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Abstract 

 

MosA is a protein found in Sinorhizobium meliloti L5-30 and has been 

suggested to be responsible for the biosynthesis of the rhizopine 3-O-methyl-scyllo-

inosamine (3-MSI) from scyllo-inosamine (SI). However, we have shown MosA is a 

dihydrodipicolinate synthase (DHDPS) catalyzing the condensation of pyruvate with 

aspartate-β-semialdehyde (ASA).   Since the DHDPS reaction occurs through a Schiff 

base aldol-type mechanism it was proposed that MosA could be an O-methyltransferase 

utilizing 2-oxo-butyrate (2-OB) as a novel methyl donor. This interesting yet unlikely 

possibility would explain MosA's role in the biosynthesis of 3-MSI without ignoring its 

similarity to DHDPS.   Alternatively, MosA may have two catalytic domains one of 

which possesses a novel binding motif for S-Adenosyl methionine (SAM) to account 

for methyltransfer activity.  In vitro demonstration of MosA’s methyltransferase activity 

is required to resolve this apparent contradiction. 

This dissertation describes the chemical synthesis of the rhizopines, 

investigation into whether MosA has a direct role in rhizopine biosynthesis and the 

thermodynamic characterization of compounds interacting with MosA as observed by 

isothermal titration calorimetry.   

Initial investigation into MosA’s methyltransferase activity began with 2-OB’s 

interaction with the enzyme.  Inhibition experiments determined 2-OB is a competitive 

inhibitor with respect to pyruvate of the DHDPS reaction of MosA. Furthermore, 

protein mass spectrometry of MosA in the presence of 2-OB and sodium borohydride 

indicated that a Schiff base enzyme intermediate was indeed being formed providing 

evidence that the proposed mechanism may exist. However, neither of the rhizopines 

had any effect on the DHDPS activity and HPLC assays determined that no 3-MSI was 

being produced by MosA in the presence of SI and 2-OB. Furthermore, HPLC assays 

failed to detect methyl transfer activity by MosA utilizing the SAM as a methyl donor.  

Isothermal titration calorimetry provided thermodynamic characterization of the 

pyruvate and 2-OB Schiff base intermediates formed with MosA.  In addition, ITC 

provided insight into the nature and thermodynamics of (S)-lysine’s inhibition of MosA.  

ITC failed to detect any interactions between the rhizopines or SAM with MosA. These 
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results indicate that MosA is only a DHDPS and does not catalyze the formation of 3-

MSI from SI as hypothesized in the literature.   
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1 Introduction 

 

1.1 Sinorhizobia form symbiotic relationships with leguminous plants 

  

 Sinorhizobia are beneficial soil bacteria that form symbiotic relationships with 

leguminous plants such as beans, peas and lentils.  Through a complex process, the 

bacteria induce the plants to grow root nodules where the bacteria then reside using 

plant nutrients while fixing nitrogen for the plants.  Once in the root nodules, the 

sinorhizobia then differentiate into bacteroids where the genes used for nitrogen fixation 

are expressed and nitrogen fixation begins.
1
  The conversion of atmospheric nitrogen to 

amino compounds that have biological roles in plants is very important agriculturally.  

In fact commercial products such as Rhiz-Up™ which are sinorhizobium inoculants are 

now available for leguminous crops. 

 The interaction between plants and sinorhizobia is described as symbiotic 

meaning that both the plant and the bacterium benefit from establishing this 

relationship.
2
  In fact, plants that are able to form symbiotic relationships with 

sinorhizobia are actually given a competitive advantage over other species which 

cannot.
3
 The plants benefit by obtaining nitrogen-containing compounds that were 

produced by sinorhizobia through nitrogen fixation.  Nitrogen fixation is the process 

where atmospheric nitrogen gas (N2) is incorporated into compounds that are 



 2 

biologically important.  Interestingly, the bacteria that produce the nitrogen-containing 

compounds are unable to utilize them, illustrating the importance of this relationship.  

Bacteria are believed to benefit by utilizing plant nutrients in the nodules and the soil 

immediately surrounding the roots of the plant known as the rhizosphere, although this 

process is less well understood.
4
  

 Competition in the soil between endogenous species of bacteria is an important 

issue in soil biology.  Consequently, any type of nutritional advantage gained by a 

species is going to help in its propagation.  One of the most highly studied plant-

microbe interaction is the parasitic relationship formed between agrobacteria and plants.  

Agrobacteria are closely related to sinorhizobia and induce plants to grow tumors 

creating a diseased state known as crown gall disease.  Within the tumors, bacterial 

DNA from large megaplasmids is transported into the plant’s genome.  Here the plants’ 

cellular machinery expresses the genes of bacterial origin, resulting in proteins that 

essentially hijack plant metabolism, producing compounds beneficial to the microbe.  

One of the main goals of the redirected metabolism is the production of a class of 

compounds known as opines.
5
   

    

 

1.2 Rhizopines are analogous to opines from agrobacteria 

  

 Opines are strain-specific compounds produced by the crown galls induced by 

agrobacteria.  They are used as selective growth substrates by members of the inducing 

strain.  Structurally, opines fall into two broad classes: sugar phosphodiesters and 
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imines.  The imine class (two of which are shown in Figure 1), which is the most 

populous, refers to the biosynthetic intermediates in which an imine is formed between 

a primary amine and an aldehyde or ketone.
6
  Enzymatically catalyzed reductions or 

rearrangements produce the final opine structure.  The most common examples of 

opines are derivatives of primary metabolites such as pyruvate, 2-oxoglutarate or sugars 

conjugated to amino acids (see Figure 1).  Over the years more than twenty opines have 

been discovered from many different strains of agrobacteria.
7
  In an attempt to explore 

the generality of the opine phenomenon in other species, sinorhizobia were chosen to be 

screened for “opine like” compounds.   

