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Abstract

Early strength increase with training is normally attributed to neural adaptations but 

recent evidence suggests that muscle hypertrophy occurs earlier than previously thought. The 

purpose of this study was to examine the time course of adaptation through 20 days of training 

and 5 days of detraining. Twenty-two untrained subjects trained one arm every 2nd day for 20 

days. Subjects performed isokinetic eccentric biceps training at 90°/s (6 sets of 8 reps). Muscle 

thickness (reported in cm) via ultrasound, strength (reported in Nm) and muscle activation 

(electromyography) were measured before, during and after training (9 time points). Muscle 

thickness increased after 8 days of training (3.66±0.11 to 3.90±0.12; p<0.05) and remained 

above baseline until the end of training (3.97±0.12). After 5 days of detraining muscle thickness 

decreased (3.97±0.12 vs. 3.85±0.11; p<0.05), but remained higher than baseline (p<0.05). 

Muscle thickness did not change significantly in the untrained arm at any time point. Strength in 

the trained arm decreased after 8 days of training (65.6±4.1 to 57.5±3.5; p<0.05) and remained 

suppressed throughout the study. Muscle activation amplitude increased after 14 days of training 

(p<0.05) and remained elevated throughout the study. In conclusion, biceps muscle thickness 

increases very rapidly with frequent intense eccentric training although this type of training 

appears to impair strength. These findings provide additional evidence that muscle hypertrophy 

may occur much faster than has been generally accepted.             
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Chapter 1

 
Scientific Framework

1.1 Introduction

The performance of resistance training normally results in both increased strength and 

muscle hypertrophy (increased muscle size) (Moritani and deVries, 1979; Colliander and Tesch, 

1990; Staron et al, 1994; Higbie et al., 1996; Abe at al., 2000; Aagaard et al., 2001; Farthing and 

Chilibeck, 2003b; Seynnes et al., 2007).  Traditionally, the increase in strength has been thought 

to precede muscle hypertrophy, and is presumably due almost solely to adaptations of the 

nervous system (Moritani and deVries, 1979; Seynnes et al., 2007). In particular, these neural 

adaptations appear to involve alterations in the way the target muscles are activated (Sale, 1988; 

Narici et al., 1989; Carolan and Caferelli, 1992; Ploutz et al., 1994; Akima et al., 1999; Rabita et 

al., 2000; Rutherford at al., 2001; Reeves et al., 2005); however, recent evidence suggests that 

neural adaptations alone may not be the cause of strength increases and that muscle hypertrophy 

may occur much earlier than previously thought (Seynnes et al., 2007).

Past studies that have attempted to capture the time course of neural versus hypertrophic 

adaptations have brought forth the idea that muscle hypertrophy is delayed early in training and 

that strength increases quickly without early morphological adaptation (Ikai and Fukunaga, 1970; 

Moritani and deVries, 1979; Narici et al., 1989; Abe et al., 2000).  In contrast, Seynnes and 

colleagues (2007) found that after combined eccentric and concentric training, muscle 

hypertrophy was significant after only 20 days. The mechanistic adaptations necessary for 

muscle hypertrophy such as increased protein synthesis (Phillips et al., 1997; Moore et al., 2005) 

and satellite cell activity (Crameri et al., 2004; Dreyer et al., 2006) also occur very quickly after 
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resistance exercise. These more recent studies suggest that hypertrophy may have the potential to 

occur very early with intense resistance training.

To date, very few studies have tracked the potential for muscle hypertrophy within 20 

days of training. Seynnes et al. (2007) measured muscle size 10 days after training but did not 

find significant growth. Other studies have neglected to even attempt measurements within the 

first 2 weeks of training, even though strength increases much quicker (Seynnes et al., 2007). 

Research into the time course of early adaptations has been limited in other aspects. Past studies 

have had small participant numbers (Narici et al., 1989; Seynnes et al., 2007), did not provide an 

optimal training prescription for hypertrophy (Ikai and Fukunaga, 1970; Abe et al., 2000), or 

used relatively insensitive measurement techniques (Moritani and deVries, 1979). Logically, if 

all factors that influence muscle hypertrophy are optimized and measurements are made early 

enough to see early adaptation, it is expected that hypertrophy may occur even faster than the 20 

day time point which has been previously reported.

The primary objective of this investigation is to track the time course of early adaptations 

to training. Muscle hypertrophy, strength, and muscle activation will be measured at several time 

points within the first 20 days of an intense eccentric training program designed to induce rapid 

hypertrophic adaptation. This study will provide further insight into the relationship between 

hypertrophy and neural adaptations in the early stages of resistance training adaptation.

1.2  Review of Literature

1.2.1 Adaptations Early In Training

Skeletal muscle is an adaptable tissue that responds to various forms of tensional stimuli 

(Toigo and Boutellier, 2006). One specific stimulus that causes skeletal muscle adaptation is 
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resistance training. This is especially true early in training (in the first 4-5 weeks), when strength 

increases quickly (Moritani and deVries, 1979; Narici et al., 1989). As mentioned above, it is 

generally believed that this initial increase in strength is entirely due to neural adaptations 

although this idea is currently being challenged by studies providing evidence for early muscle 

hypertrophy (Seynnes et al., 2007) as well as early responses of the mechanisms of hypertrophy 

(Phillips, 2000; Moore et al., 2005). Still, strong evidence is available to support the idea that a 

number of neural adaptations are responsible for early strength increases, because strength gain 

almost always precedes changes in muscle size. Such evidence includes: increased agonist 

activation, decreased antagonist co-activation, and the phenomenon of cross-education (Sale, 

1988; Carolan and Caferelli, 1992; Enoka, 1997; Farthing et al., 2007; Lee and Carroll, 2007). 

These neural adaptations occur with resistance training and potentially cause increases in 

strength, even in the absence of morphological adaptation. 

1.2.1.1 Neural Adaptations

 Increased Agonist Activation

One of the earliest and most prominent neural adaptations with training is increased 

muscle activation of the agonist or prime mover muscle. Measured via electromyography (EMG) 

or interpolated twitch, this adaptation has been shown across numerous studies (Sale, 1988; 

Narici et al., 1989; Ploutz et al., 1994; Akima et al., 1999; Rabita et al., 2000; Rutherford et al., 

2001; Reeves et al., 2005; Seynnes et al., 2007). Whereas EMG measures muscle activity by 

picking up signal from active motor units, interpolated twitch involves delivering a supra-

maximal stimulus to the agonist muscle during a maximal voluntary contraction. If the force of 

contraction increases with the delivery of the stimulus, muscle activation of the agonist muscle is 
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considered to be incomplete. It has been proposed that increased activation of the agonist may 

occur as a result of at least two different adaptations (Sale, 1988). Increased agonist activation 

may be a result of more efficient recruitment of higher threshold motor units (type II motor units) 

(Sale, 1988) or could also be the result of increased motor unit firing rates (Zehr and Sale, 1994; 

Sale, 1988; Enoka and Fuglevand 2001). 

Increased agonist activation accompanied by increased muscle size may not be strong 

evidence for solely neural adaptation as increases in muscle size could potentially affect 

activation. Regardless, studies have shown increased agonist EMG activation in the apparent 

absence of morphological changes (Ploutz et al., 1994; Akima et al., 1999). The current study 

will measure agonist muscle activation via surface EMG as an indicator of neural adaptation 

occurring early in training. As strength is expected to increase rapidly early in training, 

monitoring changes in agonist activation will provide some insight into how much of this 

strength adaptation is attributed to increased activation of the agonist muscle.

 Decreased Antagonist Activation

Most major muscles exist in an agonist/antagonist relationship in regards to the 

movement of a specific joint. For this reason another neural adaptation that may be responsible 

for early strength gain is the decreased activation of antagonist muscles, also known as co-

activation (Sale, 1988; Enoka, 1997). Co-activation of the antagonist muscle may produce torque 

which is in opposition of the voluntary movement, resulting in reduced overall force in the 

desired direction. Carolan and Caferelli (1992) showed a reduction in knee flexor activation after 

a period of knee extension training. Specifically, this study noted that the decreased antagonist 

activation may have been responsible for approximately 33% of the increased force production 
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in knee extension after one week of training. Conversely, numerous other studies have found no 

changes in antagonist co-activation after training (Colson et al, 1999; Rutherford et al, 2001). 

Although theoretically logical, it appears that more research is needed to draw further 

conclusions on the affects of antagonist activation in regards to neural adaptation. The present 

study will add to this area by measuring changes in the muscle activation (via surface EMG) of 

the antagonist muscle (triceps) during training of the elbow flexors.

Cross Education

Further evidence for neural adaptation can be found in the phenomenon known as cross-

education. Cross-education is defined as an increase in strength of an untrained limb due to the 

training of the contralateral limb. This phenomenon, first identified by Scripture and colleagues 

in 1894, supports the idea that neural adaptation occurs, as in the vast majority of studies strength 

increase in the untrained limb occurs in the absence of any morphological adaptation. To our 

knowledge, Brown et al. (1990) is the only study to show evidence of an increase in muscle size 

(mean fiber cross-sectional area from muscle biopsies) in the untrained limb after unilateral 

training. Cross-education has now been shown extensively in the literature across various muscle 

groups, training protocols, and populations (Moritani and deVries, 1979; Farthing et al., 2005; 

Carroll et al, 2006; Farthing et al., 2007; Lee and Carroll, 2007). In monitoring strength in both 

arms while only training one arm, the current study will have the capability to observe changes 

related to cross-education. However, it should be noted that the present study will counter-

balance the training of the dominant or non-dominant arm across participants. A study by 

Farthing and colleagues (2005) found that cross-education occurred more strongly when training 

the dominant arm than the non-dominant. Thus, the cross-education effect may be blunted in the 
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current investigation compared to other studies which have specifically trained for cross-

education.

1.2.1.2 Muscle Hypertrophy

Muscle hypertrophy is defined as an increase in muscle fiber size that occurs from 

training. When resistance training occurs, muscle fibers experience small tears or microtrauma. 

This damage causes protein degradation. After training, protein synthesis is also signaled.  In 

order for hypertrophy to occur, protein synthesis must be greater than protein degradation 

(Behm, 1995). Factors such as hypertrophy may contribute to early strength increase. 

Traditionally, muscle hypertrophy is not predicted to occur until after at least 4 weeks of strength 

training, after which it is the primary contributor to further increases in strength (Moritani and 

deVries, 1979). However, recent research suggests that muscle hypertrophy might occur earlier 

than 4 weeks (Seynnes et al., 2007).  The goal of this study is to further investigate the time 

course of hypertrophy early in strength training, which might depend somewhat on the type and 

speed of contraction used in training, the specific muscle group being trained, and the training 

prescription.  

Muscle Hypertrophy and Contraction Type and Speed

With adequate volume and duration, muscular adaptation occurs with almost all forms of 

resistance training; however, the type of contraction used in training has an effect on the 

magnitude of muscle hypertrophy. Regular resistance training consists of combined concentric 

and eccentric contractions, but the major emphasis of this form of training is on the concentric. 

When the eccentric portion is emphasized and properly stressed, eccentric contractions have 
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been shown to be more effective than concentric contractions for inducing muscle hypertrophy 

(Higbie et al., 1996; Seger et al., 1998; Hortobágyi et al., 1996; Farthing and Chilibeck, 2003b). 

As well, eccentric contractions have been shown to increase muscle protein synthesis to a greater 

extent than concentric contractions (Moore et al., 2005). It has long been known that eccentric 

contractions have the potential to generate greater maximal force than concentric contractions 

(Levin and Wyman, 1927). This is one possible explanation for why eccentric contractions are 

the most efficient for increasing muscle size, and this idea has been confirmed in the literature, 

where training with higher force contractions led to the greatest gains in muscle hypertrophy 

(Farthing and Chilibeck, 2003b). Additionally, it has been proposed that the fiber tension and 

mechanical tearing of muscle fibers that occurs with eccentric contractions also plays a role in 

their ability to generate hypertrophy. This idea is also supported by studies showing that 

eccentric contractions produce large amounts of muscular damage (Stauber, 1989; Behm, 1995; 

Enoka, 1996; Stupka et al., 2001, Paddon-Jones et al., 2005) and result in significant muscle 

soreness (Nosaka and Newton, 2002; Paddon-Jones et al., 2005).

With regards to contraction velocity, eccentric contractions at both fast and slow speeds 

(30 to 180º/s) are very effective for increasing strength and hypertrophy (Seger et al., 1998; 

Farthing and Chilibeck, 2003b; Shepstone et al., 2005). High velocity eccentric contractions are 

the most effective for muscle hypertrophy (Farthing and Chilibeck, 2003b; Shepstone et al., 

2005); however, fast eccentric contractions performed on an isokinetic dynamometer are quite 

unfamiliar and might have an extended learning curve. This may impede maximal exertion early 

in training by way of agonist muscle inhibition or by co-activation. More complex 

neuromuscular tasks have a delayed hypertrophy response compared to simpler tasks (Chilibeck 

et al., 1998).  In a study designed to target the time course of early hypertrophic adaptation, full 
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effort, proper execution, and the potential to maximize early morphological adaptation are 

important. For these reasons, the present investigation will utilize eccentric training at 

90°/second. Medium speed eccentric training will be used as it combines the high tension of 

faster eccentric contractions and yet will be more easily mastered. 

Muscle Hypertrophy and Muscle Group

Resistance training in the upper body results in greater hypertrophy compared to lower 

body (Wilmore, 1974; Cureton et al., 1988; Chilibeck et al., 1998; Brown et al., 1990; Abe et al., 

2000). Brown et al. (1990) had participants train the elbow flexors along with the knee flexors 

and extensors. The elbow flexors had the largest relative increase (17%) compared to the knee 

extensors (9.9%) and flexors (4.4%). Elbow flexors muscle thickness increased 22% in young 

subjects versus only 4% in the quadriceps of the same group after training (Welle et al., 1996). 

Abe and colleagues (2000) showed the same trend as upper body muscle trained in their study 

hypertrophied to a greater extent than those of the lower body. A number of mechanisms may 

explain the greater hypertrophy in upper-body than lower-body muscles. Lower body muscles 

are frequently used in everyday living (i.e. walking, standing, etc). Thus, these muscles may be 

habitually activated and have less of a training response than less often used upper body 

musculature (Cureton et al., 1988). This idea is further supported by Turner and colleagues 

(1997) who found a 24% increase in biceps cross-sectional area after endurance upper limb arm 

cycling. In this same study, lower limb cycling had negligible effects on lower limb mass. As 

noted by Wernbom et al. (2007) in a review, the rate of increase (0.57% per day ) reported in the 

study by Turner et al. (1997) surpasses a large number of resistance training studies that have 

been performed on other muscle groups, even though the study by Turner et al. (1997) used 
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endurance training rather than strength training.  Another explanation is that muscles of the 

upper body are more strongly influenced by testosterone as they are reported to have greater 

androgen receptor content (Kadi et al., 2000). As testosterone is known to have anabolic effects, 

this may allow upper body muscles to have increased hypertrophic capability.

