-

inflammatory cytokines. In the same animal model (McTigue at al. 1998), it was suggested 

that those cells may be responding to chemoattractive molecules produced in the injured 

spinal cord tissue (Bethea, 2000; McTigue, 2000). Post-traumatic inflammatory processes 

are characterized by influx of neutrophils and macrophages, and by the activation of 

residential phagocytic cells. Proteases and oxidant substances are released into the 

surrounding tissue (Bank et al., 1999). Oxidative stress leads to lipid membrane 

peroxidation, resulting in loss of polyunsaturated fatty acids from membrane phospholipids. 

The loss of polar species from the plasma membranes contributes to increased membrane 

rigidity. Both the changes in membrane permeability and fluidity lead to decreased integrity 

of the plasma membranes (Farooqui and Horrocks, 1998). From this point, cells may either 

recover or die. 

A multitude of cytokines is involved in the initiation, perpetuation, and regulation of 

inflammatory processes. Cytokines are found in the spinal cord parenchyma after injury as 

well as in CSF and blood.  They may be associated with either pro-inflammatory action like 

tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6) or anti-

inflammatory action, such as interleukin-4 (IL-4), interleukin-10 (IL-10) or interleukin-13 

(IL-13) (Bethea, 2000). TNF-α, as an example of a pro-inflammatory cytokine, was found to 

be elevated as early as 1 hr after injury and persisted for up to 7 days in a study by Bethea 
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and colleagues (2000). Pan and his colleagues (1999) demonstrated an increase of TNF-α at 

the injury site within minutes after injury, peaking and plateauing between 1 and 5 days. 

Potential sources for TNF-α are neutrophils, macrophages and activated microglia (Bethea, 

2000). While the role of TNF-α in the inflammatory processes associated with CNS injury 

has been controversial with experimental results derived from tissue cultures, in vivo studies 

demonstrate that it is a potent mediator of microgliosis, astrogliosis and cell death. A study 

by Lavine and colleagues (1998) demonstrated that neurological outcome was improved after 

ischemia-reperfusion injury in a rat model with administration of a neutralizing antibody to 

TNF-α. Many pathomechanisms observed where inflammatory processes are active can be 

related to oxidative stress in damaged tissue structures. 

It has been shown that in many cases of spinal cord injury the volume of secondary 

damage by far exceeds that caused by the primary injury. Therefore, we believe that the 

prevention of secondary injury is the most important concept in the treatment of patients with 

spinal cord injury. The most hotly debated therapeutic agent in this regard is the drug 

methylprednisolone.  

When methylprednisolone was introduced in the late 1980's as standard 

pharmacologic treatment for the early phase after spinal cord injury, high hopes by both 

patients and physicians were set on this drug. Studies in cats had shown tissue preservation 

and significantly improved recovery with administration of methylprednisolone after acute 

traumatic spinal cord injury (Means et al., 1981). The neuroprotective effect of the compound 

was ascribed to attenuation of lipid peroxide formation and, as a consequence, increased Na+-

K+-ATPase activity, hyperpolarization of motor neuron resting membrane potentials and 

accelerated impulse conduction along the myelinated portion of the motor axon (Braughler 
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and Hall, 1982). Ten years later, enthusiasm has cooled considerably. Voices from both basic 

scientists and clinicians have raised concerns that adverse effects of high-dose administration 

of the corticosteroid might considerably outweigh the potential benefits to patients 

(Nesathurai, 1998; Qian et al., 2000; del Rosario Molano et al., 2002). Three major clinical 

multicenter studies have been performed over the last decade, to investigate the clinical 

effects of high-dose methylprednisolone administration after acute traumatic spinal cord 

injury. NASCIS I focused on recovery of motor function, light touch and sensation after 

administration of methylprednisolone. No significant benefit from the drug was detected, but 

this was believed to be due the fact that the dose delivered had simply been too small to be 

effective. This problem was meant to be amended with NASCIS II, which was conducted as 

randomized, placebo-controlled study and included 487 patients. Treatment with 

methylprednisolone for 24 hr, started within 12 hr after injury, was compared to treatment 

with naloxone or placebo. Again, no significant benefit was seen with treatment, but from a 

post-hoc analysis it appeared that a small gain in the motor and sensory scores could be 

attributed to treatment with methylprednisolone. Other studies, trying to replicate those 

results and verify the claims, came up with controversial results. While, in one study, 

improved muscle function was seen with methylprednisolone treatment when tested at 6 

months after injury (Otani et al., 1996), no improvement was found in another study 

(Petitjean et al., 1998). NASCIS III, with a trial protocol almost identical to NASCIS II 

(although lacking a placebo group), included 499 patients and tested the hypothesis that 

outcome might be improved with an extended treatment period. This hypothesis could not be 

upheld. A modest, statistically not significant improvement on the Functional Independence 

Measurement scale (FIM) at 48 hr after injury (p = 0.08) was outweighed by increased 
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prevalence of both sepsis and pneumonia after 48 hr treatment. While some authors feel that 

NASCIS II and III present Class I and Class II evidence to give general support for 

administration of methylprednisolone to patients after acute traumatic SCI (Bracken et al., 

1997; Bracken and Holford, 2002), others feel that both studies present at best weak evidence 

for the therapeutic efficacy of methylprednisolone after acute traumatic SCI (Benzel, 2002; 

Rabchevsky, 2002; Coleman, 2000; Hurlbert, 2000; Short et al., 2000, Nesathurai, 1998). 

Some authors have warned that, if given outside the very limited therapeutic window of 3 � 8 

hr after injury, the corticosteroid has outright deleterious effects (del Rosario Molano et al, 

2002; Fehlings, 2001; Hurlbert, 2001). Advocates of methylprednisolone therapy try to 

justify their recommendations by pointing to the fact that, while there is no improvement of 

functionality as measured by FIM, neurological improvements might have been registered if 

the more sensitive ASIA (American Spinal Injury Association) scale would have been used. 

They hold that any improvement, even if not of any functional consequence, satisfies the 

requirement of cost-effectiveness (Bracken and Holford, 2002). The results of recent animal 

experiments causes us to consider whether methylprednisolone is becoming another case in 

which the translation of research from bench to bedside failed because circumstances critical 

for successful action of the compound were overlooked. Haghighi and colleagues (2000) 

published their results of an animal study (rat) in which methylprednisolone, administered 

after 45 g compression injury of 2 minutes duration at the mid-thoracic spinal cord, had no 

impact on neurological function. On a microscopic level, lesion and cavity volumes were 

even significantly larger in the spinal cords of animals treated with methylprednisolone, as 

compared to saline-treated controls. Published by the team of Dr. Wise Young, who initially 

promoted the widespread use of methylprednisolone in the therapy of spinal cord injury, was 
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a study clearly stating that in an animal model (adult rat) the therapeutic window of 

methylprednisolone for reduction of lesion volume is less than 30 minutes (Yoon, 1999). We 

might expect that pathology develops considerably quicker in a small animal like a rat, 

compared to primates. But, since it is difficult to make a valid estimate with regard to the 

correlation of time spans between rats and human patients, a very short therapeutic window 

of a drug can be expected to cause problems in human clinical trials. Within the last five 

years, several reviews and meta-analyses of studies using methylprednisolone in the setting 

of traumatic spinal cord injury have been published worldwide. The tenor of those 

publications is clearly a warning that, while very little benefit for the patient can be expected, 

the risk of serious adverse effects is not negligible, and therefore this treatment option is not 

recommended (Pointillard et al., 2000; Short et al., 2000; Matsumoto et al., 2001; Short, 

2001; Citerio et al. 2002). Considering the contradictory interpretations of the results from 

the major clinical trials involving methylprednisolone, an expert panel has agreed that, 

�given the devastating impact of spinal cord injury and the modest efficacy of 

methylprednisolone, clinical trials of other therapeutic interventions are urgently required� 

(Fehlings, 2001). However, based on current analysis, the recommendation given by the 

Committee of the Candian Spine Society and the Canadian Neurosurgical Society was 

adopted, which declared that the 24 hr treatment with methylprednisolone, started within 8 hr 

after spinal cord trauma is no longer considered standard treatment, but rather a treatment 

option left to the discretion of the treating physician (Hugenholtz et al., 2002; Hugenholtz, 

2003). Although the high hopes set for the drug were not fulfilled, the clinical trials and the 

ensuing debate helped to abandon the century-old dogma that spinal cord injury was 

permanent and not accessible to therapy. 
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1.3.2 The concept of oxidative stress 

In his book �La Pression Baraometrique�, published in 1878, Paul Bert gave what is 

believed to be the earliest comprehensive overview about the subject of oxygen toxicity in 

biological systems (Haugaard, 1968). Bert pointed out that the nervous system is especially 

vulnerable in this respect. Vital to the understanding of Bert�s observations was the concept 

of oxygen activation. In 1929, Mulliken published results from one of his spectral analysis 

experiments, concluding that oxygen could assume an excited state through a change in its 

electronic configuration. Mulliken�s conclusion was later confirmed by the experiments of 

Herzberg (1934 and 1950) and Mallet (1972). As explained by Michaelis (1949), activation 

of oxygen leads to formation of singlet oxygen (1O2) and a number of free radicals. Free 

radical formation involves a reductive process, by which the oxygen gains electrons. 

Reduced oxygen reacts with other molecules. Reactive oxygen-based molecules have been 

termed �reactive oxygen species� and include superoxide anions (O2
• -) and hydroxyl radicals 

(HO•), hydrogen peroxide (H2O2), peroxy radicals (RO2
•) and organic hydroperoxides 

(ROOH). The production of reactive oxygen species can be caused by a variety of processes, 

including trauma, infection, electrochemical or photo effects. In the setting of CNS tissue 

injury, the most likely routes of oxygen activation are enzymatic processes and singlet 

oxygen production from hydrogen peroxide. Singlet oxygen and reactive oxygen species 

have been found to influence a number of biological processes, including enzymatic 

reactions in the mitochondrial respiratory chain (Chance et al., 1979; Nohl and Hegner, 1978) 

and phagocytosis (Klebanoff, 1980; Badwey et al., 1980; Allen et al. 1974).  

Particularly important during lipid peroxidation is the formation of hydroperoxides 

from peroxy radicals. The type of reaction is similar to that of the Fenton reaction, but 
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organic hydroperoxides are less reactive than hydrogen peroxide. Hydroperoxides can be 

scavenged by the anti-oxidant glutathione peroxidase, but not with catalase. Their presence 

can be detected spectroscopically at 234 nm. The presence of ferrous and ferric iron is a key 

component of these reactions: 

 

  ROOH + Fe2+ ! RO· + OH- + Fe3+     

 

It is assumed that the Fenton reaction, driven by hydrogen peroxide and ferrous iron 

ions, is a key process in the bactericidal action of neutrophils and consequent phagocytosis 

(Babior, 1982). Hydroxyl radicals in injured tissue are likely to arise by way of the Fenton 

reaction (metal ion with hydrogen peroxide) (Halliwell and Gutteridge, 1985; Walling, 

1975):  

 

Fe2+ + H2O2 !  Fe3+ + HO•  + OH-  

 

The hydroxyl (OH·) radical is one of the most reactive free radicals known. It is more 

reactive than either singlet oxygen (Wilkinson and Brummer, 1981), superoxide anion 

(Bielski et al., 1985) or peroxy radicals (Howard, 1984). Hydroxyl ions in biological systems 

react by addition to unsaturated sites or by abstraction of hydrogen. Most of this knowledge 

is derived from radiation biology studies (Singh and Singh, 1982).   

 

The phenomenon of lipid peroxidation had been first observed in the food industry, 

with descriptions from as early as the 19th century, when industrial research led to the 

discovery that tocopherol was a potent anti-oxidant for fat-containing food (Miquel, 1989). 
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Tocopherol was later found to also act as anti-oxidant in the lipid containing membranes of 

mammalian cells (Evans and Bishop, 1922), an effect which was complemented by water-

soluble anti-oxidants such as vitamin C (Szent-Gyorgy, 1928), uric acid (Ames et al. 1981) 

and glutathione (Viña et al., 1989). Tappel and co-workers showed that in living cells, 

protein-bound iron plays a stimulating role in lipoperoxide genesis, a process which could be 

inhibited by vitamin E (Tappel et al., 1961).  Apart from its protein-bound form, iron ions are 

found in lipid-protein membranes and, in the ferric (Fe3+) state, in ferritin. While the iron 

bound in ferritin is in a stable state at normal physiologic pH, acidification of the cellular 

environment can promote iron reduction, setting off a cycle of redox reactions. Further 

consideration needs to be given to the fact that activation of the enzyme γ-glutamyl 

transpeptidase (GGT) results in GSH-dependent iron-reduction (Paolicchi et al., 2002). 

Apparently, GGT catalyzes the first step in the degradation of extracellular GSH by 

hydrolyzing the γ-glutamyl bond between glutamate and cysteine (Griffith and Meister, 

1979). Contrary to expectations from many experiments, in which the anti-oxidant role of 

glutathione was demonstrated, glutathione might have a pro-oxidant role in the iron-driven 

redox cycle (Paolicchi et al., 1999).  

Oxidation of fatty acids due to free radicals, occurs at the biological membranes even 

in healthy organisms, which results in membrane alterations such as changes in fluidity and 

permeability, and in enzyme inactivation when the oxidant load increases (Miquel, 1989). 

Mitochondrial membranes might be especially vulnerable to those processes, since about 

90% of the O2 used by mammals is processed in the respiratory chain of the inner 

mitochondrial membrane. Lehninger and Beck (1967) proposed that peroxidative processes 

are involved in swelling and lysis of mitochondria following injury or during aging 
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processes, the debris of which is visible as lipofuscin (aging pigment). They further proposed 

that those peroxidative processes can be inhibited by catalase, an enzyme contained in 

peroxisomes. Other proposed mechanisms of cellular anti-oxidant defense include those 

enzymes that remove the radical superoxide. These include glutathione peroxidase which, in 

the presence of selenium, removes H2O2 while oxidizing glutathione (Flohe et al., 1973), and 

the above mentioned superoxide dismutases (SOD, equations 12 and 13). While oxidative 

and anti-oxidative processes apparently exist in a homeostatic system in the healthy 

organism, except for subtle processes of natural aging, the overthrowing of the relative 

homeostasis by a fundamentally disturbing process such as tissue injury can exceed the anti-

oxidant capacity of the cells and result in permanent loss of function and structure.  
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1.4 The chronic phase of traumatic spinal cord injury 

From the morphological aspect, a number of repair processes at the site of injury and 

in spinal cord segments rostral and caudal to the injury site have been observed during both 

acute and chronic phases. In many cases, it is difficult to draw an exact line between acute 

and chronic phase of spinal cord injury. In his book �The Cerebral Control of Movement�, 

Derek Denny-Brown gave a good description of the clinical picture seen and of its 

morphological basis, and of the transition between the acute and chronic phases. �In the acute 

spinal animal that is the usual class-room model the only reflex responses other than flexion 

are the tendon reflex and �crossed extension�. Even the most nocious stimulation of skin 

usually results only in a weak, easily fatigued flexor response, and only in that limb. The 

emergence of flexion of the limb in response to a nociceptive stimulus to the skin is one of 

the earliest signs of recovery from spinal shock. The paraplegic limbs then become habitually 

drawn up in flexed posture (�paraplegia-in-flexion�). With further recovery the extensors may 

develop a strong stretch response which then tends to show rapid rhythmical tremor or 

�clonus�. Ischemic damage to the gray matter of the spinal cord, which tends to damage the 

intermediary and interstitial nerve cells more than those at the periphery of gray matter, and 

to spare the white matter, leads to selective heightening of the stretch reflex with 

corresponding impairment of the flexion reflex. Intense spasticity of the extended limbs is 

then the result of unopposed extensor reflexes.� (Denny-Brown, 1966).  

Wound healing processes after tissue injury, regardless of the site of injury, typically 

fall into three categories that are interdependent and overlapping: inflammation, tissue 

formation and tissue remodeling (Clark, 1996). The product of wound repair is usually a 

fibroproliferative rather than regenerative event, with the result of those repair processes 
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being a �patch� rather than restoration of structurally and functionally intact tissue (Clark, 

1996).  

One of the characteristics after spinal cord injury, once the edema has subsided, is the 

rapid spreading of rostro-caudal cell necrosis, which results in the formation of cystic cavities 

filled with macrophages and lined by activated astrocytes (Balentine, 1978; Noble and 

Wrathall, 1985; Bresnahan et al., 1991; Hausmann, 2003). This secondary expansion of the 

lesion is associated with activation of microglia and influx of peripheral immune cells into 

the lesion (Stoll et al., 2002). It has been suggested from the results of animal experiments, 

that there are two types of cavities developing after spinal cord injury (Lagord et al., 2002). 

In the first type, astrocytes only partially line the walls of the cavities, and the lumen is filled 

with extracellular matrix proteins and reactive astrocyte processes. In the second type, the 

walls of the cavity are lined by glia limitans and the lumen is empty. Both types of cavity 

formation have also been observed in the spinal cords of human patients after injury. 

Although cavity formation is most commonly observed at the center of the injury site, cyst 

and syrinx formation can occasionally be found several segments distant from the original 

site of injury. Extension of syrinx size has been observed several months to years after the 

injury, even after phases of apparent stability (Hughes, 1988). This implies that degenerative 

processes must be active long after the primary injury. As a matter of fact, it has been 

suggested that in human patients cell death by apoptosis continues as late as several years 

after spinal cord trauma (Johnson et al, 1995). This provides a valid justification to 

investigate whether compounds with known anti-apoptotic abilities can prevent this late post-

traumatic damage.  
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Type I cavities, filled with collagenous scar tissue, are frequently found in spinal 

cords of patients who have survived several years after spinal cord trauma (Hughes, 1988). It 

has been observed that severed nerve endings show indications of sprouting, yet those new 

nerve endings do not penetrate the neuroglial scar (Hughes, 1984). Although most studies 

describing regeneration after spinal cord injury have been performed in transection models, 

sprouting has also been described after spinal cord contusion (Holmes et al., 1998). The 

description of sprouting by Liu and Chambers was one of the earlier descriptions of 

plasticity after spinal cord injury in a rat model (Liu and Chambers, 1958).  (Goldberger et 

al., 1993). Sprouting might be a dual sword in the overall complex of circuit re-arrangements 

after spinal cord injury. On the one hand, sprouting apparently contributes to recovery of 

excitability of neurons denervated by spinal cord injury (Krassiukov and Weaver, 1996; Li 

et al., 1996; Saruhashi et al., 1996; Beattie et al., 1993). On the other hand, aberrant 

sprouting might cause adverse effects such as spasticity and pain, owing to innervation of 

the wrong target structures (Lindsey et al., 1998; Christensen and Hulsebosch, 1997). In 

order to attempt functionally successful repair of spinal cord injury, therefore, focus needs to 

be on two points: 1) Modulation of scar formation in a way that would allow regenerative 

nerve sprouts to pass through the zone of tissue repair, and 2) target-appropriate guidance of 

regenerating nerve fibers. 
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In 1928, Edgar Douglas Adrian in his book �The Basis of Sensation� described the 

nerve fiber as the conducting unit of the nervous system, consisting of a long thread of 

protoplasma called the axis cylinder, attached at one end to the nerve cell and usually 

enclosed in a tubular medullary sheath of a complex fatty substance (Adrian, 1928). Adrian 

was one of the first to perform conduction studies on healthy nerves (Lucas and Adrian, 

1917). Developments in electron microscopy and electrophysiology allowed increasingly 

detailed studies of anatomical and physiological properties of the nerve cell. Over the years, 

the pathologic phenomena of spinal cord injury and possible strategies for recovery of 

function have been studied from a variety of aspects. Those strategies focus on prevention of 

secondary damage as well as on the possibilities of repair. 

 

2.1 Preventing secondary injury 

 Unless complete transection of the spinal cord occurs, usually a rim of spared 

white matter can be found even at the level of injury (Kamencic et al. 2001; Beattie et al., 

1997; Basso et al., 1996; Noble and Wrathall, 1985). The results of several studies in models 

of thoracic spinal cord injury have suggested that the amount of spared tissue highly 

correlates with recovery of motor function (Kamencic et al., 2001; Basso et al., 1996; 

Behrmann et al., 1992, Bresnahan et al., 1987). Therefore, preventing secondary damage is 

synonymous with increasing the potential for better functional recovery. Ischemia and 

anoxia, inflammatory responses with influx of neutrophils and macrophages, the generation 

of free radicals and other oxidant species contribute to increase in the volume of post-

traumatic damage (Steeves and Tetzlaff, 2000). Ischemia and anoxia result quickly in energy 

depletion, which is reflected in failure of the Na+-K+-ATPase and consequent accumulation 
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of axoplasmic sodium content (Kurihara, 1985; Stys, 1998). At the same time, the number of 

oxidant species at the site of injury increases significantly (Kurihara, 1985). Therefore, 

several approaches are conceivable to limit the extent of secondary cell death by apoptosis.  

1) Decrease of post-traumatic ischemia and increase of available substrate for energy 

production. 2) Administration of compounds that decrease apoptotic cell death and 3) 

Administration of antioxidant and anti-inflammatory compounds.  

The benefit of quercetin administration to tissue damaged by ischemia-reperfusion 

has been studied in animal models of injury to the kidney. For the renal ischemia studies, 

adult rats were either pre-treated with 50 mg/kg quercetin i.p. 60 minutes prior to ischemia 

of 45 minutes duration (Kahraman et al., 2003), or quercetin had been administered 

following 30 minutes of ischemia in the same dose (Inal et al., 2002). Quercetin 

administration was shown to significantly attenuate increase of enzymes and markers typical 

for post-ischemic damage, such as myeloperoxidase (MPO) levels, thiobarbituric acid 

reactive substances (TBARS), TNF-alpha levels (Kahraman et al., 2003). On the other hand, 

administration of quercetin in the setting of renal ischemia resulted in significantly less 

decrease in the activity levels of cytoprotective enzymes such as superoxide dismutase 

(SOD), catalase and glutathione peroxidase than in untreated animals (Inal et al., 2002).  No 

statistically significant differences between quercetin-treated animals and animals not 

exposed to ischemic injury could be detected. GSH levels were found to be significantly 

increased with quercetin administration in one study (Kahraman et al., 2003), while no such 

significance was found in the other study (Inal et al., 2002). The authors of both studies 

agree that quercetin reduces oxidative injury caused by renal ischemia. In a model of hepatic 

ischemia-reperfusion injury in the adult rat, 0.13 mmol/kg quercetin was administered orally 
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50 minutes prior to injury. Like in the renal ischemia model, protective enzymes such as 

SOD and glutathione peroxidase were significantly increased with quercetin administration, 

while the content of reactive oxygen species was significantly reduced (Su et al., 2003). 

DNA fragmentation after ischemic injury, investigated in the same study, was not found to 

be significantly altered by quercetin administration. The agreement between the results from 

these three studies, performed in different organs and testing pre- and post injury treatment, 

suggest that quercetin might be equally protective in the setting of CNS injury. Acute spinal 

cord injury, as produced with models of spinal cord compression injury, contains a strong 

ischemic component during the clip compression phase and with ensuing edema. This seems 

to be a good model to test quercetin as a neuroprotectant in this setting. A good example of 

the neuroprotective benefit of quercetin is found in a study by Popovich and colleagues 

(1999). They demonstrated in an animal model of spinal cord injury that, when 

hematogenous macrophages were depleted between one and six days after injury, decreased 

presence of macrophages at the site of injury correlated with improved recovery of motor 

function. Histological analysis showed significant preservation of myelinated axons and 

decreased extent of cavitation, which is equivalent with reduction of post-traumatic cell 

death. Contrary to attempts to reduce secondary damage by administration of specific 

channel blockers, the focus on inactivation of peripheral macrophages appears to be a more 

causative approach.   

Exact knowledge of the time course of inflammatory responses after spinal cord 

injury is extremely important in the design of therapeutic strategies. For example, if a single 

dose of IL-10, a cytokine produced by T-helper cells, macrophages, astrocytes and microglia, 

which is believed to reduce TNF-α production, was given as early as 30 minutes after spinal 
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cord contusion injury in rats, anatomical and behavioral outcomes were significantly 

improved 2 months after injury (Bethea et al., 1999). In the same model, if an additional dose 

of IL-10 was given 3 days after injury, the protective effect was completely lost. The 

conclusion from this experiment might be that inflammatory response early after injury is 

deleterious, while inflammatory response at a later stage is actually protective, being part of 

the reparative process.  

The presence of T-cells is not only essential for the activation of macrophages but 

also for the mounting of an immune response. A very interesting hypothesis has been based 

on the observations that there is significant influx of T-cells into the site of spinal cord injury 

(Sroga et al., 2003) and that the time course of propagated delayed demyelination is very 

reminiscent of the course of classical auto-immune diseases. The CNS self-antigen myelin 

basic protein has been made the focus of a number of experiments. It has been shown that 

injection with syngeneic T cells specific to myelin basic protein resulted in increased 

accumulation of T cells at the injury site, which was accompanied by decrease of 

histologically detectable secondary injury and improved electrophysiological parameters 

(Hirschberg et al., 1998). It appears that modulation of the immune system after spinal cord 

trauma could be a promising approach to reduction of secondary injury (Schwartz, 2000). 
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2.2      Bridging the gap � repair of manifest damage 

Several promising strategies are currently being explored to repair damage after CNS 

injury. Those strategies include manipulation of the tissue environment, to make it more 

conductive to endogenous repair processes, transplantation of autologous or heterologous 

tissues and implantation of artificial endoprotheses to create guidance channels for 

regeneration of spinal cord structures. 

Just as developing neurons depend on target-derived trophic support, mature CNS 

neurons depend on neurotrophic support for continuous survival and proper function 

(Bregman, 2000). In the setting of spinal cord injury, neurotrophic communication between 

central structures and structures at and caudal to the site of injury might be interrupted. To 

assure survival and possibly recovery of function, neurotrophic factors can be administered 

in isolated form or via tissue transplants that genuinely produce them. It has been shown that 

administration of neurotrophic factors facilitated regrowth of neurons after spinal cord injury 

into artificial guidance channels or Schwann cell grafts (Xu et al, 1995a and 1995b). It was 

hoped that transplantation of fetal spinal cord tissue grafts would serve requirements for 

neurotrophic factor delivery and for creation of a tissue environment permissive for repair at 

the same time. However, when fetal spinal cord tissue was implanted in the transection site 

of newborn rats, it was shown that 1) the transplanted tissue can survive in the host 

environment, 2) the neurons of the transplanted cells are smaller than those of the host tissue 

and 3) the transplants only appose themselves to the host spinal cord tissue, but do not cross 

the cellular barrier into the host tissue (Diener and Bregman, 1998). 

Since proper, healthy function in the nervous system in many cases depends on the 

existence of an intact myelin sheath, loss of the myelin sheath due to injury or degenerative 
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disease results in loss of function.  Although some remyelination has been shown to occur 

spontaneously after SCI (Gledhill and McDonald, 1977; Gledhill et al., 1973), those 

remyelinated structures are lacking the quality of healthy, undamaged structures, both 

morphologically and functionally. For example, remyelinated internodes are shorter and 

thinner than those in healthy subjects (Gledhill and McDonald, 1977; Harrison and 

McDonald, 1977). Hence, the idea of transplanting cells which might be able to support 

more effectively the repair of the myelin sheaths. The most promising cells in this context 

appear to be olfactory ensheathing cells. Olfactory ensheathing cells and their accompanying 

ensheathing glia are apparently able to traverse both peripheral and central nervous systems, 

where they contribute to formation of glia limitans and axon remyelination (Doucette, 1984 

and 1991; Ramón-Cueto and Valverde, 1995; Franklin et al., 1996; Santos-Benito and 

Ramon-Cueto, 2003). Li and colleagues were able to demonstrate recovery of function after 

cervical spinal cord injury in an animal model after transplantation of olfactory ensheathing 

cells from adult rats (Li et al., 2003).  