 

H2N(CH2)4 C COOH

NH

C COOHH3C

H

H

C-NH-(CH2)3 C COOH

NH

C COOHH3C

H

HH2N

HN

Lysopine Octopine  

Figure 1.  Chemical structures of two opines obtained from the crown galls induced by the parasitic 

Agrobacterium tumafaciens 

 

 The decision to test sinorhizobia for “opine-like” compounds was made for 

several reasons. Sinorhizobia and agrobacteria are closely related species both 

belonging to the family Rhizobiacae.  In addition, the pathogenic and symbiotic states 

of Agrobacterium and sinorhizobia are surprisingly quite similar.  One induces the 

growth of tumors while the other induces the growth of root nodules. Finally the genes 

mainly responsible for the plant-microbe interactions are found on large megaplasmids.
1
  

Taking the similarities into account, the idea that sinorhizobia may have “opine like” 

compounds is not unreasonable. 
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 Interestingly, two closely related “opine like” compounds were discovered in the 

root nodules of a legume infected by Sinorhizobium meliloti L5-30 (Sm L5-30).  These 

compounds were identified as scyllo-inosamine (SI) and 3-O-methyl-scyllo-inosamine 

(3-MSI) (see Figure 2).
1
  Although not structurally related to the opines, the newly 

found “opine-like” compounds were given the name “rhizopines” as they are found in 

the root nodules located in the rhizosphere and share some biological functions with 

opines. 

  

OHHO

OH

OHHO

NH2

OHHO

OH

OCH3
HO

NH2

scyllo-inosamine (SI) 3-O-methyl-scyllo-inosamine (3-MSI) 

Figure 2.  The chemical structure of the two rhizopines found in the root nodules of a legume 

induced by Sinorhizobium meliloti L5-30 

  

  

 

 

 

1.2.1 Characteristics of rhizopines 

 

 Rhizopines, as with opines, are strain-specific compounds. However, unlike 

opines, only 11% of R. meliloti and 12% of R. leguminosarum bv. Viciae could both 

synthesize and catabolize rhizopines.
8
  In addition, all strains that were able to produce 
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rhizopines were able to catabolize them suggesting co-evolution of the genes 

responsible for rhizopine metabolism.  

 The function of rhizopines is poorly understood.  However, it is known that 

those species of sinorhizobia that are able to catabolize rhizopines are given a 

competitive advantage in nodulation over those which cannot.
5
  This could be explained 

by the rhizopines being selective growth substrates; however, competition studies did 

not support this role.
9
  Rather, rhizopines somehow give catabolizing strains the ability 

to populate nodules at an enhanced rate over those that cannot.  To this date, the 

mechanism and biological function of rhizopines is unclear.   

 

1.2.2 The genes implicated in rhizopine biosynthesis  

 

 Sinorhizobia contain much of the genetic information necessary for nitrogen 

fixation and nodulation on two extremely large plasmids estimated to be in excess of 

1.6 Mb.
10
  The genes responsible for rhizopine catabolism (moc) and synthesis (mos) 

were found closely linked on the pSym megaplasmid suggesting that these metabolic 

genes evolved as a functional unit important in symbiosis.
1
  Further support for 

involvement of rhizopines in symbiosis came from the finding that they are regulated by 

the symbiotic nitrogen fixation regulatory gene nifA.
11
  This ensures that the mos and 

moc genes are controlled in an identical transcriptional manner to those genes involved 

in symbiosis.   

 A 4.5 kb fragment of DNA believed to house the genes responsible for rhizopine 

synthesis was isolated and sequenced.
12
 The DNA sequencing revealed four open 
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reading frames named mosA, mosB, mosC and ORF1. Sequence analysis of ORF1 

suggested that it encodes a small peptide, however, no ORF1-derived protein was ever 

detected using Western blot analysis of nodule extracts.
12
  Antibody analysis detected 

gene products corresponding to mosA, mosB and mosC.  Information regarding possible 

functions of the proteins MosA, MosB and MosC was obtained by deducing the amino 

acid sequences and scanning a data base of known proteins.   

 MosA has high sequence similarity (~45% identity) to dihydrodipicolinate 

synthase (DHDPS) from E. coli, an enzyme in the (S)-lysine biosynthetic pathway.  

MosB, on the other hand, has sequence similarities to proteins such as DegT, EryC1, 

DnrJ, StrS ranging from 37 – 41%. All these proteins are members of the 

aminotransferase family.  Perhaps the most interesting is MosB’s similarity to StsC 

(38% amino acid identity and 56% similarity) an inosose-aminotransferase.
13
 MosC 

showed no sequence similarities to any known sequences in the protein data bank.  

However, MosC is a very hydrophobic protein with 12 different membrane-spanning 

regions typical of membrane-bound carbohydrate transport proteins.
12
   

 The metabolic function of these proteins was initially investigated by 

comparison of the mos genes found in Sinorhizobium meliloti 220-3 (Sm 220-3).
14
 This 

strain, when compared to Sm L5-30, shared significant homology within the mos locus 

with the exception that it lacked mosA.  Analysis of the rhizopines present in Sm 220-3, 

which lacks the mosA gene, revealed that only SI was produced.  Since Sm 220-3 only 

produces SI and the only major genetic difference in the mos locus was the absence of 

mosA, it was suggested that mosA may be responsible for the biosynthesis of 3-MSI 

from SI.
14
  To support this hypothesis, researchers constructed a plasmid containing a 
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truncated mosA gene from Sm L5-30.  This would result in the expression of a 

nonfunctioning MosA protein while keeping intact the rest of the genes important for 

rhizopine synthesis.  This plasmid was then used to introduce the mos genes into 

Sinorhizobium meliloti 1021 (Sm 1021), a strain that does not produce rhizopines. Upon 

inoculation of this transformed strain into root nodules, rhizopine analysis revealed that 

only SI was being produced.
15
 These experiments provided further support that MosA 

may be an O-methyltransferase. 

 The suggestion that MosA is an O-methyltransferase caught the attention of 

several researchers primarily due to high sequence similarity of MosA to DHDPS from 

E. coli.
16,17

  DHDPS is a type I aldolase that catalyzes the condensation of pyruvate with 

aspartate-β-semialdehyde (ASA) as shown in Figure 3.  In fact, MosA is more closely 

related to DHDPS from E. coli than some DHDPS’s are to each other.
18
  MosA is a 

tentative member of the N-acetylneuraminate lyase (NAL) sub-family of aldolases.  