 Based on all of the past findings, the current investigation will use the biceps muscle to 

investigate the time course of early adaptation to training. In targeting the biceps the current 

investigation may expect to see an even faster significant hypertrophy response than 20 days 

(Seynnes et al., 2007). One final note with regards to muscle group is that the biceps is a 

fusiform muscle group; meaning that its fibers have no angle of pennation. Pennation angle 

changes have been reported as an additional form of morphological adaptation to training 

(pennation angle is discussed in more detail below). For fusiform muscles (no pennation), such 

as the biceps brachii and brachialis, changes in pennation angle are not relevant. Therefore the 

biceps muscle group provides a good model to examine early hypertrophy with resistance 

training. Using this model, an increase in strength of the elbow flexors can be attributed to neural 

adaptations and/or muscle hypertrophy. 

Muscle Architecture and Pennation Angle

Along with size and neural proficiency, the geometry of a muscle may play an important 

role in its force generating characteristics (Fukunaga et al, 2001; Blazevich, 2006; Blazevich et 

al., 2007). Specifically, as pennation angle increases, the ability of a muscle to produce force 

increases (Fukunaga et al., 2001). In a recent review, Blazevich (2006) proposed three 

mechanisms by which increased pennation angle increases force generating capacity. Increased 

pennation angle is accompanied by: a) increase in physiological cross-sectional area (greater 
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amount of contractile tissue per a given anatomical area), b) increase in fiber force production 

due to optimal fiber length, and c) decreased shortening velocity. Controversy exists with regards 

to the effects of resistance training on muscle pennation angle. A few studies have shown that 

pennation angle increases after resistance training (Kawakami et al., 1995; Aagard et al., 2001; 

Seynnes et al., 2007). Conversely, other research has shown that resistance training has no effect 

on pennation angle (Rutherford and Jones, 1992; Blazevich and Giorgi, 2001; Blazevich et al., 

2006). Pennation angle may be closely associated with muscle hypertrophy induced by resistance 

training (Aagaard et al., 2001). Kawakami et al. (1993) reported that bodybuilders had greater 

muscle CSA and steeper pennation angles than age-matched sedentary subjects. Thus, it appears 

that when examining pennate muscles, pennation angle must be considered as a potential 

mechanism contributing to strength increase with training. The obvious exception to this 

statement is when examining fusiform muscles such as the biceps, which have no pennation 

angle.

Muscle Hypertrophy and Training Prescription

When training to induce muscle hypertrophy adequate training volume is needed in order 

to bring about significant adaptations. Factors that make up the amount of volume in a training 

program include the number of sets performed per session, number of repetitions performed per 

set, and the number of sessions performed per week. Also, rest between sets and training sessions 

should be factored into the interplay of training prescription and muscle hypertrophy.

The greatest gains in hypertrophy have been shown when utilizing multiple sets as 

compared to single sets in exercise training (Kraemer, 1997; Kraemer et al., 2000). A meta-

analysis performed by Wernbom and colleagues (2007) noted that specific to biceps training, 4-6 
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sets seem to produce the most muscle growth per day. Fleck and Kraemer (1997) have specific 

recommendations on the number of repetitions that promote maximal muscular hypertrophy. 

They state that a repetition range of 8-12 is optimal for muscle growth. Similarly, Chandler and 

Brown (2008) also advocate that 8-12 repetitions is the best range for hypertrophy. These 

suggested workout volumes have also been acknowledged in a recent review of various training 

stimuli and increased muscle cross-sectional area (Wernbom et al., 2007). This review noted that 

moderate volumes of work (30-60 repetitions per session) yielded the largest responses in muscle 

growth. 

One final area to consider with regards to training volume is sessions per week. 

Wernbom et al. (2007) noted that with studies training the biceps, the average number of 

sessions per week was just fewer than 3. But, Wernbom and colleagues (2007) also noted that the 

one study that prescribed 4 days per week of training showed the highest rate of growth per day 

of any of the studies included in the review. This suggests that as long as adequate recovery is 

given to avoid overtraining, more training sessions may result in greater hypertrophy as the 

muscle may be broken down and built up more often.

In a recent review Willardson (2006) suggests that for optimizing hypertrophy rest 

between sets must remain short enough so that full muscle recovery cannot be achieved. With 

this in mind he suggests a rest period of 30-60 seconds between sets. Similarly, Fleck and 

Kraemer (1997) suggest short rest periods of 1-2 minutes between sets for hypertrophy specific 

training.

 Based on the information provided above, the current investigation will employ a 

training program that includes 6 sets of 8 repetitions per set. Rest between sets will be one 

minute in length. Training sessions will occur every 2nd day for 20 days in a row. This training 
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frequency will allow 48 hours for full protein synthesis to occur (Phillips et al., 1997) while also 

utilizing the greatest number of sessions that may be performed thus maximizing the potential for 

early hypertrophic adaptation. One final note on training prescription is that the above 

recommendations are based on conventional weight training and not isokinetic eccentric training. 

Little is known about the optimal training prescription for isokinetic eccentric training, but this 

study will utilize the current recommendations for conventional weight training. 

Muscle Hypertrophy and Sex Differences

Absolute changes in muscle size and strength are larger in men (Cureton et al., 1988) but 

this is most likely because males have larger muscle to begin with (Cureton et al., 1988; Davies 

et al., 1988; Abe et al., 2000). Specific studies have provided evidence that sex differences do 

exist (Delmonico et al., 2005; Hubal et al., 2005). Hubal and colleagues (2005) showed that with 

upper-body training, males had greater muscle size increases but greater strength increases were 

shown in women. The idea that strength may increase more in women is also supported by O’ 

Hagan et al. (1995) and by Delmonico et al. (2005) who proposed the idea that women may have 

a greater potential for neural adaptation. Relative responses to resistance training have been 

shown to be similar between men and women (Cureton et al., 1988; Davies et al., 1988, O’ 

Hagan et al., 1995).

With regards to the time course of muscle hypertrophy, research shows there are similar 

relative increases across sexes. Abe et al. (2000) showed similar relative increases in biceps 

muscle thickness after 4, 6 and 8 weeks of training. This study also showed similar muscle size 

trends across weeks for other muscle groups trained. Similar results were reported by Staron et 

al. (1994) who found a similar time course of changes across sexes when training the lower 
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body.  The current investigation will include both males and females. Since the study employs a 

within subjects design, this controls for the confounding effect of baseline differences between 

subjects. Despite the fact that some studies have shown different responses across sexes, the 

inclusion of both sexes will also improve the generalizability of the results of this study, 

providing a better perspective on the adaptations that occur early in training. This is significant 

considering that of the few time course studies to date, two have included males only (Ikai and 

Fukunaga, 1970; Narici et al., 1989) and another used a majority of males (Seynnes et al., 2007).

1.2.2 Time Course of Muscle Hypertrophy

Effective strategies for inducing muscle hypertrophy have been studied extensively 

(Moritani and deVries, 1979; Colliander and Tesch, 1990; Staron et al., 1994; Higbie et al., 

1996; Abe at al., 2000; Aagaard et al., 2001; Farthing and Chilibeck, 2003b; Seynnes et al., 

2007). Interestingly though, researchers have generally accepted the idea that hypertrophy does 

not occur early on in training (Moritani and deVries, 1979; Sale, 1988; Seynnes et al., 2007). 

Very few studies have investigated the time course of muscle hypertrophy during resistance 

training, and these are described in detail below. 

One of the first studies to investigate the time course of strength and muscle growth was 

performed by Ikai and Fukunaga (1970). Training and strength measurements were performed on 

an arm dynamometer and muscle size was measured using ultrasound pictures in which pre and 

post pictures were overlapped and the difference distances were calculated accordingly. Training 

consisted of 10 second isometric contractions of the arm flexors 3 times per day, 6 days a week, 

for 100 days. Measurements were made at days 20, 40, 60, and 100. Strength (as percentage 

change) increased significantly after 20 days and cross-sectional area (also expressed as percent 
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change) increased significantly after 40 days. After 20 days, cross-sectional area was 8.2% 

higher than pre-training but this was not significant, likely due to low subject number. This study 

was one of the first to introduce the idea that neural adaptations precede hypertrophic 

adaptations. When analyzed closely, this study also shows the potential for early hypertrophic 

adaptation.

Moritani and deVries (1979) investigated the neural versus hypertrophy time course 

every 2 weeks during an 8-week training study. Seven men and 8 women performed 10 

repetitions 2 times per day, 3 days per week at an intensity of two thirds of their one repetition 

maximum (1RM). After measuring isometric strength, muscle activation and muscle size they 

found that neural factors accounted for approximately 80 percent of the increase in strength after 

two weeks. After four weeks they reported that neural factors still accounted for approximately 

60 percent of strength increase, whereas hypertrophy became the dominant factor for strength 

increase somewhere between 3-5 weeks into training. This reported onset of hypertrophy was 

very early considering the relatively insensitive measure of hypertrophy used in this study 

(elbow flexors girth corrected for skinfolds).

In 1989, Narici and colleagues investigated time course of training adaptation in the 

quadriceps muscle of 4 male subjects between the ages of 23-34. They measured strength along 

with muscle size and neural activation every 20 days for 60 days of training and for 40 days of 

detraining. Training consisted of 6 sets of 10 maximum isokinetic knee extensions at a speed of 

approximately 120º/s. Cross sectional area did not significantly increase until after 60 days. They 

concluded that hypertrophy as a result of strength training accounted for approximately 40 

percent of the observed strength gain while the remaining 60% could be accounted for by either 

increased neural drive or muscle architecture changes. 
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More recent studies provide evidence for earlier morphological change during training. 

Abe and colleagues (2000) studied time course of muscle thickness and strength after upper and 

lower body resistance training. Over a 12-week training period, strength and hypertrophy were 

examined every 2 weeks. Participants in this study performed 6 different exercises 3 times per 

week at 60–70% of one repetitious maximum (1-RM). One important factor to note with their 

study was that some participants trained with 3 sets per exercise while others only used 1 set. 

Muscle thickness was measured using B-mode ultrasound. Results of this study showed 

increased muscle thickness in both men and women across a number of muscle groups after 6 

weeks, and a significant increase in biceps thickness in males after only 4 weeks. This study 

generally concluded that increased muscle thickness was not present within the first 4 weeks of 

training but did acknowledge that the time course of hypertrophy is still unclear. Notably, they 

found a non-significant trend for an increase in muscle thickness of the quadriceps after only 2 

weeks. This finding is in line with studies that have investigated early muscle adaptation using 

muscle biopsies to measure muscle fiber cross-sectional area (CSA). Staron and colleagues 

(1994) found that trends for increased muscle fiber CSA could be observed after 2 weeks of 

training (approximately 5% increase in fiber area). Using successive biopsies every 2 weeks for 

8 weeks of training Staron et al. (1994) eventually found fiber area to be increased by over 15% 

in type IIa and IIb fibers after 8 weeks of training, although this was not statistically significant. 

Unfortunately, this study was likely underpowered due to the high variability and low sample 

size that often accompanies muscle biopsy research.

The most recent study of the interplay between morphology and strength early in training 

was conducted by Seynnes and colleagues (2007). Using a unique gravity independent flywheel 

ergometer which combined both concentric and eccentric training, 7 participants trained their 
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quadriceps 3 times per week. Magnetic resonance imaging (MRI) was used for measuring total 

muscle CSA. Testing time points were investigated after 10, 20, and 35 days of training. The 

major claim of their study was that they found the earliest onset of significant muscle 

hypertrophy ever reported in humans, after only 20 days. Further, they state that with the size 

increase reported within 20 days, a rate of approximately 0.2% per day growth was occurring. 

This study measured muscle hypertrophy earlier, and more frequently than previous studies, but 

still had no measurement between days 10 and 20, leaving unanswered the question of exactly 

how early muscle hypertrophy occurs. Still, this study provided very strong evidence that 

hypertrophy occurs much faster than many physiologists previously believed. 

1.2.3 Mechanistic Responses and Muscle Hypertrophy

It has been suggested that there are two fundamental adaptations necessary for muscle 

hypertrophy; increased protein synthesis and satellite cell proliferation (Seynnes et al., 2007). 

Protein synthesis is significantly increased after resistance training (Phillips et al., 1997; Moore 

et al., 2005). With training protein degradation also occurs and in order for hypertrophy to occur, 

protein synthesis must exceed protein degradation, causing a net increase in protein content 

(Behm, 1995). Additionally, it is believed that satellite cells are essential for increased muscle 

growth (Rosenblatt et al., 1994; Phelan and Gonyea, 1997). This may be linked to the 

myonuclear domain theory which suggests that a myonucleus of a muscle cell controls the 

production of mRNA and protein for a finite portion of cytoplasm in a muscle cell. Hence, for a 

muscle fiber to expand in size it must also add more myonuclei to maintain the myonuclei to 

cytoplasmic volume ratio (Cheek, 1985; Hawke, 2005). With exercise and muscle damage 
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satellite cells are activated and fuse to myofibers, donating new myonuclei and allowing muscle 

fibers to increase in size.

The exact mechanisms that lead to activation of satellite cells are not fully understood. 

Toigo and Boutellier (2006) discuss four potential ways that satellite cells may potentially 

become activated. They propose that activation may be signaled by: 1) anabolic cytokines which 

are present because of extracellular damage, 2) other infiltrating cells involved in combating the 

inflammatory process, 3) by the myofibers themselves, or 4) by other satellite cells themselves. 

Regardless of the way they are specifically activated, it is satellite cells that play a major part in 

the repair of damaged muscle fibers and subsequently are essential for the promotion of optimal 

muscle hypertrophy.

Research pertaining to protein synthesis and satellite cell proliferation also supports the 

possibility of hypertrophic adaptation very early in the time course of training. This is in line 

with the previously discussed recent evidence suggesting early hypertrophic adaptation at the 

whole muscle level may occur very early in training (Seynnes et al., 2007). Mixed muscle 

protein synthesis may increase as early as 3 hours after resistance exercise and remains 

significantly elevated for up to 48 hours (Phillips et al., 1997). Specifically, myofibrillar protein 

synthesis is increased as early as 4.5 hours after resistance training (Moore et al., 2005) and 

significant increases in total myofibrillar protein content may occur after just 1-3 training 

sessions (Phillips, 2000; Willoughby and Taylor, 2004). Transcription and translation of mRNA 

and other adaptive responses occurs even sooner, within as little as hours or even minutes after 

exercise commencement (Bickel et al., 1998; Staron et al., 1994; Haddad and Adams, 2002). 