Appealing for potential therapeutic use in human patients are methods which do not 

require surgical intervention, thereby significantly reducing the risk of additional iatrogenic 

injury. In this regard, Akiyama and colleagues demonstrated, in an animal model of 

contusive spinal cord injury, that intravenous administration of bone marrow cells can 

contribute to remyelination at the site of injury, with characteristics of both oligodendrocyte 

and Schwann cell myelination (Akiyama et al., 2002). 

In addition to degeneration of the myelin sheath, characteristic atrophic degeneration 

of neurons is found, as is formation of a glial scar and deposition of extracellular matrix 

molecules.  The release of cytokines and chemokines at the site of injury may render the 
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tissue environment hostile to repair processes and glial scar formation ensues (Logan et al., 

1994; Fitch and Silver, 1997; Steeves and Tetzlaff, 2000). Since there is evidence for both 

growth-inhibitory and growth-permissive functions of extracellular matrix molecules 

(McTigue et al., 2000), manipulation of scar formation might be a promising therapeutic 

approach. Studies by Tetzlaff and colleagues on neurons in the rubrospinal tract have shown 

that atrophy of neurons can be prevented or even reversed by administration of brain-derived 

neurotrophic factor (BDNF), which makes even delayed onset of treatment a distinct 

possibility (Tetzlaff et al, 1994; Kobayashi et al., 1997).  

The most likely solution to functional repair after spinal cord injury is a combination 

of several approaches. A good example supporting this hypothesis is the work of Ianotti and 

colleagues, who reported on a series of experiments in which the implantation of Matrigel 

guidance channels at the injury site was tested against additional 1) implantation of Schwann 

cells, 2) administration of glial cell line-derived neurotrophic factor (GDNF) and 3) a 

combination of all three modalities (Ianotti et al., 2003). They were able to demonstrate that 

Matrigel guidance channels alone resulted in only limited axonal growth. With addition of 

either Schwann cells or GDNF, consistent axonal ingrowth into the guidance channels, 

containing both myelinated and unmyelinated axons, was observed. The best results in 

matters of regrowth, myelination and reduction of reactive gliosis were seen with addition of 

both Schwann cells and GDNF to the guidance channels simultaneously.  
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In any experiment performed to study mechanisms pertaining to human pathology the 

choice of an appropriate model is crucial to the validity of the study. Although some aspects 

of the model might be more important than others, careful consideration must be given to the 

known variables in the model and to the human pathology modeled. The choice of tests needs 

to be sensibly weighed against time and space restraints in the model, taking into account 

possible differences in pathways between species and the limitations of testing functional 

outcomes in an animal model. Finally, the question should be asked whether an improvement 

found in an animal model would correspond to functionally valuable improvement in human 

patients. This is especially true if the treatment requires a high level of effort and compliance 

on the part of the patient. Failure to consider those aspects will lead to a waste of money, 

time and effort in both bench research and clinical trials. It also will, quite unnecessarily, 

disappoint patients and their families, who have put hope and trust in physicians for carrying 

out the clinical trial.   

Acute traumatic spinal cord injury is less variable than traumatic brain injury in terms 

of pathology, loss and recovery of function, sequelae and extent of recovery.  This needs to 

be taken into consideration when planning clinical trials or laboratory experiments. Although 

the major advantage of tissue culture experiments or isolated segment studies is an almost 

universal control over the experimental milieu by the researcher, mechanisms in mammalian 

organisms are much more complex. Insights about specific pathways may be gained in vitro, 

but information gained from those experiments can not be directly extrapolated to higher 

organisms. In order to test any specific compound�s efficacy to improve recovery of motor 

function after acute traumatic SCI, it is advisable to use an animal model in which important 

components, such as the severity of the primary impact and treatment conditions can be 
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controlled to a certain extent. Such an animal model would eliminate genetic diversity within 

the strain of the tested species as the major uncontrollable variable. Also, the genetic make-

up of the chosen animal species should differ as little as possible from that of humans. This 

would minimize the chance that genetic differences might cause a disparity in outcome 

between animal model and human patients. Hence, the animal model chosen should be a 

mammalian model, where such highly complex mechanisms as those seen in the recovery of 

motor function are concerned. While a genetic pool strikingly similar to that of humans 

would make the big apes ideal candidates for pre-clinical trials, the high numbers of subjects 

required in the early phases of animal experiments, the requirement for specialized facilities 

and financial restraints speak against their use. Rats, on the other hand, are readily available, 

affordable and easy to care for even in higher numbers. To make up for the greater genetic 

differences, pathways of action influenced by the compound tested should be chosen very 

carefully. If high concordance is found between the pathways influenced by the compound 

with pathways known in human pathology, there should be a high likelihood that the 

compound, when beneficial in the animal model, also would have beneficial effects in human 

patients. For instance, large volumes of secondary tissue loss and cavity-formation after SCI 

are seen in humans and rats, but not in mice (Kuhn and Wrathall, 1998; Sroga et al., 2003). 

Since the formation of post-traumatic cavities in the spinal cord will very likely influence 

functional performance, the lack of concordance between mice and humans gives reason 

enough to choose the more expensive rat model over a mouse model, where recovery of 

motor function is investigated. Finally, but not less importantly, the model should allow 

reproducibility of results between different researchers and between different research 

centers. 
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3.1 Small animal models of spinal cord injury 

Since animal models provide a unique opportunity to test therapeutic strategies in 

vivo, they are indispensable components on the way to clinical application. Over the last 

decades, various models of spinal cord injury have been developed for small animals, namely 

mice and rats. Clear distinction can be made between models in which the initial continuity 

of spinal cord elements is largely preserved, as in models of spinal cord contusion or 

compression, and those where continuity is lost, as in partial and complete transection 

models. Models of complete transection have the advantage of a greater level of uniformity, 

as compared to models of contusion and compression, where minor variations in the 

localization of the injury can cause significant variation in the degree of recovery. 

Transection makes it somewhat easier to evaluate the effectiveness of interventions with 

regards to both axonal regeneration and functional recovery (Kwon and Tetzlaff, 2001). A 

further peculiarity in the setting of transection injury is that, contrary to spinal cord injury 

caused by contusion or compression, only limited spread of rostro-caudal secondary injury 

has been observed (Dushart and Schwab, 1994). Spread of injury after transection is expected 

to occur by Wallerian degeneration (Beattie et al, 2002; Hausmann, 2003). A major 

difference between transection injury in the animal model and the transected human spinal 

cord is that the dura has to be opened in order to create the injury in the animal model. 

Consequently, when edema develops in this setting, the intradural pressure will probably 

never reach levels as high as in human contusion or compression injuries where the dura 

mater usually stays intact.  The use of partial transection models has at least one clear 

advantage over either complete transection, spinal cord compression or contusion models: 
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animals are much less compromised and much easier to care for. Partial transection models 

have the advantage in that they allow the researcher to selectively injure specific tracts of 

interest to his field of study, and to use the uninjured side of the same animal as control for 

his experiment. The major disadvantages with the use of partial transection models are that 1) 

exactness of transection is not easy to ensure, and 2) functional compensation from the 

uninjured, contralateral side might be mistaken for functional recovery on the side of injury. 

Injection of axonal tracers might be required to distinguish between axons that that have 

regenerated and those that have escaped injury in the first place (Kwon and Tetzlaff, 2001). 

In the clinical setting of acute traumatic spinal cord injury, however, a high percentage of 

patients do not present with complete transection of the spinal cord, but rather with a blunt 

injury containing elements of contusion, compression and possibly partial transection 

(Kakulas, 1984). Only secondary pathomechanisms may result, at a later point, in complete 

loss of functional spinal cord tissue across the whole cross-sectional surface of the cord at the 

site of injury (Fehlings and Tator, 1988; Tator and Rowed, 1979). Therefore, compression or 

contusion models of spinal cord injury more closely simulate the clinical situation seen in the 

majority of cases. A major difference in the pathology of blunt spinal cord injury, as opposed 

to transection, is that even with severe injuries, a small peripheral rim of spared axons 

usually remains (Bresnahan et al., 1987; Basso et al., 1996; Kamencic et al., 2001). This 

observation made in animal models of spinal cord injury is paralleled by autopsy findings in 

human patients with neurologically complete spinal cord injury (Hayes and Kakulas, 1997).  

It has been suggested that those spared axons might be a good target for therapeutic 

intervention after SCI (Beattie and Bresnahan, 2000; Kamencic et al., 2001).  
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In 1911, Allen published a historic paper, reporting results from experiments performed with 

a weight drop model in dogs. Although others had previously performed research on the 

mechanisms of spinal cord injury in animals, Allen is believed to have been the first to 

standardize the conditions of the injury (Fehlings and Tator, 1988). Various models for the 

study of standardized blunt spinal cord trauma have been developed during the 20th century. 

Presently, the most commonly used animal models of non-transection spinal cord injury are 

either those of a contusion approach, such as the mechanical NYU impactor or the 

electromechanical Ohio State University model. Alternatively, timed compression of the 

spinal cord is used to create the injury. In contusion injuries caused by the weight drop model 

or electromechanical devices, the site of injury is characterized by the development of a 

central hemorrhagic necrosis, which spreads both radially and in rostro-caudal direction and 

later develops into cystic cavities with irregular margins (Bresnahan et al., 1976 and 1991; 

Guizar-Sahagun et al., 1994; Zhang et al., 1997).  The weight-drop models have a number of 

disadvantages, some of which are due to the method itself. It has been reported that weight 

drop models produce a considerable variability in clinical outcome and in the pathology at 

the site of injury (Khan et al., 1985; Khan and Griebel, 1983). Furthermore it was noticed 

that the weight drop models cause primarily posterior cord compression while, in the clinical 

situation of human spinal cord trauma, more often the circumferential type of spinal cord 

compression occurs. Spinal cord compression injury, on the other hand, has been 

successfully modeled by intraspinal extradural balloon compression (Tarlov, 1957) or by 

temporary closure of an aneurysm clip around the exposed spinal cord, as in the model 

developed by Rivlin and Tator (1978). 
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The decision for either type of injury, transection vs. non-transection model, will be 

guided by the hypothesis to be tested. However, the decision between several available 

models representing a similar type of injury might rather reflect the school of thought 

regarding the mechanism of spinal cord injury to which the researcher belongs. Another 

interesting point is the choice between wild-type and genetically modified animals as test 

subjects. Different small animal models with knock-in or knock-out genes have been 

developed to study isolated pathways and pathology, the simulation of which would have 

been impossible in wild type animals. We believe, however, that testing of potentially 

therapeutic compounds should be done in wild type animals, which can be assumed to 

represent most closely the situation of the average human patient.  
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3.2 The Rivlin / Tator model 

The underlying mechanism most frequently seen in human patients with spinal cord 

injury is acute compression of the spinal cord by bone following fracture-dislocation or burst 

fracture of vertebrae (Tator, 1983). Therefore, we chose to use an animal model of acute 

spinal cord compression injury for studies of functional recovery after acute traumatic SCI. 

  In 1978, Rivlin and Tator published a paper in which they described their animal 

model for standardized acute traumatic spinal cord compression injury (Rivlin and Tator, 

1978). In this model, the spinal cord of the animal is exposed by laminectomy. Staying 

extradurally, the blades of an open Kerr-Lougheed aneurysm clip are carefully passed around 

the exposed spinal cord. At this point, the blades are released quickly to produce acute spinal 

cord compression injury. The severity of the injury can be varied intentionally through 

changes in two variables. The closing force between the blades of the clip can be calibrated 

fairly exactly, by applying springs of different strengths (Dolan and Tator, 1979). Secondly, 

variation of the duration of clip-closure around the spinal cord will produce injuries at 

different levels of severity (Dolan et al., 1980). This model is simple and reproducible in 

small rodents, and it allows the researcher to vary the severity of the injury produced (Dolan 

et al, 1980). The injuries generated with the clip compression model were found to be much 

more consistent with respect to clinical recovery than injuries produced by the weight drop 

method (Khan and Griebel, 1983).   

Contrary to many other models of acute spinal cord injury, animals injured with the 

clip compression model are completely paraplegic after clip application. Both hind limbs are 

flaccid, and no withdrawal response is elicited by pinching the hind paws. There is no 



 50

spontaneous micturition, and bladders need to be manually expressed three times daily until 

bladder function is recovered. The latter can be expected between two and three weeks after 

injury, although some animals do not recover spontaneous bladder function at all. In some 

studies, recovery of urinary tract function has actually been used as measure for functional 

recovery after spinal cord injury (Pikov et al., 1998; Chancellor et al., 1994). 

 

3.2.1 Clinical validity of the model 

Usually, the researcher has only limited influence on external restrictions to his 

research, such as limitations of time and space, available personnel and financial support. 

Yet, the one restraint the investigator will put on herself, the choice of experimental design, 

will make the greatest impact on the success of her work. Since the experimental design 

greatly determines the limitations of the planned experiments, it is of crucial importance for 

the clinical validity of results. 

 

3.2.1.1 Location of injury 

Statistically, 55% of all human traumatic spinal cord injuries are reported to occur at 

cervical level. The remaining 45% percent are almost evenly divided between thoracic (T1-

T11), thoracolumbar (T11-L2) and lumbosacral (L2-S5) locations (Sekhon and Fehlings, 

2001). Yet, one can not infer from those statistics that a clinically valid animal model should 

be preferably one of quadriplegia.  

The first point to consider is the feasibility of experiments using quadriplegic 

animals. An animal model of quadriplegia would create several significant problems with 

regard to animal care. According to our observations, caged paraplegic rodents compensate 
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surprisingly well for the loss of hind limb function. While the animals are significantly 

limited in their perambulation, basic daily functions such as feeding and grooming are not 

impaired. Quadriplegic animals would be largely immobilized and unable to perform either 

of the required daily functions. Not only would this significantly reduce the comfort level for 

the animals, but additional disease caused by lack of the usual body hygiene could be 

expected. 

The second aspect pertains to the anatomical and pathophysiological differences 

between injuries accidentally occurring or and those intentionally created at various spinal 

cord levels. Given the observation that spinal cord injury in our model results in 

proportionally more destruction of gray matter than white matter, the morphological 

distribution of gray and white matter throughout the spinal cord should be of foremost 

concern. It is well known that the distribution pattern of gray matter changes considerably in 

cervico-caudal direction. The size of gray matter is proportional to the amount of skeletal 

muscles innervated at any given segment. Consequently, we see a greater amount of gray 

matter in those segments which innervate the muscles of the upper and lower limbs, i.e. in 

cervical and lumbar segments. The increased amount of neurons and neuroglia in the gray 

matter at those segments is reflected in the size of the cervical and lumbar enlargements. 

Thus, proportionally more gray matter is present in cervical and lumbar spinal cord regions 

than at thoracic level. Therefore, one could speculate that, since neuronal cell bodies and 

neuroglia are apparently more sensitive to the consequences of acute spinal cord trauma than 

axons in the white matter, the morphological extent of injury might be somewhat larger if 

clip compression with the same force and for the same period of time were to be applied to 

cervical or lumbar regions of the spinal cord.  
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If an animal model with a lesion caused at thoracic level is used, the segmental 

circuits and motoneurons necessary for locomotion are spared. This fact makes the analysis 

of motor recovery after injury somewhat more complex, since the induction of local pattern 

generators alone can allow for a certain degree of spontaneous recovery of motor function 

even without treatment (Beattie and Bresnahan, 2000; Schültke, unpublished data). From the 

above considerations, the question arises whether, in order to simulate injury in a spinal cord 

segment with a high proportion of gray matter yet avoid working with quadriplegic animals, 

it would be advantageous or necessary to inflict a lumbar rather than thoracic injury. A strong 

reason against this approach is the fact that, given the anatomic differences between thoracic 

and lumbar vertebrae in the rat, the surgical approach to the lumbar spinal cord would be 

considerably more traumatic to the animal. Since it now has been acknowledged that the 

presence of local pattern generators is not specific or confined to non-primates, but that they 

also exist in humans (Barbeau et al., 1999; Marder and Bucher, 2001), we found it acceptable 

that part of the recovery induced with administration of a potentially therapeutic compound 

might be due to manipulation of local circuits rather than to recovery of descending 

pathways.  
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Various investigations show evidence that function of the immune system is 

suppressed in patients with complete spinal cord injury at higher cord levels (Campagnoloet 

al., 1997 and 1994; Nash, 1994, Cruse et al., 1993). Stress responses, characterized by acute 

or chronic adrenergic overstimulation, have been associated with immune dysfunction 

(Madden et al., 1989; Madden and Livnat, 1991; Cruse et al., 1993). Explanations for this 

phenomenon include autonomic dysfunction caused by direct injury to structures of the 

autonomic nervous system or autonomic dysreflexia, where injury is above the level of 

sympathetic adrenergic outflow (T 6). Imprudent diet and physical inactivity of patients after 

SCI can result in further suppression of the immune system (Nash, 2000 and 1994).  There is 

clinical evidence that patients who sustain complete spinal cord injury above the level of T 

10 experience much more alterations in immune function than those with injury below T 10 

(Campagnolo, 2000). Although, to our knowledge, no description linking immune function to 

the level of injury exists for animal models, we took the possibility into account. To allow 

applicability in a high number of clinical situations, we decided to use an animal model of 

complete spinal cord injury rostral to level T 10. To avoid much of the dysreflexia caused by 

injury at or above spinal cord level T 6, we chose spinal cord level T 7 for our experiments. 

 



 54

3.3.1.2 Injury Mechanics 

The primary injury in our animal model, inflicted by temporary closure of the aneurysm clip 

around the entire spinal cord, includes elements of contusion and compression. Contusion is 

caused by the shanks of the clip impacting on the spinal cord tissue at the beginning of the 

closing phase. The mechanism of cord compression between the closed shanks is obvious, 

and severity of the injury depends on the duration of clip closure (Dolan et al, 1980). 

Contusion results in immediate mechanical injury with disruption of structure and 

hemorrhages, and compression results in temporary tissue displacement and ischemia. This 

injury mechanism closely simulates the clinical situation of a patient suffering a spinal 

trauma, in which vertebral fragments are forcefully propelled into the spinal canal 

(contusion) and consequently lead to compression of the spinal cord.  

 The extent of the ensuing secondary injury in both human SCI and in our animal 

model is determined by several factors, including the force of injury, the timing of ischemia 

and reperfusion as determined by the duration of compression, and by the ability of the 

organism for repair. While the exact force or duration of the traumatic impact on the spinal 

cord is rarely known in human SCI, these parameters are relatively well controlled in our 

animal model. Since the closing force of the clip is regularly checked and re-calibrated if 

necessary, the variable portion of the injury in our model lies almost entirely in the 

anatomical variability of the individual animals. As in human patients, factors such as the 

width of the spinal canal, the angles of spinal root entry and exit or the pattern of blood 

supply of spinal cord segments vary among individuals and might influence the extent of 

damage created by primary and secondary injury. From the aspect of the surgical procedure, 

the presence of a major blood vessel in the planned field of surgery would necessitate clip 
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application at a slightly more rostral or caudal level than planned. However, in the thoracic 

region, a minor variation in the level of spinal cord injury would not be expected to result in 

significant differences in the injury pattern. A circumstance that might influence the severity 

of the impact, however, would occur if the surgeon were unaware that a small bone fragment 

created by the laminectomy is caught between the blades of the aneurysm clip. In this case, 

several scenarios are possible. If the bone fragment were caught between the branches of the 

clip where no spinal cord tissue is interspersed, the clip blades might be prevented from 

closing completely, thereby decreasing the force of injury. A decreased force of injury would 

be detectable clinically only if the injury force was lessened to a degree where the procedure 

resulted in incomplete paraplegia. In a second scenario, if the bone fragment were caught 

between the branches of the clip and spinal cord tissue, an unintended additional local tissue 

trauma will be created, and the overall injury is aggravated. Overall, the variability between 

injuries created in our animal model is considerably less than that observed in human spinal 

cord injury. This circumstance allows, given that an adequate number of animals are tested in 

therapeutic and control groups, a realistic assessment whether a tested compound improves 

function after SCI or not.  

Acute traumatic injury to the spinal cord is usually followed by edematous swelling 

in both human SCI and in the animal model. Since the dura mater and the bony elements 

forming the spinal canal limit expansion, edema formation can lead to compression of neural 

structures and occlusion of microvasculature. Occlusion of the microvasculature may result 

in longer-lasting ischemia, thereby leading to an accumulation of metabolic products in the 

spinal cord tissue which in turn aggravates the edema. There is one obvious difference in the 

architecture of the injury site between our animal model and the pathology in those patients 
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who did not require surgery after spinal trauma. While, in the cases of the latter patients, the 

bony components of the spinal canal are still present, our model requires laminectomy over 

the site of injury in all animals. However, we assume that the elasticity of the dura mater, 

contrary to the soft spinal cord tissue, would require an extremely high intradural pressure in 

order to be deformed and expanded from the inside. We therefore believe that those 

differences in the architecture of the injury sites should not have any significant influence on 

the functional outcome, as long as the dura mater at the site of injury in the animal model 

remains intact. Animals in which injury to the dura mater has been observed were excluded 

from our analysis. 
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4.1 The ideal compound � theoretical requirements 

Thought should be given to a number of considerations, before any potentially 

beneficial compound is tested in vivo. 1) Adverse effects: The most prominent question is 

naturally whether any significant adverse effects from both the drug itself, and from the route 

of planned application need to be considered. Ideally, the compound should have been 

previously tested in in-vivo situations for other applications. This would have resulted in 

some previous assessment of possible adverse reactions to be expected with use of the 

compound. If adverse reactions were known, the next step would be to answer the question 

whether the expected benefit outweighs the possible risk of adverse reactions. Even if no 

adverse reactions have been observed or described with prior use in a different setting, we 

still should not forget to observe closely, because the pathological setting created in our 

model might tax the natural defense mechanisms of the organism in different ways than in 

models previously used.  

2) Pharmacokinetics: In order to make a good estimate with regard to an effective 

dose, the following pharmacokinetic data should be considered, if available from literature or 

preliminary experiments: Absorption, to determine possible routes of administration.  While, 

for the animal experiment, the preferred route of administration to assure standardized dosing 

obviously would be intraperitoneally or subcutaneously, for a later transfer to clinical trials, 

the option for oral administration might significantly increase acceptability and compliance 

from the patients� side.  Peak intervals and the compound's half-life should be known to 

significantly reduce the estimation of dose-interval scheduling. Since it is known that, with 

human patients, compliance increases the less often a drug has to be administered, we would 

prefer a compound with a half-life of 12 hr or longer. To know the main route of excretion 

might not seem of major importance in the animal experiment, where functional variability 

between animals tested is usually limited by standardized weight and age. If human clinical 

trials are anticipated, however, to know the route of excretion becomes of the utmost 

importance, to prevent potentially harmful effects from unexpected build-up of drug levels 

due to partial or complete failure of the eliminating organ system. In this context, it would be 

most useful to obtain knowledge about LD50 of the compound. 
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3) Pathways influenced by the compound. Ideally, the hypothesis stating why we 

believe that our compound should be beneficial in a specific setting, should be based on 

results from experiments in other model systems. This, compared with an analysis of major 

pathways governing development of pathology in our model system, should give a good idea 

about the therapeutic effect we can expect.  None of the pathomechanisms causing secondary 

injury after SCI, such as ischemia, edema, inflammation and lipid membrane peroxidation, 

has been singled out as the most prominent contributing factor. Therefore, it should be 

worthwhile to test a compound that has the ability to interfere with more than one of those 

pathways. Although it might prove more difficult to establish the exact mechanism of action 

for such a compound, as compared to compounds where action is apparently limited to 

interference with one single pathway, we feel that a compound�s capacity to address several 

key mechanisms in a balanced manner could improve the therapeutic potential. The ideal 

compound, therefore, should have a minimum of adverse effects, a half-life of 12 � 24 hr, a 

relatively high LD50  and an option for oral administration. 
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4.2      Polyphenolic flavonoids 

The aim of this chapter is to illustrate that polyphenolic flavonoids in general, and 

quercetin specifically, should be well suited for therapy of patients with CNS injury.  

Since the emergence of the concept of secondary injury after acute CNS trauma, 

various compounds have been studied with the hope of minimizing the extent of this 

secondary damage. Polyphenolic flavonoids have been investigated in a number of model 

systems, both in vitro and in vivo. Many flavonoids were found to have anti-inflammatory, 

antioxidant and anti-edematous capacities. Some flavonoids, such as quercetin, are also 

excellent iron chelators. Considering the fact that inflammatory processes, oxidative stress 

and edema formation as well as intraparenchymatous hemorrhage are hallmarks of acute 

CNS trauma, the combination of anti-inflammatory, antioxidant and anti-edematous 

capacities with its ability to chelate iron should make quercetin a promising compound in the 

therapy of patients with acute CNS injury. While many of the compounds tested in the setting 

of CNS trauma are synthetic in origin, polyphenolic flavonoids are commonly found in fruits 

and vegetables. Flavonoids can not be synthesized by the human body, therefore the only 

available source are dietary components. Based on dry weight, the highest anti-oxidant 

contents are found in kale, blackberries, blueberries, cranberries, raspberries and 

strawberries, and in spinach (Prior and Cao, 2000). Flavonoids are three-ring structures (Fig. 

4.1), which can be divided into groups according to substitutes at certain positions, which 

determine the capacities and the mechanism of metabolic degradation of the flavonoid 

molecule.  
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Figure 4.1: General structure of polyphenolic flavonoids. 

R may or may not be substituted in individual flavonoids. For most 

flavonoids, a characteristic number of R is substituted by an OH-group. 

 

 

There are six major subclasses, which include the flavones, flavonols, flavanones, 

catechins, anthocyanidins and isoflavones (Ross and Kasum, 2002). The presence of an oxy-

group at position 4 in the B ring (as seen in the catechol group, as in quercetin, or pyrogallol 

group, as in myricetin) and a double bond between carbon atoms 2 and 3 of the C ring 
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increase the antioxidant capacity, and the presence of a hydroxyl group at position 3 of the C 

ring appears to be critical for anti-inflammatory activity (Theobarides et al, 2001). The 

properties of flavonoids have been investigated in various model systems, both in vitro and in 

vivo.    

As mentioned earlier, key pathological mechanisms contributing to increase of 

secondary injury volume after acute traumatic spinal cord injury include ischemia and 

vascular dysregulation and ischemia, edema formation, inflammatory processes, lipid 

membrane peroxidation and contusional hemorrhage (Hall; 1986; Barut, 1993; Tator, 1995; 

Tator and Koyanagi, 1997; Carlson, 1998; Schnell, 1999; Tator, 2002). While the volume 

effect of hemorrhages causes further mechanical damage and ischemia, disintegration 

products of hemoglobin also contribute to increased damage by lipid membrane peroxidation 

(Matz, 2000; Gaetani, 1998). Polyphenolic flavonoids have been tested in various systems 

modeling most of those pathological processes.  

 

1) Inflammation � polyphenolic flavonoids act as anti-inflammatories  

Polyphenolic flavonoids have been tested in in-vivo models of acute and chronic 

inflammation. Testing anti-inflammatory activity in the setting of chronic inflammation, a 

number of flavonoids were shown to inhibit granuloma formation in a model of cotton pellet-

induced granuloma formation (Pelzer et al., 1998). Contrary to the antioxidant capacity, this 

inhibitory effect appeared to be independent of the presence of a double bond between C2 

and C3, and C3 conjugation with sugar does not alter the intensity of activity. The presence 

of a catechol or guaiacol-like B-ring appeared to increase anti-inflammatory activity in this 

model of chronic inflammation. As a model for acute inflammatory processes, carageenin-
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induced paw edema in rodents is commonly used, with reduction in the extent of paw edema 

as indicator of therapeutic success. Significant reduction of paw edema was seen with several 

flavonoids, to varying extent (Pelzer et al., 1998).  No structure-activity relationship was 

deduced from those experiments. Possibly, the anti-inflammatory capacity of flavonoids is 

due to their ability to reduce immobilization and degranulation of leukocytes during the post-

traumatic inflammation and / or the ability to deactivate reactive species produced by 

stimulated neutrophils (Pincemail et al., 1988; Friesenecker et al., 1996). 