Each member of the NAL sub-family catalyzes a type I aldolase or aldolase-like 

reaction of a 2-oxo-acid with a carbonyl-containing compound.   

 The sequence of MosA suggests that it belongs to the NAL sub-family of 

enzymes.  Enzymes belonging to this subfamily all possess the (β/α)8 barrel folds and 

catalyze aldol chemistry via a protonated Schiff base intermediate.
16
  In the NAL sub-

family all members form the Schiff base between a 2-oxo acid substrate and an active 

site lysine as shown in Figure 3.  In addition to DHDPS and NAL, other members of 

this family include: trans-ortho-hydroxybenzylidenepyruvate-hydratase aldolase and D-

4-deoxy-5-oxoglucarate dehydratase-decarboxylase. Since all of the above proteins 

catalyze Schiff base dependent aldol chemistry, the suggestion that MosA is a 
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methyltransferase is interesting.  It is possible that MosA may be a methyltransferase 

despite its similarity to DHDPS or alternatively, as a review article on the NAL sub-

family suggests, the assigned function of MosA as a methyltransferase may simply be 

incorrect.
16
 

 Sequence alignments of MosA, DHDPS and NAL illustrated in Figure 4 show 

that MosA is 45% identical to DHDPS from E. coli and should be a tentative member of 

the NAL sub-family.  All of the residues identified in the active site and structurally 

important residues of DHDPS are present in the MosA sequence.  In a review article by 

Babbitt and Gerlt
17
 discussing enzyme evolution, MosA was brought up as a potential 

enzyme that confounds the accepted paradigm of enzyme evolution.  It was suggested 

that MosA may rely on a mechanism analogous to the DHDPS reaction that would 

result in the transfer of a methyl group.  This would explain MosA’s role in rhizopine 

biosynthesis without ignoring its similarity to DHDPS.   The proposed reaction 

illustrated in Figure 5 begins with the formation of a Schiff base between 2-oxobutyrate 

(2-OB) and MosA.  Subsequent nucleophilic attack by the C-3 hydroxyl group of SI 

would produce pyruvate and 3-MSI.    
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Figure 3 .  The reactions catalyzed by some members of the NAL sub-family 
(NAL = N-acetylneuramic acid lyase, HBPHA = trans-o-hydroxybenzylidenepyruvate hydratase-aldolase 

and DHDPS = dihydrodipicolinate synthase).  The enzyme-substrate Schiff base intermediate is 

highlighted in each case.   
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MOSA_L530: ---MFEGSITALVTPFADDR-IDEVALHDLVEWQIEEGSFGLVPCGTTGESPTLSKSEHEQVVEITIKTANGRVP : 71 
DHDPS_ECO: ---MFTGSIVAIVTPMDEKGNVCRASLKKLIDYHVASGTSAIVSVGTTGESATLNHDEHADVVMMTLDLADGRIP : 72 
NAL_ECO  : MATNLRGVMAALLTPFDQQQALDKASLRRLVQFNIQQGIDGLYVGGSTGEAFVQSLSEREQVLEIVAEEAKGKIK : 75 
                                                          *                                  
 
MOSA_L530: VIAGAGSNSTAEAIAFVRHAQNAGADGVLIVSPYYNKPTQEGIYQHFKAIDAAST-IPIIVYNIPGRSAIEIHVE :145 
DHDPS_ECO: VIAGTGANATAEAISLTQRFNDSGIVGCLTVTPYYNRPSQEGLYQHFKAIAEHTD-LPQILYNVPSRTGCDLLPE :146 
NAL_ECO  : LIAHVGCVSTAESQQLAASAKRYGFDAVSAVTPFYYPFSFEEHCDHYRAIIDSADGLPMVVYNIPALSGVKLTLD :150 
                                            **                          *    *               
 
MOSA_L530: TLARIFEDCPNVKGVKDATGNLLRPSLERMACGEDFNLLTGEDGTALGYMAHGGHGCISVTANVAPALCADFQQA :220 
DHDPS_ECO: TVGRLAK-VKNIIGIKEATGNLTRVNQIKELVSDDFVLLSGDDASALDFMQLGGHGVISVTANVAARDMAQMCKL :220 
NAL_ECO  : QINTLVT-LPGVGALKQTSGDLYQMEQIRREH-PDLVLYNGYDEIFASGLLAGADGGIGSTYNIMGWRYQGIVKA :223 
                          *                        ***                                       
 
MOSA_L530: CLNGDFAAALKLQDRLMPLHRALFLETNPAGAKYALQRLGRMRGD-LRLPLVTISPSFQEEIDDAMRHAGILL- :292 
DHDPS_ECO: AAEGHFAEARVINQRLMPLHNKLFVEPNPIPVKWACKELGLVATDTLRLPMTPITDSGRETVRAALKHAGLL-- :292 
NAL_ECO  : LKEGDIQTAQKLQTECNKVIDLLIKTGVFRGLKTVLHYMDVVSVPLCRKPFGPVDEKYLPELKALAQQLMQERG :297 
              *             *         *                                                     

  

Figure 4. Sequence alignment of MosA from Sm L5-30, DHDPS from E. coli and NAL from E. coli.  
The alignment was created by Dr. David Palmer using ClustalW 1.82 and visualized with Genedoc 2.6.  