Similarly, it has been suggested that satellite cells are involved in the hypertrophy and 

muscle repair process very early after training in both humans (Crameri et al., 2004; Dreyer et 
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al., 2006) and in animal models (Adams et al., 1999; Parise et al., 2008). Dreyer and colleagues 

(2006) reported that satellite cell recruitment was significantly elevated in both younger (141%) 

and older adults (51%) 24 hours after an acute bout of eccentric contractions. Crameri et al. 

(2004) also found that satellite cells can be caused to re-enter the growth cycle after just one 

session of high intensity exercise. More research is needed to draw strong conclusions of the 

time course of satellite cell proliferation and differentiation. However, as outlined above, several 

studies do support the idea that muscle satellite cell adaptation also occurs very early after 

training, and it appears the mechanistic adaptations associated with hypertrophy occur rapidly 

after resistance exercise. This research provides evidence that the potential for early whole 

muscle hypertrophy is supported by the early cellular and molecular adaptations occurring at the 

site of muscular adaptation.    
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1.3 Statement of the Problem and Hypotheses

1.3.1 Statement of the Problem

A limited number of studies have focused on the time course of muscle hypertrophy and 

in many cases they were not designed or equipped to be able to truly detect the early changes that 

may occur with training. Past studies have used less sensitive measurement techniques, have 

been statistically underpowered, and utilized less than optimal training protocols. Recent 

research, which identified muscle hypertrophy with 3 weeks of training, made no measurements 

between days 10 and 20 of training and trained the quadriceps muscle (known to show a blunted 

hypertrophy response compared to the biceps). The purpose of this investigation will be to track 

the time course of muscle hypertrophy within the first 20 days of training. This study will 

attempt to use an effective muscle group and training protocol for hypertrophy, as well as a 

larger sample size in order to attempt to reveal the true potential for early muscle size increases 

during training.

1.3.2 Hypotheses

1. The primary hypothesis of this study is that muscle hypertrophy will occur at a time point 

sooner (prior to 20 days) than has been previously reported in the literature (Seynnes et 

al., 2007). This hypothesis challenges the idea that early strength increase is mediated 

solely by neural adaptation.

2.  A secondary hypothesis is that strength and agonist muscle activation (measured via 

EMG) will increase significantly with training, and antagonist muscle activation will 

decrease significantly with training, similar to the findings of past research (Moritani and 

deVries, 1979; Carolan and Cafarelli, 1992; Abe at al., 2000). 
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Chapter 2

 
Methods

2.1 Study Design

This study used a within-subjects design consisting of two phases; a 20-day baseline 

phase followed by a 20-day training phase. The baseline phase was used to allow participants to 

serve as their own non-training controls and to show the stability of the measures across our 

sample over time. Strength tests, muscle thickness measures, and muscle activation assessment 

were performed at 9 time points: before the 20 day baseline phase, at days 0, 8, 12, 14, 16, 18, 

and 20 during the training period, and after 5 days of detraining (See  Figure 2.1 for an 

illustration of the design). Day 0 corresponded to the end of the baseline period and the 

beginning of the training period. All muscle thickness measures were taken immediately before 

the training session on the specified day according to the measurement and testing schedule (See 

Appendix A for a sample calendar). This allowed testing and measurement of fully rested and 

recovered muscles. During strength testing, neuromuscular activity was measured via EMG in 

order to monitor changes in neural activation with progressive training. 

The resistance training phase consisted of intense unilateral eccentric (lengthening) 

contractions of the elbow flexors every 2nd day during the training phase (designated training arm 

was counter-balanced for arm dominance across participants). During training, muscle thickness 

was measured via ultrasound on both the trained and untrained arms. This allowed subjects to 

serve as their own controls for the muscle thickness measures. Strength and muscle activation

20



Figure 2.1 Study Design Timeline
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 were measured only on the training arm during the training phase. The untrained arm could not 

be used as a within-subjects control comparison for the trained arm due to the effect of cross-

education with unilateral training (Moritani and deVries, 1979; Farthing et al., 2005; Carroll et 

al., 2006; Lee and Carroll, 2007). As well, testing of strength on the untrained arm might have 

caused morphological adaptation that could have compromised the validity of using the 

untrained arm as a control for hypertrophy. 

2.2 Participants 

Prior to the start of participant recruitment ethical approval was obtained from the 

University of Saskatchewan biomedical ethics board (See Appendix B for a copy of the Ethics: 

Certificate of Approval). Power calculations were computed using effect sizes for strength and 

muscle thickness measures from recent unilateral strength training studies performed by in the 

lab where the current study was performed (Farthing and Chilibeck, 2003b; Krentz et al., 2008). 

To achieve 80% power at α = 0.05 with the repeated measures design described above, it was 

determined that approximately 20 participants were required (nQuery Advisor, version 3.0, 

Statistical Solutions, Cork, Ireland).

Twenty-three untrained participants (12 male /11 female) between the ages of 19-31 

originally volunteered to participate in the study. One female participant was required to 

withdraw from the study due to consecutive missed training sessions. Thus, twenty-two 

untrained participants (12 male /10 female) completed the study. For the purpose of this study 

untrained was defined as both not currently training as well as having minimal previous training 

experience (See Table 2.1 for lifetime training experience of participants). Both males and 

females were included to increase the generalizability of the study. As well, past research has 
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shown that males and females have similar time course of adaptation (Cureton et al., 1988; 

Staron et al., 1994; Abe et al., 2000).  Participants were recruited mainly from the University of 

Saskatchewan community through classroom presentations, posters, and word of mouth. Prior to 

beginning the study all subjects gave informed written consent (See Appendix C for copy of 

consent form). Participants were not allowed to participate in the study if they were currently 

performing regular resistance training. All participants were required to refrain from training of 

the biceps outside of the supervised training for the duration of the study. Participants were 

encouraged to maintain their normal diet. Participant characteristics are displayed in Table 2.1.
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Table 2.1- Participant Characteristics

Data listed as Means ± Standard Error.

Age (Years) 21.4 ± 0.6
Height (cm) 171.4 ± 1.8

Pre-Training Weight (kg) 69.8 ± 2.3
Post-Training Weight (kg) 69.9 ± 2.3

Lifetime Resistance Training Experience (months) 7.4 ± 2.3
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2.3 Procedures

2.3.1 Test Protocol

Participants were tested at 9 time points over the course of 45 days of baseline, training, 

and detraining. Prior to any initial testing at baseline, age and handedness were self-reported. 

Each participant’s past resistance training experience was determined via a resistance training 

experience questionnaire (See Appendix D Resistance Training Experience Questionnaire). One 

month of resistance training experience was defined as training three days per week for an entire 

month (4 weeks). Participants were also asked about any current supplements or medications 

they were taking which could influence their response to resistance training. No participants 

were currently taking any performance enhancing supplements (i.e. creatine, protein, etc). Prior 

to the start of training at Day 0, each participant’s height and weight was recorded. At the end of 

training each participant’s weight was again recorded in order to account for any possible weight 

fluctuations over the training phase. 

2.3.2 Muscle Thickness

Muscle thickness was measured in both arms at baseline and on days 0, 8, 12, 14, 16, 18, 

20, and 25. Muscle thickness measurements always preceded strength and muscle activation 

measures. Confounding effects of testing order were controlled by counter-balancing testing arm 

order across participants. The coefficient of variation for muscle thickness in this study was 

2.14%. Thickness was measured using B-mode ultrasound (Aloka SSD-500, Tokyo, Japan) 

according to previous methods found reliable in the lab where the current study took place 

(Farthing and Chilibeck, 2003a; Farthing et al., 2005; Candow et al., 2006; Krentz et al., 2007). 
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Muscle thickness measured via ultrasound has been shown to be a valid measure of muscle size 

(Miyatani et al., 2000; Miyatani et al., 2002; Sanada et al., 2005). Muscle thickness has been 

shown to significantly predict muscle volume of the upper arm via MRI (r =0.96) (Miyatani et 

al., 2000) and the knee extensors (r = 0.91) (Miyatani et al., 2000). As well, Sanada and 

colleagues (2005) found strong correlations between muscle thickness via ultrasound and MRI 

measurements in a several muscles (including the arm, trunk, body, thigh, and lower leg) across 

72 subjects. 

In the present study, thickness was measured on the bulk of the biceps, approximately 

two thirds of the way distally down the arm between the acromion process of the shoulder and 

the olecranon of the elbow. Once this point was established a detailed land marking procedure 

(using overhead transparencies) was employed to ensure exact placement of the ultrasound probe 

for each subsequent measurement time point (Farthing and Chilibeck, 2003a). During the 

training phase, once the measurement site had been established it was marked with permanent 

marker and continually retraced to ensure precise land-marking from measure to measure 

throughout the study. 

Positioning of participants during muscle thickness measures remained constant for all 

time points. Participants were instructed to lay their arms as flat as possible on a table so that 

their arms were parallel to the table with their triceps resting. Participants were also instructed to 

fully relax their biceps before and during measurements. 

Four measurements were taken on each arm and the average of the two closest values 

was used as the thickness value. To ensure precision, a fifth measurement was taken when two 

pairs of values were equidistant apart or if all values were equal to or greater than 1mm apart.
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2.3.2 Strength

Strength was assessed at baseline and at days 0, 8, 12, 14, 16, 18, 20, and 25 using an 

isokinetic dynamometer (Humac Norm, CSMi, Stoughton, MA). Use of isokinetic dynamometry 

allowed precise control of the contraction type and velocity used, while accurately measuring 

torque production. The coefficient of variation for strength was 6.1%. Unilateral strength of each 

arm was assessed at the beginning and end of the baseline phase (baseline and day 0) and at the 

end of the training and detraining phases (day 20 and day 25). Participants performed 4 

maximum unilateral repetitions each separated with 1 minute rest and the peak repetition was 

used for comparison. Before the start of the testing repetitions, participants were familiarized 

with the movement until they felt comfortable enough to perform maximal contractions and the 

primary researcher was satisfied they could safely and successfully exert maximal effort. 

Throughout the training period of the study (days 8, 12, 14, 16, 18), strength was only assessed 

on the training arm and was recorded while participants performed their regular training 

protocol. The highest value of eccentric torque during the first training set was used as that 

testing day’s peak torque value.

Strength was assessed using medium speed eccentric (90 º/s, 1.57 rad/s) contractions of 

the elbow flexors performed on the Humac Norm isokinetic dynamometer. Testing strength with 

these specific contractions was done in order to remain consistent with the type of training 

performed during the study. During testing, range of motion was set at 110°. The lengthened 

position was set so that the participant’s arm was just above the fully straightened position at the 

elbow joint. Participants were seated in a reclined position with their backs supported at 

approximately 60° from supine. Participants’ feet were placed against a metal support attached to 

the seat. Dynamometer chair settings were recorded at the start of the study and remained 
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consistent throughout testing and training for each participant. This allowed the dynamometer 

positioning and comfort to be controlled across the study. 

During testing, participants were allowed access to their test scores for each repetition. 

Participants were instructed to try their best for each repetition and encouragement was provided 

by the researcher throughout the repetition. 

2.3.3 Muscle Activation

A four-lead EMG system (Bagnoli-4, Delsys Inc., Boston, MA) was used to assess 

activation of the biceps and triceps.  Prior to positioning the electrodes, the skin was prepared by 

shaving and cleaning the area with alcohol to reduce skin impedance. The coefficient of variation 

for a maximally activated muscle for this measure was 20.04%. The EMG main amplifier unit 

included single differential electrodes with a bandwidth of 20 ±5 Hz to 450 ±50 Hz, a 12 

dB/octave cutoff slope, and a maximum output voltage frequency range ± 5 V. The overall 

amplification or gain per channel was 1K.  The system noise was <1.2 µV rms for the specified 

bandwidth.  The electrodes were two silver bars (10 X 1mm diameter) spaced 10mm apart, with 

a common mode rejection ratio (CMRR) of 92 dB. 

Muscle activation was assessed at baseline and at days 0, 8, 12, 14, 16, 18, 20 and 25 via 

EMG. Both arms were assessed at the beginning and end of the baseline phase (baseline and day 

0) and at the end of the training and detraining phases (day 20 and day 25). Consistent with 

strength measures, only the training arm was assessed on days 8, 12, 14, 16, and 18. Activation 

was measured on the agonist (biceps) and antagonist (triceps) muscles. For the biceps the 

electrode was placed in the middle of the marked area where muscle ultrasound was measured. 

For the triceps, the electrode was placed on the bulk of the muscle and on the midline of the 
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segment, approximately 1/3 of the distance down from the acromium process to the olecranon 

process. Muscle activation was measured on all repetitions of the testing protocol and on the 

entire first set of training during the training protocol. EMG data from the repetition with the 

highest peak torque was used for comparison. The land marking scheme used to ensure accurate 

ultrasound land marking was also applied and used for EMG placement.  A reference electrode 

was applied to the kneecap and served as a common ground for the signal. Raw data was 

collected in volts and later converted to root mean squared (RMS) using the accompanying 

computer software (EMGworks, version 3.1) in order to determine the amplitude of activation. 

RMS is mathematically defined as the square root of the mean of a number of squared values. 

Thus in this case the RMS is the square root of the mean of the squares for a specified window 

length (0.125s) of raw values acquired by the EMG electrode.

2.3.4 Muscle and Joint Soreness

All participants were asked to complete a recall soreness questionnaire at the end of the 

study in order to obtain information about the occurrence and magnitude of soreness experienced 

during the study. Participants were instructed to indicate which of the listed sites (biceps, elbow, 

forearm, shoulder, hand/wrist) they experienced soreness in as a result of training. They were 

then instructed to rate the magnitude of this soreness across each of the three weeks on a scale of 

0-9 with 0 being no soreness and 9 being intense soreness. This soreness ratings scale was used 

by Krentz and colleagues (2008) in a study investigating the effects of ibuprofen and intense 

training. As well, Krentz and colleagues had participants give a rating of biceps soreness daily, 

but then pooled the soreness changes across weeks. The soreness ratings questionnaire used in 

this study was based on that method. 
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2.3.5 Unilateral Training Program

The training program consisted of medium speed unilateral eccentric (90 º/s, 1.57 rad/s) 

contractions of the elbow flexors performed on the Humac Norm isokinetic dynamometer every 

second day for 20 days. Participants were counter-balanced to train either their dominant or non-

dominant arm. Eccentric contractions at fast, medium and slow speeds (30, 90, and 180º/s) [0.52, 

1.57, 3.14 rad/s] are very effective for increasing strength and hypertrophy (Seger et al., 1998, 

Farthing and Chilibeck, 2003b); however, fast eccentric contractions performed on an isokinetic 

dynamometer and are quite novel and have an extended learning curve, potentially impeding 

maximal exertion early in training. They also elicit more cross-education than slow eccentric 

contractions (Farthing and Chilibeck, 2003a). For this study full effort and proper execution were 

crucial from the start of training, due to the short duration of the study and the early 

measurement time points. For these reasons, medium speed eccentric contractions were used, as 

they combine the high tension of faster eccentric contractions and were more easily mastered 

than faster contractions.