Oxidative tissue injury describes a setting in which tissue components are modified 

by reaction with free radicals and other oxidant species, such as hypochlorous acid, resulting 

in temporary or permanent functional deficit. One of the prominent capacities of 

polyphenolic flavonoids is their capacity to act as anti-oxidants (Hall, 1986; Barut, 1993; 

Saija, 1995; Cotelle, 1996; Huk, 1998; Sugihara, 1999). It is believed that anti-oxidant 

activity is conveyed through inhibition of pro-inflammatory enzymes as well as through 

chemical reaction of the flavonoids with free radicals (de Groot and Rauen, 1998). Inhibition 

of enzyme activity by flavonoids has been reported for cyclooxygenase and lipoxygenase 

(Laughton et al., 1991; Hoult et al., 1994), monooxygenase (Siess et al., 1995), protein 

kinases (Cushman et al., 1991) and mitochondrial NADH-oxidase (Hodnick et al., 1994). It 

has been suggested that the ability of flavonoids to inhibit cyclooxygenase and 5-

lipoxygenase in the metabolism of arachidonic acid may contribute to their ability to 

suppress inflammatory processes. However, Sobottka and colleagues did not observe any 

correlation between the tested flavonoids' ability to reduce paw edema and inhibition of these 

enzymes (Sobottka et al., 2000). 
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2) Oxidative stress � polyphenolic flavonoids act as antioxidants 

Polyphenolic flavonoids are believed to act as antioxidants either by donation of a 

hydrogen atom or an electron, which means that the flavonoid itself is being oxidized 

(Shahidi and Wanasundara, 1992). The mechanisms of oxidation seem to vary with the 

oxidizing agent. Flavonoids can stabilize reactive oxygen species by reacting with the 

reactive component of the radical (Nijveldt et al., 2001). 

 

Flavonoid(OH) + R• ! Flavonoid(O•) + RH 

 

R• describes a free radical and O• denotes a reactive oxygen species. 

 

From experiments done by Jovanovic and colleagues it appears that oxidation of 

flavonoids with a catechol structure will take place exclusively in the B-ring (Jovanovic et 

al., 1996). 

 

3) Iron ions increase oxidative injury � some flavonoids are good iron chelators 

One of the consequences of CNS trauma is the presence of intrapenchymatous 

hemorrhage. Caused by the gradual disintegration of hemoglobin, the content of free iron 

ions in the tissue increases. Iron ions appear to catalyze oxidative stress reactions that result 

in lipid membrane peroxidation (Fig. 4.2). Hence, iron chelation might limit the potential 

secondary damage otherwise caused by the post-traumatic presence of free iron ions.  

Many studies to determine the anti-oxidant capacity of flavonoids have been 

performed in various in-vitro models.  This may often lead to seemingly contradictory 

results, with results depending on the oxidant used. As pointed out by Prior and Cao (2000), 

the free radical source in the experimental set-up is very important and direct comparisons 
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between systems using different free radical sources should be avoided. A good example is 

the controversy whether iron chelation plays a major role in the antioxidant activity of 

flavonoids. Iron ions accumulated in tissues can catalyze the formation of hydroxyl radicals 

(•  HO) from hydrogen peroxide (H2O2) and superoxide free radical (O2
−•), as described by 

the Fenton reaction (Gutteridge et al., 1981). H2O2 and O2
−• are generated by neutrophiles at 

the site of injury. 
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FIGURE 4.2: Overview of some of the pathways involved in production of free radicals and 

lipid membrane peroxidation. Note the involvement of ferrous (Fe+2) and 

ferric (Fe+3) iron ions.      

from: Juurlink, 2001 
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From several in-vitro studies it appears that iron-chelation is one of the mechanisms through 

which flavonoids act as anti-oxidatnts, protecting against reactions involving free radicals 

and iron ions (Morel et al. 1993 and 1994; Ferrali et al., 1997; Cheng and Breen, 2000).  

Van Acker and colleagues argued that the results of their experiments indicated that 

iron chelation played no major role in the antioxidant activity of flavonoids in their model 

system of microsomal lipid membrane peroxidation. However, they allowed that their 

experimental set-up might simply not have been suitable to detect the contribution of iron 

chelation to antioxidant action (van Acker et al., 1998).  Sestili and colleagues were also 

investigating whether iron chelation played any significant role in the antioxidant activity of 

quercetin. They chose a model of DNA cleavage and cytotoxicity induced by tert-

butylhydroperoxide. In this model system, DNA cleavage can be abolished by iron chelators, 

but not by antioxidants which act without iron chelation (Coleman et al., 1989; Latour et al., 

1995; Guidarelli et al., 1997). This is contrary to model systems which use H2O2 to induce 

cell death, where cell death can be decreased by action of both iron chelators and 

antioxidants without iron-chelating action (Coleman et al., 1989; Guidarelli et al., 1997). 

Sestili and colleagues found clear evidence that iron chelation is indeed an important 

mechanism in the antioxidant action by the flavonoid quercetin (Sestili et al., 1998). It has 

been suggested that the use of naturally occurring metal chelators should be preferable over 

synthetic chelators, because the former appear to be associated with less adverse affects 

(Aruoma, 1996). 

 



 68

4.3  Quercetin 

Availability / sources:  The flavonol quercetin, is one of the better-investigated 

flavonoids. Significant amounts of dietary quercetin can be found in cranberries, olives, 

apple skin, broccoli, onions, red wine, green tea and in the propolis of bee hives (Herman, 

1976; Havsteen, 1983; Rice-Evans, 1996; Hollman, 1996 and 1995). It was also shown to be 

an important active ingredient of Ginkgo biloba (Kleijnen and Knipschild, 1992). Just like 

other members of the flavonoid family, quercetin scavenges free radicals (Huk, 1998), in an 

anti-oxidative fashion (Cotelle, 1996; Saija, 1995; Sugihara, 1999) and anti-inflammatory 

(Ferrandiz, 1991; Middleton and Kandaswami, 1992; Pelzer, 1998, Middleton et al., 2000) 

and anti-edematous (Pelzer, 1998; Sobottka, 2000). 

 

Toxicity:  Toxicity of quercetin has been assessed both in vitro and in vivo. Sestili and 

colleagues found that concentrations of up to 30 µM were not cytotoxic or causing any DNA 

damage in an in-vitro model of DNA cleavage and cytotoxicity induced by tert-

butylhydroxide (Sestili et al., 1998). Nguomo and Jones performed a cytotoxicity study on 

ovary cells from Chinese hamster, mouse fibroblasts and cultures from normal rat kidney 

cells. They determined the molecular concentration at which cell growth was inhibited by 

50% (IC 50) after 48 hr incubation with quercetin was 80 µM (Ngomuo and Jones, 1996). 

Khaled and colleagues administered single doses of up to 56 mg/kg to adult rats, either 

intravenously or orally, without observing any adverse effects within the 24 hr observation 

period (Khaled et al., 2003). In a toxicity study of human patients who received quercetin, it 

was shown that doses of 70 mg/kg quercetin can be safely administered as single i.v. bolus, 

resulting in serum concentrations up to 400 µM immediately after injection (Ferry et al., 



 69

1996). In this study, doses were administered as single bolus intravenously, in 3 week 

intervals. Doses were increased stepwise from 60 mg/m2 to 1700 mg/m2. Dose-limiting 

nephrotoxicity was encountered only at 1700 mg/m2. 

 

Absorption and elimination:   If recovered from dietary sources, flavonoids are usually 

attached to sugar residues (Ross and Kasum, 2002). The presence of sugar residues alters the 

physico-chemical properties of the molecule and therefore their ability to cross membranes 

and enter cells (Hollman et al., 1999). While aglycones can be absorbed directly from the 

stomach and then secreted in bile and urine, glycosides have to be enzymatically modified 

prior to absorption (Piskula, 2000; Crespy et al., 2002; Shimoi et al., 2003) (Fig. 4.3). It has 

been shown that both quercetin and rutin can be absorbed in all segments of the intestine (Su 

et al., 2002). Dietary polyphenolic flavonoid glycosides are substrates for β-glucosidases, 

UDP-glucoronyltransferases or catechol-O-methyltransferases in the small intestine, and for 

several phase I and phase II enzymes in the liver (Scheline, 1991a; Rice-Evans et al. 2000; 

Scalbert and Williamson, 2000). Apparently, there are two different mechanisms for uptake 

of flavonoids across the small intestine. Flavonoids might be deglycosylated on the luminal 

side by lactase phlorizin hydrolase and subsequentially diffuse into the intestinal cells as 

aglycones (Day et al., 2000; Sesink et al., 2002). On the other hand, the results of several 

studies suggest that quercetin glycosides interact with a glucose carrier (SGLT1), which 

facilitates uptake across the brush border membrane of the small intestine (Gee et al., 1998 

and 2000; Ader et al., 2001; Wolffram et al., 2002).  However, in the mesenteric blood taken 

from intestinal veins, only conjugated forms of flavonoids were found, regardless whether 

glucosides or aglycones were administered (Crespy et al., 2001). Furthermore, flavonoids are 
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metabolized by the colonic microflora, where the breakup of the flavan ring results in much 

more simply structured phenolic compounds (Scheline, 1991b; Li et al., 2000). As indicated 

by the activity of endogenous β-glucosidases in vitro, deglycosylation appears to be an early 

step in flavonoid metabolism in both humans and rats (Day eta al., 1998; Ioku et al., 1998). 

Site of deglycosylation and mode of transport across the intestinal cells depends largely on 

the nature of the flavonoid aglycone moiety, and on the structure and position of the attached 

sugar. The latter might be explained with the specificity of residential β-glucosidases and 

other locally available enzymes (Day et al., 1998 and 2002).  
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FIGURE 4.3: Possible mechanism of quercetin absorption following oral administration. 
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Walle and colleagues studied absorption and elimination of the radioactively marked 

quercetin aglycone (quercetin dihydrate, Sigma) in human volunteers after both oral and 

intravenous administration (Walle et al. 2001). As expected from previous studies, there was 

no unchanged quercetin present after oral administration (Ferry et al., 1996; Walle et al., 

2000; Wittig et al., 2001). Terminal elimination half-lives of the aglycone were found 

between 20 and 72 hr, varying between 31 and 64 hr after oral administration and between 20 

and 72 hr after i.v. administration, resulting in half-live means of 41 hr and 40 hr, 

respectively. Thus, no statistically significant differences in the half-lives were found 

between oral and intravenous administration of the compound. It should be noted that the 

half-lives determined in this study are longer than reported in earlier studies reported by other 

groups (Hollmann et al., 1997; Erlund et al., 2000). This might be due to differences in the 

experimental set-up. Those studies reported half-lives of 15-28 hr, but targeted quercetin 

conjugates rather than including further breakdown products. Since metabolic products of 

quercetin themselves have been shown to possess antioxidant, anti-inflammatory and anti-

edematous capacities, Walles� study, taking into account metabolic breakdown products, is 

doubtless of practical relevance. The results from Walle�s study suggest that the seemingly 

prologed half-lives of quercetin metabolic products could be due to enterohepatic 

recirculation, especially after oral administration, as evidenced by a distinct second peak of 

plasma radioactivity around 8 hr after administration. 

Significant differences were found, however, between oral and i.v. administration 

with regard to recovery of quercetin or its metabolic products (Fig. 4.4). While, after 

intravenous administration of quercetin dihydrate, on average 21.3% were recovered in urine 

and 3.2% in feces, only 4.6% were recovered in urine and 1.9% in feces after oral 
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administration. It is noticeable that, in the group of patients who received quercetin dihydrate 

orally, the percentage of recovery from feces varied between 0.2 and 4.6%. This might be 

due to the fact that absorption from the gastrointestinal tract is somewhat slow and irregular, 

due to its low solubility in water and its slow dissolution rate (Lauro et al., 2002). Another 

explanation could be differences in the intestinal microflora of the test individuals, as it has 

been reported that no aglycones were recovered in feces from rats lacking the necessary 

microflora (Griffiths and Barrow, 1972). As flavonoids and their metabolites are modified by 

the colonic flora, they in turn modify the composition of the intestinal microflora (Blaut et 

al., 2003). 
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FIGURE 4.4: Excretion of 14C-containing metabolic products of quercetin after single bolus 

administration (i.v.: 0.3 mg = 1 µmol, oral: 100 mg = 330 µmol). 

 A higher percentage is excreted with the feces after i.v. than after oral 

administration. Urinary excretion of quercetin breakdown products is more 

commonly observed after i.v. administration than after oral administration of 

the compound. 
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With both routes of administration, on average about half of the quercetin appears to be 

metabolized and exhaled as CO2, as demonstrated by detection of the radioactive marker 

(Fig. 4.5). However, while the size of the exhaled fraction varied between 41.8 and 63.9% 

after oral administration, the variation between 23 and 81% after intravenous administration 

was much more pronounced. Besides the fact that the power of this part of the study was low 

(n = 3) the variation seen might be due to differences in the enzymatic activity between 

different individuals. Observations made in an earlier study, where rat gut was incubated 

with radiactively marked quercetin produced large amounts of 14CO2 (Ueno et al., 1983), 

Walle and colleagues concluded that the 14CO2 recovered in their study was most likely 

produced by breakdown of quercetin in the intestine. 
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FIGURE 4.5: Exhalation of 14CO2 after oral and i.v. administration of quercetin in human 

volunteers. With both routes of administration, on average about half of the 

quercetin appears to be metabolized and exhaled as CO2, as demonstrated by 

detection of the radioactive marker.   

 

(after Walle et al., 2001 ) 

  

 

Time after quercetin administration (hr)

0 20 40 60 80

E
xh

al
ed

 14
C

O
2 (

%
 o

f d
os

e/
hr

)

0

1

2

3

4

5

6

i.v. administration
oral administration



 77

It has been shown that only between one and two thirds of the administered quercetin 

doses were absorbed by passage through the stomach or small intestine (Crespy et al., 2002 

and 2003).  

 

Attenuation of ischemia.  Huk and colleagues demonstrated in an animal model of 

hindlimb ischemia that, in the presence of quercetin, tissue levels of nitric oxide increased 

and superoxide levels decreased (Huk et al. 1998). This effect was observed up to 

concentrations of 30 µmol/l. With higher concentrations, no significant beneficial effect was 

observed. It was demonstrated that quercetin directly scavenged superoxide anions (Sichel et 

al., 1991; Huk et al., 1998). Quercetin is also known to be a protein kinase C inhibitor 

(Blackburn et al., 1987). Since constituitive nitric oxide synthetase (cNOS), the enzyme 

through which endothelial nitric oxide production is regulated, is usually turned off by 

phosphorylation of one of its serine residues shortly after activation (Sessa, 1994), it is 

suggested that quercetin prolongs cNOS activity and thereby nitric oxide production. Nitric 

oxide is a potent vasodilator (Palmer et al., 1987), while superoxide is a potent 

vasoconstrictor, the latter being effected by the superoxide�s ability to scavenge nitric oxide 

(Consentino et al., 1994). By tipping the balance between vasoconstrictor and vasodilator 

action in the latter direction, the net effect would be attenuation of ischemia, and 

consequently better perfusion of tissue in the post-traumatic state. 

 

Anti-inflammatory and anti-edematous activity:  In a model of chronic inflammation, 

quercetin significantly reduced cotton pellet-induced granuloma formation (p < 0.05), 

ranking in the best third of thirty tested flavonoids (Pelzer et al., 1998).  In a rodent study of 



 78

carageenin-induced paw edema, a model of acute inflammation, quercetin has been found to 

significantly (p < 0.05) reduce the extent of edema (Pelzer et al., 1998). The anti-

inflammatory activity of quercetin ranked second in a group of thirty flavonoids tested. The 

anti-inflammatory action of quercetin might be at least partially explained by the fact that the 

compound changes the secretion profile of mast cells and neutrophils (Bennett, 1981).    
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Antioxidative action:  According to Bors (1990), three structural components are 

contributing to the anti-oxidant potential of the flavonoids (Fig. 4.6). 

 

1. the 0-dihydroxyl (OH) structure (catechol) 

in the B-ring 

  

  

  3.  the 2,3-double bond in conjugation with a  

      4-oxo function 

   

 

 

FIGURE 4.6: Structural components, on which the antioxidant capacity of quercetin is 

based. 
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Quercetin fulfills all those structural requirements. In fact, Wang and Joseph (1999) 

were able to show that, due to the presence of all three components required for anti-

oxidative potential, quercetin was the flavonoid with the highest protective effect against 

H2O2 induced calcium dysregulation.  

 

Iron chelation:  Quercetin was found to have a high capacity to chelate iron (Kostyuk, 

1998). When investigated for its ability to suppress the Fenton reaction, indicated by 

absorption spectroscopic parameters of the iron-ATP complex, it was shown that the reaction 

was suppressed completely with a minimum ratio quercetin to iron of 1.5 : 1 (Cheng and 

Breen, 2000). Thus, the chelation potential of quercetin ranked highest amongst the four 

flavonoids tested in this study.  Quercetin was also shown to reduce Fe2+-induced 

peroxidation of unsaturated fatty acids (Vasilyeva, 2000). Using electrospray mass 

spectrometry, Fernandez and colleagues were able to provide direct evidence of chelate 

formation between iron ions and quercetin (Fernandez et al., 2002). In the same study, it was 

shown that quercetin, like all other flavonoids tested, was able to reduce Fe3+ to Fe2+, and the 

reaction stoichiometry between Fe2+ and quercetin was obtained as 1:1 or 1:2 (apparently 

both are possible). The reducing ability of quercetin ranked second place behind myricetin 

and before catechin. It was observed that this ranking corresponded with the redox potentials 

of the flavonoids tested. It has been suggested that the reducing ability might be based on the 

number of hydroxyl (OH) groups present in the molecules (Sichel et al. 1991; Cao et al., 

1997; Fernandez et al., 2002). The redox potentials of flavonoids actually increase 

proportionally to the number of hydroxyl groups present in the molecules. The lower the 

number of the OH groups, the less is the probability that a hydrogen atom is freed to reduce 
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iron ions, a process that at the same time oxidizes the flavonoid. Even the oxidation products 

of quercetin still contain three or four hydroxyl groups (Fig. 4.7), therefore they should still 

be able to act as antioxidants (Jørgensen et al., 1998; Manach et al, 1998). However, since 

the pKa of those oxidation products are considerably lower than quercetin, their redox 

potential is expected to be lower than that of quercetin itself (Laroff et al, 1972; Jovanovic et 

al., 2000).  

 

  

  QUERCETIN 

 

 

FIGURE 4.7:  Oxidized structure proposed for quercetin. 

Even the oxidation products of quercetin still contain three or four hydroxyl 

groups, therefore metabolic products of quercetin should be active as anti-

oxidants themselves.  
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Besides the hydroxyl groups, apparently also the ortho-catechol groups contribute to the 

reduction capacity of quercetin (Fernandez et al., 2002) (Fig. 4.8). 

 

 

 

 
 

 

FIGURE 4.8: Oxidation of flavonoids possessing an oxo-catechol group. 

from: Fernandez et al., 2002 

 

It is interesting to note that the redox potential of quercetin should be even higher 

than that of ascorbic acid (Laroff et al., 1972; Jovanovic et al., 1994). 

 

Furthermore, possible sites of chelation in the quercetin molecule were identified in 

the same study. Morel and colleagues had proposed earlier three possible chelation sites for 

flavonoids containing the 4-oxo group and hydroxyl groups at 3, 5, 3� and 4� positions: 

between the 3-hydroxyl group and the 4-oxo group (Fig. 4.9), between the 5-hydroxyl and 

the 4-oxo group, and between the ortho-hydroxyl groups in the B-ring (Morel et al., 1998). 

From the results of their experiments, Fernandez and colleagues argue that the preferred site 
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for iron chelation possibly involves the 4-oxo group and 5-hydroxyl group (Fernandez et al., 

2002, Mira et al., 2002).   

 

 
    DEFERIPRONE      QUERCETIN 
    
 
 
 
  
FIGURE 4.9: Structural similarities for one of the possible iron binding sites 

between quercetin and deferiprone, a commercially available iron 

chelator active after oral administration. 

 

 

This overview, illustrating that quercetin attenuates several pathological key mechanisms of 

CNS injury, supports the idea that the compound should be well suited for therapeutic 

intervention after CNS injury.  My experiments, therefore, were designed to test the 

hypothesis that administration of quercetin attenuates secondary damage after CNS trauma. 

Studies were focused on the ability of quercetin to chelate iron, decrease oxidative stress 

(reflected by GSH levels), inflammatory processes (reflected by myeloperoxidase activity) 
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and trauma-induced apoptotic cell death in the setting of spinal cord injury and head trauma 

in the adult rat. The fluid percussion injury model for head trauma was used to test whether 

the actions of quercetin resulted in improved ability of traumatized neuronal structures to 

retain normal functions, as reflected by the amplitude of compound action potentials. Using 

the spinal cord injury model, recovery of motor function in previously paralyzed hind limbs 

was used to assess whether the actions of quercetin determined by biochemical, histological 

and immunohistochemical methods actually translated into improvement of functional 

recovery. 
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Chapter 5 
 

Materials and Methods 
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5.1 Animal Care 

For all experiments, adult male Wistar rats were used. Animals were housed and cared 

for in a temperature-regulated animal facility (ambient temperature 22 - 24°C) and exposed 

to a 12-hours light/dark cycle in accordance with the guidelines of the Canadian Council on 

Animal Care.  

In human patients with spinal cord injury, modern management has dramatically 

improved prognosis with regard to survival time and quality of life. Cornerstones of care for 

the human paraplegic patient are meticulous skin care to avoid development of defects as 

potential focus of infection, and regular emptying of the urinary bladder to avoid urinary tract 

infections. The same principles should be applied in the care for paraplegic animals. The skin 

is inspected three times daily in the first week after injury and twice daily thereafter. 

Antibiotic ointments or powder are applied to skin defects. In rare cases, surgical repair of 

major skin defects was necessary. It is noteworthy that, where the majority of skin defects 

seen in human patients are pressure sores due to immobility and lack of proper sensation, this 

is rarely the case in our animal model, since even completely paraplegic animals exhibit a 

remarkable mobility within their cages. Rather, animals tend to suffer from self-inflicted 

injury to abdominal skin or extremities. This might be due either to lack of perceiving the 

body part devoid of sensation as �self� or from unintentionally aggressive grooming of those 

body parts. The urinary bladders are emptied three times daily for the first week after injury, 

until spontaneous bladder function resumes. This corresponds well to the advice for the care 

of human patients, where regular intermittent catheterization is preferred over indwelling 

catheters to avoid urinary tract infections. Adequate hydration, as advised for human patients, 

is realized by the animals� ad libitum access to drinking water. 
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5.2 MRI for the study of iron chelation by quercetin  

Contusional hemorrhage is seen in many cases after acute traumatic spinal cord injury, at 

either macroscopic or microscopic level. The lack of oxygen in the erythrocytes present in 

hemorrhagic tissue creates a situation of oxidative stress, which quickly depletes the 

glutathione content of the cells. Consequently, hemoglobin disintegrates and iron is released 

in chelatable form (Comporti, 2002). Disintegration products of hemoglobin further 

contribute to oxidative stress and apoptosis in the CNS (Matz, 2000; Gaetani, 1998).  

Chelatable iron products catalyze lipid membrane peroxidation in the central central nervous 

system, causing functional and structural loss of cells (Juurlink, 1998). Under the assumption 

that iron chelation can reduce oxidative damage after CNS injury, we tried to determine the 

dose at which quercetin would chelate iron ions in an optimal way. The sizes of tested doses 

were in the range of molecular equivalents to therapeutically used iron chelators. Since our 

hypothesis was that iron chelation is an important pathway through which quercetin would 

act in a neuroprotective manner, we performed a set of experiments to find the dose at which 

iron chelation by quercetin would be optimal. 

  T1 relaxation of the water (proton) signal was used to determine the dose for optimal 

iron chelation by quercetin. In order to simulate the distribution of ferrous and ferric iron ions 

throughout the spinal cord, we decided to use a phantom or �physical likeness�, in form of 

2% agar in 15 ml Falcon tubes (Figure 5.1). Although all chemicals were mixed with agar in 

the fluid phase, the solidification of agarose was required for technical purposes before the 

MRI study could commence. Using a fluid mixture for analysis would have resulted in the 

presence of air bubbles in the field of analysis, which would have caused distortion of the 
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measured signal. Mixed in the agar were solutions of either ferrous sulfate (FeSO4 · 7H2O) or 

ferric chloride (FeCl3 · 6H2O) in concentrations from 0.001 mM to 10 mM and quercetin in 

concentrations from 2.5 to 250 µM. 

 

 

 

FIGURE 5.1 Spinal cord phantoms (agar in 15 ml Falcon tubes) for MRI analysis of iron 

chelation by quercetin dihydrate. Mixed in the fluid agar were solutions of 

either ferrous sulfate or ferric chloride with quercetin suspension in varying 

concentrations. Once the agar had solidified, the phantoms were submitted to 

MRI analysis. 
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Data were acquired on 3 mm slices with a 3 Tesla magnet (Magnexand and Surrey Medical 

Imaging System, U.K.), operating at 130 MHz for protons.  The imaging conditions for the 

saturation recovery relaxation experiments were FOV 50cm, TE 15 ms, matrix size 128 x 

128.  The resolution was 400 Hz in the frequency dimension and 0.3 mm in the spatial 

dimension.  Relaxation times were varied from 100 ms to 3 s.  T1 relaxation rates were 

computed by non-linear least squares fit to the equation  

 

Sn=So(1-e-TRn/T1) 

 

where Sn is the signal intensity in a given image pixel at relaxation time TRn.  Mean values 

were computed from individual pixel values in a circular region of interest near the center of 

a phantom using Cheshire � image analysis software. Mean values were computed from 

individual pixel values in a circular region of interest near the center of a phantom using 

Cheshire � image analysis software. Acquisition and interpretation of MRI data were 

performed by Dr. Ed Kendall and Zhao Ghong, Department of Medical Imaging, University 

of Saskatchewan. 

 The major advantage of these preliminary MRI studies was that, for our animal 

studies, the number of groups receiving different doses of quercetin in the animal experiment 

was greatly reduced, since we were able to narrow down the potential dose range at which 

quercetin could be expected to be thearpeutically successful. This, of course, was provided 

that iron chelation would prove indeed an important pathway through which quercetin would 

act neuroprotective. 
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5.3 Surgical approaches 

5.3.1 Spinal cord trauma 

For all experiments, we used the model of spinal cord compression injury developed by 

Rivlin and Tator (Rivlin and Tator, 1978). Adult male Wistar rats (9-10 weeks of age, 285 � 

360 g, Charles River Canada) were subjected to standardized mid-thoracic spinal cord injury 

at T7 level. We used 5% Halothane® in oxygen with a flow rate of 1.5 liter / min for 

induction and 2% Halothane® with the same oxygen flowrate for continuation of anesthesia. 