Residues highlighted in black are identical in all three sequences, residues highlighted in blue are 

identical in two of the sequences and residues highlighted in green are similar in at least two of the 

sequences.  Those residues marked with an asterisk have been identified by X-ray crystallography or 

mutational analysis as being important in the active site or of structural significance. 
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Figure 5.  The proposed novel methyltransferase reaction using 2-OB as a methyl donor catalyzed 

by MosA in the production of 3-MSI from SI in rhizopine biosynthesis.
17
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1.3 Dihydrodipicolinate synthase (DHDPS) from E. coli 

 

1.3.1 What is known about DHDPS from E. coli 

  

 Dihydrodipicolinate synthase (EC 4.2.1.52) catalyzes the condensation of 

pyruvate with aspartate-β-semialdehyde (ASA) to produce 4-hydroxy-tetrahydro-

dipicolinic acid (HTPA) as shown in Figure 6.  This enzyme catalyzes a reaction in the 

(S)-lysine biosynthetic pathway in bacteria shown in Scheme 1.  In plants, DHDPS is 

the enzyme responsible for the first reaction in the metabolic pathway in the 

biosynthesis of (S)-lysine.  This enzyme has garnered significant interest in the 

scientific community because of its potential as a target for antimicrobial and herbicidal 

compounds.
19
  DHDPS also received attention from agricultural scientists interested in 

producing lysine-rich crops examining the use of engineered DHDPS enzymes.
20
  The 

end product of the metabolic pathway, (S)-lysine, is an allosteric feedback inhibitor of 

DHDPS from plants and certain bacteria.  DHDPS isozymes have been classified based 

on their sensitivity to (S)-lysine inhibition. Typically DHDPS from plants such as Zea 

mays
21
and Psium sativum

22
are strongly inhibited by (S)-lysine with IC50 values around 

0.01 – 0.05 mM.   Those DHDPS enzymes from gram-negative bacteria such as E. 

coli,
23
 Methanobacterium thermoautotrophicum

24
 and Bacillus sphaericus

25
 are weakly 

inhibited with IC50 values 0.1 – 0.5 mM.  Interestingly, DHDPS enzymes from gram-

positive bacteria such as Bacillus cereus,
26
 Corynebacterium glutamicum

27
 and Bacillus 

lactofermentum
28
displayed low sensitivity with IC50 values around 10 mM .

29
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Figure 6.  The reaction catalyzed by DHDPS from E. coli. 

 

DHDPS from E. coli is the most thoroughly studied of the DHDPS isozymes.  Initial 

experimentation on DHDPS from E. coli determined that the denatured enzyme 

possessed a molar mass of about 31 kDa.
30
  DHDPS was later revealed to be a 

homotetrameric protein that relied on an active site lysine (K161) to form a Schiff base 

with pyruvate during the reaction mechanism.
31
 A covalent intermediate between the 

pyruvate and DHDPS was later confirmed by mass spectrometry.
32
  The mechanism has 

been studied by NMR using 
13
C labeled pyruvate

33
 and has been proposed to follow 

ping-pong kinetic mechanism.
34
  After the formation of a Schiff base with pyruvate and 

release of water, deprotonation creates a nucleophilic α-carbon atom.  The hydrate form 

of ASA binds to the active site and is dehydrated by the enzyme.  Subsequent 

nucleophilic attack by the enamine on the carbonyl of ASA forms the new carbon-

carbon bond.  Cyclization and transamination releases the product HTPA into 

solution.
33
  The currently accepted mechanism is depicted in Scheme 2. 
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Scheme 1.  The biosynthetic pathway of (S)-lysine in bacteria adapted from reference 35.   
Names of metabolites in pathway are: i) pyruvate and ASA ii) 2,3 dihydrodipicolinate iii) 2,3,4,5-

tetrahydrodipicolinate iv) N-succinyl-2-amino-6-keto-L-pimelate v) N-succinyl-L,L-α,ε-diaminopimelate 

vi) L,L-α,ε-diaminopimelate vii) meso-α,ε-diaminopimelate vii) L-lysine  The enzymes catalyzing each 

step are: 1) dihydrodipicolinate synthase 2) dihydrodipicolinate reductase 3) N-succinyl-2-amino-6-keto-

L-pimelate synthase 4) succinyl-diaminopimelate aminotransferase 5)  succinyl-diaminopimelate 

desuccinylase 6) diaminopimelate epimerase 7) diaminopimelate decarboxylase. 
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 Crystal structures of DHDPS have identified many residues involved in the aldol 

mechanism.  These include K161 which has been observed covalently linked to the 

pyruvate.
31
 A catalytic triad of Y133, T44 and Y107 is believed to provide a proton 

relay system to and from the solvent.  Upon mutation of any of the residues in the triad, 

DHDPS activity was significantly reduced.
36
 R238, which sits at the entrance of the 

active site, is proposed to bind ASA as well as to stabilize the catalytic triad.
37
  All of 

the above residues are strictly conserved in all DHDPS enzymes, including MosA. 

 In addition to active site residues, tertiary and quaternary structural information 

is available from solved crystal structures.  Bacterial DHDPS is a homotetramer, which 

is best characterized as a dimer of dimers as shown in Figure 7.  Each dimer is 

comprised of a set of strongly associated monomers which, through the weak 

association of another dimer, form the tetramer observed.
38
  Each monomer possesses 

the well known (β/α)8 (“TIM”) barrel structure and at the C-terminal position of the 

barrel is the active site.
31
   

The TIM barrel is made up of 8 β strands and 8 α helixes which alternate forming the 

easily recognizable barrel structure shown in Figure 8.  This type of (β/α)8 folds are 

widespread throughout nature.  In fact, it is the most common fold found in the protein 

data bank and is a structural feature of at least 15 distinct enzyme families.
39
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Scheme 2.  The currently accepted mechanism of DHDPS from E. coli.  Scheme adapted from 

Dobson et al.
40
  Active site residues are red. 
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Figure 7.  The quaternary structure of DHDPS from E. coli displaying the dimer of dimers.  Each 

dimer is made up of strong contacting monomers which come together forming the overall tetramer. 

Figure produced using VMD
41
 and POV-Ray software.

42
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Figure 8.  The monomer structure of DHDPS from E. coli.  Structure displays the commonly observed 
(β/α)8 TIM barrel.  Figure produced by VMD

41
 and POV-Ray software.