A progressive overload design was utilized in which subjects started with 3 sets of 8 

contractions on their first training sessions. This progression was continued by adding one set to 

each training session until participants reached 6 sets. At this point no more sets were added. 

Rest between sets was one minute in length. Positioning, range of motion, and encouragement 

was kept consistent for training as previously described for the strength testing protocol.

2.3.6 Statistical Analyses
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All data analysis was performed with SPSS, version 15.0 for Windows. To determine if 

there were differences in muscle thickness, strength, and muscle activation over the baseline 

phase three analyses were performed. These analyses were conducted with the purpose of 

evaluating the stability of the measures during the control interval. Muscle thickness and strength 

were each tested using a 2 x 2 repeated measures ANOVA with factors of arm (trained and 

untrained) and time (baseline and Day 0). Any changes in muscle activation through the baseline 

phase were tested for with a 2 x 2 x 2 repeated measures ANOVA with factors of arm (trained 

and untrained), time (baseline and Day 0), and muscle (biceps and triceps).  

After baseline analyses were completed, muscle thickness (baseline and training phase) 

was analyzed using a 2 x 9 repeated measures ANOVA with factors of arm (trained and 

untrained) and time (9 levels). Strength for the trained arm was analyzed using a one factor 

(Time: 9 levels) repeated measures ANOVA. Strength for the untrained control arm was 

analyzed using a one factor (Time: 4 levels) repeated measures ANOVA.  Muscle activation for 

the trained arm was analyzed using a 2 x 9 repeated measures ANOVA with factors of muscle 

(biceps and triceps) and time (9 levels of time). Muscle activation for the untrained control arm 

was analyzed using a 2 x 4 repeated measures ANOVA with factors of muscle (biceps and 

triceps) and time (4 levels). The dependent variables of strength, muscle activation, and muscle 

thickness were analyzed separately because of their different designs (i.e. ARM factor the for 

muscle thickness data, MUSCLE factor [biceps, triceps] for muscle activation data, and different 

levels of time for each arm). In addition, a separate analysis for each variable was desirable for 

this study because it allowed close examination of the independent changes in each variable early 

in strength training. Biceps muscle soreness was analyzed using a one factor (Time: 3 levels) 

repeated measures ANOVA and joint soreness was expressed as frequencies. Simple main 
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effects and post hoc multiple comparisons with Bonferroni adjustment were performed when 

appropriate. Significance was set at α<0.05. All values are expressed as means ± standard error.
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CHAPTER 3

RESULTS

3.1 Muscle Thickness

There were no significant differences between the trained and untrained arm at baseline 

or prior to the start of training, F(1, 21)=0.564, p>0.05. There were also no significant 

differences for muscle thickness over time between baseline and Day 0, F(1, 21)=0.741, p>0.05. 

For the complete data set (baseline and training phases), there was a significant arm by time 

interaction, Greenhouse-Geisser (GG) adjusted F(5.3, 111.4)=57.714, p<0.001. Simple main 

effects analysis revealed a significant time main effect for the trained arm, GG F(4.3, 

89.5)=64.546, p<0.001. Post hoc multiple comparisons (Bonferroni adjusted) revealed that 

muscle thickness significantly increased after 8 days of training (Day 0: 3.66±0.11 to Day 8: 

3.90±0.12; p<0.05) (Refer to Figure 3.1 for a graph of Muscle Thickness changes for the trained 

and untrained arms). There was a trend for further muscle thickness increase from Day 12 to Day 

16 (3.92±0.12 to 3.98±0.11; p=0.08). Muscle thickness remained significantly higher than Day 0 

for all time points until the end of training (Day 20: 3.97±0.12; p<0.05). After 5 days of 

detraining muscle thickness significantly decreased (3.97±0.12 vs. 3.85±0.10; p<0.05), but 

remained higher than Day 0 (p<0.05) as well as significantly higher than the untrained arm 

(p<0.001). There were no significant changes in muscle thickness in the untrained arm at any 

time points through the training phase, GG F(5.6,116.9)=1.725, p>0.05. Refer to Appendix E for 

the statistical output tables for the analysis of the muscle thickness data.
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 Figure 3.1: Muscle Thickness. Values are expressed as means ± standard error.
*   Indicates time points are significantly different than Day 0 for the trained arm; p< 0.01. 
Bonferroni adjusted.
** Indicates time point is significantly less than Day 20 for the trained arm; p< 0.01. Bonferroni 
adjusted.
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3.2 Strength

There were no significant differences between the trained and untrained arms prior to 

baseline or at the start of training, F(1, 21)=0.183, p>0.05. There were no significant differences 

for strength between baseline and Day 0 for either the trained or untrained arm, F(1, 21)=0.403, 

p>0.05. As previously discussed, different designs were used for the trained and untrained arm. 

The trained arm had 9 measurement time points (baseline and training phase) while the untrained 

arm has only 4 (baseline and training phase).  There was a significant main effect of time in the 

trained arm, GG F(4.5, 94.5)=16.179, p<0.001. Post hoc multiple comparisons (Bonferroni 

adjusted) revealed strength in the training arm decreased after 8 days of training (Day 0: 

65.6±4.1 to Day 8: 57.5±3.5; p<0.05) and remained suppressed throughout the study. There were 

no significant changes in strength in the untrained arm at any time points throughout the study, 

GG F(1.5, 32.5)=1.516, p>0.05. Refer to figures 3.2 and 3.3. See Appendix E for the statistical 

output tables for the analysis of the strength data.
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Figure 3.2 Strength – Trained Arm. Values are expressed as means ± standard error.
*   Indicates time points are significantly different than Day 0; p< 0.01. Bonferroni adjusted.
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Figure 3.3 Strength – Untrained Arm Values are expressed as means ± standard error.
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3.3 Muscle Activation 

There were no significant differences for muscle activation of the biceps or triceps 

between the trained and untrained arms prior to baseline or at the start of training, F(1, 

21)=0.176, p>0.05. There were no significant differences for muscle activation between baseline 

and Day 0 for either the trained or untrained arm, F(1, 21)=0.079, p>0.05. As mentioned 

previously, separate analyses were necessary for the trained and untrained arm for the complete 

data set (baseline and training phase). There was a significant muscle by time interaction for the 

trained arm, GG F(4.8, 101.5)=4.273, p<0.01. There was a significant main effect of time for the 

biceps of the trained arm, GG F(4.8, 100.1)=3.569, p<0.01. Biceps muscle activation in the 

training arm increased after 14 days of training (Day 0: 0.781 ± 0.069 to Day 14: 0.934 ± 

0.088mV; p<0.05) and was still elevated at the end of the study (Day 25: 0.894 ± 0.074 mV; 

p<0.05). There was a significant main effect of time in the triceps of the trained arm, GG F(3.2, 

68.1)=3.431, p<0.05. Triceps muscle activation was significantly reduced at the end of training 

(Day 0: 0.067 ± 0.006 to Day 20: 0.045 ± 0.003 mV; p<0.05) There were no significant changes 

over time in muscle activation of either the biceps or triceps in the untrained arm, GG F(2.4, 

50.4)=0.359, p>0.05. Refer to figures 3.4, 3.5, 3.6 and 3.7 below. See Appendix E for the 

statistical output tables for the analysis of the EMG data. 
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                                                                            *          *        *          *         *

Figure 3.4 Muscle Activation – Biceps Trained Arm. Values are expressed as means ± 
standard error.
*   Indicates time points are significantly different than Day 0; p< 0.01. Bonferroni adjusted.
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Figure 3.5 Muscle Activation – Triceps Trained Arm. Values are expressed as means ± 
standard error.
*   Indicates time point is significantly different than Day 0; p< 0.01. Bonferroni adjusted.
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Figure 3.6 Muscle Activation – Biceps Untrained Arm. Values are expressed as means ± 
standard error.
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Figure 3.7 Muscle Activation – Triceps Untrained Arm. Values are expressed as means ± 
standard error.
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3.4 Muscle/Joint Soreness 

There was a time main effect for biceps muscle soreness, F(2, 42)=62.839, p<0.05.  Post 

hoc multiple comparisons (Bonferroni adjusted) revealed soreness significantly decreased from 

week 1 to week 2 (5.32 ± 0.41 to 2.5 ± 0.44; p<0.05) and then again from week 2 to week 3 (2.5 

± 0.44 to 0.73 ± 0.25; p<0.05). This data is presented in figure 3.8 below. Frequency of soreness 

reported for arm muscle and joints is reported in Table 3.1. Across the study, 91% of participants 

reported some degree of biceps muscle soreness. For other joints the percentages were as 

follows: 68% participants reported some degree of elbow soreness, 50% reported some shoulder 

soreness, 23% reported some form of forearm soreness, and 27% reported hand or wrist 

soreness. See Appendix F for a detailed summary of muscle/joint soreness ratings for each 

participant across each week of the study.
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Figure 3.8 Biceps Muscle Soreness. Values are expressed as means ± standard error.
# Indicates time point was significantly different than 0; p<0.05. Adjusted with Bonferroni.
* Indicates time points are significantly different than previous week; p<0.05. Adjusted with 
Bonferroni.
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Table 3.1 Muscle and Joint Soreness Frequency

Location # of participants out of 22 % of total participants
Biceps 20 91%
Elbow 15 68 %

Forearm 11 50 %
Shoulder 5 23 %

Wrist / hand 6 27 %
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Chapter 4

Discussion

The main finding of the current investigation was that muscle thickness increased very 

early in training. This finding was accompanied by increased agonist muscle activation and 

decreased antagonist muscle activation, and decreased strength. This is the first study to our 

knowledge, to show increased muscle size and improved coordination of muscle activation along 

with decreased strength over the course of a multi-week training study.

The major hypothesis of this study was that with intense eccentric training of the biceps, 

muscle hypertrophy would occur faster than has ever been reported (20 days). This hypothesis 

was supported as muscle thickness increased after only 8 days of training (4 training sessions). 

This rapid increase in muscle thickness is in opposition to the majority of research which 

emphasizes the current belief that muscle hypertrophy does not occur until approximately 4 

weeks into training (Moritani and deVries, 1979; Abe et al., 2000). The finding of increased 

muscle thickness after 8 days is somewhat consistent with the study by Seynnes and colleagues 

(2007) who reported increased muscle thickness after 20 days. In their study there was a small 

increase in muscle size after 10 days (~2%) but this was not significant. There are a number of 

possible explanations for the faster increase in muscle size in the current study compared to the 

study by Seynnes et al. (2007). Seynnes and colleagues had only 7 participants in their study 

compared to the 22 participants that completed the current investigation, which likely provided 

the current study with much more statistical power. The study by Seynnes et al. (2007) had 

participants train the quadriceps muscle 3 days per week, with a volume of 4 sets of 7 repetitions. 

The current investigation had participants train more frequently (every 2nd day), with a higher 
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training volume (6 sets of 8 repetitions), and it targeted the biceps muscle, which has been shown 

to have a stronger hypertrophic response to training than the quadriceps (Brown et al., 1990; 

Welle et al., 1996). Still, both the current investigation and Seynnes et al. (2007) support the 

notion that hypertrophy may occur much earlier in training than previously thought. In addition, 

both studies prescribed strength training programs that involved eccentric contractions. Intense 

eccentric training might involve an earlier and more rapid phase of muscle growth when 

compared to more conventional resistance training (Moritani and deVries, 1979; Staron et al., 

1994; Abe et al., 2000).      

The notion that the hypertrophy process is initially delayed appears to have come from 

early work by Ikai and Fukunaga (1970) as well as Moritani and deVries (1979). Both of these 

studies tracked the time course of early strength and hypertrophy adaptations with training and 

found that strength increased more rapidly than muscle size. Closer examination of the study by 

Ikai and Fukunaga reveals that they did find substantial increases in muscle size after only 20 

days of training (8.2%) but this was not significant. This is not surprising considering they only 

had 5 participants. This scenario is similar to research by Staron et al. (1994) and Abe et al. 

(2000), who both reported increases in muscle size (~5%, although non-significant) after only 

two weeks of training. These studies suggest that muscle size has the potential for increasing 

very early in training. This is interesting considering that these same studies are often cited to 

support the notion that the potential for hypertrophic adaptation is not present until after 4 weeks 

of training. 

To our knowledge, no study has ever attempted to measure adaptations to strength 

training as early and as often as were measured in the present investigation. Including the 

baseline and detraining phases, 9 separate measurements were done on muscle thickness, 
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strength, and muscle activation on 22 participants. Time course studies are quite labour intensive 

and present significant challenges for the participants and research team, but they have the 

potential to provide valuable insight into our understanding of muscular adaptations with 

training. In particular, the early and frequent measurements conducted in the current study 

provide initial evidence that muscle hypertrophy can occur much earlier than 20 days. 

4.1 Role of Inflammation?

In the current investigation, muscle thickness increased significantly after 8 days (Figure 

3.1). This rapid increase in muscle size is much earlier than the fastest ever muscle hypertrophy 

response (20 days) reported in the literature (Seynnes et al., 2007).  When examining this result 

and the fact that strength was also inhibited (Figure 3.2), the possibility that inflammation may 

have contributed to the observed increase in muscle thickness cannot be ruled out. Some amount 

of inflammation was likely present in the muscle especially very early in the training phase. 

Nosaka and Clarkson (1996) investigated the time course of inflammation with eccentric 

exercise and found that peak inflammation occurred 4-5 days after the exercise session. 