The back and the lower abdomen of the animals were shaved and disinfected with Hibitane® 

(chlorhexidine) and 70% alcohol. For analgesia, animals were pre-medicated with a 

subcutaneous injection of 0.05 mg Buprenorphine  / kg and received tapered doses in 12-hr 

intervals for 3 days. A vertical midline incision of the skin was performed over the spinous 

processes T5 to T7, and a catheter (Butterfly -23 with cut-off needle) was tunneled 

subcutaneously towards the abdomen and implanted intraperitoneally for later repeated drug 

or vehicle application in all those animals who received drug or vehicle for longer than 24 hr 

(Fig. 5.2) It is our experience that these catheters significantly ease the repeated 

administration of intraperitoneal compounds.  
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a) dorsal incision b) subcutaneous tunneling                 

      (dorsal to ventral)  

   

 

c) insertion of catheter (ventral to dorsal)   d) catheter hub fixed to skin   

    

FIGURE 5.2: Implantation of dorso-peritoneal catheter for frequent drug administration. 

Catheters significantly ease repeated administration of intraperitoneal 

compounds.  

Implantation of intra-peritoneal catheterImplantation of intra-peritoneal catheter Introducing a guide and the catheter

1. Fix peritoneal end of catheter to this end of the guide
⇑

2. Pull ⇑

a 
b

Butterfly 23 G, inserted sub-cutaneously
(needle cut off before pulling through)

Fix catheter with tape and stitch to skin

c d
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The animal then was turned back into prone position, the dorsal incision was extended and 

muscles separated from T6 and T7 spines and laminae.  Laminectomy was performed at T6/7 

level and the spinal cord was exposed without opening the dura mater. An aneurysm clip 

(Kerr-Lougheed clip, Walsh Manufacturing, Oakville, Ontario; Fig. 5.3) with a calibrated 

closing force of 50 g (40 g for the experiments described in chapter 6) was closed around the 

spinal cord for 5 seconds (Fig. 5.4). The muscles were reapproximated with absorbable 

suture and the skin was stapled. The injection adapter of the catheter was secured with tape 

and sutured to the skin. Three additional animals received laminectomy only, but no spinal 

cord injury, to exclude impairment of neurological function by surgical trauma unrelated to 

the spinal cord injury.  

 

FIGURE 5.3: Kerr-Lougheed aneurysm clip. Closing force between the blades can be 

calibrated by varying strength of spring. 

 A: Upper blade B: Lower blade C: Roller  D: Spring  
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a) spinal cord in situ, dorsal portion of vertebral arches removed 

Arrow: site of clip application visible within hemorrhagic zone 

 

 

 

 

 

 

 

 

 

 

 

b) longitudinal section of spinal cord, site of injury and adjacent spinal cord 

segments, corresponding to black rectangle in a) 

 

FIGURE 5.4: Spinal cord of adult male Wistar rat, 12 hr after 50 g clip application for 5 sec. 

 



 94

Animals were weighed every other day and received either weight-adjusted doses of 

quercetin (quercetin dihydrate, Sigma) or saline vehicle only. Quercetin is poorly soluble in 

aqueous solutions and was suspended in physiological saline solution. The suspension was 

administered intraperitoneally via the implanted catheter or as direct i.p. injection for animals 

which received drug or vehicle for a maximum period of 24 hr. The urinary bladders of all 

paraplegic animals were expressed manually three times daily until recovery of spontaneous 

voiding was achieved. The latter was observed in most animals, whether treated with 

quercetin or not, between weeks 2 and 3 after injury. 

With regard to survival time after injury, two basic types of experiments were 

performed: short-term experiments, with survival times between six hours and three days 

after injury, and long-term experiments, with survival times up to twelve weeks after injury.  

 

 

5.2.1.1 Short-term experiments 

Experiments in this group were designed to yield spinal cord tissue in which changes 

during the acute phase of spinal cord injury could be assessed. Animals were sacrificed at 6, 

12, 24 or 72 hr after injury. Experiments in this complex were designed to prove that 

administration of quercetin attenuates inflammation and apoptosis in the early phase after 

acute traumatic spinal cord injury. Myeloperoxidase activity levels were measured in spinal 

cord tissue and serum of healthy, uninjured animals, quercetin-treated animals and saline 

controls at 6, 12, 24 and 72 hr after injury.  Immunostaining for activated caspase-3 was 

performed on sections from animals sacrificed at 12, 24 and 72 hr after injury. 
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5.2.1.2 Long-term experiments of chronic injury phase 

The assessment in these experiments centered around functional recovery after spinal 

cord trauma. While the purpose of the first phase of experiments was the determination of an 

effective dose, in later experiments we tried to establish the therapeutic window for quercetin 

administration.  

 

5.2.1.2.1 Finding the optimal dose 

In this early phase of experiments, we hypothesized that the capacity to chelate free 

iron ions was of foremost importance in the neuroprotective action of quercetin. The survival 

time after injury in this experimental block was 4 weeks, after which all animals were 

sacrificed by pericardiac perfusion with FAM (Formalin : Acetic acid : Methanol = 1 : 1 : 8). 

In the first experimental block, animals were treated with different doses (0, 5, 25, 50 

and 100 µmol/kg) of quercetin or saline vehicle. Treatment started 1 hr following injury and 

continued in 12 hr-intervals.  Overall eight weight-adjusted doses of quercetin were 

administered to each animal in the therapeutic groups over a period of 4 days via the 

intraperitoneal catheter. 

Based on the results from this first block of animal experiments and our preceding 

MRI experiments, we chose the dose of 25 µmol/kg as optimal dose for further experiments. 

In the second block of animals, we extended treatment duration to 10 days. This was based 

on the rational that significant amounts of free iron from hemoglobin disintegration would be 

present only beyond day two after injury, and they would persist for several days to follow. 

Extension of the treatment duration, therefore, would potentially increase the therapeutic 

benefit. 
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5.3.1.2.1 Defining the therapeutic window 

A total of 104 adult male Wistar rats were subjected to standardized mid-thoracic 

spinal cord injury and assigned to nine therapeutic groups or used as saline controls. Age-

matched, uninjured animals were used as healthy controls. Usually, surgery for two or three 

different experimental protocols was performed in parallel, and to these two or three 

experimental groups, animals were assigned randomly. Also, for all groups containing more 

than seven animals, surgery was performed on half of the animals at two different time points 

at least eight weeks apart, so as to verify the validity of results from the first part of the 

experiment. 

In seven of the therapeutic groups, therapy started 1 hr after spinal cord compression 

injury. This time frame was chosen because it is the minimum time in which clinical 

assessment of a patient with spinal cord injury could be reasonably expected. In one group 

(group 7), treatment onset was delayed to 12 hr after injury. In one group (group 8), 

treatment onset was as late as 2 weeks after injury. The rational for this fairly late treatment 

onset was to investigate whether by modulating pathological mechanisms occurring late after 

trauma, such as apoptosis and scar formation, a benefit for functional recovery was still 

achievable.      Since the 25 µmol/kg dose appeared to become less effective with prolonged 

interval between injury and treatment onset, we decided to use a higher dose of quercetin for 

the delayed treatment onset experiments. An additional group (group 9) was introduced to 

investigate whether the effects of early treatment onset and later stage high-dose therapy 

would potentiate each other.  
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   Since our earlier studies had indicated that no statistically significant differences 

were seen between treatment duration of 4 and 10 days, several groups were introduced with 

shorter treatment duration, varying from one single injection to three days of treatment 

(groups 1 to 4).  

Seven animals of Group 5, six animals of Group 8, all animals of Group 9 and six 

saline controls were allowed to recover for 12 weeks after injury, to assess whether the 

improvement of motor function would be permanent beyond the end of the treatment period. 

All remaining animals were sacrificed six weeks after injury.   

 

Summary and description of the various experimental protocols used are provided in 

Table 5.1. 
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  Start treatment 

after SCI 

Duration of 

treatment 

Treatment 

schedule 

Total dose 

administered

Group 1  n = 6 
1 hr single injection 25 µmol/kg 25 µmol/kg 

Group 2  n = 5 1 hr 24 hr 25 µmol/kg 

twice daily 

75 µmol/kg 

Group 3  n = 12 1 hr 72 hr 25 µmol/kg 

twice daily 

175 µmol/kg 

Group 4  n = 6 1 hr 72 hr 25 µmol/kg 

three times daily 

250 µmol/kg 

Group 5  n = 14 1 hr 10 days 25 µmol/kg 

twice daily 

500 µmol/kg 

Group 6  n = 5 1 hr 10 days 25 µmol/kg 

three times daily 

750 µmol/kg 

Group 7  n = 12 12 hr 10 days 25 µmol/kg 

twice daily 

475 µmol/kg 

Group 8  n = 15 2 weeks 3 weeks 75 µmol/kg 

twice daily 

3.51 mmol/kg

Group 9  n = 7 1 hr 

 

+ 

 

2 weeks 

10 days 

 

+ 

 

3 weeks 

25 µmol/kg 

twice daily 

+ 

75 µmol/kg 

twice daily 

4.01 mmol/kg

Group 10 n = 23 1 hr, 12 hr or  

2 weeks 

24 hr � 3 weeks 3 ml saline / 

injection 

no quercetin 

 

TABLE 5.1: Summary of treatment protocols tested to establish the therapeutic window  

for quercetin administration.  

  n = animals in the group at beginning of the experiments 
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5.3.2 Moderate Head Trauma, modeled by Fluid Percussion Injury (FPI) 

The clinical picture of head injury is much more varied than that of spinal cord injury. This is 

mainly due to the higher complexity of structure and function in the brain when compared to 

the spinal cord. Mechanisms of cellular pathology, however, are expected to be similar in 

both CNS compartments. Therefore, we investigated whether quercetin, if administered on a 

dosing schedule similar to that used in the spinal cord injury model, would also show 

beneficial effects in the setting of head trauma. This would answer a practical relevant 

question. Since spinal cord trauma is frequently associated with head trauma (Iida et al, 1999; 

Holly et al, 2002), it would be indeed good to test whether quercetin, when administered as 

therapy for spinal cord injury, would not be harmful or even beneficial in the setting of 

combined head and spine injury. Concussion in human head trauma can be closely modeled 

by fluid percussion injury to the brain, an animal model initially described by McIntosh and 

colleagues (1989). This model has been extensively characterized. It has the advantage that 

many of the features seen in human brain trauma are present in this animal model, such as 

axonal injury, neutrophil-mediated and non-neutrophil-mediated damage, neuronal loss and 

gliosis (Cortez et al., 1989; Hovda et al., 1995; Soares et al., 1995; Hill-Felberg et al., 1999; 

Graham et al., 2000). Furthermore, the force resulting in damage can be well controlled; the 

extent of brain damage is clearly related to force of injury (Perri et al., 1997) 

We submitted adult male Sprague Dawley rats to moderate fluid percussion injury 

(2.0 to 2.2 atm) in anterior midline position, using the Virginia Commonwealth Impactor 

(Figure 5.5). The pressure of one atmosphere equals 14.7 pounds per square inch. Contrary to 

lateral fluid percussion injury, where the focus of tissue injury is found in the hippocampus 
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and damage detected mainly in the gray matter (Chen et al., 2003), with midline fluid 

percussion injury, the focus of damage is in the corpus callosum. Therefore, we were looking 

at a white matter injury. This appears to be particularly interesting in that the potentially 

salvagable structures in the setting of spinal cord injury are found in the white matter. In 

preparation of the procedure, animals in the experimental groups were anesthetized with a 

mixture of 2.5 % Halothane® in air. The heads of the animals were shaved and animals were 

placed on a warming pad to keep body temperature constant (controlled by rectal 

thermometer). Fixation in the stereotactic apparatus was performed with the fixation bars 

forming a straight trajectory through the openings of both external auditory canals. The 

shaven skin was disinfected with chlorhexidine and Betadine®, and sterile drapes were 

applied. After lowering the Halothane® content of the anesthetic mixture to 1.5 %, a 2 cm 

linear midline incision was performed to expose the periosteum. A burr hole of 4.5 mm 

diameter was set in the midline just behind the bregma. Using a fine rongeur, the burr hole 

then was extended to snugly fit the adapter for the fluid percussion transducer unit. Care was 

taken to avoid injury to the sinus and underlying dura mater. To achieve a complete seal 

between skull bone and the adapter, a mixture of cyanoacrylate (crazy glue) and acrylic 

powder was applied. Halothane® content in the anesthetic mixture was now reduced to 1 % 

and the seal was allowed to harden for 15 minutes. At this point, Halothane® was shut off 

completely, the connector tube from the fluid column was filled with warm normal saline and 

connected to the transducer unit. Once the animal started to regain consciousness, showing 

first spontaneous movements, the pre-set pendulum of the fluid percussion device was 

released to impact on the piston connected to the fluid column. Thus, a pulse of increased 

intracranial pressure was produced by fluid displacement from the column into the skull 
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cavity, resulting in temporary compression and displacement of the brain tissue underlying 

the point of impact. A digital oscillograph recorded the pressure generated by the fluid 

column, verifying that indeed all animals had been submitted to moderate fluid percussion 

injury. All animals arrested breathing for an interval of variable length (4 seconds and 

longer), immediately following the fluid percussion injury.   

 

FIGURE 5.5: Experimental set-up for fluid percussion injury. 

  A Pendulum with piston 

  B Fluid column 

  C Connection to transducer unit 

 

Severity of the resulting injury is determined by the angle and height from which the metal 

pendulum is dropped onto the rubber piston that is connected to the fluid column.  

A 
B

C 
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If post-traumatic respiratory arrest was longer than 20 seconds, support was given 

with short-term artificial respiration. Four of the 26 animals required short-term artificial 

respiration after the injury. Immediately after the injury, inhalation anesthesia with 

Halothane® was re-induced, the seal between bone and adapter was carefully broken and the 

adapter removed. Dura and sinus were checked for intactness and the adapter was checked 

for patency. The burr hole was plugged with bone wax, skin was stapled and the fixation bars 

of the stereotactic apparatus were removed. Inhalation anesthesia was terminated and animals 

were placed on a warming pad in the recovery cage.  

Injured animals were divided into two groups: one group received 25 µmol/kg 

quercetin intra-peritoneally, starting 1 hour after injury with continued treatment in 12-hour 

intervals, while animals in the second group received weight-adjusted doses of normal saline 

according to the same schedule (n = 13 per group). Out of each group, five animals were 

sacrificed 24 hr after injury, and five animals were sacrificed 72 hr after injury by 

Halothane® overdose and decapitation. All animals received their last injections about one 

hour before sacrifice. While animals used for electrophysiology experiments were beheaded 

and brains immediately extracted, animals used for histological and biochemical analysis 

were sacrificed by pericardiac perfusion with ice cold saline. 

 

Electrophysiology: The separated heads were placed in ice cold (< 3º C) artificial 

CSF (ACSF) saturated with 95% oxygen and 5% CO2 at pH 7.4 and brains were extracted 

within 2 minutes of death. The composition of the ACSF was 126 mM NaCl, 3 mM KCl, 1.4 

mM KH2PO4, 2.4 mM CaCl2, 1.3 mM MgSO4, 26 mM NaCO3 and 10 mM glucose. Brains 

were mounted on a vibrotome and 400 µm coronary sections were cut from the potential 
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injury area, which included the corpus callosum. Compound Action Potentials (CAP) were 

recorded on those vibrotome sections, while superfusion was continued with artificial CSF at 

body temperature, saturated with 95% O2 and 5% CO2 and delivered at a flow rate of 6-

8ml/min. For recording, slices were submerged in a closed, box-like superfusion chamber 

with small slits which allowed access to the electrodes (Tian and Baker, 2000). The CAPs 

were evoked by electric stimulation and recorded extracellularly at 1.0 mm from the 

stimulation site in the corpus callosum. The typical evoked CAP includes 3 negative peaks, 

and the CAP amplitude was quantified as voltage difference of the peak-to-peak 

measurement between the second negative peak and the positive peak preceding it. CAPs of 

injured animals were compared with CAPs of 5 healthy control animals. Acquisition and 

interpretation of CAPs were performed by Ming Zhao and Guo-Fen Tian from the Cara 

Phelan Trauma Centre at St. Michael�s Hospital in Toronto. 

Measurements of action potentials after brain trauma for assessment of posttraumatic 

damage and recovery have been used in several laboratories (Akasu et al., 2002; Ross and 

Soltesz, 2000; Reeves et al., 1995). To our knowledge, no published data exist where CAPs 

have been used to assess protection / recovery after therapeutic intervention.  
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5.4 Assessing recovery of motor function 

As Langworthy (1970) points out in his review of the studies of Derek Denny-Brown, 

movement is a series of postures, with each movement itself being a modification of the 

preceding posture. After injury to the nervous system, reflex motor responses to sensory 

stimuli might be lost. The resulting defect might be a loss of motor function and the ability to 

maintain posture, depending on location and extent of the trauma. In conclusion, a valid 

method for assessment of therapeutic efficacy would have to include standardized and easily 

reproducible measurements regarding differences in posture, with which the extent of 

recovery of motor function in the initially paralyzed extremities of experimental subjects can 

be assessed.   

Behavioral testing for all long-term animals was performed once weekly.  For 

assessment of motor function recovery in the hindlimbs, the BBB scale and inclined plane 

test (Angle board scores) were used.   

 

5.4.1 Angle board score 

Eidelberg and colleagues used an inclined ramp to assess motor function in spinal 

cord-injured ferrets (Eidelberg et al., 1976). The system was consequently adapted for rats by 

Rivlin and Tator (1977). Other than with the original Eidelberg system, no operant 

conditioning, i. e. no training of the animals previous to the test situation, is required with 

this modified scoring system. Rats are placed horizontally on an inclined plane, and the score 

assigned is the maximum angle at which the rat can maintain its position for a minimum of 

five seconds without falling. According to Rivlin and Tator, normal, i.e. non-injured rats 

were able to hold position up to about 80º, while rats with transected cords maintained 
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themselves at angles around 23º. The angle at which uninjured, healthy rats can maintain 

position on the inclined plane depends very much on the surface material used. In our 

experience, healthy, uninjured rats maintained themselves at levels between 45 - 55º (Fig. 

5.6).  Differences in scores obtained for healthy rats in other laboratories are most likely due 

to differences in the surface of the Angle boards used. While the scores of this test system 

give us some information about the strength in the hind limbs, we do not gain significant 

information about posture and voluntary limb positioning. 

 

 

FIGURE 5.6: Angle board test. 

The non-injured rat is able to hold position on the inclined plane raised to an 

angle of 50°. 
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5.4.2 BBB score, developed by Basso, Beattie and Bresnahan 

The BBB scoring system, on the other hand, assesses motor function through posture 

and positioning of the hind limbs in an open field test, thereby relaying indirectly also 

information about strength in the hind limb muscles (Basso et al., 1995). Animals were 

acclimatized to the test situation twice daily for 5 minutes, for at least 4 days before surgery 

(Fig. 5.7). With the BBB scoring system, points on a scale from 0 to 21 are awarded to assess 

posture and positioning of the hind limbs. Zero denotes no noticeable movement in the hind 

limbs, while 21 describes a perfectly healthy, walking animal (Fig. 5.8). It has been shown in 

a multi-center study that the inter-observer difference amounts to two points (Basso et al., 

1996).  However, from a clinical aspect, a difference of one point on the BBB scale could be 

significant, where it denotes the difference between walking and non-walking animals. 

Assessment was performed by two observers, of whom at least one was blinded to the 

treatment.    
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FIGURE 5.7: Animals for long-term experiments are acclimatized to handling and to the 

test situation twice daily for 5 minutes, for at least 4 days before surgery. 

Although shy on arrival, they soon adapt to the new environment and start 

exploring the new space. 

 

 

 Acclimatization

Day 1

Day 2

Day 3

Day 5
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Score  Verbal description of hind limb movement 
0 No observable hind limb movement 

1 Slight movement of one or two joints 

2 Extensive movement of one joint or extensive movement of one and slight movement of another 

joint 
3 Extensive movement of two joints 

4 Slight movments of all three joints of the hind limbs 

5 Slight movements of two joints and extensive movement of the third joint 

6 Extensive movements of two joints and slight movement of the third joint 

7 Extensive movement of all three joints 

8 Sweeping without weight support or plantar paw placement without weight support 

9 Plantar paw placement with weight support in stance only 

10 Occasional weight supported plantar steps, no fore limb (FL) � hind limb (HL) coordination 

11 Frequent to consistent weight supported plantar steps and no FL - HL coordination 

12 Frequent to consistent weight supported plantar steps and occasional FL � HL coordination 

13 Frequent to consistent weight supported plantar steps and frequent FL � HL coordination 

14 Consistent weight supported steps, consistent FL � HL coordination, paw rotated on initial contact 

15 Consistent plantar stepping and FL � HL coordination; no toe clearance during forward limb 

advancement; paw position predominantly parallel to body at initial contact 

16 Consistent plantar stepping and FL � HL coordination; toe clearance frequently during forward 

limb advancement; paw position predominantly parallel to body at contact and rotated at lift off 

17 Consistent plantar stepping and FL � HL coordination; toe clearance frequently during forward 

limb advancement; paw position predominantly parallel to body at contact and lift off  

18 Consistent plantar stepping and FL � HL coordination; toe clearance consistently during forward 

limb advancement; paw position predominantly parallel to body at contact and rotated at lift off  

19 Consistent plantar stepping and FL � HL coordination; toe clearance consistently during forward 

limb advancement; paw position predominantly parallel to body at contact and lift off 

20 Consistent plantar stepping and FL � HL coordination; consistent toe clearance; paw position  

predominantly parallel to body at contact and lift off; tail consistently up; trunk instability 

21 Healthy animal (consistent stepping, FL-HL coordination, proper paw position, tail up,  

trunk stability) 

 

Table 5.2 BBB score assessment (after Basso et al, 1995) 
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FIGURE 5.8: Weekly BBB scoring as assessment of spontaneous hind limb movement. 

 

 

a): BBB 1 = slight movement in one or two joints. 
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b): BBB 7 = extensive movement of all three joints. 

 

 

 

 

 

 

 

 

 

 

 

 

c):     BBB 14 = consistent fore limb � hind limb coordination, weight supported steps. 
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5.5. Histology 

At the end of the observation period, animals were sacrificed under Halothane® 

anesthesia by intracardiac perfusion. In the first step of perfusion, we used 1% sodium nitrite 

in PBS (1 ml/g rat). Further processing differed between the experiments. For the 

experiments described in chapter 6, the first step was followed by perfusion with similar 

volumes of FAM (Formaldehyde : Acetic acid : Methanol = 1 : 1 : 8). Spinal cords were 

isolated and embedded in paraffin two days later. For all other experiments, perfusion with 

4% paraformaldehyde followed the first step. Spinal cords were isolated and stored in 4% 

paraformaldehyde overnight, after which they were switched to 30% glucose (as 

cryoprotectant) for 48 hr. For analysis of tissue from rats submitted to moderate head trauma, 

frozen coronary sections of 20 µm thickness were mounted on gelatin-coated glass slides. 

Alternating sections were stained with Hematoxylin & Eosin (H&E stain) and LFB-

Cresylviolet stain. 

 

 

Hematoxylin & Eosin (H&E): This inexpensive, easy to perform stain allows good 

histological orientation about tissue structures, including the formation of post-traumatic 

cavities within the spinal cord. Hematoxylin is a basic dye and intercalates with acidic tissue 

structures, staining them in shades of blue (i.e. cellular nuclei). Eosin, an acidic dye, stains 

cytoplasmic structures in shades of pink. 
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 Luxol Fast Blue (LFB)-Cresylviolet: Luxol Fast Blue stain is used to distinguish myelin 

sheaths, which appear blue, in contrast to structures containing Nissl substance, which stain 

pink-red.    

 

Mallory stain for iron: This stain is used to demonstrate presence or absence of ferric iron 

(Fe3+) in the tissue (Mallory, 1961). Animals were sacrificed by pericardiac perfusion with 

1% nitrite in PBS and FAM at 4 weeks after spinal cord injury. Sections of 10 µm thickness 

from the center of the injury and adjacent segments were mounted, deparaffinized in a 

xylene-to-alcohol series and immersed in a 5% hydrochloric acid � potassium ferrocyanide 

solution (1 : 1) for 20 minutes. Ferric iron stains light blue. After rinsing with distilled water, 

sections were counterstained with nuclear fast red in 5% aluminum sulfate for 5 minutes.   

 

Caspase-3 expression: Animals were sacrificed by perfusion under inhalation anesthesia 

with Halothane®, using 1% sodium nitrite in PBS (1 ml/r rat) and equal volumes of 4% 

paraformaldehyde (PFA). Spinal cords were isolated immediately and stored in 4% PFA 

overnight, after which they were transferred into 30% sucrose solution for 48 hr. Spinal cords 

were then cut to pieces containing three spinal cord segments and embedded in OTC. 

Cryosections of 20 µm thickness were mounted on Superfrost plus® slides (VWR) and 

stored at �70°C until further processing. An anti-human / mouse caspase-3 antibody (R&D 

System Inc.) that recognizes only activated caspase-3 was used in a dilution of 1:500 to 

assess whether administration of quercetin inhibited caspase-3 activation in vivo. Slides with 

frozen sections were equilibrated to room temperature for 1 hr and washed with PBS. The 

slides were immersed in methanol and H2O2 (1:3) for 30 minutes, followed by three 5 minute 
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wash cycles with PBS. Blocking serum was applied for 2 hr, after which sections were 

incubated with the primary antibody overnight. After another three 5 minute wash cycles 

with PBS, the secondary antibody (polyclonal anti-rabbit, Vector) was applied for 1 hr. The 

sections were washed again with PBS, and the slides were finally developed using DAB kit 

(Vector) according to instructions. Semi-quantitative assessment of staining was performed 

at light microscopic level. 
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5.8 Biochemistry 

Spectrophotometric assay for myeloperoxidase: Animals were sacrificed by 

pericardiac perfusion under inhalation anesthesia with Halothane®, using about 300 ml ice 

cold physiological saline per animal. Before saline was introduced, about 3 ml of blood were 

aspirated. The whole blood was then centrifuged for 3 minutes at maximum speed. The fluid 

phase was aspirated and stored in cryovials at -70ºC until biochemical assays were 

performed. The spine-muscle blocks were isolated quickly and cooled by pouring liquid 

nitrogen over the tissue repeatedly. The isolated tissue blocks were fixed on a corkboard, and 

serial laminectomy was performed from mid-cervical to lumbar levels, while cooling with 

liquid nitrogen continued at regular intervals. Finally, the spinal cord tissue was harvested as 

single segments and stored in cryovials at -70º C awaiting further analysis. Myeloperoxidase 

activity was measured in both spinal cord tissue and plasma.  

For the measurement of myeloperoxidase activity in spinal cord tissue, the 

spectrophotometric method as described by Carlson and colleagues (Carlson et al., 1998) was 

used. Briefly, spinal cord segments from the site of injury (T6-8) and segments cranial (T4) 

and caudal (T10) to the injury site were homogenized mechanically and sonicated in 50 mM 

HTAB (phosphate buffer, pH 6, containing 0.5% hexadecyltrimethylammonium bromide) on 

ice, two times for 3 seconds and once for 5 seconds. Hexadecyltrimethylammonium bromide 

is a detergent used to extract MPO from the neutrophil granules (Krawisz et al, 1984). The 

sonicated homogenates were centrifuged for 15 minutes at 13,000 rpm and 4° C, after which 

the supernatant was transferred to a new centrifuge tube. Absorbance at 460 nm was 

measured after adding o-dianisidine dihydrochloride in potassium phosphate buffer (pH 6.0) 
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with H2O2 to the supernatant, using a spectrophotometer (SPECTRA MAX 190, Molecular 

Devices). Absorbance was calculated by computer software in the Endpoint protocol. Since 

the basis of this assay is the reaction of hydrogen peroxide with o-dianisidine 

dihydrochloride to form hypochlorous acid, one unit of myeloperoxidase activity is defined 

as the amount degrading 1 µmol of peroxide per minute at 25° C.  For measurement of 

myeloperoxidase activity in serum, the serum collected at sacrifice of the animals was diluted 

1:2 with HTAB. From there, the same procedure as described above for the spinal cord tissue 

was used. All analyses were performed in triplicate. 