42
 

 

 

 In DHDPS from E. coli, kinetic and structural studies determined that (S)-lysine 

is an allosteric, cooperative inhibitor.
31,33

 Allosteric inhibition refers to an inhibitor that 

binds at a site different from the active site of the enzyme.  The crystal structure of 

DHDPS from E. coli determined that the (S)-lysine binding site is located at the dimer 

interface with each (S)-lysine bound to a neighboring monomer.  A water-filled channel 

is found between the active site and the (S)-lysine binding site.  The cooperativity 

observed is not surprising due to the fact that the first (S)-lysine makes up part of the 

binding site of the second (S)-lysine.
33
 Another interesting point regarding bound (S)-

lysine is that the side chain of the inhibitors are in a conformationally strained bow 

shape shown in Figure 9.   
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 Many enzyme-inhibitor contacts are observed between (S)-lysine and the 

binding site.  The α-carboxylate of (S)-lysine contacts Y106 and N80 (of monomer B).  

The α-amino group contacts A49, E84 and N80 while the ε-amino has contacts with 

H56, S48 and Y133 via a water molecule.  Upon the binding of (S)-lysine Y106 moves  

 

Figure 9.  The conformationally strained bow shape of the (S)-lysines bound at the dimer-dimer 

interface.  Figure created using VMD41 and POV-Ray software.
42
 

 

towards the α-carboxyl group of the inhibitor, altering the aromatic stack between Y106 

and Y133.  Y106 is a catalytically important residue which sits directly above the active 

site and is part of a hydrogen-bonded proton relay system with Y133 and T43.
36
  

Another catalytically important residue, R238, displayed increased B values suggesting 

increased movement of that residue in the (S)-lysine-bound structure.
37
  It is very likely 

that the same contacts are made between MosA and (S)-lysine as all of the residues 

mentioned are conserved.  No major tertiary and quaternary changes were observed by 

overlaying DHDPS structure with and without (S)-lysine. However, DHDPS from 
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Nicotiana sylvestris which shares 29% identity with MosA but possesses a different 

quaternary structure from E. coli, displayed significant movement in a helix portion of 

protein upon binding of (S)-lysine.
43
 

   

1.3.1 MosA is a DHDPS 

 

 The gene for MosA was kindly supplied to our lab from Dr. Peter J. Murphy.   

MosA was subsequently cloned, expressed and purified as an N-terminal hexahistidine 

fusion protein allowing easy purification.  Upon sequencing of the mosA gene, it was 

discovered that the originally reported sequence was missing a single deoxyguanosine 

base.  This resulted in a frame shift which introduced a stop codon making MosA 41 

amino acids shorter than originally described.
18
 The extra 41 amino acids that resulted 

from the sequencing error were originally hypothesized to form a domain that could 

allow catalytic methyltransferase activity. 

 ASA was chemically synthesized
44
 and MosA examined for DHDPS activity.  

The resulting assays clearly supported that MosA is indeed an efficient DHDPS with a 

kcat value of 7.3 s
-1
.  The enzyme possessed similar Michaelis constants to DHDPS from 

E. coli with a KM(Pyr) of 0.6 mM and KM(ASA) of 0.21 mM.
13
  In addition, bi-substrate 

kinetic analysis was performed and the initial velocity patterns indicated that the 

condensation of pyruvate and ASA followed the ping-pong mechanism.
13
   

 The kcat value of 7.3 s
-1
 determined for MosA is lower than the value of 188 s

-1
 

determined by Karsten
34
 studying DHDPS from E. coli, but is still too fast to be 

considered as a side reaction.  Furthermore, MosA is not identical to E. coli DHDPS, 
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meaning there may be some slight differences in MosA affecting turnover rate of the 

enzyme.  Another important difference is the effects that the enzymatic assay may have 

on the kinetic parameters obtained.  The imidazole assay,
32
 which monitors the 

spontaneous formation of dipicolinic acid at 270 nm, has been suggested to be inferior 

to the dihydrodipicolinate reductase coupled assay.
45
 However, this assay was sufficient 

in demonstrating the catalytic efficiency of MosA as a DHDPS.  In fact, examining 

earlier reports that used the imidazole assay to determine the kinetic parameters of 

DHDPS from E. coli, the kcat observed is much more consistent with that determined for 

MosA.
13
  

 DHDPS from plants and gram-negative bacteria is partially inhibited by (S)-

lysine, the end product of the metabolic pathway.  If MosA were a DHPDS belonging to 

the same or a similar pathway, it is possible that feedback inhibition would occur.  

Experiments monitoring MosA’s DHDPS activity in the presence of (S)-lysine showed 

that at 5 mM concentrations a maximum inhibition of 94% was achieved.
18
  

Additionally, the binding of (S)-lysine to MosA displayed cooperativity consistent with 

other DHDPS enzymes.
18
    

 Other experiments performed to further characterize MosA as a DHDPS were 

imine trapping experiments and complementation analysis.  Upon incubation of MosA 

with pyruvate and NaBH4, mass spectrometry detected a major peak consistent with the 

mass of a reduced imine covalently attached to MosA.  Furthermore, in vivo 

complementation analysis demonstrated that the presence of MosA allowed a DHDPS
-
 

mutant of E. coli (AT997) the ability to grow in medium not enriched with meso-

diaminopimelate.  In a control experiment, the same mutant of E. coli transformed with 
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the expression plasmid minus MosA showed no growth in media without 

diaminopimelate.
18
  These results clearly indicate that MosA enables the cells to 

maintain a functional pathway to produce (S)-lysine.   

 The evidence discussed above clearly shows that MosA is a DHPDS with 

characteristics consistent with DHDPS from E. coli.  Furthermore, a sequencing error 

led to the suggestion that an additional 41 amino acid domain may enable MosA to 

possess activity different from DHDPS.  These findings cast serious doubt on MosA’s 

role as a methyltransferase in rhizopine biosynthesis.  However, more experimentation 

is required to thoroughly investigate this possibility. 

 

1.3.2 The potential of 2-oxobutyrate as a novel methyl donor substrate for MosA 

 

 Throughout nature, methyl donors are extremely important cofactors for the 

maintenance of normal metabolic pathways.   Only a few methyl donors have been 

identified as cofactors for enzymatically catalyzed methyltransfer reactions.  The vast 

majority of enzymatic methyl transfers to oxygen rely on the ubiquitous methyl donor 

S-adenosyl-methionine (SAM).  SAM is such an important molecule that it has been 

suggested to be second only to adenosine 5’-triphosphate (ATP) in the variety of 

biochemical reactions in which it is a cofactor.
46
   

 In addition to SAM, other less commonly utilized methyl donors are known.  