Traditionally it has been accepted that early inflammation may be accounted for by fluid 

accumulation, but this accumulated fluid may only be the cause of inflammation for a maximum 

of two days (Ryan and Majno, 1977). After two days, factors such as production of connective 

tissue or protein synthesis may account for additional swelling (Ryan and Majno, 1977; Smith, 

1991; Nosaka and Clarkson, 1996). Nosaka and Newton (2002) examined whether repeated 

bouts of eccentric training would exacerbate damage incurred from previous bouts. They 

concluded that subsequent eccentric training did not exacerbate damage in muscles recovering 

from eccentric training. The findings of these studies seem to support the argument that 
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inflammation resulting from muscle damage was likely not the primary reason for the increase in 

muscle size in the current study. Inflammation may have partially contributed to the increase in 

muscle thickness early in training, but if repeated bouts of training do not cause exacerbating 

amounts of damage then it is logical to expect that over time the effect of inflammation may 

have eventually lessened.  This may also be supported by the fact that biceps soreness was 

significantly reduced as training progressed (Figure 3.8). However, the relationship between 

inflammation and muscle soreness may not be as strong as previously thought. There is evidence 

to suggest a disconnect between the two factors, whereby muscle soreness may be gone but 

inflammation is still present in a muscle (Nosaka and Clarkson, 1996). 

Another possible argument that may partially dispel the notion that inflammation was 

responsible for the increase in muscle thickness is known as the repeated bout effect. The 

repeated bout effect implies that after the performance of an initial bout of eccentric exercise a 

muscle adapts and is less susceptible to muscle damage when performing future bouts of 

eccentric exercise (Nosaka et al., 2001; Peake et al., 2005). In the current study, all participants 

performed baseline eccentric testing before the start of their first training session. Although the 

initial testing session consisted only of 4 maximal eccentric reps, along with familiarization and 

practice reps, this small amount of eccentric exercise may have prepared the biceps to better 

handle the subsequent eccentric training. Howatson et al. (2007) reported that the repeated bout 

effect was similar when comparing an initial exercise session that consisted of either 10 or 45 

eccentric repetitions. This suggests that even a small amount of eccentric exposure was adequate 

to induce the repeated bout effect. Thus, it is reasonable to expect that the repeated bout effect 

was present in the current investigation and that the pre-baseline eccentric testing repetitions may 
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have had a protective effect that resulted in less muscle damage once participants began eccentric 

training.

Another argument against the possibility that inflammation was a confounding factor is in 

regards to the post eccentric exercise inflammatory response.  Nosaka and Clarkson (1996) found 

that inflammation after eccentric exercise was highest after 4-5 days. This indicates that peak 

inflammation in the current investigation may have occurred prior to the first measurement of 

muscle thickness on Day 8 of training. In another eccentric exercise study, Nosaka and Newton 

(2002) reported that a second bout of eccentric exercise 48 hours after the first bout caused no 

additional damage and did not affect recovery. This study supports the idea that repeated training 

sessions (every 2nd day) in the present study likely did not lead to further muscle damage and 

inflammation. 

4.2 Effects of the Detraining Phase

The finding that muscle size was reduced after 5 days of detraining (from day 20 to day 

25) is noteworthy. Muscle thickness significantly decreased after 5 days of detraining but was 

still significantly larger than at Day 0 (Figure 3.1). There are several possible conclusions that 

can be drawn from this finding. Initially, it is easy to conclude that this decrease is related to a 

reduction in inflammation. If this is the case, the fact that the detraining value is still significantly 

higher than pre-training again supports the idea that significant muscle hypertrophy did occur 

within the training phase. However, before ruling out any factors aside from inflammation it is 

important to consider past detraining research when accounting for the decrease in size. 

Andersen and colleagues (2005) reported that all of the muscle hypertrophy experienced during 3 

months of training was lost after 3 months of detraining. Similar results were reported by 
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Häkkinen et al. (2000) after 24 weeks of training followed by 24 weeks of detraining. These 

results indicate that in a period of detraining, all muscle size gains may be lost as rapidly as they 

were gained. By this explanation it is possible that 5 days of training, which represents 25% of 

the total training duration, was enough to induce some atrophy in the current study. The size 

decrease observed after detraining was 0.12 cm (3.97 to 3.85cm). This represents a reduction of 

just over 35% of the total increase in muscle size during the 20 days of training. Considering this 

relatively proportional decrease, it is plausible that the observed decrease is at least in part 

attributable to disuse atrophy. This idea is further supported when considering that in situations 

of muscle unloading (limb suspension, casting, etc) it has been suggested that atrophy seems to 

occur within a few days (de Boer et al., 2007).

4.3 Strength

A secondary hypothesis of the current investigation was that with training, strength 

would increase. Unexpectedly, the findings of this study did not support this hypothesis. Strength 

was significantly decreased at day 8 and remained suppressed for the entire study, even after 5 

days of detraining (Figure 3.2). This finding is difficult to contrast with the literature, because 

previous isokinetic eccentric training studies did not re-assess strength until at least 5 weeks or 

more after the start of training (Seger et al., 1998; Farthing and Chilibeck, 2003b; Shepstone et 

al., 2005). It is very possible that an initial decline in strength in the first 3 weeks of training was 

also present in previous eccentric training studies, but was not detected because no early 

measurements were taken. The only other time course study that included eccentric training is 

Seynnes et al. (2007) who did report an increase in strength to accompany an increase in muscle 

size after 20 days. However, the current study employed isokinetic eccentric training, whereas 
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Seynnes et al. (2007) used a unique gravity independent flywheel ergometer. The flywheel 

system may not have provided the same intensity of eccentric contraction and therefore did not 

result in as much muscle damage. As well, it is very possible that the current study’s large 

volume of training and limited rest may have also caused the observed decrease in strength. 

Regardless, the Seynnes et al. (2007) study represents an effective training protocol for 

optimizing both strength and hypertrophy.  

Although a strength decrease was not the expected outcome, there are several possible 

explanations for this result. Several studies have shown decreased strength after bouts of 

eccentric exercise (Tokmakidis et al., 2003; Jamurtas et al., 2005; Chapman et al., 2006). The 

difference between these studies and the current investigation is that these studies were acute 

response studies in which responses to single sessions of eccentric exercise were observed. In 

contrast, the current investigation is a chronic response training study where repeated bouts of 

training were performed over a 20 day period. For this reason it might be expected that even 

though strength may be initially inhibited with eccentric exercise, strength would eventually 

recover and exceed pre-training scores. In the present study this was not the case. When 

interpreting this result it is important to consider the role that pain and muscle or joint soreness 

may have played. The current investigation obtained information on the muscle and joint 

soreness experienced by participants during the study. Results showed that 20 of the 22 

participants reported some sort of muscle or joint soreness during the course of the study. In fact 

even as biceps muscle soreness began to dissipate, surrounding joint pain may have inhibited 

strength. This information highlights the importance of factors other than just site specific 

muscle recovery that must be considered in program design. For example, the target muscle site 

(e.g. biceps) may adequately adapt to a particular training volume, whereas the same training 
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volume may be too intense for surrounding tendons, joints, and ligaments. The finding of 

decreased strength in the presence of an increase in muscle thickness also brings up another 

possibility. If adequate muscle recovery was occurring, yet strength was still decreased, is this 

evidence that certain training stimuli that may be optimal for hypertrophic adaptation but 

detrimental to strength and neural adaptation? This idea warrants further discussion.

Strength was not significantly different in the untrained arm throughout the study. This is 

notable considering past studies have shown significant cross-education after unilateral training 

(Moritani and deVries, 1979; Farthing et al., 2005; Carroll et al., 2006; Farthing et al., 2007; Lee 

and Carroll, 2007). One reason for the absence of cross-education may be due to the counter-

balancing of arms performed in this study. Farthing and colleagues (2005) found that right-

handed individuals who trained their non-dominant arm experienced significantly less cross-

education than those who trained their dominant arm. In the current investigation participants 

were randomized to train either their dominant or non-dominant arms which may have limited 

the amounts of cross-education experienced in those who trained their non-dominant arms. As 

well, Farthing and Chilibeck (2003a) found cross-education after fast (180°/s) eccentric training 

but not after slow (30°/s) eccentric training, and they suggested that the novel nature of the fast 

training may have contributed to the results. The present study used 90°/s and this speed may not 

have been novel enough to induce cross-education. The short training period may have also been 

a reason why cross-education was not present in this study as past studies have used substantially 

longer training periods (Moritani and deVries, 1979; Farthing and Chilibeck, 2003a; Farthing et 

al., 2005; Farthing et al., 2007) and it remains unclear how early cross-education may occur. 

4.4 Agonist / Antagonist Activation 
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Another secondary hypothesis of the current study was that agonist (biceps) muscle 

activation would increase with training and that antagonist (triceps) muscle co-activation would 

decrease over the training phase. Both of these changes have been proposed in the literature as 

signs that neural adaptation is taking place (Sale, 1988; Narici et al., 1989; Carolan and Caferelli, 

1992; Ploutz et al., 1994; Akima et al., 1999; Rabita et al., 2000; Rutherford et al., 2001). The 

findings of the current investigation supported both of these secondary hypotheses. Agonist 

(biceps) activation significantly increased on day 14 of training (Figure 3.4), and antagonist 

(triceps) co-activation was decreased by day 20 of training (Figure 3.5).  These results support 

the idea that neural adaptations occurred with training; however it is puzzling that strength was 

still decreased. This further contributes to the idea that joint and or muscle pain may have played 

a large role in the strength decrease observed in training. It appears that training allowed 

participants to better coordinate the eccentric movement, a finding that would normally be 

associated with increased force output. In this situation, even though more force should have 

theoretically been expected in the desired direction, this was not the eventual outcome. This 

current study is limited by the fact that we cannot directly examine the forces exerted by the 

biceps and triceps muscles during the strength task. Even if the coordination of biceps and triceps 

muscle activation was improved, it appears that somewhere along the kinetic chain of movement 

force output exerted on the dynamometer handle was impaired. Another consideration is that 

despite increased agonist activation over the training period there still may have been inhibition 

of the agonist. In other words, the true maximal activation of the agonist muscle could have been 

much greater than the highest activation level reported in this study (Figure 3.4). Unfortunately, 

we are unable to confirm or refute this hypothesis because we did not assess maximal voluntary 

activation using interpolated twitch. 
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Although increased activation of the agonist normally accompanies increased strength or 

force output, this may not always be the case. During muscle fatigue, agonist muscle activation 

may increase as the muscle is trying to recruit more motor units in order to overcome fatigue of 

the already active fibres (Masuda et al., 1999). Thus, in the current investigation it is plausible 

that fatigue may have caused a decrease in strength while concurrently causing an increase in 

RMS activation of the agonist.

Increased agonist activation was expected and is consistent with a number of previous 

studies (Sale, 1988; Narici et al., 1989; Ploutz et al., 1994; Akima et al., 1999; Rabita et al., 

2000; Rutherford et al., 2001; Reeves et al., 2005; Seynnes et al., 2007). In contrast, decreased 

co-activation of the antagonist muscle is a more novel finding. Although it has been suggested as 

a possible and very plausible early neural adaptation to strength training, there has been limited 

research to actually support the hypothesis that decreasing antagonist activation accompanies a 

strength increase with training. Despite that fact that decreased co-activation of the antagonist 

was evident in the current investigation, strength was still decreased. However, it should be 

noted that the activation of the antagonist muscle was minimal at the beginning of the study 

(Figure 3.5); therefore even a significant reduction in activation may not have played a huge role 

in strength production. In summary, the muscle activation data provides more evidence that 

intense eccentric training enhances agonist / antagonist movement coordination. Additionally, 

these results further suggest that reduced force output observed in the study was probably 

affected by factors other than changes in the activation of the primary agonist and antagonist. 

4.5 Implications and Future Research
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As previously mentioned, the main finding of the present investigation is that 

hypertrophy appears to occur much sooner than previously thought. Accompanying this 

conclusion, there are still many questions that are left unanswered. Along with the increased size 

there was increased agonist muscle activation and decreased strength. These findings may 

suggest that there is dissociation between changes in muscle thickness, strength, and neural 

adaptations. Previous research has concluded that these 3 factors are closely related and this is 

certainly the case in many situations (Moritani and deVries, 1979; Sale, 1988; Narici et al., 1989; 

Seynnes et al., 2007). But, it appears that in certain situations, namely intense eccentric training 

as demonstrated in this study; that there may be an altered time course of early adaptations. 

Certain training stimuli may result in increased muscle size and be able to enhance neural 

adaptation and movement coordination but may also be so damaging to the muscles and 

surrounding tissues that strength is not enhanced. This is completely in opposition to most 

conventional training protocols which show positive relationships between the changes in muscle 

thickness, strength, and muscle activation (Moritani and deVries, 1979; Sale, 1988; Narici et al., 

1989; Seynnes et al., 2007). Further, the current study suggests that it is possible for a muscle to 

get larger even if its training does not result in more strength output. For example, a muscle that 

is smaller in size but well trained (e.g. a muscle of a light weight power lifter) may be stronger 

than the same larger muscle of an untrained person. The current findings suggest the opposite 

idea; that a muscle may become larger even if it does not become stronger with training. This 

would suggest that form and function may not be highly correlated in all training situations.

The knowledge and ideas derived from this study have significant implications for future 

training prescription. The aim of the study was to design a training protocol effective for rapid 

hypertrophy. But, it is noteworthy for all exercise professionals involved in the prescription of 

56



resistance training programs, that an intense eccentric training protocol may not be beneficial for 

increasing strength. Specifically, a training regimen containing intense eccentric training, 

although potentially great for inducing muscle growth, should be used with adequate amounts of 

rest in situations where strength is required in the near future (competition or pre-competition 

phases). In contrast, if strength is not as important and the addition of muscle mass is the primary 

goal, a degree of eccentric training should be included. This may be specifically beneficial for 

situations after atrophy from injury or disuse, in populations at risk for sarcopenia, or for sports 

such as bodybuilding.

Along with training implications, the current investigation also draws many questions 

that warrant further study. Future research should attempt to distinguish between muscle 

hypertrophy and inflammation in the time course of early adaptation to better understand the role 

that each plays in muscle size increases. This could be accomplished by tracking markers of 

inflammation and muscle damage either through blood samples or by taking muscle biopsies. 

Future studies should also attempt to design programs that can optimize hypertrophy while 

showing concurrent increases in strength. This may be accomplished with less intense training 

protocols or with decreased weekly training volume in order to allow more time for recovery. 

The current study shows that intense eccentric training decreases strength, but it must be 

considered that the volume of training and limited rest was probably a major reason for this 

result. Eccentric training performed less frequently and with reduced training volume may still 

be effective for hypertrophy but may be much less detrimental to strength. This type of training 

should be explored in more detail in future research.