 

Glutathione assay: The tissue content of reduced glutathione content was determined 

in brains from rats submitted to moderate head trauma, using the monochlorbimane (mCB) 

fluorometric method as described in Kamencic et al. (2000). The homogenized frozen brain 

samples were weighed, thawed and sonicated in 20 vol of cold 50 mM Tris buffer (pH 7.4). 

Monochlorbimane was added to a final concentration of 100 µM along with 1 U/ml 

glutathione S-transferase obtained from equine liver, after which samples were incubated at 

room temperature for 30 minutes. The concentration of the GSH-mCB adduct was calculated 

from measurements using a Labsystems Fluoroskan II microtiterplate reader with excitation 

at 380 nm and emission at 470 nm. Each sample was assayed in triplicate. Protein content 

was determined using the BCA method as described by Smith and colleagues (Smith et al., 

1985). GSH content was expressed as nmol GSH / mg protein. Determination of glutathione 

levels was performed by Dr. Huse Kamencic. 
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Chapter 6 

 

QUERCETIN PROMOTES FUNCTIONAL RECOVERY FOLLOWING 

ACUTE SPINAL CORD INJURY 

 

 

Adapted from: 

E. Schültke, E. Kendall, H. Kamencic, Z. Ghong, R. W. Griebel, B.H.J. Juurlink 

J Neurotrauma 2003, 20(6): 583-91 
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6. 1 Introduction 

The clinical picture of acute traumatic spinal cord injury is characterized by edema, 

inflammation and vascular changes.  The latter include ischemia, impaired autoregulation, 

vasospasm and contusional hemorrhages (Tator, 1991; Tator and Fehlings, 1991).  

Hemorrhages can be found at microscopic level even in cases where, after spinal fracture, the 

spinal cord appears intact at macroscopic level (Schültke and Harruff, 2000).  In cases of 

compression injury of the spinal cord, hemorrhages are usually visible at the macroscopic 

level.  Under conditions of hemorrhage when red blood cells are removed from the high 

oxygen environment of the circulation, oxyhemoglobin forms deoxyhemoglobin; the 

deoxyhemoglobin undergoes denaturation to methemoglobin while the heme iron becomes 

oxidized from the ferrous Fe2+ to the ferric Fe3+ form (Bradley, 1993).  Consequently, 

hemoglobin disintegrates and iron is released in chelatable form (Comporti et al., 2002).  The 

disintegration products of hemoglobin contribute to oxidative stress and apoptosis in the CNS 

(Gaetani et al., 1998; Matz et al., 2000).  The fact that ferritin is upregulated and transferrin is 

downregulated following spinal cord injury in humans (Koszyca et al., 2002) indicates that 

release of free iron ions occurs following spinal cord injury in humans. 

Chelatable iron products catalyze lipid membrane peroxidation in the central nervous 

system, causing functional and structural loss of cells (Juurlink and Paterson, 1998).  The 

iron ions released from hemoglobin accumulated in tissues can also catalyze the formation of 

hydroxyl radicals from hydrogen peroxide (Gutteridge et al., 1981) generated by phagocytes 

attracted to the site of injury.  Hydroxyl radicals in turn contribute significantly to the 

production of lipid free radicals from polyunsaturated fatty acids and in the presence of 

molecular oxygen initiate chains of lipid peroxidation (Braughler and Hall, 1992).  Fe2+ and 
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Fe3+ catalyze the formation of alkoxyl radicals and peroxyl radicals respectively from the 

formed lipid hydroperoxides, thereby promoting the lipid peroxidation cascade (Halliwell 

and Gutteridge, 1989).  Hence, any compound acting as an iron chelator ought to decrease 

damage created by secondary injury in the setting of CNS injury. 

 Some polyphenolic compounds such as quercetin efficiently chelate iron (Afanas�ev 

et al., 1988; van Acker et al., 1995; Morel et al., 1993; Romanova et al., 2001).  Quercetin is 

a flavonoid.  Flavonoids are diphenylpyrones having two benzene rings (A and B) linked by 

a heterocyclic pyrone ring.  The critical molecular feature of many iron chelators is the 

presence of a bidentate structure as represented by carbonyl and an adjacent hydroxyl moiety 

or two adjacent hydroxyl moieties (Hider et al., 1994; Galey, 1997).  Such a bidentate 

structure is present in the 3 (or 5) hydroxyl and 4 carbonyl as well as the 3� and 4� hydroxyl 

groups of quercetin (Fig. 1).  Electrospray mass spectrometry studies indicate that it is the 5 

hydroxyl and the 4 carbonyl moieties that are involved in quercetin�s ability to chelate Fe2+ 

(Fernandez et al., 2002).  Not only does quercetin chelate Fe2+ but it has been found to 

suppress the Fenton reaction (Cheng and Breen, 2000) and decrease Fe2+-mediated 

peroxidation of unsaturated fatty acids (Ratty and Das, 1988; Vasilyeva et al., 2000).  

Furthermore, quercetin, contrary to its rutinoside rutin, is able to cross the cell membrane of 

erythrocytes (Sorata et al., 1984; Ben-Hur et al., 1993).   

In the present study we provide proof-of-principle data indicating that quercetin as a 

therapeutic intervention following spinal cord injury should be pursued further. 
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6.2 Materials and Methods 

MRI examination of iron chelation:  There is a linear relationship between Fe2+ 

concentration and shortening of the T1 relaxation time (Vymazal et al., 1996).  A T1 

relaxation experiment was, therefore, performed to determine the relaxation rate of water 

protons in the presence of different concentrations (1-100 µM) of FeSO4.  The factorial 

experiment was expanded by including increasing concentrations of quercetin (0-100 µM), 

an agent known to preferentially chelate Fe2+ ions.  Data were collected on phantom spinal 

cords constructed in 15 ml culture tubes containing 2% agarose in physiological saline as 

described in section 5.2.  

First animal experiment: Twenty-eight animals underwent standardized spinal cord 

compression injury as described in section 5.3.1.   The animals were randomly assigned to 4 

therapeutic groups and 1 saline control group (n = 6 in each) using a single blinded protocol.  

Animals were treated with different doses (0, 5, 25, 50 and 100 µmol/kg) of quercetin 

(Sigma, St. Louis, MO) or saline vehicle 1 hr following injury and then every 12 hr.  Studies 

have shown that the serum half-life of intravenously administered flavonoids is about 12 hr 

(Griffiths and Barrow, 1992) and plasma half-life of orally administered quercetin of 4 hr 

with an elimination half-life of 16 hr (Hollman et al., 1996); hence, administration at 12 hr 

intervals appeared reasonable.  Since the capacity of iron chelation was the targeted property 

in our compound, the quercetin dose range chosen based on MRI data.  Quercetin dihydrate, 

poorly soluble in aqueous solutions, was suspended in physiological saline solution. The 

suspension was autoclaved for 20 minutes at 121 °C and consequently aliquoted into pre-

sterilized vials.   Rats were weighed daily, and an overall of 8 weight-adjusted doses of 

quercetin dihydrate were administered to each animal in the therapeutic groups over a period 
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of 4 days via the intraperitoneal catheter at 12 hr intervals.  Three additional animals received 

laminectomy only, but no spinal cord injury, to exclude impairment of neurological function 

by surgical trauma unrelated to the spinal cord injury. 

 Behavioral testing, using BBB and Angle board scores as described in section 5.4,   

was performed once weekly for all animals by at least two observers blinded to the treatment.  

A crude assessment of nociception was also performed.  This was done by pinching both 

hindlimbs and the tail with a straight, non-toothed forcep and then observing for withdrawal 

response.  

 

Second animal experiment: This experiment was designed to answer two questions: 1) To 

determine the dose at which quercetin shows no therapeutic effect, and 2) Determine whether 

a treatment period longer than 4 days gave rise to an enhanced therapeutic effect.  Sixteen 

animals were randomly, and blinded to the researcher, assigned to two therapeutic groups 

and one control group.  Mid-thoracic spinal cord injury was produced following the same 

procedure as described above.  Animals in the first therapeutic group (n=4) received 2.5 

µmol/kg quercetin and animals in the second therapeutic group (n=6) received 25 µmol/kg, 

whereas animals in the control group received physiological saline solution in weight-

adjusted doses (n=6).  Treatment was started 1 hr following injury and then every 12 hr for a 

period of 10 days. 

 

Iron staining: Mallory stain for iron was performed on sections from the site of injury and 

adjacent spinal cord segments, as described in section 5.5. 
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6.3 Results 

MRI examination of iron chelation: Neither quercetin in agarose nor the 2% agarose exerted 

an effect on T1 signal.  Fe2+ ions originating from FeSO4 (1-100 µM) in aqueous solution 

caused a shortening of the relaxation rate of the T1 (proton) signal.  When quercetin was 

added to the aqueous FeSO4 solution in various concentrations, the iron relaxation effect on 

the T1 signal was significantly counteracted (Fig. 6.1).  Changes of the T1 relaxation rate 

caused by Fe2+ ions originating from FeSO4 in aqueous solution were maximally antagonized 

by quercetin at a concentration of 25 µM.  Further increases in quercetin concentration had 

no additional effect.  
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FIGURE 6.1: Impact of the presence of quercetin on iron-induce T1 signal relaxation. 

The shortening of the T1 proton signal caused by Fe2+ ions in the agarose 

phantom is partially reversed by quercetin. 
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First animal experiment: All rats were completely paraplegic after the injury.  Bladder 

function was lost and animals required manual expression of the bladder three times daily for 

about two weeks, after which bladder function was gradually recovered in most of the 

animals (in treated as well as in control animals).  

 At 1 week, nociception was recovered in both hind limbs in all but 1 animal (4.2%) 

while nociception was recovered in the tail in all but 5 animals (20.8%).  There were no 

significant differences in distribution of findings throughout the various treatment groups.  

Nociception in both hind limbs and tail were recovered in all animals by 2 weeks after the 

injury. 

 The mean BBB scores for the different treatment groups are indicated in Fig. 6.2.  

Three of the 6 animals in each of the four quercetin treatment groups had BBB scores of 10 

or greater, but not one of the saline treated animals achieved a BBB score greater than 9.  The 

range in BBB scores for saline were (8, 8, 9, 8, 8, 6) and for quercetin-treated groups were 5 

µmol/kg (16, 8, 11, 14, 9, 7), 25 µmol/kg (14, 8, 8, 16, 15, 8) 50 µmol/kg (8,12, 8, 11, 15, 7), 

100 µmo/kg (20, 8, 8, 16, 10, 7).  There were no significant differences amongst the four 

quercetin-treatment groups but there was a significant difference between the quercetin-

treated groups and saline vehicle-treated group (P<0.0012, Welch�s t-test). 
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FIGURE 6.2: BBB scores at 4 weeks after mid-thoracic spinal cord injury with 40 g clip 

(first experiment). Treatment was with saline or quercetin at 5, 15, 50 and 100 

µmol/kg. Depicted are means ± SDs. There are no statistically significant 

differences amongst the four treatment groups while there is a significant 

difference between quercetin-treated animals (all groups pooled) and the 

saline controls (p < 0.0012, Welch�s test).  



 125

Second animal experiment: In this set of experiments we wished to test whether the length 

of treatment affected outcome and also to determine whether a dose of 2.5µmoles/kg would 

have a therapeutic effect.  Animals were treated with quercetin at 2.5 or 25 µmoles/kg or 

saline vehicle for 10 days.  BBB score outcomes for this experiment are illustrated in Fig. 

6.3.  With the lower dose group, only 1 out of 4 animals achieved a BBB score of 10 or better 

(BBB scores were 8, 8, 8, 16) by 4 weeks.  Five out of 6 animals in the group treated with the 

higher dose of quercetin were weight bearing and walking at week 4 following injury.  The 

quality of walking in this group, as rated according to BBB scale, varied between 11 and 20 

(BBB 8, 11, 12, 14, 16, 20).  In the control group receiving saline vehicle only, not one of the 

animals was walking at any time (BBB 3, 8, 8, 8, 8, 9).  While improvement between week 1 

and week 4 was not significant for the group treated with the lower drug dose, the 

performance in the group treated with the higher dose of quercetin improved significantly 

during the same time period.  The difference in outcome between the therapeutic group 

receiving the lower dose and saline controls was not significant (ANOVA with post-hoc 

Tukey test).  The animals treated with the higher quercetin dose did significantly better than 

the saline-treated controls (p<0.05, ANOVA with post-hoc Tukey test). 
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FIGURE 6.3:  BBB scores second 1 and 4 weeks after mid-thoracic spinal cord injury with 

40 g clip (second experiment). 10-day treatment with 25 µmol/kg quercetin, 

twice a day. Depicted are means ± SDs. There is a significant difference in 

BBB scores between treatments with 25 and 2.5 µmol/kg quercetin. There is 

also significant difference between 25 µmol/kg and saline controls (p < 0.5, 

ANOVA with post-hoc Tukey test). 
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Iron Localization: Histochemical analysis for iron was performed at 24 hr and 4 weeks after 

injury in the spinal cords of animals treated for 4 days with either quercetin or saline vehicle 

(Fig. 6.4).  Mallory�s iron stain was negative in tissue from all animals sacrificed 24 hr after 

injury, in quercetin-terated animals as well as in those who received saline vehicle only. In 

tissue from animals which survived 4 weeks after the trauma, Mallory�s iron stain 

demonstrated macrophage-like cells positive for ferric iron in tissue from the core of the 

spinal cord damage in all the saline-treated controls, but no iron was detectable in the tissues 

of animals treated with quercetin (all therapeutic groups).  
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FIGURE 6.4: Representative micrographs of spinal cord sections at level of the lesion 4 

weeks after spinal cord injury stained for iron using Mallory�s stain (iron stains blue).  

A. Saline-treated animal.  B.  Animal treated with quercetin (5 µmol/kg) for 4 days.  

Iron-containing (green-blue) cells are clearly seen in the spinal cords of the saline 

vehicle-treated but not in the quercetin-treated rats.  

A: saline-treated control 

B: quercetin-treated 
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6.4 Discussion 

Our research demonstrates that quercetin administration following spinal cord 

compression injury promotes the retention of function.  In the 4-day quercetin treatment 

groups one-half of all the animals treated achieved a BBB score of 10 (i.e., occasional weight 

supported plantar stepping) whereas not one of the saline-treated animals achieved a BBB 

score greater than 9.  In other experiments (Kamencic et al., 2001) we have never seen a 

saline-treated injured rat achieve a BBB score of greater than 9. 

Since most acute traumatic spinal cord injuries do not involve complete transection of 

the cord, there are two possible approaches to promote function following spinal cord injury: 

1) decrease the extent of secondary damage thereby promoting retention of white matter 

tracts, 2) promote axon regeneration.  Our experiments address the first possibility.  A 

number of experimental approaches have been used to decrease secondary damage.  Several 

of these involve decreasing the likelihood of infiltration of inflammatory cells, for example, 

through monocyte depletion (Popovich et al., 1999), neutrophil depletion (Taoka et al., 1997) 

or by knocking out cell adhesion molecules required for infiltration of inflammatory cells 

(Farooque et al., 1999).  Although these approaches are of theoretical interest and help 

delineate the role of inflammatory cells in promoting secondary damage, they are unlikely to 

be useful therapeutically.  More therapeutically likely approaches involve administration of 

agents that interfere with, for example, activation of cell death cascades such as basic 

fibroblast growth factor (Rabchevsky et al., 1999; 2000; Cuevas and Carceller, 2001).  Other 

compounds tested include methylprednisolone, tirilazad mesylate, GM1 ganglioside 

(Constantini and Young, 1994; Koc et al., 1999) and the nitric oxide synthase inhibitor, 

aminoguanidine (Chatzipanteli et al., 2002).  Only few compounds, though, have made it into 
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clinical trial.  The latter group includes tirilazad mesylate, GM1 ganglioside and 

methylprednisolone.  While for the GM1 ganglioside the mechanism of action is not well 

understood (Nockels and Young, 1992), the major focus of attention for methylprednisolone 

and the non-glucocorticoid tirilazad mesylate has been the prevention of lipid membrane 

peroxidation and reduction in inflammatory cytokine production (Braughler and Hall, 1992; 

Xu et al., 1998; Hall, 2001).  There is still considerable controversy regarding the clinical 

efficacy of these compounds (Fehlings and Bracken, 2001; Hurlbert, 2001).   

Based on the study of the toxic effects of hemoglobin on spinal cord neurons in 

culture, Regan pointed out that release and subsequent degradation of hemoglobin from 

erythrocytes in the event of hemorrhage after spinal cord injury might contribute to neuronal 

loss (Regan and Gou, 1998).  Indeed, the ferritin upregulation seen after spinal cord injury in 

humans (Koczyca et al., 2002) supports this notion.  Hemoglobin disintegrates to chelatable 

breakdown products, in the course of which conformational changes occur from the ferrous 

states of hemoglobin and deoxyhemoglobin into the ferric states of methemoglobin and 

hemosiderin accompanied by release of some iron ions (Comporti et al., 2002).  The 

formation of methemoglobin with associated iron ion release has been associated with 

increased activity of lipid peroxidation (Ferrali et al., 1992).  Despite the fact that contusional 

hemorrhage is a common problem with acute traumatic spinal cord injury, none of the 

compounds tested in a major clinical trial so far has any documented significant capacity to 

chelate iron, although one of the mechanisms of action of tirilazad mesylate is the inhibition 

of iron-mediated lipid peroxidation through the scavenging of lipid peroxyl (Hall, 1995; Koc 

et al., 1999).  To date, with the exception of one study, no examination of the effect of an 

iron chelator following spinal cord injury has been performed.  The exception is a study 
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using 2,2�bipyridine to chelate iron following sectional lesions of the corticospinal tract 

(Weidner et al., 1999) in order to determine the effect of inhibition of collagen formation on 

corticospinal tract regeneration; here, 2.2�-bipyridine had no effect on axon regeneration.   

As noted in the �Introduction�, quercetin has potentially a number of distinct 

neuroprotective activities.  The evidence suggests that one of the more prominent protective 

activities of quercetin is its ability to chelate iron (Sestili et al., 1998).  The MRI results in 

our experiment indicate that T1 relaxation is a sensitive probe for Fe2+-associated protons 

with iron concentrations ranging from 1 µM to 100 µM, at least in a phantom comprised of 

agarose and saline.  Quercetin was demonstrated to be effective in antagonizing the 

relaxation effect of T1 proton signal caused by such concentrations of Fe2+.  The T1 signal 

induced by 1-10 µM Fe2+ could be antagonized by 5 µM quercetin while 100 µM Fe2+ could 

be antagonized by 25 µM quercetin.  These observations suggested that the potential 

therapeutic dose of quercetin could lie between 5 and 25 µmoles quercetin/kg body weight.  

Indeed, this is what the animal studies indicated. The data demonstrate that treatment with 

quercetin at doses ranging from 5 to 100 µmol/kg administered 1 hr after injury and then 

every 12 hr for 4 days produces significantly better recovery from injury than saline vehicle-

treatment.  When the quercetin dose administered was reduced to 2.5 µmol/kg, no significant 

therapeutic effect was seen.  At the therapeutic dose of 25 µmol/kg no significant differences 

in outcome was seen whether quercetin was administered twice a day for 4 days or for 10 

days.   

The therapeutic effect of quercetin could be due to a variety of mechanisms, as 

outlined in the Introduction.  One possibility is that quercetin�s therapeutic effect is mediated, 

in part, through chelation of iron.  The 5-25 µmol/kg at which a therapeutic effect was seen is 
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low in comparison to doses of iron chelators used in other injury model systems, for example 

500 µmol/kg 2,2�-dipyridyl in a primate model of subarachnoid hemmorrhage (Horky et al., 

1998); however, in most of these model systems the chelator was given as a single bolus.  

That part of the therapeutic effect of quercetin is iron chelation is supported by the fact that 

the Mallory stain, a modification of the original Perl�s stain designed for detection of ferric 

iron, usually in the form of hemosiderin or ferritin (Thompson, 1966), showed positive cells 

only in saline vehicle-treated animals 4 weeks after injury, a time point at which it is 

reasonable to expect the presence of hemosiderin at the site of injury (Bradley, 1993).  The 

ferric iron-containing cells had the morphology of macrophages, which is to be expected by 

this time following injury (Bradley, 1993).   

In summary, the results of our experiments support our working hypothesis that 

administration of the flavonoid quercetin improves recovery of motor function after acute 

traumatic spinal cord injury.  Further research is required to delineate the therapeutic window 

and mechanisms by which quercetin exerts its therapeutic effects. 
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7.1 Introduction 

 The concept of secondary injury is based on the observation that, hours to weeks 

after the trauma, cell death by necrosis or apoptosis is induced in cellular structures 

previously undamaged by the primary mechanical impact, and that damage becomes 

permanent in tissue structures which potentially could have recovered (Crowe et al., 1997; 

Shuman et al., 1997; Beattie et al., 2002). Mechanisms contributing to this spreading damage 

include vascular dysregulation and ischemia, edema formation, traumatic hemorrhage, lipid 

membrane peroxidation and inflammatory processes (Means and Anderson, 1983; Tator and 

Fehlings, 1991; Tator and Koyanagi, 1997; Sekhon and Fehlings, 2001; Tator, 2002). It has 

been suggested that loss of neurological function after spinal cord injury is predominantly 

caused by loss of functional white matter tracts (Rosenberg et al., 1999). Studies in an animal 

model of spinal cord compression injury have shown that survival of as little as 10% of all 

axons in the rat spinal cord is sufficient to support significant motor function (Kamencic et 

al, 2001; Fehlings and Tator, 1995). Therefore, protection of even a small number of 

primarily undamaged axons from delayed cell death may result in a considerable difference 

in functional outcome for the patient. Any compound curbing one or more pathomechanisms 

of the secondary injury complex should be considered a potentially beneficial compound in 

the treatment of acute traumatic spinal cord injury, provided its potential adverse effects are 

negligible.  

 Quercetin, a well-studied member of the flavonoid family, could be a valuable 

compound to be tested in this setting. In previous experiments, we have found support for the 

hypothesis that the capacity of quercetin to chelate iron contributes significantly to the 

attenuation of oxidative stress after SCI, resulting in improved recovery of motor function 
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(Schültke et al., 2003a). We have shown that, after application of a clip with 40 g closing 

force, a high percentage of animals recovered motor function in their formerly paraplegic 

hind limbs sufficient to support stepping / walking (BBB ≥ 10), if administration of quercetin 

was started one hour after the injury. Although iron chelation is one possible explanation for 

the quercetin-mediated recovery of motor function, more than this one capacity of quercetin 

appears to be involved in its neuroprotective action. Among the flavonoids studied, quercetin 

ranks amongst those with the highest anti-oxidative potential (Letan, 1967; Cavallini et al., 

1978; van Acker et al., 1995; Zielińska et al., 2001).   

The first days after spinal cord injury are characterized by an influx of neutrophils 

and macrophages into the tissue at the site of injury and adjacent spinal cord segments in 

both animal model and human patients (Matteo and Smith, 1988; Anderson, 1992; Carlson et 

al., 1998). Neutrophils, when stimulated, generate potent reactive oxygen species (Hampton 

et al., 1998; Winterbourn et al., 1985; Badwey and Karnovsky, 1980; Badwey et al., 1991). 

Superoxide anion radicals (O2
●-) are generated by activation of the enzyme NADPH oxidase 

and subsequently converted to other reactive species including H2O2 (Roos, 1991a and 

1991b).  

 

(7.1)  2O2
• - + 2H+ ⇒ H2O2    + O2 

 

The oxidant activity of H2O2 is significantly enhanced by the action of 

myeloperoxidase, a hemoprotein enzyme usually stored in the granules of neutrophils. 

Myeloperoxidase catalyzes the reaction of hydrogen peroxide and cloride anions, generating 

hypochlorous acid (HOCl) (reaction 7.2) and chloramines (reaction 7.3) which has a 
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reactivity about two orders of magnitude higher than that of H2O2 alone (Weiss et al., 1982; 

Thomas et al, 1983; Pincemail et al., 1988; Rodrigues et al., 2002; Gaut et al., 2001).  

 

(7.2) H2O2 + Cl-   +    H+     ⇒ HOCl     + H 2O 

 

(7.3) HOCl     + R-NH2  ⇒ RNH-Cl + H2O 

 

These oxidant species, together with hydrolytic enzymes, are released into the 

extracellular space, where they oxidize DNA, proteins and lipids, increasing the volume of 

secondary damage (Prutz, 1996; Selloum et al., 2001). The extent of tissue damage was 

reflected in increased formation of protein carbonyls. The extent of carbonyl formation was 

significantly attenuated in the presence of glutathione. In the setting of spinal cord injury, the 

increased demand for repair will quickly deplete the cytoprotective glutathione, so that 

potentially reversible damage becomes permanent (Juurlink and Paterson, 1998). Quercetin 

has been shown in vitro to decrease myeloperoxidase activity in human neutrophils in a dose-

dependent manner, thereby intercepting and limiting the development of pathology just 

described (Pincemail et al., 1988). Alternatively, quercetin might reduce neutrophil 

infiltration, which would be reflected in decrease of myeloperoxidase activity at the site of 

injury. Also, there is evidence that H2O2, produced in and released from stimulated human 

neutrophils, triggers cell death by apoptosis (Lu et al., 2001). Cell death by apoptosis is well 

known to cause delayed cell death after spinal cord injury in animal model and human 

patients (Katoh et al., 1996; Crowe et al, 1997; Emery et al., 1998). Casha and colleagues 

(2001) have shown that activation of downstream caspases, such as caspase-3, was directly 
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proportional to the extent of apoptotic cell death associated with spinal cord injury. Quercetin 

has been shown to significantly inhibit H2O2-induced caspase-3 cleavage and consequent 

apopotosis in human vascular endothelial cells (Choi et al., 2003). Considering the results 

from the experiments performed by Lu and colleagues, we would expect to see a decrease in 

delayed cell death by apoptosis in vivo after administration of quercetin.    

Potential actions of quercetin in acute spinal cord trauma might be illustrated as in 

Figure 7.1. 

 

We have designed this set of experiments to test the hypothesis that administration of 

quercetin attenuates inflammation and caspase-3 activation as important pathway of 

apoptotic cell death in the early phase after acute traumatic spinal cord injury. 
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                   Spinal cord injury 

                             ⇓  

         ⇓   

                          Neutrophils  

   invading site of injury 

                      ⇓ 

    NADPH : O2 ⇒ O2
-  +   NADPH+ 

                                ⇓ 

QUERCETIN                               QUERCETIN 

OH•  <===   ===     Fe 2+  +  H2O2       +      Cl-    +     H+  ===   ===>   HOCl    +      H2O 

          ⇓        myeloperoxidase      ⇓ 

QUERCETIN        chlorinated  

               ⇓    pyrimidines +  2GSH ⇒  GSSG

                  Capase-3 cleavage           

             ⇓ 

            Apoptosis 

 

 

FIGURE 7.1: Quercetin intercepts several pathways involved in creating secondary injury 

after CNS trauma. The results are decreased production of oxidative species 

resulting in less demand on the intracellular glutathione pool, and decreased 

cell death by apoptosis.   

 

QUERCETIN
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7.2 Materials and Methods 

A total of 51 adult male Wistar rats (9-10 weeks old, 296-376g, Charles River 

Canada) were used for the experiments described. Forty-two animals were subjected to 

standardized mid-thoracic spinal cord trauma (T7). The remaining nine animals were used as 

uninjured controls. We used the model of mid-thoracic spinal cord compression injury 

introduced by Rivlin and Tator (Rivlin and Tator, 1978), as described in section 5.3.1.   