For example, tetrahydrofolates are used as sources of one-carbon units typically found 

in biosynthetic pathways of DNA, phospholipids, proteins, and neurotransmitters.
35
  Of 

the six C-1 donating folates, only N
5
-methyl-tetrahydrofolate donates a methyl group 
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while the others donate either a methylene or a formyl group.
47
  Other less common 

examples of methyl carriers are methylcobalamin, a methyl derivative of vitamin B-12 

that is best known for its role in synthesis of methionine from homocysteine; and 

betaine (trimethylglycine), a mitochondrial methylating agent involved in replication 

and detoxification of phenolic xenobiotics.
48
   

 In 1998, Babbitt and Gerlt suggested a novel methyltransferase reaction (see 

Figure 5) that could explain MosA’s role in rhizopine biosynthesis without ignoring its 

similarity to DHDPS.
17
  In a reaction analogous to DHDPS, 2-OB forms a Schiff base 

with an active site lysine providing an electron sink for nucleophilic attack by SI on the 

terminal methyl of the imine.  This would result in the release of 3-MSI and pyruvate 

into solution.  No known methyltransferase reactions similar to this have ever been 

observed.  Furthermore, 2-OB, a molecule typically found in amino acid metabolism, 

has never been determined to be a methyl donor in a biochemical reaction.     

 The finding that MosA has DHDPS activity seriously calls into question its 

implication in rhizopine biosynthesis.  However, many examples of proteins with dual 

functions have been discovered in nature.  These “moonlighting” proteins often have 

different functions which are typically not enzymatic.  These functions often depend on 

their cellular location (both intracellular and extracellular), oligomerization state, and 

the physiological concentration of specific ligands.
49
  In addition to these 

multifunctional proteins, there are several examples of enzymes that are catalytically 

promiscuous which utilize a wide range of substrates at the same active site.
50
  A classic 

example of a promiscuous enzyme that maintains broad substrate specificity is 

cytochrome P450.  This enzyme serves to detoxify a wide range of compounds in the 
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liver, therefore promiscuity is a functional advantage.  On the other hand, an example 

more relevant to MosA comes from an “N-acylamino acid racemase” whose main 

biochemical role was later determined to be a o-succinylbenzoate synthase.
51
   

 In the case of MosA, it is not difficult to imagine that 2-OB could easily replace 

pyruvate as described in the first half of the novel methyl reaction.  However, the 

binding and subsequent reaction of SI with the methyl group of the Schiff base is where 

some skepticism about MosA begins.  Nevertheless, in vitro investigation is required as 

there is microbiological experimental evidence that suggests MosA may have a function 

in rhizopine biosynthesis separate from its DHDPS activity.   

 

1.4 Inositol chemistry 

1.4.1 Regioselective alkylations of the orthoformate of myo-inositol 

 Over the past fifteen years, research into the biological roles of inositol-based 

compounds has led to a greater understanding into such processes as cellular signaling, 

calcium release as well as the importance of inositol derivatives in anchoring of proteins 

to membranes.
52
  The need for chemical preparations of these compounds, especially 

inositol phosphates, has stimulated the interest of organic chemists resulting in a wide 

array of synthetic methods to selectively functionalize the inositol structure.
53
    

 Of the eight possible diastereomers of cyclitols shown in Figure 10. only myo-, 

neo-, chiro-, and scyllo-inositol have been found in nature while the others allo-, muco-, 

epi- and cis-inositol, have not.
54
  By far, the most prevalent isomer in nature is myo-

inositol and its phosphate derivatives.  Consequently, much of the synthetic work done 

with inositols begins with selective protection of myo-inositol. 
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 One of the most popular protecting groups of myo-inositol is the 1,3,5-orthoester 

1.   Formation of this compound, illustrated in Figure 11, requires flipping of the 

cyclohexanol ring such that all of the hydroxyl groups are in the axial orientation except 

the hydroxyl at the C-2 position.  Subsequent reaction with triethyl orthoformate 

produces the well known adamantane-like structure.  This compound is easily obtained 

on a large scale without the need for column chromatography.
55
  The orthoformate 1 has 

one pair of chemically equivalent C-4 and C-6 axial hydroxyl groups and a chemically 

distinct C-2 hydroxyl group.  The difference in reactivity between these groups allows 

the regioselective protection of 1 with very good yields. 

 The chemical reactivity of the C-4 and C-6 hydroxyl groups results from the 

formation of a hydrogen bond, increasing the acidity of these groups compared to the 

hydroxyl at the C-2 position (see Figure 12).
56
  Consequently, the use of bases that can 

deprotonate the more acidic C-4/6 hydroxyl groups result in the corresponding anion 

available for subsequent addition of an electrophile at these positions.  Furthermore, the 

use of metal hydrides as bases results in the formation of a metal chelate stabilizing the 

anion at the C-4/6 position.
57
 The regioselectivity observed is typically independent of 

the electrophilic reagent but rather depends on the base employed in the reaction.
58
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Figure 10.  All possible diastereomers of inositol.  The top four, myo-, scyllo-, chiro- and neo- are 
naturally occurring while the bottom four epi-, muco-, cis-, and allo-inositol are unnatural synthetic 

products. 
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Figure 11.  Formation of the orthoester of myo-inositol (a) toluenesulfphonic acid, 

triethylorthoformate, DMF, 120 ºC 
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 In addition to selective protection at the C-4/C-6 positions, reactions that allow 

selective reaction at C-2 position are well known.  These reactions include acylation,
59
 

sulfonylation
60
 and silylation

61
 which all offer potential orthogonal protection at the C-2 

versus the C-4/C-6 positions.   Regioselectivity at this position is typically 

accomplished with the use of weak bases that serve as nucleophilic catalysts during the 

reaction.  Consequently, the regioselectivity relies on the relative nucleophilicity and 

steric hindrance of the hydroxyl groups of the orthoformate.  Since hydrogen bonding 

between the C-4 and C-6 hydroxyl groups increases the acidity of these groups, this also 

reduces their basicity and nucleophilicity.  In addition, increased steric hindrance of the 