It is also warranted that future studies attempt to show early hypertrophic adaptation 

across different populations and with different methodology. This study was performed with 
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untrained college aged individuals. It would be interesting to see if similar responses in muscle 

growth could be obtained in trained individuals or in older adults. Additionally, the current study 

had participants train using an isokinetic dynamometer. This is a very specialized and exclusive 

training apparatus it would be beneficial to find results of early hypertrophy using more 

conventional and accessible training protocols (free weights or conventional machines). 

Finally, future research should continue to explore the mechanistic adaptations to early 

hypertrophy. By looking at responses such as protein synthesis and gene expression after single 

exercise sessions, the most effective training stimuli can be uncovered and put into practice. As 

well, the tracking of these cellular and molecular adaptations during time course studies, 

although difficult, provides important information about the mechanisms involved in adapting 

muscle.
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Chapter 5

 
Summary and Conclusions

5.1 Summary

Adaptations early in resistance training (prior to 4 weeks) have long been thought to be 

mediated by neural related factors. Recent research has reported hypertrophy within 20 days of 

training the quadriceps (Seynnes et al., 2007). The purpose of this study was to track 

hypertrophy, strength, and muscle activation during 20 days of eccentric exercise in an attempt to 

further understand the interplay of hypertrophy and strength very early in training. The primary 

hypothesis of the investigation was that muscle hypertrophy would occur sooner than 20 days, 

the current fastest reported significant muscle hypertrophy. This hypothesis was supported as 

increased muscle thickness was found after only 8 days (4 training sessions). This finding must 

be taken in perspective though as inflammation may have been partially responsible for the early 

increase in muscle size. Still, with the intense eccentric training protocol utilized in the current 

investigation, it is likely that muscle hypertrophy was the predominant factor responsible for the 

increase in muscle thickness observed in this study. 

The secondary hypotheses of the study were that strength would increase with training, 

agonist (biceps) muscle activation would increase, and antagonist muscle (triceps) co-activation 

would decrease with training. The hypothesis of strength increase was not supported. In fact 

strength decreased as a result of training and never recovered, even after 5 days of detraining. 

This finding was also accompanied by joint and muscle pain which may be a partial explanation 

for the decreased strength observed in the study. Both of the muscle activation hypotheses were 

supported, suggesting that improved muscle activation coordination occurred as a result of 
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training. This finding is usually accompanied with increased strength. Since this was not the 

case, it can be speculated that even though there were significant neural adaptations, the full 

potential of these adaptations may still have been blunted.

5.2 Conclusions

The results of this study confirm that muscle thickness increases very rapidly with intense 

eccentric training. Although this cannot be solely attributed to muscle growth, this is very strong 

evidence that muscle hypertrophy may occur much sooner than most exercise scientists have 

traditionally accepted. The results of the study also suggest that successive intense eccentric 

training performed every second day, decreases strength in previously untrained individuals. 

Additionally, this type of training causes increased agonist activation and decreased antagonist 

co-activation, both forms of early neural adaptations that reflect improved neural coordination of 

movement. 

5.2 Limitations

There are several limitations to the current investigation. The obvious limitation is that no 

measures of inflammation, swelling, or internal muscle biochemistry were taken. For this reason 

we can only speculate as to what was going on inside the muscle during training. This 

information would have been useful but was not feasible for the scope of the current 

investigation. As previously mentioned, this is an area that should be explored by future 

research.

Another limitation of the study was that the findings of the study are limited to a specific 

population. This study used only untrained college aged students, most of who were recruited 
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from the College of Kinesiology at the University of Saskatchewan. Thus, caution should be 

exercised when trying to generalize these findings to other populations. Similarly, another 

limitation of this research is that it was performed using isokinetic dynamometry in a supervised 

laboratory setting. This raises questions about the real world applications and generalizability of 

the results. 

Finally, a limitation of this study was that it was not blinded. The primary investigator 

supervised all the training sessions and made all of the muscle thickness measurements for the 

study. An ideal design would have been to have the muscle thickness measurements taken by a 

researcher blinded to the training and non-training arms of the participants but again this was not 

practical or feasible for this project.
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Day 0
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U # 7
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Day 19

Day 20
U # 8
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 Day 25
U # 9
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    Research Participant Information and Consent Form

Title:  Time course of morphological adaptations with intense strength training over a 20 day 
period

Names of Researchers: Principal Investigators: Joel Krentz, B.Sc., Master’s Candidate 
(Graduate student supervised by Dr. Jonathan Farthing), College of Kinesiology, University of 
Saskatchewan, phone: 966-1123, Jonathan Farthing, Ph.D., Assistant Professor, College of 
Kinesiology, University of Saskatchewan, phone: 966-1068

You are being invited to participate in a research study because we want to determine how the 
biceps muscle adapts early in strength training. This will allow us to better understand which 
adaptations are responsible for increased strength with training.

Voluntary Participation: Before you decide, it is important for you to understand what the 
research involves. This consent form will tell you about the study, why the research is being 
done, what will happen to you during the study and the possible benefits, risks and discomforts.  

If you wish to participate, you will be asked to sign this form.  Your participation is entirely 
voluntary, so it is up to you to decide whether or not to take part in this study. If you do decide to 
take part in this study, you are free to withdraw at any time without giving any reasons for your 
decision and your refusal to participate will not affect your relationship with any of the 
researchers or the University of Saskatchewan, and will not affect your academic standing if you 
are a student at the university. Please take time to read the following information carefully and to 
discuss it with your family, friends, fellow employees, employer, and doctor before you decide.

Purpose of the study: The purpose of this study is to investigate how the biceps muscle adapts 
early on in an “Eccentric” strength training program.  “Eccentric” contractions are be performed 
by resisting while your muscle is forced into a lengthened position. By tracking the adaptations 
of the biceps with training we hope to better understand the various factors that lead to increased 
strength. Adaptations that will be measured are muscle thickness (i.e. size of your biceps 
muscle), strength, muscle activation, and the angle that your muscle fibers are arranged (i.e. 
pennation angle).

Possible benefits of the study: You may get stronger as a result of training your biceps muscle. 
As well, you will get an assessment of strength, muscle thickness, muscle activation for the 
biceps muscle by participating in the study. These benefits are not guaranteed.

Procedures: 
If you agree to be in this study the following will happen:

Initially you will be invited to come into our lab to perform a pre-baseline assessment. In this 
session we will measure the strength, muscle thickness, muscle fibre angle, and muscle 
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activation of both of your biceps. You will then come back to our lab after 20 days and perform 
the same tests. This will complete the “baseline phase” of the study. The next phase will be the 
“training phase” and will also last 20 days. It will begin immediately after the baseline phase. In 
this phase you will come into the lab every second day to train the biceps of only one of your 
arms with eccentric contractions and to have your strength, muscle thickness, muscle fibre angle, 
and muscle activation measured. Each session will take about 30 minutes to complete. After the 
training phase is over, one final testing session will be completed on both of your biceps. In total, 
you will visit the lab 12 times over a period of about 6 weeks.

Muscle thickness and fibre angle will be measured using a muscle ultrasound device. This 
procedure requires the placement of a jelly like substance on your arm and allows us to get 
images inside your arm that can tell us the thickness and arrangement of the fibers. The 
procedure is not harmful or painful.

The natural electrical activity of your muscle will be measured during the strength tests. This 
involves the placement of stickers, called electrodes, on the skin over your muscle. A wire 
attached to the electrode measures the electrical activity during muscular contraction. This gives 
an indication of your ability to activate your biceps muscle. 

Strength testing and training sessions will be completed using a machine (isokinetic 
dynamometer) that controls the speed of contraction through a determined range of motion. 
Strength will also be assessed while you are training your biceps during the eccentric 
contractions. Muscle contractions will be at a medium speed (lasting approximately 1 second 
each) and will be at a maximal level. 

All testing procedures and strength training sessions will take place in the lab and will be 
supervised by a member of the research team.

Foreseeable risks, side effects or discomfort: 

The exercise tests and training will be at maximal intensity and therefore will result in some 
discomfort and muscle fatigue.  Training and testing may result in stiff muscles. There is also a 
small risk of muscle injury during maximal strength training, but this will be minimized by 
proper warm up (i.e. stretching) and training supervision.

Training will take place on only one of your arms. This may result in one arm gaining more 
strength and muscle size than the other arm. The time period of training is short (3 weeks) in 
comparison to an average training period, and it is unlikely that you end up with one arm 
noticeably larger than the other. However, you will be able to come in to the lab and train your 
other arm after you have completed the study in order to correct any slight muscular imbalance.

There may be some discomfort on your skin from the adhesive tape that temporarily sticks the 
electrodes to your skin, but this is rare.

In order to ensure the muscle size and fibre angle measurements are taken on the exact same spot 
each time, a semi-permanent mark will be placed on your biceps on each testing occasion for the 
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entire 3 week training phase. A non-toxic marker from our exercise physiology lab, which is safe 
for use on human skin, will be used for the study. You will be asked to avoid completely 
scrubbing off the skin markings until after the training phase is finished.

There may be unforeseen and unknown risks during the study, or after the study has been 
completed.

Alternatives to this study:
You do not have to participate in this study to have bicep strength levels assessed. You can pay a 
fee to have strength assessment completed for you by this research lab at another time designated 
by you and the lab coordinators, or by another fitness facility.

Research-Related Injury: There will be no cost to you for participation in this study. You will 
not be charged for any research procedures. In the event you become ill or injured as a result of 
participating in this study, necessary medical treatment will be made available at no additional 
cost to you. By signing this document you do not waive any of your legal rights.

Confidentiality: While complete subject anonymity cannot be guaranteed, every effort will be 
made to ensure that the information you provide for this study is kept entirely confidential.  The 
testing procedures will take place in an enclosed space in the Physical Activity Complex.  Your 
name will not be attached to any information, nor mentioned in any study report, nor be made 
available to anyone except the research team.  It is the intention of the research team to publish 
results of this research in scientific journals and to present the findings at related conferences and 
workshops, but your identity will not be revealed.

Voluntary Withdrawal: Your participation in this research is entirely voluntary.  You may 
withdraw from this study at any time. If you decide to enter the study and to withdraw at any 
time in the future, there will be no penalty or loss of benefits to which you are otherwise entitled.

If you choose to enter the study and then decide to withdraw at a later time, all data collected 
about you during your enrolment in the study will be retained for analysis.  

If you have questions concerning the study you can contact Mr. Joel Krentz at 966-1123 or Dr. 
Jonathan Farthing at 966-1068. Dr. Farthing’s number can be called collect if you are phoning 
long distance. If you have questions about your rights as a research subject, you should contact 
the Chair of the Biomedical Research Ethics Board, University of Saskatchewan at (306) 
966-4053. Again, this number can be called collect if you are phoning long distance.

By signing below, I confirm the following:

• I have read or have had this read to me and understood the research subject information 
and consent form. 

• I have had sufficient time to consider the information provided and to ask for advice if 
necessary. 

• I have had the opportunity to ask questions and have had satisfactory responses to my 
questions. 
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• I understand that all of the information collected will be kept confidential and that the 
result will only be used for scientific objectives. 

• I understand that my participation in this study is voluntary and that I am completely free 
to refuse to participate or to withdraw from this study at any time without changing in 
any way affect my academic standing or my relationship with members of the research 
team.  

• I  understand that I am not waiving any of my legal rights  as a result  of  signing this 
consent form. 

• I understand that there is no guarantee that this study will provide any benefits to me.
• I have read this form and I freely consent to participate in this study.  
• I have been told that I will receive a dated and signed copy of this form

Participant’s Signature:________________________  Date: _____________________

Individual conducting the consent process:________________________ 

Date: ______________________
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Name _______________                                                          Height _______________

                                                                                                  Weight _______________

Pre-Screening Questions

1. How many months in your lifetime have you performed resistance training   

      (1 month = 3 x per week for the whole month) ____________

2. How many months in the last year have you performed resistance training   

      (1 month = 3 x per week for the whole month) ____________

3. How many months have you regularly trained your biceps in your lifetime

      (1 month = 3 x per week for the whole month) ____________

4. How many days have you regularly trained your biceps in the last 2 months

      (1 day = minimum 3 sets of bicep training) ____________

1. Are you currently taking any medications or pills that to your 

knowledge might impact your normal response to resistance training? 

(i.e. hormone replacement, antibiotics, contraceptive pills, etc.) 

Yes or No

2. Are you currently taking any dietary supplements that to your 

knowledge might impact your normal response to resistance training? 

(i.e. creatine, protein, vitamins, etc.)      Yes   or     No
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2 x 9 (arm x time) Factorial ANOVA for Muscle Thickness Data

Multivariate Testsb

.901 15.953a 8.000 14.000 .000

.099 15.953a 8.000 14.000 .000
9.116 15.953a 8.000 14.000 .000
9.116 15.953a 8.000 14.000 .000
.592 30.496a 1.000 21.000 .000
.408 30.496a 1.000 21.000 .000

1.452 30.496a 1.000 21.000 .000
1.452 30.496a 1.000 21.000 .000
.917 19.366a 8.000 14.000 .000
.083 19.366a 8.000 14.000 .000

11.066 19.366a 8.000 14.000 .000
11.066 19.366a 8.000 14.000 .000

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

Effect
time

arm

time * arm

Value F Hypothesis df Error df Sig.

Exact statistica. 