 

Animals were assigned to four experimental groups, being sacrificed at 6, 12, 24 or 

72 hr after injury (Table 7.1). Half of the animals in each group received doses of 25 µmol/kg 

quercetin, beginning 1hr after injury and continued in 12 hr-intervals, while the other half of 

the animals received saline vehicle only. Animals sacrificed 6 hr after injury received only 

one dose of 25 µmol/kg quercetin dihydrate, 1 hr after injury. Animals sacrificed at 12, 24 

and 72 hr after injury received their last doses about 40-50 minutes before they were 

sacrificed.  

 

 

survival after injury 6 hr 12 hr 24 hr 72 hr 

 quercetin saline quercetin saline quercetin saline quercetin saline 

BIOCHEMISTRY 3 3 4 4 4 4 4 4 

IMMUNOCYTO 
CHEMISTRY 

 

0 

 

0 

 

3 

 

3 

 

3 

 

3 

 

3 

 

3 

 

TABLE 7.1 Group assignment of experimental animals. 
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Myeloperoxidase activity was measured in both spinal cord tissue and serum at 6, 12, 

24 and 72 hr after injury by the spectrophotometric method as described in section 5.6.  

Caspase-3 immunostaining was performed on sections from animals sacrificed at 12, 

24 and 72 hr after injury as described in section 5.5  (Table 7.1).  
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7.3 Results 

Myeloperoxidase activity: Significant decrease of myeloperoxidase activity in spinal 

cord tissue at the site of injury was found with quercetin treatment at 24 hr (p = 0.01) after 

trauma (Fig. 7.2). No statistically significant difference was seen at 6, 12 and 72 hr after 

injury.  No significant myeloperoxidase activity was detected in the spinal cord segments 

cranial (T4) or caudal (T10) from the injury site. 

 
 

      6 hr             12 hr             24 hr      72 hr 

         time after injury  

 

FIGURE 7.2: Myeloperoxidase levels at the site of injury after 50 g clip injury in the adult 

male Wistar rat. Significantly lower MPO levels seen only at 24 hr after 

injury. Depicted are Means ± SD. 
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In plasma, significantly reduced levels of myeloperoxidase activity is seen at 6 hr (p = 

0.02), 12 hr (p = 0.04) and 24 hr (p = 0.04) with administration of quercetin (Fig. 7.3). 

Although there were lower MPO activity levels at 72 hr after injury, this was not statistically 

significant.  

 
    6 hr     12 hr      24 hr  72 hr 

 

        Time after injury  

 

FIGURE 7.3: Myeloperoxidase levels in plasma of injured and healthy animals. 

Significantly lower myeloperoxidase leves are seen at 6, 12 and 24 hr after 

injury. Depicted are Means ± SD. 

 

Myeloperoxidase was almost not detectable in spinal cord tissue and serum of healthy, 

uninjured animals. 
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Activated caspase-3 expression: Activated caspase-3 was found in a small proportion of 

glial (mostly astroglial) cells in the spinal cord sections of uninjured animals (Figs. 7.4 A and 

7.5 A). After injury, massive necrosis was seen at the site of injury. Activated caspase-3 

expression was therefore assessed in the segments immediately cranial and caudal to the site 

of injury. No obvious increase of activated caspase-3 expression was seen at 12 and 24 hr 

after injury in either quercetin-treated animals or saline controls. However, at 72 hr after 

injury, a large increase in the number of caspase-3-positive cells was noted in saline controls,  

both in neurons and glia (Figs. 7.4 B and 7.5 B). In the tissue of quercetin-treated animals, 

however, there was only very little increase in activated caspase-3 expression, when 

compared to sections from healthy, uninjured spinal cords (Figs. 7.4 C and 7.5 C). 
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FIGURE 7.4:  

Activated caspase-3 immunostaining. 

Spinal cord of adult Wistar rat, 72 hr after 

50 g clip application for 5 sec.  

Low magnification. Center of injury site. 

A: non-injured cord 

B: saline control 

C: quercetin-treated animal 

 1 mm 
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FIGURE 7.5:  

Activated caspase-3 immunostaining.  

Spinal cord of adult Wistar rat, 72 hr after

50 g clip application for 5 sec. 

High magnification.  

Periphery of injury site.C: quercetin treated animal 

B: saline control 

A: non-injured animal 

0.1 mm 
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7.4 Discussion 

The results of our experiments show that twice daily administration of 25 µmol/kg 

quercetin significantly reduces inflammation and suggest that apoptosis is reduced at the 

injury site in male adult Wistar rats, when treatment is begun 1 hr after injury. 

Since inflammatory processes have been shown to contribute to increase of lesion 

volume after physical injury, it seems reasonable to test compounds with inflammatory 

capacity, to inhibit the deleterious cascade of secondary injury (Simpson et al., 1991; 

Juurlink and Paterson, 1998; Eng and Lee, 2003). Neutrophil activity has been used by other 

researchers to demonstrate the anti-inflammatory capacity of drugs tested for its therapeutic 

potential in animal models (Tonai et al., 2001; Hirose et al., 2000; Hara et al., 2000; Fujimoto 

et al., 2000; Taoka et al., 1997b). Myeloperoxidase activity has been shown to reflect fairly 

well the extent of neutrophil accumulation in tissue (Bradley et al., 1982). The enzyme 

myeloperoxidase, stored in the granules of neutrophils, has been described as a key regulator 

in the oxidant production by cellular mediators of inflammation (Kettle and Winterbourn, 

1997). While measurement of protein carbonyl content offers an indirect method to assess the 

extent of cellular protein reaction with HOCl (Chapman et al., 2000), most commonly the 

capacity of myeloperoxidase to form hypochlorous acid from hydrogen peroxide and 

chloride ions is used. Carlson and colleagues have assayed myeloperoxidase activity in the 

spinal cord of rats between 4 and 48 hr after acute spinal cord contusion injury (Carlson et 

al., 1998). They found that MPO activity peaked at 24 hr after injury, with the center of 

activity found between 4 mm rostral and caudal to the site of injury. While the localization of 

significant myeloperoxidase activity in this study corresponds with our findings, we detected 

maximum MPO activity already at 12 hr after the injury, a time point not examined by 
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Carlson and colleagues. The reduction in myeloperoxidase activity seen with administration 

of quercetin in our experiments indicates that modulation of neutrophil activity is one of the 

pathways through which this compound acts in the setting of spinal cord injury. The finding 

that there is significant reduction of myeloperoxidase activity in the plasma of injured 

animals with administration of quercetin suggests that quercetin is inhibiting the activation of 

neutrophils and that the decreased MPO activity in injured spinal cords is likely due to 

decreased infiltration of neutrophils. Furthermore, the inhibition of myeloperoxidase activity 

in plasma reflects a general anti-inflammatory activity of quercetin, rather than one specific 

for the CNS. This might be due to differences in the injury models used. The reduction in 

myeloperoxidase activity seen with administration of quercetin in our experiments indicates 

that modulation of MPO activity is one of the pathways through which the compound acts in 

the setting of spinal cord injury. This notion is supported by significant reduction of 

myeloperoxidase activity in the serum of injured animals with administration of quercetin. 

Whether this is due to an inhibition of neutrophil influx or an inhibition of the enzyme�s 

activity, remains to be investigated. Since neutrophil activation after trauma is not specific 

for CNS injury, the inhibition of myeloperoxidase activity in serum reflects a general anti-

inflammatory activity of quercetin, rather than one specific for the CNS. 

 Experiments performed in our laboratory suggest that there is a beneficial effect with 

administration of quercetin for three days or longer (Schültke et al., 2003b). A statistically 

significant difference was seen in myeloperoxidase levels at the injury site at 24 hr, but not at 

72 hr after injury. Yet, a significant improvement in recovery of motor function was seen 

when the duration of quercetin administration was increased from 24 hr to 3 days. This 

suggests that the functional improvement with quercetin administration beyond 24 hr must be 
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conveyed through a pathway other than inhibition of myeloperoxidase activity. From the 

results of our experiments here presented we conclude that inhibition of apoptosis could be 

another such pathway through which quercetin acts neuroprotective. It has been described 

earlier that disintegration products of hemoglobin contribute to oxidative stress and apoptosis 

in the CNS (Matz, 2000; Gaetani, 1998). Our finding that there was less increase in activated 

caspase-3 expression with quercetin treatment suggests that cell death by apoptosis is 

inhibited in vivo just as in Lu�s in-vitro experiments. Notable here is the fact that significant 

increase in apoptosis was not seen before three days after injury in untreated animals, which 

coincides with the time course when hemoglobin disintegration would be expected. Katoh 

and colleagues (1996) have studied apoptotic cell death in adult rats, using a model of spinal 

cord compression injury. Although different analysis techniques (DNA laddering and in situ 

end labeling) were used to detect apoptosis, they found that the maximum of fragmented 

cells was seen at three and four days after injury. This would correspond with our findings 

that a significant increase of caspase-3 expression was observed at 72 hr after injury. This 

increase of activated caspase-3 expression was apparently prevented by quercetin 

administration. It has been demonstrated in several cell culture models, that quercetin reduces 

H2O2-induced apoptosis (Choi et al., 2003; Park et al., 2003). A similar mechanism might 

account for the compound�s anti-apoptotic activity in our in-vivo model. Wang and 

colleagues were able to demonstrate in cultures of kidney epithelial cells that H2O2-induced 

apoptosis was accompanied by c-Jun N-terminal kinase (JNK) activation (Wang et al., 2002).  

JNK expression was also found to be increased by the action of 4-hydroxy-2-nonenal (HNE), 

a lipid peroxidation-derived product from arachidonic or linoleic acid in the setting of 

oxidative stress (Uchida et al., 1999).  Experiments reported in the same paper showed that 
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quercetin exerted a significant inhibitory effect on (HNE)-induced JNK activation. Thus, it is 

a distinct possibility that the anti-apoptotic effect of quercetin in our spinal cord injury model 

is conveyed through inhibition of JNK. Since delayed cell death by apoptosis is an important 

mechanism in the generation of secondary injury volume, we believe that the inhibition of 

apoptotic cell death is another important mechanism by which quercetin acts in a 

neuroprotective fashion. 

Curiously, we noted that a proportion of astrocytes in uninjured spinal cord tissue 

axhibited activated caspase-3 in their nuclei. It is known that caspase-3 has non-apoptotic 

functions (Schwerk and Schulze-Osthoff, 2003). 

In summary, we have demonstrated that quercetin decreases the activity of activated 

neutrophils, as reflected in decrease of myeloperoxidase activity in both plasma and spinal 

cord tissue at the site of injury in the setting of acute traumatic spinal cord injury in a rat 

model. The decrease of activated caspase-3 expression strongly suggests that administration 

of quercetin results in a decerases of apototic cell death of neurons,  compared to animals that 

received saline vehicle only. These results suggest that administration of quercetin does 

decrease secondary tissue damage after acute spinal cord trauma. 

Quercetin is present in many components of our diet (de Vries et al., 1996; Hollman and 

Katan, 1999), is readily taken up after oral intake (Hollman et al., 1996; Moon et al., 2000) 

and can attain plasma concentrations of 1 µM. The fact that quercetin is widely distributed in 

the diet and is, therefore, a compound with which we have evolved, suggests it would be a 

safe drug to use for therapeutic intervention. We have seen no adverse effects when quercetin 

was administered to rats in doses as high as 200 µmol /kg/day (Schültke et al., 2003). This is 
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in keeping with other research indicating that rats can readily tolerate long-term intake of 1.5 

mmoles quercetin/ kg/day (IARC, 1999). 
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8.1 Introduction 

 With increasing numbers of head trauma survivors in most parts of the Western world 

over the last decades, the search for measures to prevent secondary injury once prevention of 

primary injury has failed is becoming a major focus of attention. In earlier experiments, we 

have been able to demonstrate in an animal model of acute traumatic spinal cord injury the 

neuroprotective effect of the polyphenolic flavonoid quercetin (Schültke et al., 2003). 

Administration of 25 µmol/kg quercetin twice daily, beginning one hour after injury, resulted 

in significantly improved recovery of motor function in paraplegic animals. The objective of 

the present study was to determine whether a similar protective effect could be achieved in 

an animal model of moderate head trauma. For our experiments, we used the fluid percussion 

model deveoped by McIntosh and colleagues (1989), as described in section 5.3.2.  

 One important pathway, through which quercetin apparently acts as a 

neuroprotectant in vivo, is the inhibition of oxidant production by activated neutrophils 

(Pincemail, 1988; Lu et al., 2001; Zielińska et al., 2001). Some of the neuropathological 

consequences seen in survivors of acute head trauma have been attributed to post-traumatic 

inflammatory response in the traumatized brain (Holmin et al., 1998). Inflammation is 

associated with the influx of neutrophils into the site of injury, in both human patients and 

animal model (Schoettle et al., 1990; Holmin et al, 1998). Activated neutrophils generate 

potent oxidant species, which they release into the extracellular space (Badwey and 

Karnovsky, 1980; Pincemail, 1988; Badwey et al., 1991).  There, they will react with healthy 

tissue structures bordering the area of primary tissue injury. Hydrogen peroxide (H2O2), one 

of the reactive oxygen species released by stimulated neutrophils, reacts with ferrous iron 

ions (Fe2+) to create hydroxyl radicals (HO•), a strong oxidant species. The reactive potential 
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of hydrogen peroxide is increased 100-fold by the action of the enzyme myeloperoxidase 

within the neutrophils (Pincemail et al., 1988). Myeloperoxidase is a hemoprotein enzyme 

stored in the granules of neutrophils. It catalyzes the oxidation of chloride anions (Cl-) by 

hydrogen peroxide, thereby generating hypochlorous acid (HOCl) and chloramines (Weiss et 

al., 1982; Thomas et al., 1983). These chlorinated species act as strong oxidants themselves. 

When released from the neutrophils, they contribute to the destruction of healthy tissue 

bordering the primary site of injury thereby significantly increasing the lesion volume of the 

secondary tissue injury. Secondary damage is created by oxidative damage to phospholipid 

membranes. In axons, integrity of membrane function is reflected by the amplitude and 

duration of action potentials. Therefore, we chose measurements of Compound Action 

Potentials after moderate fluid percussion injury to the brain as primary component for 

analysis in our study, to investigate whether quercetin acted indeed neuroprotective in the 

setting of traumatic head injury. Additionally, measurements of myeloperoxidase activity and 

glutathione levels in the injured brain tissue as well as tissue culture experiments, 

demonstrating the effect exerted by quercetin administration on the extracellular pH, were 

performed to elucidate possible mechanisms of this neuroprotective effect. ANOVA with 

post hoc Tukey test was used for statistical data analysis. 
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8.2 Material and methods 

Out of 34 adult male Sprague Dawley rats (57 � 68 days old, 285 � 366 g; Charles 

River Canada), 26 animals were submitted to moderate fluid percussion injury as described 

in section 5.3.2 (Table 8.1). Injured animals were divided into two groups: one group 

received 25 µmol/kg quercetin intra-peritoneally, starting 1 hour after injury with continued 

treatment in 12-hr intervals, while animals in the second group received weight-adjusted 

doses of normal saline according to the same schedule (n = 13 per group). Out of each group, 

eight animals were sacrificed 24 hr after injury, and five animals were sacrificed 72 hr after 

injury by Halothane® overdose and decapitation.  All animals received their last injections 

about one hour before sacrifice. While animals used for electrophysiology experiments were 

beheaded and brains immediately extricated, animals used for histological and biochemical 

analysis were sacrificed by pericardiac perfusion with ice cold saline.  

 

Quercetin  Saline  Non-injured  

Sacrificed at 

 

 CAP  Histology CAP Histology CAP Histology 

24 hr 

after injury 

  

5 

 

3 

 

5 

 

3 

72 hr 

after injury 

  

5 

 

0 

 

5 

 

0 

 

 

5 

 

 

 

 

3 

 

 

 

Table 8.1: Animals used for fluid percussion injury. 

 

Twenty animals (10 quercetin-treated and 10 receiving saline vehicle alone) were 

used to determine the post-traumatic amplitudes of compound action potentials (CAP) in the 
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corpus callosum. For this purpose, slices of 400 µm thickness, were cut on the vibrotome 

from the brain tissue that received the maximum impact of the fluid percussion injury. CAP 

acquisition followed the procedure described in section 5.3.2. CAP of injured animals were 

compared with CAP of 5 healthy control animals.  

To correlate structural damage and some parameters of anti-oxidative, 

neuroprotective state in the brain section which received the maximum impact from the fluid 

percussion injury, the brains of 6 animals (3 quercetin-treated and 3 saline controls) were 

available. These six animals were sacrificed 24 hr after injury. The brains of three healthy, 

uninjured animals were used as controls. All brains used for biochemical analysis were snap-

frozen in liquid nitrogen. The area absorbing the majority of the kinetic energy of the impact 

in the experimental groups was divided into 4 sectors (Figure 8.1). The brains were then split 

longitudinally along the midline. The two sectors of the right hemisphere were processed for 

histological studies, while the sectors of the left hemisphere were processed for biochemical 

analysis.  
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       FIGURE 8.1: Schematic showing the point of impact (black dot) with the fluid 

percussion injury model, and the sectors (L 1 and 2, R 1 and 2) of 

brain tissue analyzed. 

R: right hemisphere, processed for histology 

L: left hemisphere, processed for biochemical analysis  

 

Histology: Frozen sections of 20 µm thickness were mounted on gelatin-coated glass 

slides (Colorfrost, VWR). Alternating sections were stained with Hematoxylin & Eosin 

(H&E) and Luxol Fast Blue (LFB) -Cresylviolet stain. 
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Biochemistry: The levels of myeloperoxidase activity were measured as marker of 

post-traumatic inflammation. Glutathione content was used as marker for tissue protective 

status; it was determined in brain tissue samples at 24 hr after injury, using the procedures 

described in section 5.6. 
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8. 3 Results 

Histology: Diffuse petechial hemorrhages were found throughout the corpus 

callosum of traumatized brains of all animals, in quercetin-treated animals as well as in those 

receiving saline vehicle only (Figure 8.2).   

  

Coronal section. 

 Magnified insert showing one of the hemorrhages. 

 

 

 

 

FIGURE 8.2:  Hemorrhages in corpus callosum of adult male Wistar rat, 

   24 hr after moderate fluid percussion injury. LFB � Cresylviolet stain. 

1 mm 

0.1 mm 
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 Electrophysiology: At both 24 hr and three days after moderate fluid percussion injury, 

compound action potentials (CAP) were found to be significantly higher in quercetin-treated 

animals, i.e. closer to the values expected from healthy, uninjured animals, when compared 

with saline controls (Figure 8.3). While in non-injured, healthy animals CAP amplitudes 

were found between 1 and 1.2 mV, the amplitude dropped for injured saline controls animals 

to between 0.51 and 0.58 mV. With quercetin treatment, amplitudes were between 0.76 and 

0.85 mV, which was significantly higher than for animals that received saline vehicle only. 

Three days after injury, CAP had recovered somewhat even in saline controls, to a range 

between 0.56 and 0.62 mV.  CAP amplitudes measured in animals that received quercetin 

were between 0.72 and 0.78 mV. The amplitudes measured in quercetin-treated animals at 

three days after injury are slightly (albeit not statistically significant) lower than those 

measured 24 hr after injury, amplitudes are still significantly higher than in animals that 

received saline vehicle only (Figure 8.3). 
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FIGURE 8.3: Compound Action Potentials (CAP) at 1 and 3 days after moderate 

fluid percussion injury in the adult Sprague Dawley rat. Treatment 

with the anti-inflammatory and antioxidant compound quercetin 

results in significantly improved action potentials, compared to saline 

controls. Depicted are Means ± SD. 
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Biochemistry:  

Myeloperoxidase activity: Myeloperoxidase activity levels in the samples taken from 

the center of the injured brain tissue (sector 1) at 24 hr after injury were found to be 

significantly lower in quercetin-treated animals when compared with saline (p < 0.05). A 

tendency towards lower myeloperoxidase activity compared to saline-treated animals was 

observed also in the samples taken more lateral from the center of the injury (sector 2), but 

this was not statistically significant (Figures 8.4 and 8.5). 

             Healthy           Quercetin    Saline   

 

 

FIGURE 8.4:         Myeloperoxidase levels in brain samples taken from center of impact (1), 

24 hr after moderate fluid percussion injury in the adult male Sprague 

Dawley rat.      Depicted are Means ± SD. 
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   Healthy         Quercetin      Saline 

 

 

 

 

FIGURE 8.5: Myeloperoxidase levels in brain samples taken laterally from center of 

impact (2), 24 hr after moderate fluid percussion injury in the adult 

male Sprague Dawley rat. Depicted are Means ± SD. 
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GSH levels: The levels of glutathione (GSH) at 24 hr after fluid percussion injury were found 

to be significantly higher in samples taken from the center of the injured brain tissue (1) of 

quercetin-treated animals, when compared to those of saline controls (p = 0.024). A tendency 

towards higher glutathione levels was found in the samples taken laterally from the center of 

injury (2), but there was no statistical significance (Figure 8.6).  

               Saline   Quercetin      Saline  Quercetin 

      central      lateral 

 

 

FIGURE 8.6: Levels of GSH in samples taken from central and lateral sectors of 

brains after moderate fluid percussion injury (quercetin-treated vs. 

saline controls). Depicted are Means ± SD. 
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8.4  Discussion 

The animal model of fluid percussion injury to the brain can be clinically equated best 

to brain concussion in human patients. Similar pathological processes can be detected in the 

animal model and in human patients with concussion (Hovda et al., 1995). Although the 

pathology summarized under the term �brain concussion� originally was thought to comprise 

only temporary disturbances of brain function caused by neuronal, chemical, or 

neuroelectrical changes, it is now well known that structural damage can occur in this setting 

(Jane et al., 1985; Cantu, 2000). Concussion is characterized by injury of diffuse nature due 

to biomechanical forces acting on the brain, and a relative paucity of histologically detectable 

damage (Giza and Hovda, 2000). No consistent neuropathologic equivalents have been found 

in experimental models of cerebral concussion. However, capillary damage, transient 

cerebral ischemia, edema, widespread neuronal depolarization from acetylcholine release, 

and shearing of neurons and axons as potential mechanisms for the alteration in mental status 

have been seen after closed head injury (Warren and Bailes, 2000; Graham, 1996).  A 

frequently encountered consequence of head trauma is diffuse axonal injury (Gentleman et 

al., 1995; Maxwell et al., 1997).  Furthermore, lipid membrane peroxidation following 

oxidative stress and inflammatory processes superimposed on the mechanically damaged 

CNS tissue result in significant increase of lesion volume. The extent of this secondary injury 

is positively correlated with outcome after injury (Miller and Becker, 1982). The results from 

experiments performed in other laboratories suggest that myeloperoxidase activity levels are 

positively correlated to oxidative stress, inflammatory status and integrity of axonal 

membranes. Barone and colleagues, correlating histology (H&E and histochemical staining 

for leucocytes) and myeloperoxidase assay in a rat model of cerebral focal ischemia, 
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demonstrated that the increase of myeloperoxidase seen in brain after the ischemic injury was 

a selective function of polymorphnuclear leucocytes (PMN) (Barone et al., 1991). In our 

experiments, we found that myeloperoxidase activity was positively correlated to post-

traumatic loss of neuronal function, expressed in the amplitude of compound action 

potentials. When Pincemail and colleagues studied the effect of flavonoids on activity of 

human neutrophil activity in vitro, they found that, among the flavonoids investigated, 

quercetin was the most potent inhibitor of myeloperoxidase (Pincemail et al., 1988). The fact 

that administration of quercetin in our model resulted in decreased myeloperoxidase levels, 

therefore, supports the idea that quercetin acts neuroprotective partly through its antioxidant 

and anti-inflammatory action. The fact that, with quercetin administration a statistically 

significant decrease of myeloperoxidase activity is seen at 6, 12 and 24 hr in plasma, yet only 

at 24 hr in tissue after spinal cord injury could be due to an inhibition of activity of 

circulating neutrophils. Reduced activity in plasma suggests reduced neutrophil activation in 

the first place. If we understand myeloperoxidase activity in the tissue as accumulated over 

time, while myeloperoxidase activity in plasma is based on the number of activated 

circulating neutrophils alone, our results would suggest that 1) neutrophil invasion at the site 

of injury is reduced and that 2) quercetin interferes with degranulation of myeloperoxidase 

rather than chemically inhibiting its action. 

Oxidative damage to lipid membranes in CNS structures will effectively result in loss 

of function, which can be perceived as functional axotomy. It has been suggested that 

axotomy is a consequence of impaired axoplasmatic transport (Povlishock and Christman, 

1995). The results of our experiments suggest that quercetin reduces the extent of secondary 

functional axotomy caused by oxidative stress and inflammatory processes.  
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 It has been demonstrated in cell cultures that quercetin significantly inhibits the 

phosphorylation of c-Jun N-terminal kinase (JNK) caused by the action of 4-hydroxy-2-

nonenal (HNE), a lipid peroxidation-derived product from arachidonic or linoleic acid in the 

setting of oxidative stress (Uchida et al., 1999). In the same paper, it was shown that 

quercetin prevented HNE-induced depletion of GSH. Increasing glutathione is an effective 

way to protect CNS tissues against oxidative stress-induced damage, as reviewed by Juurlink 

and Paterson (1998). Our observation that glutathione levels were higher in the brains of 

quercetin-treated animals therefore attests to a higher cytoprotective status at the site of 

injury in those animals.  

Levels of GSH or ratios of reduced to oxidized glutathione (GSH / GSSG ratios) have 

been used to describe the cytoprotective potential of cells in the setting of oxidative stress. 

Decreased intracellular GSH levels have been associated with the oxidation of regulatory 

proteins, a process reversible by the re-establishment of normal GSH levels (Gilbert, 1990; 

Sen, 2000). It has been shown in a model of acute GSH depletion in cardiac muscle cells that 

decrease in intracellular GSH levels was associated with significant decrease in duration of 

action potentials, decrease of rise in the depolarization phase and a slight, although not 

statistically significant decrease in the amplitude of action potentials (Pacher et al., 1998). 

Histological analysis done in this study revealed ultrastructural alterations including 

intracellular and interstitial edema, swelling of the mitochondria, a decrease of mitochondrial 

matrix density and rupture of cristae in the mitochondria as consequence of glutathione 

depletion. Since CNS trauma is followed by increased production of free radicals in the 

tissue, GSH levels are expected to drop early after injury (Juurlink, 1999). Therefore, 

changes in the size of action potential are to be expected in the setting of head trauma. Our 

experiments have shown that moderate fluid percussion injury resulted in both decreased 
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GSH content and loss of action potential amplitude, while quercetin administration improved 

(or partially preserved) GSH levels and action potentials. One possible explanation for the 

preservation of the GSH pool with quercetin administration is that quercetin reduces the 

amount of oxidants produced after injury. In this case, the higher glutathione levels found in 

brain samples from quercetin-treated animals would reflect preservation of the GSH pool 

rather than repletion through quercetin. No histological analysis on electronmicroscopic level 

was done in our study. However, considering the mitochondrial damage after loss of 

intracellular GSH observed in the previously mentioned cardiac muscle study, our results 

suggest that, in the setting of head trauma, preserved mitochondrial function might contribute 

significantly to membrane integrity and therefore to its capacity to mount adequate action 

potentials. 