C-4/C-6 position also contributes to the observed regioselectivity.  This is especially 

pronounced when the electrophilic species is an ionic intermediate formed between the 

nucleophilic catalyst and the electrophile.  This would result in selectivity by the 

intermediate reacting at the less hindered C-2 position.
62
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Figure 12.  Rationalization of the regioselectivity demonstrated by the orthoformate of myo-inositol:  

a illustrates the intermolecular hydrogen bond accounting for the lower pKa at the C-4 and C-6 hydroxyl 

groups: b illustrates the chelate formed upon reaction of the orthoformate with a metal hydride  

 

 

 In addition to commonly used protecting groups, sulfonyl protecting groups 

have also been used for regioselective protection of the orthoformate.
60,63

  The 
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regioselectivity can be controlled depending on the conditions used.  One distinct 

advantage of the sulfonates such as tosyl and mesyl is that they do not suffer from 

intramolecular migrations as do the acyl derivatives, increasing their synthetic use as 

protecting groups.
62
  A major disadvantage when using these protecting groups which 

are also good leaving groups is the displacement reactions that often accompany their 

removal.  Fortunately, the removal of these groups with Mg or Na in methanol does not 

result in significant displacement on the adamantane like structure of 1. 

 

1.4.2 Aminocyclitols 

 

 Aminocyclitols were first brought to the attention of synthetic chemists by 

studying the chemical structure of the well known antibiotic streptomycin.
64
  Since then, 

an entire family of amino-cyclitol antibiotics has been discovered increasing interest in 

the synthesis of these inosamine natural products.  Structure-activity relationship studies 

conclude that the inosamine moiety of these antibiotics is essential for biological 

activity.
65
  Figure 13 shows the structure of several aminocyclitols which are important 

parts of various antibiotics.  In addition to antibiotics, aminocyclitol derivatives have 

also been studied as potent glycosidase
66
 and glucosylceramide hydrolase inhibitors.

67
  

Despite the use of aminocyclitols for various biological studies, very little work has 

been done synthesizing myo-inosamine and scyllo-inosamine (SI) derivatives. 
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NH2
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minosaminomycin 

Figure 13.  The inosamine part of several antibiotics 

 

 The first reported synthesis of myo- and scyllo-inosamines relied on the 

reduction of the phenylhydrazones and oximes of inosose with Raney nickel.
68
  The 

formation of phenylhydrazones and oximes begin with inosose, a compound easily 

obtained by microbial oxidation of myo-inositol with Gluconobacter oxydans.
69
  

However, the reductions of the phenylhydrazones and oximes showed very little 

stereoselectivity resulting in a mixture of both scyllo- and myo-inosamine.  This 

required several rounds of crystallization to obtain the pure inosamine diastereomers.  

 The stereoselectivity of the reduction was later improved upon by Anderson and 

Lardy.
70
 This was accomplished by switching the hydrogenation catalyst to platinum 

oxide and the solvent to acetic acid, resulting in almost exclusively the myo-inosamine 

isomer.  SI, on the other hand, was obtained in about 70% stereoselectivity using 

sodium amalgam as the reducing agent.  Despite the better selectivity, acetylation and 

several rounds of crystallization were still required to obtain pure compounds.   

 In the 1960’s various inosamines were synthesized via the mesylation and SN2 

azidolysis of inositol derivatives.   Despite an increased control of stereoselectivity, 

mixtures were still unavoidable due to acyl protecting groups participating in the 

azidolysis.
71
  On the other hand, the participation of the acyl groups allowed the 

synthesis of several chiro-, allo- and neo- methyl inosamines with the retention of the 
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configuration of the reactant in the product.
72
  In the synthesis of 2-deoxy derivatives of 

inosamine, protecting group participation was avoided by use of benzyl ethers.
73,74

 

 More recently, SI derivatives were synthesized via epoxide ring-opening 

reactions of suitably protected conduritol-B epoxides
67,75

 and 1,2-diacetylconduritol E.
76
 

The method of the conduritol-B epoxides worked well for synthesis of SI, however, the 

conduritol-B epoxide is commercially unavailable and requires synthesis
77
 increasing 

the overall route to 11 steps.   More recently, 3-MSI was synthesized by the reductive 

amination of 4-O-benzyl-6-O-methyl-2-oxo-1,3,5-O-methylidyne-myo-inositol.
78
  This 

represents the only synthesis of inosamine via the orthoformate 1. 

 

1.5 Isothermal titration calorimetry (ITC) 

 

 Isothermal titration calorimetry is an increasingly important tool in biophysical 

chemistry.  Much of its popularity is due to the ability to characterize the 

thermodynamics of a binding event in a single experiment.  The simultaneous 

determination of the binding affinity (Ka), enthalpy (∆H) and stoichiometry (n) 

subsequently allows the calculation of Gibbs free energy (∆G) and entropy (∆S) of the 

association.  Furthermore, experiments done at different temperatures can determine 

heat capacity changes which also offer physical insight into the forces driving the 

association.  In addition, the technique offers rapid thermodynamic analysis of a 

biomolecular system without the need to chemically modify or immobilize the species 

studied. 



 30 

 ITC directly measures the heat released or absorbed by the stepwise titration of 

one reactant into a sample cell containing the other.  In a Calorimetry Sciences 

Corporation (CSC) calorimeter shown in Figure 14, removable sample and reference 

cells are maintained at a constant temperature in an adiabatic shield.  The environment 

of the calorimeter is cooled by a water bath such that both cells require constant thermal 

energy to maintain experimental temperature. In addition to this, the cells are also 

maintained such that the temperature difference between the two is zero.   