Design: Intercept 
Within Subjects Design: time+arm+time*arm

b. 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.021 69.692 35 .001 .603 .804 .125
1.000 .000 0 . 1.000 1.000 1.000
.092 43.225 35 .174 .663 .914 .125

Within Subjects Effect
time
arm
time * arm

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: time+arm+time*arm

b. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

1.667 8 .208 29.733 .000
1.667 4.820 .346 29.733 .000
1.667 6.431 .259 29.733 .000
1.667 1.000 1.667 29.733 .000
1.178 168 .007
1.178 101.227 .012
1.178 135.046 .009
1.178 21.000 .056
5.627 1 5.627 30.496 .000
5.627 1.000 5.627 30.496 .000
5.627 1.000 5.627 30.496 .000
5.627 1.000 5.627 30.496 .000
3.875 21 .185
3.875 21.000 .185
3.875 21.000 .185
3.875 21.000 .185
1.393 8 .174 57.714 .000
1.393 5.307 .262 57.714 .000
1.393 7.312 .190 57.714 .000
1.393 1.000 1.393 57.714 .000
.507 168 .003
.507 111.438 .005
.507 153.545 .003
.507 21.000 .024

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

arm

Error(arm)

time * arm

Error(time*arm)

Type III Sum
of Squares df Mean Square F Sig.
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Simple Main Effects Analysis: One-way ANOVA for the Trained Arm Muscle Thickness

and Multiple Pairwise Comparisons (Bonferroni Adjusted)

Tests of Within-Subjects Effects

Measure: MEASURE_1

3.002 8 .375 64.546 .000
3.002 4.264 .704 64.546 .000
3.002 5.485 .547 64.546 .000
3.002 1.000 3.002 64.546 .000
.977 168 .006
.977 89.536 .011
.977 115.185 .008
.977 21.000 .047

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

Type III Sum
of Squares df Mean Square F Sig.
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Pairwise Comparisons

Measure: MEASURE_1

-.018 .023 1.000 -.103 .068
-.261* .028 .000 -.362 -.160
-.273* .023 .000 -.359 -.187
-.307* .024 .000 -.395 -.220
-.337* .025 .000 -.430 -.243
-.323* .023 .000 -.408 -.239
-.325* .023 .000 -.409 -.240
-.203* .018 .000 -.268 -.137
.018 .023 1.000 -.068 .103

-.243* .034 .000 -.367 -.119
-.255* .031 .000 -.368 -.142
-.290* .027 .000 -.387 -.192
-.319* .031 .000 -.434 -.204
-.306* .029 .000 -.413 -.199
-.307* .025 .000 -.400 -.213
-.185* .025 .000 -.276 -.094
.261* .028 .000 .160 .362
.243* .034 .000 .119 .367

-.012 .020 1.000 -.085 .061
-.047 .029 1.000 -.153 .060
-.076 .029 .611 -.183 .032
-.062 .027 1.000 -.162 .037
-.064 .025 .702 -.156 .029
.058 .026 1.000 -.039 .155
.273* .023 .000 .187 .359
.255* .031 .000 .142 .368
.012 .020 1.000 -.061 .085

-.035 .019 1.000 -.106 .036
-.064 .018 .080 -.131 .004
-.051 .017 .302 -.115 .013
-.052 .018 .338 -.119 .015
.070 .019 .061 -.002 .141
.307* .024 .000 .220 .395
.290* .027 .000 .192 .387
.047 .029 1.000 -.060 .153
.035 .019 1.000 -.036 .106

-.029 .015 1.000 -.083 .025
-.016 .012 1.000 -.061 .029
-.017 .014 1.000 -.070 .036
.105* .018 .000 .038 .171
.337* .025 .000 .243 .430
.319* .031 .000 .204 .434
.076 .029 .611 -.032 .183
.064 .018 .080 -.004 .131
.029 .015 1.000 -.025 .083
.013 .012 1.000 -.030 .056
.012 .022 1.000 -.068 .092
.134* .024 .001 .045 .222
.323* .023 .000 .239 .408
.306* .029 .000 .199 .413
.062 .027 1.000 -.037 .162
.051 .017 .302 -.013 .115
.016 .012 1.000 -.029 .061

-.013 .012 1.000 -.056 .030
-.001 .017 1.000 -.063 .061
.120* .019 .000 .049 .192
.325* .023 .000 .240 .409
.307* .025 .000 .213 .400
.064 .025 .702 -.029 .156
.052 .018 .338 -.015 .119
.017 .014 1.000 -.036 .070

-.012 .022 1.000 -.092 .068
.001 .017 1.000 -.061 .063
.122* .012 .000 .077 .166
.203* .018 .000 .137 .268
.185* .025 .000 .094 .276

-.058 .026 1.000 -.155 .039
-.070 .019 .061 -.141 .002
-.105* .018 .000 -.171 -.038
-.134* .024 .001 -.222 -.045
-.120* .019 .000 -.192 -.049
-.122* .012 .000 -.166 -.077

(J) time
2
3
4
5
6
7
8
9
1
3
4
5
6
7
8
9
1
2
4
5
6
7
8
9
1
2
3
5
6
7
8
9
1
2
3
4
6
7
8
9
1
2
3
4
5
7
8
9
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
9
1
2
3
4
5
6
7
8

(I) time
1

2

3

4

5

6

7

8

9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.a. 
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Simple Main Effects Analysis: One-way ANOVA for the Untrained Arm Muscle Thickness

Tests of Within-Subjects Effects

Measure: MEASURE_1

.058 8 .007 1.725 .096

.058 5.567 .010 1.725 .127

.058 7.806 .007 1.725 .098

.058 1.000 .058 1.725 .203

.708 168 .004

.708 116.907 .006

.708 163.932 .004

.708 21.000 .034

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

Type III Sum
of Squares df Mean Square F Sig.
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One-way ANOVA (time) for Trained Arm Strength and Multiple Pairwise Comparisons 

(Bonferroni Adjusted)

Multivariate Testsb

.808 7.362a 8.000 14.000 .001

.192 7.362a 8.000 14.000 .001
4.207 7.362a 8.000 14.000 .001
4.207 7.362a 8.000 14.000 .001

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

Effect
time

Value F Hypothesis df Error df Sig.

Exact statistica. 

Design: Intercept 
Within Subjects Design: time

b. 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.025 66.738 35 .001 .563 .735 .125
Within Subjects Effect
time

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: time

b. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

2935.616 8 366.952 16.179 .000
2935.616 4.501 652.195 16.179 .000
2935.616 5.881 499.195 16.179 .000
2935.616 1.000 2935.616 16.179 .001
3810.384 168 22.681
3810.384 94.524 40.311
3810.384 123.495 30.855
3810.384 21.000 181.447

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

Type III Sum
of Squares df Mean Square F Sig.
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Pairwise Comparisons

Measure: MEASURE_1

-.136 1.396 1.000 -5.276 5.003
8.000* 1.616 .002 2.052 13.948
9.409* 1.834 .002 2.659 16.159
8.682* 1.591 .001 2.827 14.537

10.000* 1.240 .000 5.437 14.563
9.409* 1.840 .002 2.638 16.181
9.773* 1.664 .000 3.646 15.900
8.182* 1.540 .001 2.514 13.850
.136 1.396 1.000 -5.003 5.276

8.136* 1.677 .003 1.965 14.308
9.545* 1.727 .001 3.189 15.902
8.818* 1.937 .006 1.688 15.948

10.136* 1.419 .000 4.912 15.361
9.545* 1.788 .001 2.963 16.128
9.909* 1.955 .002 2.712 17.106
8.318* 1.639 .002 2.286 14.351

-8.000* 1.616 .002 -13.948 -2.052
-8.136* 1.677 .003 -14.308 -1.965
1.409 1.380 1.000 -3.669 6.488
.682 1.339 1.000 -4.249 5.612

2.000 1.138 1.000 -2.188 6.188
1.409 1.745 1.000 -5.016 7.834
1.773 1.494 1.000 -3.729 7.274
.182 1.456 1.000 -5.178 5.541

-9.409* 1.834 .002 -16.159 -2.659
-9.545* 1.727 .001 -15.902 -3.189
-1.409 1.380 1.000 -6.488 3.669
-.727 1.075 1.000 -4.686 3.232
.591 1.289 1.000 -4.153 5.335
.000 1.508 1.000 -5.550 5.550
.364 1.343 1.000 -4.580 5.307

-1.227 1.240 1.000 -5.790 3.336
-8.682* 1.591 .001 -14.537 -2.827
-8.818* 1.937 .006 -15.948 -1.688
-.682 1.339 1.000 -5.612 4.249
.727 1.075 1.000 -3.232 4.686

1.318 1.070 1.000 -2.620 5.256
.727 1.262 1.000 -3.920 5.375

1.091 .989 1.000 -2.549 4.731
-.500 1.038 1.000 -4.320 3.320

-10.000* 1.240 .000 -14.563 -5.437
-10.136* 1.419 .000 -15.361 -4.912
-2.000 1.138 1.000 -6.188 2.188
-.591 1.289 1.000 -5.335 4.153

-1.318 1.070 1.000 -5.256 2.620
-.591 1.173 1.000 -4.908 3.726
-.227 1.122 1.000 -4.358 3.904

-1.818 .977 1.000 -5.416 1.779
-9.409* 1.840 .002 -16.181 -2.638
-9.545* 1.788 .001 -16.128 -2.963
-1.409 1.745 1.000 -7.834 5.016

.000 1.508 1.000 -5.550 5.550
-.727 1.262 1.000 -5.375 3.920
.591 1.173 1.000 -3.726 4.908
.364 .955 1.000 -3.151 3.878

-1.227 1.267 1.000 -5.892 3.437
-9.773* 1.664 .000 -15.900 -3.646
-9.909* 1.955 .002 -17.106 -2.712
-1.773 1.494 1.000 -7.274 3.729
-.364 1.343 1.000 -5.307 4.580

-1.091 .989 1.000 -4.731 2.549
.227 1.122 1.000 -3.904 4.358

-.364 .955 1.000 -3.878 3.151
-1.591 .854 1.000 -4.736 1.555
-8.182* 1.540 .001 -13.850 -2.514
-8.318* 1.639 .002 -14.351 -2.286
-.182 1.456 1.000 -5.541 5.178
1.227 1.240 1.000 -3.336 5.790
.500 1.038 1.000 -3.320 4.320

1.818 .977 1.000 -1.779 5.416
1.227 1.267 1.000 -3.437 5.892
1.591 .854 1.000 -1.555 4.736

(J) time
2
3
4
5
6
7
8
9
1
3
4
5
6
7
8
9
1
2
4
5
6
7
8
9
1
2
3
5
6
7
8
9
1
2
3
4
6
7
8
9
1
2
3
4
5
7
8
9
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
9
1
2
3
4
5
6
7
8

(I) time
1

2

3

4

5

6

7

8

9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.a. 
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One-way ANOVA (time) for Untrained Arm Strength

Multivariate Testsb

Effect Value F Hypothesis df Error df Sig.

time Pillai's Trace .114 .815a 3.000 19.000 .501

Wilks' Lambda .886 .815a 3.000 19.000 .501

Hotelling's Trace .129 .815a 3.000 19.000 .501

Roy's Largest Root .129 .815a 3.000 19.000 .501

a. Exact statistic

b. Design: Intercept 

 Within Subjects Design: time

Mauchly's Test of Sphericityb

Measure:MEASURE_1

Within 

Subjects 

Effect Mauchly's W

Approx. Chi-

Square df Sig.

Epsilona

Greenhouse-Geisser Huynh-Feldt Lower-bound

time .186 33.203 5 .000 .516 .550 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 

proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed 

in the Tests of Within-Subjects Effects table.

b. Design: Intercept 

 Within Subjects Design: time
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Tests of Within-Subjects Effects

Measure:MEASURE_1

Source

Type III Sum of 

Squares df Mean Square F Sig.

time Sphericity Assumed 139.034 3 46.345 1.516 .219

Greenhouse-Geisser 139.034 1.549 89.761 1.516 .234

Huynh-Feldt 139.034 1.649 84.310 1.516 .234

Lower-bound 139.034 1.000 139.034 1.516 .232

Error(time) Sphericity Assumed 1925.716 63 30.567

Greenhouse-Geisser 1925.716 32.528 59.203

Huynh-Feldt 1925.716 34.631 55.607

Lower-bound 1925.716 21.000 91.701
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2 x 9 (muscle x time) Factorial ANOVA for Trained Arm EMG

Multivariate Testsb

.647 3.203a 8.000 14.000 .027

.353 3.203a 8.000 14.000 .027
1.830 3.203a 8.000 14.000 .027
1.830 3.203a 8.000 14.000 .027
.846 115.581a 1.000 21.000 .000
.154 115.581a 1.000 21.000 .000

5.504 115.581a 1.000 21.000 .000
5.504 115.581a 1.000 21.000 .000
.709 4.264a 8.000 14.000 .009
.291 4.264a 8.000 14.000 .009

2.437 4.264a 8.000 14.000 .009
2.437 4.264a 8.000 14.000 .009

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

Effect
time

muscle

time * muscle

Value F Hypothesis df Error df Sig.

Exact statistica. 

Design: Intercept 
Within Subjects Design: time+muscle+time*muscle

b. 

 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.037 59.943 35 .007 .591 .784 .125
1.000 .000 0 . 1.000 1.000 1.000
.047 55.493 35 .018 .604 .807 .125

Within Subjects Effect
time
muscle
time * muscle

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: time+muscle+time*muscle

b. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

4.70E-007 8 5.88E-008 2.939 .004
4.70E-007 4.729 9.95E-008 2.939 .018
4.70E-007 6.271 7.50E-008 2.939 .009
4.70E-007 1.000 4.70E-007 2.939 .101
3.36E-006 168 2.00E-008
3.36E-006 99.307 3.38E-008
3.36E-006 131.691 2.55E-008
3.36E-006 21.000 1.60E-007
7.36E-005 1 7.36E-005 115.581 .000
7.36E-005 1.000 7.36E-005 115.581 .000
7.36E-005 1.000 7.36E-005 115.581 .000
7.36E-005 1.000 7.36E-005 115.581 .000
1.34E-005 21 6.37E-007
1.34E-005 21.000 6.37E-007
1.34E-005 21.000 6.37E-007
1.34E-005 21.000 6.37E-007
6.08E-007 8 7.60E-008 4.273 .000
6.08E-007 4.835 1.26E-007 4.273 .002
6.08E-007 6.456 9.42E-008 4.273 .000
6.08E-007 1.000 6.08E-007 4.273 .051
2.99E-006 168 1.78E-008
2.99E-006 101.531 2.94E-008
2.99E-006 135.581 2.20E-008
2.99E-006 21.000 1.42E-007

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

muscle

Error(muscle)

time * muscle

Error(time*muscle)

Type III Sum
of Squares df Mean Square F Sig.
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Simple Main Effects Analysis: One-way ANOVA for Trained Arm Agonist (biceps) EMG 

and Multiple Pairwise Comparisons (Bonferroni Adjusted)

Tests of Within-Subjects Effects

Measure: MEASURE_1

1.07E-006 8 1.33E-007 3.569 .001
1.07E-006 4.765 2.24E-007 3.569 .006
1.07E-006 6.334 1.68E-007 3.569 .002
1.07E-006 1.000 1.07E-006 3.569 .073
6.28E-006 168 3.74E-008
6.28E-006 100.065 6.28E-008
6.28E-006 133.011 4.72E-008
6.28E-006 21.000 2.99E-007

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

Type III Sum
of Squares df Mean Square F Sig.
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Pairwise Comparisons

Measure: MEASURE_1

2.18E-005 .000 1.000 .000 .000
.000 .000 1.000 .000 .000
.000 .000 1.000 .000 8.98E-005
.000 .000 .130 .000 2.30E-005
.000 .000 .380 .000 6.22E-005
.000 .000 .877 .000 8.07E-005
.000 .000 .121 .000 1.69E-005