Thus, our findings suggest that administration of quercetin after head trauma is 

neuroprotective and preserves axonal function. 
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9.1 Introduction 

 In earlier experiments, we have demonstrated that administration of quercetin after 

spinal cord injury in a rat model of spinal cord compression injury decreased 

myeloperoxidase activity at the site of injury (Schültke et al., 2002). Quercetin is also 

believed to decrease oxidative stress by chelating free iron ions (Morel, 1993; van Acker, 

1995; Afanas�ev et al., 1988; Romanova, 2001). Results from our earlier experiments 

suggested that quercetin administration improves iron clearance from the site of injury and 

contributes to improved recovery of motor function in the setting of spinal cord compression 

injury in the adult rat (Schültke et al. 2003). Furthermore, quercetin has been found to 

modulate scar formation in soft tissue (Schültke et al., 2003) after spinal surgery. Finally, we 

have also shown that quercetin inhibits apoptosis. In order to test our hypothesis, that 

quercetin administration can be beneficial for recovery of motor function when administered 

either in the acute phase, or in the post-acute phase of acute traumatic spinal cord injury, we 

have chosen the animal model of acute traumatic, mid-thoracic spinal cord compression 

injury in the adult rat developed by Rivlin and Tator and described in section 5.3.1. This 

model simulates closely the clinical situation in which fragments of fractured vertebrae 

impinge temporarily and with forceful impact on the spinal cord, where they cause extensive 

mechanical damage. The model has been well established in our laboratory for several years.   

We have previously shown in our rat model that administration of quercetin 1 hr after 

injury, continued in 12 hr-intervals promoted functional recovery in post-traumatically 

paralyzed hind limbs when treatment was continued for ten days (Schültke et al., 2003). The 

experiments herein reported were designed to answer the question whether shortening of 

treatment duration or dealy of treatment onset would still result in functional recovery. 
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9.2 Materials and methods 

   A total of 105 adult male Wistar rats (9-10 weeks of age, 285 � 360g, Charles 

River Canada) were subjected to standardized mid-thoracic spinal cord injury. For all 

experiments, we used the model of spinal cord compression injury introduced by Rivlin and 

Tator (Rivlin and Tator, 1978), as described in section 5.3.1.   

The most important criterion for our assessment of functional recovery after spinal 

injury with quercetin administration was somatic motor function. For this purpose, BBB and 

Angle board scores as described in section 5.4 were used throughout all experiments herein 

reported. Rating was made by two observers, of whom at least one was blinded to the 

treatment. The urinary bladders of all paraplegic animals were expressed manually three 

times daily until recovery of spontaneous voiding was achieved. The latter was observed in 

most animals, whether treated with quercetin or not, between weeks 2 and 3 after injury. 

Animals were assigned to nine therapeutic groups or used as saline controls. Usually, 

surgery for two or three different experimental protocols was performed parallel, and to these 

two or three experimental groups, animals were assigned randomly. Also, for all groups 

containing more than seven animals, surgery was performed on half of the animals at two 

different time points at least eight weeks apart, so as to eliminate seasonal or other temporal 

variations as possibly related to differences seen. Surgery for all experiments described in 

this report was performed by the same researcher.  

Therapy started at the earliest 1 hour after spinal cord compression injury, the 

minimum time in which clinical assessment of a patient with spinal cord injury could be 

reasonably expected. In one group (group 7), treatment onset was delayed to 12 hr after 

injury. In one group (group 8), treatment onset was as late as 2 weeks after injury. The 
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rational for this extremely late treatment onset was as follows: Scar formation, occurring 

relatively late in the process of wound healing, is driven at least partially by oxidative stress 

and inflammation. Since quercetin possesses both anti-oxidative and anti-inflammatory 

capacities (Huk, 1998; van Acker, 1995; Morel, 1993; Afanas�ev, 1988), we hypothesized 

that administration of the compound might be beneficial in this stage of the healing process. 

In most groups, animals received doses of 25 µmol/kg per injection. This dose had been 

established in the earlier studies as optimal (Schültke et al., 2003). However, this dose 

appeared to become less effective with prolonged interval between injury and treatment 

onset, as seen in an experimental group for which treatment with 25 µmol/kg quercetin was 

started at 12 hr after injury (group 7). Therefore, we decided to use a higher dose of quercetin 

for the delayed treatment onset experiments. After validating the first results of this late onset 

study with a second group of experimental animals, we introduced an additional group 

(group 9), to study whether the effects of early treatment onset and later stage high-dose 

therapy would potentiate each other.  

Since studies have shown that the serum half-life of quercetin might be as long as 16 

hr (Griffiths and Barrow, 1992), administration in 12 hr intervals appears reasonable. This 

assumption has been supported by the results of our first study, where 67% of animals 

recovered motor function sufficient to support walking after mid-thoracic spinal cord injury 

caused by an aneurysm clip with a calibrated closing force of 40 g (Schültke et al., 2003). 

However, we introduced two groups in which animals received quercetin three times daily 

(groups 4 and 6), in order to investigate whether those animals would show better recovery of 

motor function than their counterparts who received two daily doses of the compound. 
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Since our earlier studies had indicated that no statistically significant differences were 

seen between treatment duration of 4 and 10 days, several groups were introduced with 

shorter treatment duration, varying from one single injection to three days of treatment 

(groups 1 to 4). Three animals were submitted to laminectomy only, to exclude the 

possibility trauma other than spinal cord injury would impair motor function. 

Summary and description of the various experimental protocols used are provided in 

Table 9.1. 
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  Start treatment after 

SCI 

Duration of 

treatment 

Treatment 

schedule 

Total dose 

administered 

Group 1  n = 6 
1 hr single injection 25 µmol/kg 25 µmol/kg 

Group 2  n = 5 1 hr 24 hr 25 µmol/kg 

 

75 µmol/kg 

Group 3  n = 12 1 hr 72 hr 25 µmol/kg 

twice daily 

175 µmol/kg 

Group 4  n = 6 1 hr 72 hr 25 µmol/kg 

three times daily 

250 µmol/kg 

Group 5  n = 14 1 hr 10 days 25 µmol/kg 

twice daily 

500 µmol/kg 

Group 6  n = 5 1 hr 10 days 25 µmol/kg 

three times daily 

750 µmol/kg 

Group 7  n = 12 12 hr 10 days 25 µmol/kg 

twice daily 

475 µmol/kg 

Group 8  n = 15 2 weeks 3 weeks 75 µmol/kg twice 

daily 

3.51 mmol/kg 

Group 9  n = 7 1 hr 

 

+ 

 

2 weeks 

10 days 

 

+ 

 

3 weeks 

25 µmol/kg 

twice daily 

+ 

75 µmol/kg 

twice daily 

4.01 mmol/kg 

Group 10 n = 23 1 hr, 12 hr or 2 weeks 24 hr � 3 weeks 3 ml saline/ 

injection 

no quercetin 

 

TABLE 9.1: Summary of treatment protocols tested to establish the therapeutic window  

for quercetin administration.  

 n = animals in the group at beginning of the experiments 
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Seven animals of Group 5, six animals of Group 8, all animals of Group 9 and six saline 

controls were allowed to recover for 12 weeks after injury, to assess whether the 

improvement of motor function would be permanent beyond the end of the treatment period. 

All remaining animals were sacrificed six weeks after injury as described in section 5.5.   

 

 

Statistical analysis:  Parametric tests have been widely used to analyze for statistical 

significance of BBB scores. Given the qualitative structure of this scoring system, we feel 

that differences between any given two scoring levels, although seemingly equal when 

expressed in numbers, are in fact not really comparable with respect to quality. We therefore 

used a type of statistical analysis for binominal distribution (yes / no), with regard to the 

walking ability of the animals vs. their inability to walk, as more appropriate.  

To perform this type of analysis, we used the following equation: 

 

 

     p x (1 � p) 

 Sp =             -----------------------  ,    (1) 

                N 

 

whereby Sp is the standard deviation of the sample p and n is the number in the 

sample (percentages or total numbers) (Pipkin, 1984). The 95% confidence interval is now 

multiplied by 1.96, i.e.: 

 

   x   =   Sp  x  1.96        (2) 

√ 
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By subtracting the result of equation (2) to the percentage of walking animals we 

determined the lower value, and by adding the result of equation (2) we determined the upper 

value of the variance within 95% of the sample population: 

 

Low value:  p � x     (3a) 

High value: p + x     (3b) 

  

Statistical significance between data sets is generally assumed when p < 0.05, i.e. 

there is a less than 5% chance that data arise by chance alone. By defining the corner values 

for the variance within 95% of the population of a given data set, we determine that the data 

sets with a variance frame (defined by lower and upper values) which does not overlap with 

the variance frame of the first data set are statistically significantly different from the first 

data set.   
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9.3 Results 

Of the 23 animals used as saline controls, one had to be euthanized because of 

excessive self-inflicted abdominal wounds (excessive gnawing) and one died during week 

two from unexplained causes. Two animals, one each from groups 5 and 7, were lost because 

of bladder rupture during manual expression.  

None of the animals in any group was supporting weight when tested one week after 

injury. We had shown in previous experiments, that administration of 25 µmol/kg quercetin, 

started 1 hr after injury and continued in 12 hr intervals for 10 days, was a very effective 

treatment schedule to support recovery of motor function in our animal model (Schültke et 

al., 2003). Therefore, we used this schedule (group 5) as pivotal point for the following 

experiments, which were designed to establish the therapeutic window for quercetin after 

acute traumatic spinal cord injury. With the ten-day treatment schedule, beginning 1 hr after 

spinal cord compression injury caused by a 5 sec closure of an aneurysm clip, calibrated to 

50g closing force, around the mid-thoracic spinal cord, 46.2% (6 out of 13) animals 

recovered motor function sufficient to support walking (group 5). The plateau of recovery in 

this group was seen around four weeks after injury, more than two weeks after the end of the 

treatment cycle. No loss of function was observed in any of the animals, neither in those 

sacrificed at week 6, nor in those sacrificed at week 12 after injury (Table 9.2 and Fig. 9.1). 
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OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1 1 / 2 / 8 / 1 / 8 / 3 / 8 / 

8 / 5 / 2 / 0 / 5 / 4 

  

Week 2 6 / 1 / 6 / 6 / 5 / 1 /  

8 / 5 

9 / 9 / 9 10 / 10 

Week 3 8 / 5 / 7 / 8 / 5 / 5 / 5 9 11 / 11 / 13 / 12 / 

10 

Week 4 7 / 6 / 8 / 8 / 5 / 6 / 7  12 / 12 / 14 / 12 / 

10 / 10 

Week 6 8 / 6 / 8 / 7 / 7 / 7 9 12 / 12 / 14 / 14 / 

11 / 12 

 

Week 12 

 

8 / 6 / 8 

 

9 

 

13 / 15 / 16 

 

Table 9.2: Group 5, BBB score distribution through weeks 1 �12.  

Treatment with 25 µmol/ kg quercetin started 1 hr after injury,  

and continued for 10 days in 12 hr intervals. 

Six out of 13 animals (46.2%) recovered sufficient hind limb function to walk. 
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Figure 9.1: BBB scores for recovery of animals in group 5 during the six-week 

observation period. Means ± SD. 

Treatment with 25 µmol/ kg quercetin started 1 hr after injury,  

and continued for 10 days in 12 hr intervals. 

 

 

 

Changing the treatment schedule to three instead of two daily injections did not 

improve recovery of function. On the contrary, none of the animals injected three times daily 

was able to walk at the end of the six week recovery period (group 6). At the end of the 

observation period, three of the five animals (60%) were supporting weight in stance (Table 

9.3). 
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OUTCOME  

Time after injury BBB ≤ 8 BBB = 9 BBB ≥ 10 

Week 1 5 / 1 / 2 / 5 / 2   

Week 2 7 / 3 / 3 /6 / 6   

Week 3 8 / 1 / 8 / 8 9  

Week 4 6 / 5 9 / 9 / 9  

Week 6 8 / 6 9 / 9 / 9  

 

Table 9 .3: Group 6, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury,  

and continued for 10 days in 8 hr intervals. 

None of the animals recovered sufficient hind limb function to walk. 

 

Shortening the treatment time, on the other hand, appears to be rather an advantage. 

For animals in group 3, duration of treatment was reduced to 3 days. Seven out of 12 animals 

(58%) recovered sufficient motor function to support walking, and one animal supported 

weight in stance. Compared to the animals receiving the ten-day treatment cycle under 

otherwise identical conditions (group 5), animals in group 3 reached a good level of 

performance (recovery of motor function) in the same interval (two to three weeks) after 

injury (Table 9.4 and Fig. 9.2 ). The maximum levels of recovery appeared slightly lower in 

the group which received treatment for only three days (BBB 10-12, as compared to BBB 10-

14 for ten days treatment). More animals recovered motor strength in their hind limbs 
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sufficient to walk with three day treatment duration, compared to 10 days treatment duration 

on an otherwise identical treatment schedule. This was statistically significant (Fig. 9.3) 

 

 

OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1 8 / 1 / 1 / 1 / 6 / 7 / 1 / 

1 / 6 / 0 / 1 / 8 

  

Week 2 2 / 8 / 7 / 2 / 1 / 0 / 8 9 10 / 11 / 10 / 10 

Week 3 2 / 8 / 8 / 2 / 2 / 1 9 10 / 10 / 11 / 10 / 

11 

Week 4 3 / 6 / 5 / 1  11 / 10 / 10 / 11 / 

12 / 12 / 10 / 10 

Week 6 2 / 5 / 6 / 3 9 11 / 10 / 10 / 12 / 

10 / 10 / 11 

 

Table 9.4: Group 3, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury,  

and continued for 3 days in 12 hr intervals. 

Seven out of 12 animals (58%) recovered sufficient hind limb function to 

support stepping / walking.   
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Figure 9.2: Group 3, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury,  

and continued for 3 days in 12 hr intervals.  Means ± SD. 

 
FIGURE 9.3: Outcomes 3 days treatment vs. 10 days treatment duration with 25 µmol/kg quercetin in  

12 hr intervals; walking vs non-walking animals, at six weeks after injury.  
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Animals in group 4 received treatment according to an identical schedule as animals 

in group 3, with the exception that 25 µmol/kg quercetin were administered three times, 

instead of two times, daily. None of the animals recovered sufficient hind limb function to 

walk or support weight in stance (Table 9.5). 

 

OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1 1 / 8 / 2 / 1 / 0 / 2   

Week 2 6 / 7 / 2 / 2/ 1 / 5   

Week 3 6 / 6 / 5 / 2 / 1 / 6   

Week 4 6 / 5 / 2 / 6 / 2 / 8   

Week 6 7 / 6 / 3 / 6 / 3 / 8   

 

Table 9.5: Group 4, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury,  

and continued for 3 days in 8 hr intervals. 

None of the animals recovered sufficient hind limb function to walk. 

 

Increasing the frequency of quercetin administration from twice to three times daily 

in an otherwise unchanged treatment protocol resulted in loss of its beneficial effect on 

recovery of motor function, as seen in the results from both groups 4 and 6. None of the 
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animals receiving 25 µmol/kg quercetin thrice daily regained sufficient hind limb function to 

walk.   

Shortening of treatment duration to less then 3 days resulted in significantly 

decreased of therapeutic benefit (Table 9.6; Fig. 9.4). With a treatment duration of 24 hr (3 

injections; Group 2), one animal out of 5 was stepping (BBB 10), none was walking and 

none was weight supporting in stance with 24 hr treatment duration (group 2).  Out of five 

animals in group 1 (single injection), one animal out of five was stepping and one animal was 

walking at 6 weeks after injury. With the results of only 33.3% (group 1) or 20% (group 2) 

animals stepping or walking, both treatment schedules were therefore judged unsatisfactory. 

 

OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Group 1 1 / 2 / 0 / 1 / 1 / 1   Week 1 

Group 2 2 / 2/ 0 / 0 / 1   

     

Group 1 1 / 5 / 1 / 8 / 1  10 Week 2 

Group 2 2 / 1 / 1 / 6 / 7   

     

Group 1 3 / 6 / 1 / 5  11 / 10 Week 6 

Group 2 6 / 7 / 1 / 6   10 

 

Table 9.6: Groups 1 and 2, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury,  

One single injection (group 1) or 24 hr treatment duration (group 2). 
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FIGURE 9.4: Outcomes, all groups beginning treatment 1hr after injury, single injection or 

continued in 12 hr intervals vs. saline controls, walking vs. non-walking 

animals at 6 weeks after injury.  
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Next, we introduced one group in which animals received 25 µmol/kg quercetin for 

the duration of 10 days, yet treatment was started only 12 hr after injury (group 7). Out of 11 

animals, only two (18.2%) regained sufficient hind limb function to support walking, and one 

animal supported weight in stance (Table 9.7). 

 

OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1  3 / 0 / 1 / 1 / 1 / 5 / 8 

/ 7 / 5 / 8 / 1  

  

Week 2 2 / 1 / 2 / 2 / 6 / 5 / 5 / 

2 / 7 / 2 

9  

Week 3 6 / 1 / 1 / 6 / 8 / 6 / 2 / 

5 / 6 

9  11 

Week 4 6 / 1 / 1 / 6 / 8 / 6 / 7 / 

6 

9 11 / 12 

Week 6 7 / 1 / 2 / 6 / 8 / 4 / 6 / 

5 

9 12 / 12 

 

Table 9.7: Group 7, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 12 hr after injury,  

and continued for 10 days in 12 hr intervals. 
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Speculating that a higher dose of quercetin might be beneficial when administered 

late after injury, we introduced one group that received 75 µmol/kg twice daily for 3 weeks 

duration. Treatment onset was 2 weeks after injury. Surprisingly, a significant rate of 

recovery was indeed seen in this group (group 8). To validate those results, this experimental 

protocol was repeated twice, each time yielding a similar distribution of BBB scores 

throughout the subgroup. None of the animals in this group were stepping / walking or 

supported weight in stance at the time of treatment onset (day 15 after injury). Recovery of 

motor function sufficient to support walking was seen in 40% (6 out of 15) animals in this 

group. In those animals, which recovered with the delayed treatment onset, slight 

improvements were seen already one week after treatment onset. Recovery usually reached a 

plateau at week 5 after injury, which coincided with the end of the treatment period. In none 

of the animals in this group, six of which were allowed to recover until the end of week 12 

after injury, was any deterioration of function seen after the plateau of recovery had been 

reached (Table 9.8 and Figure 9.5). 
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OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1 8  / 1 / 2 / 2 / 1 / 1 / 2/ 

1 / 8 / 2 / 0 / 1 / 3 / 2 / 

8 

  

Week 2 8  / 8 / 8 / 2 / 1 / 8 / 3/ 

8 / 2 / 2 / 3 / 7 / 6 / 4 / 

8 

  

Week 3 8 / 1 / 6 / 6 / 8 / 8 / 6 9 / 9 / 9 / 9 / 9 / 9 11 / 10   

Week 4  5 / 8 / 8 / 8 / 7 / 6 / 8 9 / 9 / 9 11 / 11 / 12 / 10 / 

10 

Week 5 6 / 8 / 8 / 6 / 8 / 8 / 5 9 / 9 11 / 10 / 12 / 11 / 

12 / 11 

Week 6  8 / 8 / 8 / 5 / 8 / 8 / 8 9 / 9 11 / 11 / 12 / 12 / 

11 / 10  

Week 12 
(subset of animals 

tested at 6 weeks 

after injury) 

8 / 7 / 8  11 / 10 / 12 

 

 

Table 9.8: Group 8, BBB score distribution through weeks 1 � 12.  

Treatment with 75 µmol/kg quercetin was started 2 weeks after injury, and 

continued in 12 hr intervals for 3 weeks. 
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Figure 9.5: BBB scores of animals with delayed treatment (group 8) during the 6 week 

observation periot. Means ± SD. 

 

 

 

The combination of a ten-day treatment cycle, beginning at 1 hr after injury, with 

high-dose treatment during weeks 3-5 did not show the expected effect of potentiation in 

recovery potential (group 9) (Table 9.9 and Fig. 9.6). Rather, with 42.8% (3 out of 7) 

animals, the percentage of animals recovering motor function sufficient to support walking 

was similar to that expected for the 10-day protocol alone (group 5). 
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OUTCOME  

 

Time after injury 

 

BBB ≤ 8 

 

BBB = 9 

 

BBB ≥ 10 

Week 1 8 / 8 / 2 / 8 / 2 / 8 / 1   

Week 2 8 / 6 / 7 / 7 9 / 9 / 9  

Week 3 8 / 8 / 8 / 7 9 / 9 10 

Week 4 8 / 8 / 8 / 8 9 11 / 11 

Week 6 8 / 8 / 8 / 7  11 / 11 / 10 
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Figure 9.6 

Table 9.9 and Figure 9.6: Group 9, BBB score distribution through weeks 1 � 6.  

Treatment with 25 µmol/kg quercetin started 1 hr after injury, 

10 days duration, followed by 3 weeks treatment with            

75 µmol/kg quercetin twice daily, starting 2 weeks after injury. 
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 Within the group of animals receiving saline vehicle only, none of the animals 

recovered sufficient motor function to support walking or stepping movements at any time, 

and only one out of the 21 control animals (4.8%) was able to support weight in stance 

(Table 9.10). No differences in outcome distribution were observed with regard to the time of 

onset or duration of saline administration.  

None of the three animals, which underwent laminectomy only (no spinal cord 

injury), showed any neurological impairment. They all received BBB scores of 21 at every 

testing session. 

 

Time after injury BBB ≤ 8 BBB 9 

Week 1  3 / 7 / 1 / 0 / 0 / 2 / 1 / 1 / 0 / 1 / 1 / 

6 / 1 / 1 / 5 / 6 / 1 / 8 / 2 / 1 / 2 

 

Week 2 3 / 6 / 2 / 2 / 2 / 2 / 2 / 6 / 1 / 2 / 2 / 

1 / 1 / 1 / 8 / 3 / 1 / 8 / 2 / 1 / 2 

 

Week 6 8 / 8 / 6 / 8 / 7 / 8 / 8 / 1 / 1 / 2 / 6 / 

1 / 7 / 8 / 6 / 1 / 2 / 7 / 3 / 6 

9 

Week 12 7 / 6 / 7 / 8 / 7 / 1  9 

 

Table 9.10:  Group 10 (saline injections), BBB scores through weeks 1 �12. 
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Recovery of motor function for the animals in the various treatment protocols has 

been summarized in Table 9.11. 

 

Outcome   
Start 

treatment 
after SCI 

 
Duration of 
treatment 

 
Treatment schedule  

 
≤ 8 

 
9 

 
≥ 10 

Group 1 

n = 6 

1 hr single injection 25 µmol/kg 4 0 2 

Group 2 
n = 5 

1 hr 24 hr 25 µmol/kg 
 

4 0 1 

Group 3 
n = 12 

1 hr 72 hr 25 mol/kg 
twice daily 

4 
 

1 
 

7 
 

Group 4 
n = 6 

1 hr 72 hr 25 µmol/kg 
three times daily 

6 0 0 

Group 5 
n = 13 

1 hr 10 days 25 µmol/kg 
twice daily 

6 1 6 

Group 6 
n = 5 

1 hr 10 days 25 µmol/kg 
three times daily 

2 3 0 

Group 7 
n = 11 

12 hr 10 days 25 µmol/kg 
twice daily 

8 1 2 

Group 8 
n = 15 

2 weeks 3 weeks 75 µmol/kg twice 
daily 

7 2 6 

Group 9 
n = 7 

1 hr 
 

+ 
 

2 weeks 

10 days 
 

+ 
 

3 weeks 

25 µmol/kg 
twice daily 

+ 
 75 µmol/kg 
twice daily 

4 0 3 

Group 10 
n = 21 

1 hr, 12 hr or 
2 weeks 

24 hr � 3 weeks 3 ml / injection 20 1 0 

 

TABLE 9.11:   Summary of outcomes with the various treatment schedules.  

n = surviving animals at end of experiment. 

   BBB ≤ 8: no weight support, BBB 9: weight support in stance,  

BBB ≥ 10: stepping / walking 
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  Start 

treatment 

after SCI 

Duration of 

treatment 

 

Treatment schedule 

Animals 

walking 
 

Variance  
and statistical 
significance 
from group 5 

(*) 

Group 1 n = 6 
1 hr single injection 25 µmol/kg 33.3 % * 

Group 2  n = 5 1 hr 24 hr 25 µmol/kg 20 % * 

Group 3  

n = 12 

1 hr 72 hr 25 µmol/kg 

twice daily 

58 % * 

significantly 

better 

Group 4   

n = 6 

1 hr 72 hr 25 µmol/kg 

three times daily 

none * 

Group 5  

n = 14 

1 hr 10 days 25 µmol/kg 

twice daily 

46.2 % 35.6 � 

56.8% 

Group 6   

n = 5 

1 hr 10 days 25 µmol/kg 

three times daily 

none * 

Group 7  

n = 12 

12 hr 10 days 25 µmol/kg 

twice daily 

18.2 % * 

Group 8  

n = 15 

2 weeks 3 weeks 75 µmol/kg twice 

daily 

40 %  

Group 9   
n = 7 

1 hr 
 

+ 
 

2 weeks 

10 days 
 

+ 
 

3 weeks 

25 µmol/kg 
twice daily 

+ 
75 µmol/kg 
twice daily 

 
42.8 % 

 

Group 10  

n = 23 

1 hr, 12 hr or 

2 weeks 

24 hr � 3 weeks 3 ml saline/ 

injection 

none * 

 

Table 9.12:  Statistical analysis for binominal distribution.  

Outcome for delayed treatment (groups 8 and 9) is not statistically 

significant from that in Group 5 (i.e. early treatment), while the 

difference in outcome of all other schedules is statistically significant. 

Asterisk: outcome statistically significant, compared to Group 5 
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Correlation of BBB and Angle board scores 

For this comparison, test results of 107 animals were analyzed. All animals received 

both BBB scores and Angle board scores on a weekly basis. The following correlation was 

found between BBB and Angle board scores (Tables 9.12 and 9.13): 

 

BBB scores 

(points) 

Angle board scores 

(angular degrees) 

Healthy animals  

(BBB 21) 

 

45-50 

Animals walking, but incompletely recovered, 

coordination of for and hind limb movements 

(BBB ≥12) 

 

45 - 50 

Animals walking, but incompletely recovered, 

no coordination of for and hind limb movements 

(BBB 10 - 11) 

 

35 � 45 

Animals supporting weight, but not walking 

(BBB 9) 

 

30 - 40 

Animals not supporting weight, with strong 

movements in all three joints of the hind limbs 

(BBB 7 or 8) 

 

25 - 35 

Animals not supporting weight,  

(BBB 2 - 6) 

 

25 - 30 

No movement  

or weak movement of one or two joints 

(BBB 0 or 1) 

 

< 25 

 

TABLE 9.13: Correlation between functionally distinct groups of animals, which are also  

distinct by BBB scores, and Angle board scores. 
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Angle board scores BBB scores 

< 25 0 -1 

25 1 - 8 

30 1 - 9 

35 1 - 11 

40 5 - 11 

45 8 - 21 

50 11 - 21 

 

 

TABLE 9.14: Numeral correlation of BBB scores to Angle board scores. 



 214

9. 4 Discussion 

In a recent review of pathophysiology and treatment of spinal cord injury, Hulsebosch  

(2002) points out a list of possible targets for intervention in patients with acute traumatic 

spinal cord injury. The first three items on this list refer to reduction of edema and free 

radical production, rescue of neural tissue at risk of dying in secondary processes and control 

of inflammation. In an earlier review, Juurlink and Paterson as well had suggested that the 

non-transected axons spared after acute spinal cord injury might be a good target for 

therapeutic intervention (Juurlink and Paterson, 1998).  In both compression and contusion 

type injuries, the involvement of various pathological mechanisms has been implied in 

secondary loss of those axons spared by the primary injury, including demyelination caused 

by apoptosis of oligodendrocytes and inflammatory processes (Gledhill et al., 1973; Harrison 

and McDonald, 1977; Griffiths and McCulloch, 1983; Blight, 1985; Shuman et al., 1997). 

Tissue damage caused by inflammatory processes is mediated by neutrophils and 

macrophages invading the site of injury and its immediate surroundings. Neutrophils and 

macrophages secrete oxidants as well as hydrolytic enzymes into the extracellular space, 

where they react with both damaged and healthy tissue (Pincemail et al., 1988; Rodrigues et 

al, 2002). Since quercetin had been shown to possess anti-edematous, anti-oxidant and anti-

inflammatory capacities, it was reasonable to expect this compound to act neuroprotective in 

the setting of acute traumatic spinal cord injury. The results of our experiments indicate that 

this assumption is correct.  

In our earlier experiments, in which the calibrated closing force of the aneurysm clip 

was 40 g, 67% of initially paraplegic animals recover sufficient hind limb function to walk 

(Schültke et al., 2003). To create the spinal cord injury for the experiments in group 5, an 
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identical experimental protocol was used, with the one exception that the calibrated closing 

force of the aneurysm clip was 50 g, instead of 40 g.  In these experiments, recovery of hind 

limb function sufficient to support walking was seen only in 46.2% of the animals. This 

suggests that the efficacy of quercetin after acute traumatic spinal cord injury is limited by 

the severity of the trauma. The average of BBB scores within the group of stepping / walking 

animals after 40 g clip injury was 14.6 vs. 13.7 in the group submitted to 50 g clip injury. 

Keeping in mind that the inter-observer difference for the BBB scoring system is two points, 

this difference is not statistically significant, although it might indicate a tendency towards 

better recovery of coordination between for and hind limbs in animals with a less severe 

injury.  

Increasing administration of quercetin to three times daily, virtually eliminated the 

beneficial effect on recovery of motor function that had been seen with twice daily 

administration in otherwise identical treatment protocols (groups 5 vs. 6 and groups 3 vs. 4). 

Even with thrice daily administration (75 µmol/kg quercetin / day), daily doses administered 

in the early phase after injury are only half that administered in the late-onset experiments 

(group 8). Yet, not a single animal recovered to BBB > 8 in these groups, while a significant 

percentage of animals were walking in both groups with late high-dose treatment. While the 

higher doses of quercetin have a beneficial effect on recovery of motor function when 

administered in the later phase, no benefit is seen with administration early after injury. This 

suggests that quercetin levels might play a significant role in determining treatment outcome 

early after injury, but not so much in a later phase.  Although we have not measured 

quercetin levels in either blood or tissue of our animals, the idea is supported by the results 

obtained from our experiments.  Comparing results within the two groups receiving late high-
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dose treatment (groups 8 and 9), it is noteworthy that the percentage of walking animals in 

both groups was about equal (40 vs. 43%). This furthermore indicates that the higher dose 

administered in a later phase after injury did not result in any loss of recovery gained with 

treatment early after injury.  

Although it appears to be established that the activity of neutrophils as cellular 

mediator of inflammation causes tissue damage, the role of macrophages in the injury 

process is much less straightforward. It seems that activity of macrophages and microglia 

play a rather important role in the repair processes after tissue injury (Schwartz et al., 1999; 

Rapalino et al., 1998; Prewitt, 1997). Myeloperoxidase is stored in the granules of 

neutrophils. Reacting with hydrogen peroxide and cloride anions, hypochlorous acid and 

cloramines are formed (Pincemail et al., 1988). When hypochlorous acid and chloramines are 

released into the extracellular space, they will cause excessive tissue damage to protein 

structures (Hawkins and Davies, 1998). One of the mechanisms, through which quercetin 

acts, is the inhibition of myeloperoxidase activity. It therefore appears reasonable to inhibit 

the myeloperoxidase activity of neutrophils by administration of quercetin. Alternatively, 

decreased myeloperoxidase activity might be caused by reduced influx of neutrophils at the 

site of injury, which might be due to administration of quercetin. As Carlson and colleagues 

have described, myeloperoxidase activity caused by neutrophil invasion peaks around 24 hr 

after spinal cord injury in the rat, declining within 4 8hr (Carlson et al., 1998). Extending 

treatment duration beyond the phase of high myeloperoxidase activity might lead to a 

situation in which quercetin interferes with signaling pathways necessary to attract 

macrophages, leading to a disturbance of repair functions usually performed by those cells. 

It, therefore, might not be advisable to abrogate macrophage function completely. 
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Phagocytosis of debris from the injury site is one of the important functions of macrophages 

in the complex of repair processes. Fadok and colleagues have shown in an in-vitro model 

that macrophages, which have ingested apoptotic cells, contribute to decrease in production 

of pro-inflammatory cytokines, including TGFβ (Fadok et al., 1998). It also has been 

suggested that macrophages might take up myeloperoxidase from the injured tissue, either by 

phagocytosis of myeloperoxidase-containing neutrophils or by another direct process, 

thereby decreasing the potential of secondary injury (Winterbourn et al., 2000; Hampton et 

al., 2002; Rodrigues et al., 2002). Interestingly, it has been shown in an in-vitro model of 

phagocytotic macrophage activity, that quercetin decreased the amount of myelin 

phagocytosed by stimulated macrophages (Hendriks et al., 2003). If this were true also under 

in-vivo conditions, quercetin might act neuroprotective by preserving the intactness of 

myelin sheaths. 

To explain our observation that administration of quercetin as late as 2 weeks after 

injury still results in improved recovery of motor function, two prominent pathomechanisms, 

active late after injury, come to mind: apoptosis and glial scar formation. It has been shown 

in rat as well as in monkey models that both neurons and glia can die by apoptosis (Beattie et 

al., 1992; Crowe et al., 1997; Liu et al., 1997). Apoptotic cell death is expected to contribute 

to the increasing volume of secondary injury, probably weeks to even months after injury 

(Johnson et al., 1995). In fact, it has been shown in vitro that quercetin is an excellent 

inhibitor of apoptotic nuclear damage (Choi et al., 2003). 

The other process possibly influenced by late administration of quercetin is glial scar 

formation. In autopsy studies of human spinal cord injury, gliosis and macrophage infiltration 

around a central necrosis at the site of injury were found as late as 5 months after acute 
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traumatic spinal cord injury (Ito et al., 1997). It has been shown that the expression of 

TGFβ2 is elevated in activated macrophages and glia after spinal cord injury. While 

oligodendrocytes in the uninjured spinal cord are negative for TGFβ2, TGFβ2 expression 

increases through day 10 after spinal cord injury, plateaus and then decreases again, having 

almost disappeared by day 30 after SCI (Lagord et al., 2002). Secretion of TGFβ2 promotes 

secretion of extracellular matrix molecules, and therefore scar formation (Lagord et al., 2002; 

Kovacs et al, 1991). We have not found any direct evidence for interaction of quercetin and 

TGFβ2 in the literature. However, evidence has been found, that quercetin reduces the extent 

of hypertrophic scar formation by inhibition of fibroblast proliferation (Phan et al., 2003). 

Since TGFβ2 promotes fibroblast proliferation, TGFβ2 might well be the pathway through 

which quercetin affects fibroblast proliferation. This idea is supported by the reduction of 

gliosis (the equivalent of scar formation in CNS tissue) and glial fibrillary acidic protein 

(GFAP) levels by quercetin seen in a scratch injury model of primary astrocyte cultures (Wu 

and Yu, 2000).  

The correlation of BBB scores and Angle board scores in our experiments, derived 

from more than 650 individual test situations, clearly shows that the BBB scoring system is 

much more sensitive and clinically more relevant for the assessment of motor function 

recovery (Tables 9.12 and 9.13). While the BBB system allows a clear distinction between 

healthy animals, animals incompletely recovered but walking with coordination of limb 

movements, and animals stepping / walking without coordination of limb movements, no 

such distinction is possible when the Angle board scores are used. In the lower range of 

motor function recovery (BBB ≤ 9), again overlap of Angle board scores from three 

functionally distinct groups is encountered (Table 9.12). It is noteworthy that identical Angle 
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board scores have been obtained for animals with clinically significant different levels of 

hind limb motor function (Table 9.13). The same Angle board score of 35 could have been 

assigned to an animal with only weak movements in one or two joints, or to an animal which 

has recovered sufficient hind limb function to support stepping / walking. 

Our experiments have shown that there is a therapeutic window of two weeks 

duration for onset of quercetin treatment, when the dose is adjusted. Quercetin might act 

neuroprotective by attenuating similar pathomechanisms of secondary tissue injury in the 

early and late phases after injury, such as decrease of activated caspase-3 expression. 

Although the pathways through which quercetin acts neuroprotective still requires further 

investigation, the results of our studies strongly suggest that administration of quercetin after 

acute spinal cord injury is neuroprotective. 
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10.1 Summary of results 

The results of our experiments have clearly established that  

 
1) Administration of quercetin, starting one hour after trauma and continued in 12 hr 

intervals, promotes recovery of motor function in an animal model of acute spinal 

cord compression injury. Contrary to our expectation, that quercetin would be 

neuroprotective only when administered early after injury, we found that the 

compound contributed significantly to recovery of motor function even when 

administered as late as 2 weeks after trauma.  

 
 

2) Administration of quercetin, starting one hour after trauma and continued in 12 hr 

intervals, results in preservation of compound action potentials in an animal 

model of moderate fluid percussion injury, a model for human brain concussion. 

 

3) Quercetin conveys neuroprotection through interference with several mechanisms  

which otherwise would contribute to the increase of post-traumatic lesion volume     

after acute traumatic spinal cord injury. Those mechanisms include decrease of 

the myeloperoxidase activity caused by neutrophils invading the site of injury, 

inhibition of apoptotic pathways converging on caspase-3, and chelation of free 

iron ions.  
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10.2 The first hypothesis is upheld 

We hypothesized that the ability of the polyphenolic flavonoid quercetin to chelate 

ferrous iron (Fe+2) and to decrease the intensity of post-traumatic inflammatory processes 

will result in improved recovery of motor function after neurotrauma.  

The strategy for our first block of experiments, as described in chapter 6, was based 

on the assumption that iron chelation would be an important component in the 

neuroprotective action profile of quercetin. The MRI-based chelation experiments allowed us 

to determine in a relatively short time and at little expense a quercetin dose well suited to 

reduce the availability of free iron ions in vitro. Had the MRI not been available, a substantial 

number of animals would have been required to perform those experiments in the animal 

model. Our first animal experiments were designed as a dose-response study, to explore the 

relationship of administered quercetin dose and therapeutic effect as reflected in improved 

recovery of motor function. We were able to demonstrate that intraperitoneal administration 

of 25 µmol / kg quercetin, if treatment was started 1 hr after injury and continued in 12 hr 

intervals, promoted significant recovery of motor function in the previously paraplegic hind 

limbs of our animals, when compared to animals receiving saline vehicle only. Thus, we 

found that the quercetin dose resulting in optimal iron chelation in the MRI experiments also 

resulted in significantly improved recovery of motor function in the setting of spinal cord 

injury. This supports the hypothesis that iron chelation is indeed an important component in 

the neuroprotective action profile of quercetin. Post-traumatic hemorrhages are a frequent 

occurrence after acute spinal cord trauma. Disintegrating erythrocytes are the source for 

hemoglobin, which passes through several stages of disintegration from oxyhemoglobin via 

deoxyhemoglobin to methemoglobin, before cells break down (Bradley, 1993).  
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Hemosiderin, a breakdown product of hemoglobin, tends to remain at the site of injury, 

awaiting further breakdown of the molecule. Serum iron, ferritin and transferrin levels are 

indirect indicators of an organism�s overall iron load. However, those parameters will fail to 

give us any information on the availability of iron-containing breakdown products 

concentrated at the site of injury. Therefore, no valuable information can be derived from 

them regarding the oxidative stress potential caused by the locally confined presence of iron. 

On the other hand, it has been shown that the presence of iron causes signal changes in both 

T1 and T2 weighed MRI images. Hemosiderosis has been shown to significantly decrease T2 

relaxation time in a dose-dependent fashion (Salo et al., 2002). During the first two or three 

days after trauma, the cellular integrity of erythrocytes stays mostly intact and mainly 

hemoglobin and deoxyhemoglobin are present. Although deoxyhemoglobin molecules create 

a stronger magnetic field than deoxyhemoglobin, only the duration of the T2 signal is 

shortened as a consequence, while the T1 signal (with shorter acquisition times than T2 

signals) is almost unaffected. This can be explained by the fact that heme iron in both 

oxyhemoglobin and deoxyhemoglobin is in the ferrous state (Fe2+), with four unpaired 

electrons. However, after about 3 days, oxidative disintegration of hemoglobin has advanced 

to form methemoglobin, which is at first present intracellularly, but found increasingly 

extracellularly with progressive disintegration of the erythrocytes (Wintrobe et al, 1981).  

Iron in methemoglobin is bound in the ferric state (Fe3+), with five unpaired electrons. The 

paramagnetic strength of molecules is based on the number of unpaired electrons in a 

molecule (Bloemberger et al., 1948). Since the methemoglobin molecule has five unpaired 

electrons, as compared to the four unpaired electrons found in deoxyhemoglobin, the 

magnetic field created is stronger in methemoglobin. Water molecules passing through this 
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magnetic field will experience stronger dephasing due to dipole-dipole interaction, which is 

reflected in shortening of the T1 signal (Bradley; 1993). We modeled chelation of iron ions 

in both the ferrous and ferric states by the flavonoid quercetin. Since changes in the behavior 

of the T1 signal appear more continuous than T2 changes, where differences between ferrous 

and ferric states of iron are concerned, we chose analysis of T1 signal changes for our MRI 

experiments. Methemoglobin (containing ferric iron), hydrogen peroxide and superoxide 

radicals are produced during the disintegration process of hemoglobin by autooxidation 

(Winterbourn, 1985). All of those disintegration products are known to be involved in 

oxidant processes contributing to lipid membrane peroxidation (Juurlink and Paterson, 1998). 

Chelation of both ferrous and ferric iron ions by quercetin has been demonstrated in our MRI 

experiments and in experiments performed elsewhere, but it was more significant for ferrous 

iron. Since MRI was not available for us to image the spinal cords of our animals in the post-

traumatic state, we reverted to indirect assessment of iron in the spinal cord at the injury site. 

At four weeks after injury, all hemoglobin could be expected to have disintegrated to a state 

where no oxyhemoglobin or deoxyhemoglobin (i.e. no ferrous iron-containing heme-

molecules, originating from post-traumatic hemorrhage) were present any more. Ferric iron 

can be easily detected using a Mallory iron stain on tissue sections.  In our spinal cord injury 

experiments described in chapter 7, no ferric iron was detected by Mallory iron stain in spinal 

cord tissues of injured animals at 4 weeks after the trauma when quercetin had been 

administered, contrary to animals which received saline vehicle only, where ferric iron was 

present. This suggests that, in our in-vivo experiments, the administered quercetin had 

chelated ferrous iron and thereby prevented its conversion to ferric iron. Thus, we have 
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shown that quercetin facilitates iron clearance in the setting of acute traumatic spinal cord 

injury.  

 

10.3 Neuroprotection by quercetin: antioxidant, anti-inflammatory and anti-apoptotic  

In experiments performed elsewhere, quercetin had been shown to have antioxidant 

and anti-inflammatory actions both in vitro and in vivo. However, no experiments had been 

performed to test the action of quercetin in the settings of CNS trauma. Since, from the 

compound�s known action profile, a neuroprotective effect could be expected, we 

investigated whether this neuroprotective effect would be reflected in decreased activity of 

the pro-inflammatory enzyme myeloperoxidase and whether the extent of apoptotic cell 

death could be decreased by quercetin administration. When we found, in our short-term 

experiments, that both myeloperoxidase activity and indicators for apoptotic cell death were 

down-regulated by administration of quercetin, we designed a new block of long-term 

experiment that would allow us to assess whether the compound�s neuroprotective effect 

seen with biochemical and immunocytochemical tissue analysis would finally translate into 

preservation of motor function. Since spinal cord trauma is frequently associated with head 

trauma, we used animal models for both presentations of CNS trauma for our experiments. 

Although different strains of rats were used for spinal cord trauma and head trauma 

experiments, animals in both experimental settings were equal in species and gender. Minor 

differences existed in age and weight of the animals. It has been well documented that 

cycling hormones like estrogen and progesterone significantly modulate an organism�s 

response to CNS trauma (Galani et al., 2001; Shugrue and Merchenthaler, 2003; Sribnick et 

al., 2003). Administration of progesterone has been shown to attenuate cerebral edema after 
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traumatic brain injury (Shear et al., 2002) and supported sparing of neurons from secondary 

injury, which resulted in improved cognitive outcome (Roof et al., 1997). Therefore, we used 

exclusively male animals for our experiments, so as to avoid possible interference with 

hormonal modulators of post-traumatic preservation and repair processes. Our choice of 

experimental subjects would assure that statements about potential neuroprotection made 

based on the results of those experiments were as closely related as if two different sets of 

data were collected in a population of male human patients for head injury and spinal cord 

trauma.  

 It should be noted that myeloperoxidase activity was diminished in both spinal cord 

injury and head trauma after administration of the same dose of quercetin. This is interesting 

because it further supports the idea of similarities between pathomechanisms involved in 

different forms of CNS injury. The fact is also important with regard to possible clinical 

trials. Since the same dose of a compound is shown to have beneficial effects in both types of 

injury, which was proven on both functional and biochemical level, we have excluded a 

potential problem that might have arisen if the compound were beneficial in one but harmful 

in the other setting. Having excluded this potential problem, we would not have to restrict the 

indication for our compound to cases of isolated spinal cord injury. 

Hydrogen peroxide apparently plays a major role for several pathways leading to 

secondary CNS injury. Released by stimulated neutrophils, hydrogen peroxide contributes to 

activation of apoptotic pathways converging on caspase-3 (Lu et al., 2001). Casha and 

colleagues (2001) have shown in adult rats that, at the site of injury, caspase-3 was 

completely cleaved (i. e. activated) between days 1 and 7 post trauma and associated with   

extensive glial apoptosis at the site of injury.  Although in Casha�s study, only glial apoptosis 
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was reported, results from our own study indicate that apoptotic cell death after SCI affects 

both glia and neurons. Our findings agree with those reported by Liu and colleagues (1997). 

We found that in traumatized spinal cord tissue caspase-3 was significantly activated at three 

days after injury, when only saline vehicle had been administered. However, with 

administration of 25 µmol/kg quercetin, starting one hour after injury and continued in 12 hr-

intervals, caspase-3 activation was significantly decreased. Caspase-3 activation can be 

induced by a variety of trauma-associated stimuli (Yakovlev and Faden, 2001; Knoblach et 

al., 2002). Although several caspases seem to be involved in post-traumatic apoptotic cell 

death in the CNS (Knoblach et al, 2002), caspase-3 appears to be the major effector of 

apoptotic neuronal death (Yakovlev and Faden, 2001). Having demonstrated that caspase-3 

activation was significantly decreased in spinal cords of quercetin-treated animals, we feel 

that this strongly suggests that quercetin significantly reduces the extent of post-traumatic 

apoptotic cell death after SCI.  

Both mechanisms, myeloperoxidase activity in stimulated neutrophils and apoptotic 

cell death after spinal cord injury, have been observed in material from human patients. 

Having shown that quercetin, acting neuroprotective in our animal models, interferes with 

those two pathways, we would assume that quercetin would also be beneficial when 

administered to human patients in the settings of acute traumatic spinal cord injury and head 

trauma. 

Khaled and colleagues (2003) have demonstrated in an animal model that the state of 

solubility of quercetin significantly influences both the rate of absorption and the overall 

amount of absorption after oral administration. Peak values of serum quercetin levels, 

measured by HPLC, were seen slightly earlier when quercetin was administered in solution 
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(2 hrs for solution vs. 3 hrs for suspension). Although none of the experimenters has, to our 

knowledge, studied the pharmacokinetics of quercetin after intraperitoneal administration, we 

would assume that a similar delay in the availability could be observed for quercetin in 

suspension with this intraperitoneal administration. Since we have used intraperitoneal 

administration of quercetin throughout all of our experiments, we might be able to increase 

availability of quercetin by introducing a solvent that allows us to administer the compound 

in solution rather than in suspension. On the other hand, considering the not so favorable 

results from both experimental groups that received an increased amount of quercetin with 

thrice daily application in the early phase of spinal cord trauma, an increase in the overall 

available dose might not be desirable. The slow release from a suspension and the lower 

bioavailability might prove a therapeutic advantage rather than an obstacle. If oral 

administration of quercetin were considered, it might be worthwhile to explore the usefulness 

of αG-rutin, a more water-soluble form of the compound (>1 g/ml for αG-rutin vs. 2.4 µg/ml 

for quercetin and 51 µg/ml for rutin). As Shimoi and colleagues have demonstrated, it was 

absorbed and metabolized more efficiently than either quercetin or rutin, and plasma levels 

peaked at about 8 hr after ingestion, as seen with quercetin (Shimoi et al., 2003). 
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10.4 The second hypothesis is proved false   

We hypothesized that, while administration of quercetin in the acute phase of CNS 

injury resulted in neuroprotection and functional recovery, no such benefit would be seen 

with delayed treatment onset.  

Against our expectations, recovery of motor function in initially paraplegic animals 

was seen even when treatment onset with quercetin was delayed for 2 weeks after injury. 

Although this was unexpected, reasonable explanations with regard to the acting mechanisms 

of quercetin can be found. Quercetin has been found to inhibit apoptotic pathways, both in 

vitro and in our in-vivo model. Apoptotic processes have been observed to continue as late as 

3 weeks, possibly even years after spinal cord trauma (Johnson et al., 1995; Shuman et al., 

1997). The latter would correspond with the clinical observation that, even years after the 

primary spinal cord trauma, and preceded by a phase of apparent stability, neurological 

performance of patients may continue to deteriorate. Syrinx formation, or increase of the 

volume of an existing syrinx, has been linked to the observed functional deterioration 

(Hughes, 1988). Apoptotic morphology has been shown to be closely correlated to DNA 

fragmentation (Schmied et al., 1993). Since quercetin has been shown to prevent DNA 

fragmentation (Sestili et al., 1998.), it can be expected that even delayed onset of quercetin 

administration will still prevent some of the late damage. Another explanation for 

effectiveness of late-onset treatment with quercetin would include the compound�s anti-

inflammatory capacity. Chronic inflammatory processes result in changes of extracellular 

matrix composition, which make the environment conducive to scar formation (Fawcett and 

Asher, 1999). It has been shown that quercetin modulates the extracellular matrix in a way 

that results in reduced hypertrophic scar formation (Phan et al., 2003). Lavine and colleagues 
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demonstrated that after administration of a neutralizing antibody to TNF-α, a potent mediator 

of astrogliosis and cell death, neurological outcome was improved after ischemia-reperfusion 

injury in a rat model (Lavine et al. 1998). Quercetin has been shown to inhibit TNF-α 

production (Mastuda et al., 2002; Kahraman et al, 2003). Another indication that quercetin 

modulates post-traumatic tissue formation has been shown in a model of chronic 

inflammation, where administration of the compound significantly reduced the extent of 

granuloma formation (Pelzer et al., 1998).  

Thus, quercetin might modulate the environment at the injury site in a way that 

ultimately prevents scar formation when administered in the appropriate time frame after 

CNS trauma. 
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10.5  Conclusions 

 The results of our experiments suggest that the action profile of quercetin allows the 

compound to interfere with pathological mechanisms that otherwise would result in 

significant functional recovery of traumatized CNS tissue structures. Based on the results of 

our experiments, the following pathways through which administration of quercetin might 

contribute to neuroprotection are proposed: 1) Quercetin reduces the level of 

myeloperoxidase activity in injured spinal cord and brain tissue. Less hypochlorous acid is 

generated in and released from the neutrophils, which prevents damage to adjacent tissue 

structures. 2) Since less oxidant species are produced, the intracellular pool of reduced 

glutathione is better preserved, resulting in preservation of structure and function of 

regulatory proteins and mitochondria.  3) Quercetin decreases delayed apoptotic cell death, as 

suggested by prevention of the caspase-3 increase seen in injured animals treated with saline 

vehicle only. Therefore, both early and late administration of the compound should be 

beneficial, as long as cell death by apoptosis is a contributing factor to secondary tissue 

damage. 4) Quercetin reduces lipid membrane peroxidation by chelating ferrous iron, 

therefore preventing the redox cycling of iron ions, which are involved in lipid peroxidation. 

Since quercetin can be administered in relatively high doses in both animals and human 

patients without causing significant adverse effects, but neuroprotective effects have been 

clearly established in animal models of trauma to brain and spinal cord, we feel sufficiently 

confident to recommend human clinical trials with the compound in the setting of acute 

traumatic CNS injury. 
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10.6 Is quercetin fit for clinical trial?  

Given the fact that quercetin is a component of most people�s regular diet, it would 

appear that adverse effects to the compound are limited. Therefore, the more relevant 

question might be rather whether it is reasonable to expect therapeutic effects that warrant 

time, effort and financial expenses of large-scale human clinical trials. Analyzing the results 

so far presented in the framework of this thesis, I would propose the following additional 

investigations: 

The experiments investigating the modification of the sequelae of acute head trauma 

by quercetin administration should be expanded to include the following: 

1. Behavioral studies should be added to prove that, as has been shown with the spinal 

cord injury model, administration of quercetin results in improved recovery of 

neurological function.  

2. Modulation of iron clearance from the site of injury was one of the prominent 

pathomechanisms, which were found to be modulated in a neuroprotective manner by 

administration of quercetin in the spinal cord injury model. Therefore, it would 

appear advantageous to demonstrate that this protective mechanism is acting also in 

the setting of acute head trauma.  

3. The characterization of quercetin action in both animal models would benefit from 

further investigation of the compound�s interference with delayed cell death. Since 

attenuation of apoptotic cell death has been suggested by the decreased extent of 

caspase-3 cleavage observed during the acute phase of spinal cord injury, we might 

expect to see similarly decreased caspase-3 activity with quercetin administration 

after acute head trauma.  Furthermore, since the process of apoptosis is believed to be 
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ongoing weeks and months, even years after injury, caspase-3 expression should be 

analyzed in samples from animals which received delayed treatment with quercetin. 

To verify whether quercetin administration indeed attenuates apoptotic cell death, 

nuclear fragmentation should be analyzed using, for instance, TUNEL stain. 

4. Although the work presented in this thesis was concerned with prevention of 

secondary injury rather than regeneration, it would be interesting to investigate 

whether administration of quercetin modulates the process of glial scar formation. A 

future curative approach to spinal cord injury will most probably combine several 

different therapeutic approaches, including prevention of secondary injury and 

possibly transplantation of cells which help bridging the physical gap created by the 

injury, transplantation of cells which support re-myelination of neurons that lost their 

proper myelin sheath as a consequence of the trauma, and administration of growth 

factors or other substances that support regeneration.  

5. It would be interesting to investigate whether quercetin is actually taken up into cells, 

or whether it stays in the extracellular space while unfolding its neuroprotective 

action. Of high interest would be knowledge about whether break-down of the blood-

brain or blood-spinal cord barrier is required for the compound�s action. 

6. It would be highly desirable to find a method by which to relate duration of relevant 

patho-physiological processes in the laboratory rat to the duration of the comparable 

processes in human patients, in order to define therapeutic window and optimal time 

of treatment onset before the onset of human clinical trial. 
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If the above questions could be addressed and the results form those experiments would 

further support our impression that administration of quercetin acts neuroprotective after 

acute neurotrauma, translation into clinical trials should be attempted.   

If the above questions could be addressed and the results form those experiments would 

further support our impression that administration of quercetin acts neuroprotective after 

acute neurotrauma, translation into clinical trials should be attempted.   
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