-9.10E-005 .000 .752 .000 4.31E-005
-2.18E-005 .000 1.000 .000 .000

.000 .000 .766 .000 7.81E-005

.000 .000 .165 .000 2.45E-005

.000* .000 .002 .000 -5.50E-005

.000 .000 .110 .000 2.21E-005

.000 .000 .268 .000 4.32E-005

.000* .000 .007 .000 -3.14E-005

.000* .000 .047 .000 -8.48E-007

.000 .000 1.000 .000 .000

.000 .000 .766 -7.81E-005 .000
1.03E-005 .000 1.000 .000 .000

-4.42E-005 .000 1.000 .000 .000
-5.88E-005 .000 1.000 .000 .000
-1.48E-005 .000 1.000 .000 .000
-7.61E-006 .000 1.000 .000 .000
5.02E-005 .000 1.000 .000 .000

.000 .000 1.000 -8.98E-005 .000

.000 .000 .165 -2.45E-005 .000
-1.03E-005 .000 1.000 .000 .000
-5.46E-005 .000 1.000 .000 .000
-6.91E-005 .000 1.000 .000 .000
-2.52E-005 .000 1.000 .000 .000
-1.80E-005 .000 1.000 .000 .000
3.99E-005 .000 1.000 .000 .000

.000 .000 .130 -2.30E-005 .000

.000* .000 .002 5.50E-005 .000
4.42E-005 .000 1.000 .000 .000
5.46E-005 .000 1.000 .000 .000

-1.46E-005 .000 1.000 .000 .000
2.94E-005 .000 1.000 .000 .000
3.66E-005 .000 1.000 .000 .000
9.45E-005 .000 1.000 -6.35E-005 .000

.000 .000 .380 -6.22E-005 .000

.000 .000 .110 -2.21E-005 .000
5.88E-005 .000 1.000 .000 .000
6.91E-005 .000 1.000 .000 .000
1.46E-005 .000 1.000 .000 .000
4.40E-005 .000 1.000 .000 .000
5.12E-005 .000 1.000 .000 .000

.000 .000 1.000 -9.98E-005 .000

.000 .000 .877 -8.07E-005 .000

.000 .000 .268 -4.32E-005 .000
1.48E-005 .000 1.000 .000 .000
2.52E-005 .000 1.000 .000 .000

-2.94E-005 .000 1.000 .000 .000
-4.40E-005 .000 1.000 .000 .000
7.22E-006 .000 1.000 .000 .000
6.51E-005 .000 1.000 .000 .000

.000 .000 .121 -1.69E-005 .000

.000* .000 .007 3.14E-005 .000
7.61E-006 .000 1.000 .000 .000
1.80E-005 .000 1.000 .000 .000

-3.66E-005 .000 1.000 .000 .000
-5.12E-005 .000 1.000 .000 .000
-7.22E-006 .000 1.000 .000 .000
5.78E-005 .000 1.000 -5.38E-005 .000
9.10E-005 .000 .752 -4.31E-005 .000

.000* .000 .047 8.48E-007 .000
-5.02E-005 .000 1.000 .000 .000
-3.99E-005 .000 1.000 .000 .000
-9.45E-005 .000 1.000 .000 6.35E-005

.000 .000 1.000 .000 9.98E-005
-6.51E-005 .000 1.000 .000 .000
-5.78E-005 .000 1.000 .000 5.38E-005

(J) time
2
3
4
5
6
7
8
9
1
3
4
5
6
7
8
9
1
2
4
5
6
7
8
9
1
2
3
5
6
7
8
9
1
2
3
4
6
7
8
9
1
2
3
4
5
7
8
9
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
9
1
2
3
4
5
6
7
8

(I) time
1

2

3

4

5

6

7

8

9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.a. 

101



Simple Main Effects Analysis: One-way ANOVA for Trained Arm Antagonist (triceps) 

EMG and Multiple Pairwise Comparisons (Bonferroni Adjusted)

Tests of Within-Subjects Effects

Measure: MEASURE_1

1.13E-008 8 1.42E-009 3.431 .001
1.13E-008 3.244 3.50E-009 3.431 .019
1.13E-008 3.907 2.90E-009 3.431 .013
1.13E-008 1.000 1.13E-008 3.431 .078
6.94E-008 168 4.13E-010
6.94E-008 68.127 1.02E-009
6.94E-008 82.046 8.46E-010
6.94E-008 21.000 3.30E-009

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

Type III Sum
of Squares df Mean Square F Sig.
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Pairwise Comparisons

Measure: MEASURE_1

-1.75E-006 .000 1.000 -2.18E-005 1.83E-005
3.77E-006 .000 1.000 -2.97E-005 3.72E-005
1.27E-005 .000 1.000 -2.30E-005 4.84E-005
1.07E-005 .000 1.000 -2.18E-005 4.33E-005
1.61E-005 .000 1.000 -1.24E-005 4.46E-005
4.64E-006 .000 1.000 -3.02E-005 3.95E-005
2.01E-005 .000 .518 -7.62E-006 4.78E-005
1.81E-005 .000 1.000 -1.36E-005 4.99E-005
1.75E-006 .000 1.000 -1.83E-005 2.18E-005
5.52E-006 .000 1.000 -1.91E-005 3.01E-005
1.44E-005 .000 1.000 -1.43E-005 4.32E-005
1.25E-005 .000 1.000 -1.33E-005 3.82E-005
1.79E-005 .000 .225 -3.78E-006 3.95E-005
6.40E-006 .000 1.000 -2.16E-005 3.44E-005
2.18E-005* .000 .033 1.01E-006 4.27E-005
1.99E-005 .000 .342 -5.77E-006 4.56E-005

-3.77E-006 .000 1.000 -3.72E-005 2.97E-005
-5.52E-006 .000 1.000 -3.01E-005 1.91E-005
8.92E-006 .000 1.000 -1.35E-005 3.13E-005
6.94E-006 .000 1.000 -9.19E-006 2.31E-005
1.24E-005 .000 .171 -2.06E-006 2.68E-005
8.77E-007 .000 1.000 -1.80E-005 1.97E-005
1.63E-005* .000 .006 3.22E-006 2.94E-005
1.44E-005 .000 .059 -2.90E-007 2.91E-005

-1.27E-005 .000 1.000 -4.84E-005 2.30E-005
-1.44E-005 .000 1.000 -4.32E-005 1.43E-005
-8.92E-006 .000 1.000 -3.13E-005 1.35E-005
-1.98E-006 .000 1.000 -1.81E-005 1.41E-005
3.44E-006 .000 1.000 -1.88E-005 2.57E-005

-8.04E-006 .000 1.000 -3.02E-005 1.41E-005
7.39E-006 .000 1.000 -1.05E-005 2.53E-005
5.46E-006 .000 1.000 -1.23E-005 2.32E-005

-1.07E-005 .000 1.000 -4.33E-005 2.18E-005
-1.25E-005 .000 1.000 -3.82E-005 1.33E-005
-6.94E-006 .000 1.000 -2.31E-005 9.19E-006
1.98E-006 .000 1.000 -1.41E-005 1.81E-005
5.43E-006 .000 1.000 -1.08E-005 2.17E-005

-6.06E-006 .000 1.000 -2.76E-005 1.55E-005
9.38E-006 .000 1.000 -5.71E-006 2.45E-005
7.45E-006 .000 1.000 -4.37E-006 1.93E-005

-1.61E-005 .000 1.000 -4.46E-005 1.24E-005
-1.79E-005 .000 .225 -3.95E-005 3.78E-006
-1.24E-005 .000 .171 -2.68E-005 2.06E-006
-3.44E-006 .000 1.000 -2.57E-005 1.88E-005
-5.43E-006 .000 1.000 -2.17E-005 1.08E-005
-1.15E-005 .000 1.000 -3.16E-005 8.64E-006
3.95E-006 .000 1.000 -7.21E-006 1.51E-005
2.02E-006 .000 1.000 -1.24E-005 1.64E-005

-4.64E-006 .000 1.000 -3.95E-005 3.02E-005
-6.40E-006 .000 1.000 -3.44E-005 2.16E-005
-8.77E-007 .000 1.000 -1.97E-005 1.80E-005
8.04E-006 .000 1.000 -1.41E-005 3.02E-005
6.06E-006 .000 1.000 -1.55E-005 2.76E-005
1.15E-005 .000 1.000 -8.64E-006 3.16E-005
1.54E-005 .000 .161 -2.42E-006 3.33E-005
1.35E-005 .000 .203 -2.62E-006 2.96E-005

-2.01E-005 .000 .518 -4.78E-005 7.62E-006
-2.18E-005* .000 .033 -4.27E-005 -1.01E-006
-1.63E-005* .000 .006 -2.94E-005 -3.22E-006
-7.39E-006 .000 1.000 -2.53E-005 1.05E-005
-9.38E-006 .000 1.000 -2.45E-005 5.71E-006
-3.95E-006 .000 1.000 -1.51E-005 7.21E-006
-1.54E-005 .000 .161 -3.33E-005 2.42E-006
-1.93E-006 .000 1.000 -1.66E-005 1.27E-005
-1.81E-005 .000 1.000 -4.99E-005 1.36E-005
-1.99E-005 .000 .342 -4.56E-005 5.77E-006
-1.44E-005 .000 .059 -2.91E-005 2.90E-007
-5.46E-006 .000 1.000 -2.32E-005 1.23E-005
-7.45E-006 .000 1.000 -1.93E-005 4.37E-006
-2.02E-006 .000 1.000 -1.64E-005 1.24E-005
-1.35E-005 .000 .203 -2.96E-005 2.62E-006
1.93E-006 .000 1.000 -1.27E-005 1.66E-005

(J) time
2
3
4
5
6
7
8
9
1
3
4
5
6
7
8
9
1
2
4
5
6
7
8
9
1
2
3
5
6
7
8
9
1
2
3
4
6
7
8
9
1
2
3
4
5
7
8
9
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
9
1
2
3
4
5
6
7
8

(I) time
1

2

3

4

5

6

7

8

9

Mean
Difference

(I-J) Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for
Differencea

Based on estimated marginal means
The mean difference is significant at the .05 level.*. 

Adjustment for multiple comparisons: Bonferroni.a. 
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2 x 4 (muscle x time) Factorial ANOVA for Untrained Arm EMG

Multivariate Testsb

.103 .724a 3.000 19.000 .550

.897 .724a 3.000 19.000 .550

.114 .724a 3.000 19.000 .550

.114 .724a 3.000 19.000 .550

.790 79.028a 1.000 21.000 .000

.210 79.028a 1.000 21.000 .000
3.763 79.028a 1.000 21.000 .000
3.763 79.028a 1.000 21.000 .000
.064 .430a 3.000 19.000 .734
.936 .430a 3.000 19.000 .734
.068 .430a 3.000 19.000 .734
.068 .430a 3.000 19.000 .734

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

Effect
time

muscle

time * muscle

Value F Hypothesis df Error df Sig.

Exact statistica. 

Design: Intercept 
Within Subjects Design: time+muscle+time*muscle

b. 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.592 10.325 5 .067 .800 .910 .333
1.000 .000 0 . 1.000 1.000 1.000
.685 7.467 5 .189 .845 .971 .333

Within Subjects Effect
time
muscle
time * muscle

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: time+muscle+time*muscle

b. 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

1.50E-008 3 5.00E-009 .359 .783
1.50E-008 2.400 6.25E-009 .359 .738
1.50E-008 2.731 5.49E-009 .359 .764
1.50E-008 1.000 1.50E-008 .359 .555
8.77E-007 63 1.39E-008
8.77E-007 50.405 1.74E-008
8.77E-007 57.361 1.53E-008
8.77E-007 21.000 4.18E-008
2.26E-005 1 2.26E-005 79.028 .000
2.26E-005 1.000 2.26E-005 79.028 .000
2.26E-005 1.000 2.26E-005 79.028 .000
2.26E-005 1.000 2.26E-005 79.028 .000
6.00E-006 21 2.86E-007
6.00E-006 21.000 2.86E-007
6.00E-006 21.000 2.86E-007
6.00E-006 21.000 2.86E-007
1.99E-008 3 6.65E-009 .567 .639
1.99E-008 2.535 7.87E-009 .567 .611
1.99E-008 2.912 6.85E-009 .567 .634
1.99E-008 1.000 1.99E-008 .567 .460
7.39E-007 63 1.17E-008
7.39E-007 53.234 1.39E-008
7.39E-007 61.150 1.21E-008
7.39E-007 21.000 3.52E-008

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
time

Error(time)

muscle

Error(muscle)

time * muscle

Error(time*muscle)

Type III Sum
of Squares df Mean Square F Sig.
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Appendix F Muscle and Joint Soreness Breakdown
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Bicep Elbow Forearm Shoulder Wrist/ Hand

Subject 
Number W

ee
k 

1

W
ee

k 
2

W
ee

k3

W
ee

k 
1

W
ee

k 
2

W
ee

k3

W
ee

k 
1

W
ee

k 
2

W
ee

k3

W
ee

k 
1

W
ee

k 
2

W
ee

k3

W
ee

k 
1

W
ee

k 
2

W
ee

k3

1 0 0 0 4 0 0 0 0 0 0 0 0 0 6
7.
5

2 7 5 1 0 0 0 5 2 1 0 0 0 0 0 0
3 6 3 1 4 2 0 3 0 0 0 0 0 0 0 0
4 7 6 4 5 5 5 0 0 0 8 7 5 0 0 0
6 6 1 0 0 0 0 0 0 0 0 0 0 3 5 6
7 6 3 0 3 4 4 0 0 0 0 0 0 3 3 3
8 6 0 0 3 0 0 5 0 0 0 0 0 0 0 0
9 9 4 0 4 2 0 4 2 0 6 2 0 0 0 0
10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0
12 4 6 3 1 3 6 2 2 2 0 0 0 1 2 3
13 6 0 0 0 0 0 5 0 0 0 0 0 0 0 0
14 6 3 1 3 1 1 3 2 1 5 3 1 3 1 1
15 5 2 0 8 5 2 0 0 0 0 0 0 0 0 0
16 4 0 0 0 3 0 0 0 0 0 0 0 0 0 0
17 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0
18 9 6 3 7 3 0 6 2 0 0 0 0 0 0 0
19 5 3 0 2 2 0 3 3 3 4 0 0 0 0 0
20 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 5 0 0 0 0 0 0 0 0 3 3 0
22 6 4 2 3 0 0 0 4 0 0 0 0 0 0 0
23 5 0 0 0 0 8 7 0 0 6 0 0 0 0 0
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