    

 

 

Figure 14.  The basic design of a Calorimetry Sciences Corporation 4200 Calorimeter      

 

 The sample cell is filled with the enzyme solution and stirred at about 300 rpm 

to ensure quick mixing.  The reference cell is usually filled with the same buffer used 

for sample cell.  It is also important to minimize dilution heats by dissolving ligands 

Reference cell Sample cell 
containing 
macromolecule 

Stirrer 
Syringe to 
inject 
ligand 

To circulating 
temperature bath 

Cells maintained at  ∆T = 0 

Adiabatic shield 
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used for the titrations into buffer left over from dialysis of the protein.  Upon injection 

of the ligand into the sample cell containing the macromolecule, thermal energy will be 

released or absorbed proportional to the amount of binding that takes place and the 

enthalpy of association.  This would cause a change in the temperature of the sample 

cell which is relayed back to the power supply.  

 If the enthalpy of association is endothermic the sample cell would then require 

more thermal energy to maintain the temperature of the reference cell.  If the 

association was exothermic, the reverse would occur.  Thus, the raw data obtained is 

power (µJ/s) versus time for each injection.  Integration of the power versus time data 

results in the heat released or absorbed during each injection.  Over the course of the 

experiment the system becomes saturated with ligand leading to relatively small, 

uniform heats. These small uniform peaks correspond to the heats of dilution upon 

injection of the ligand which are subtracted from the experimental heats of each 

injection prior to data analysis. The heat changes are then normalized with respect to the 

moles of ligand injected and plotted against injection number or molar ratio of 

components.  This results in the typical binding isotherm that accompanies ITC data in 

the literature from which curve fitting is performed.     

 Estimations of ∆H, Ka, and n are made by fitting the heat released or absorbed to 

changes in the total concentration of ligand. The calorimeter includes Bindworks 

software
79
 which,by using nonlinear least-squares analysis, allows the fitting of the data 

to any of the three different binding models built into the software.  This provides the 

estimations for association constant and the binding enthalpy making calorimetry 

unique.   
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            ITC is an extremely valuable technique for those interested in 

thermodynamically characterizing molecular associations.  ITC has contributed to a 

greater understanding of binding affinity especially in protein-protein
80
 and protein-

small molecule interactions.
81
  Due to its versatility in studying various systems of low 

and high affinity, ITC is expected to play a vital role in rational drug design and 

protein-protein interactions.
82
  Furthermore, since ITC is uniquely able to quantify 

enthalpic and entropic contributions, it is a useful bridge between computational and 

experimental techniques.
83
    

 

1.6 Objectives of research 

 

 MosA is a protein originally suggested to be an O-methyltransferase in the 

conversion of the rhizopines SI to 3-MSI.
14
   To account for the sequence similarities 

between MosA and DHDPS from E. coli and the evidence that suggests the protein is an 

O-methyltransferase, Babbitt and Gerlt discussed the potential of a methyltransferase 

reaction using 2-OB as a methyl donor following a mechanism analogous to DHDPS.
17
  

However, it was later shown in our lab that MosA was an efficient DHDPS with kinetic 

constants similar to DHDPS from E. coli.
18
  Consequently, this research will primarily 

focus on determining if MosA has any methyltransferase activity in producing 3-MSI 

from SI using 2-OB or SAM as a methyl donor.      

 To begin with, the rhizopines were not commercially available and consequently 

required the development of convenient synthetic routes.  Once the rhizopines were 

obtained, research focused on finding evidence that MosA may be an O-



 33 

methyltransferase.  This was achieved by relying on methods typical of enzymology 

such as kinetic analysis, HPLC-MS, HPLC enzyme assays and ITC. 

  In addition to the rhizopine investigation, ITC will be used to study the binding 

thermodynamics of pyruvate, 2-OB and (S)-lysine to MosA.  These experiments will 

lead to a greater understanding of the binding affinity that MosA has for its substrates 

and inhibitors.  Furthermore, extraction of the thermodynamic parameters will provide 

insight into how (S)-lysine exerts its influence on MosA’s DHDPS activity and the 

nature of its inhibition. 
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2 Experimental 

2.1 Chemical synthesis 

General 

  

 Experiments that required anhydrous conditions were performed under an 

inert atmosphere of either dry argon or nitrogen gas.  Glassware was dried overnight 

in an oven set at 120 °C and assembled under a stream of inert gas.  All reagents 

were obtained from commercial suppliers and unless indicated otherwise used 

without further purification.  Dichloromethane was freshly distilled from calcium 

hydride.  Thin layer chromatography (TLC) was performed on precoated silica gel 

plates (Merck Kieselgel 60F254, 0.25 mm thickness) and visualized with 

phosphomolybdic acid reagent, iodine vapours, ninhydrin (1.5 % w/v solution in 

tert-butanol) or ultraviolet light at 254 nm.  Flash chromatography was performed 

using Merck silica gel 60 (230 – 400 mesh).  NMR spectra were obtained using a 

Bruker 500 MHz spectrometer dissolving samples in the appropriate deuterated 

solvents (CDCl3, CD3OD and D2O).  Chemical shift was reported in ppm downfield 

from tetramethylsilane.  Infrared spectra was obtained on a Bioread FTS-40 Fourier 

transform interferometer using a diffuse reflectance cell (DRIFT).  Only those peaks 



    35 

diagnostically important were reported in ν (cm
-1
).  Mass spectrometery was 

performed on a API Qstar XL pulsar hybrid lc/ms/ms.  Melting points were 

measured on a Gallencamp melting point apparatus and were not corrected.  NMR, 

mass spectrometry and elemental analysis facilities are a part of the Saskatchewan 

Structural Sciences Centre. 

 

 

2.1.1 Scyllo-inosamine via reductive amination 

 

OH

O
O

O

OH

OH

 

 

1,3,5-O-methylidyne-myo-inositol (1).
55
 

This compound was made as described in the literature with an 85% yield. 

1
H NMR (300 MHz, D2O) δH 4.15 (3H, m), 4.24 (1H, m), 4.49 (2H,m), 5.51(1H, s) 

13
C NMR (75 MHz, D2O) δ 62.2, 69.4, 71.9, 76.4, 104.7 

 

 

OH

O
O

O

OH

tBDMS

 

 

2-O-t-butyldimethylsilyl-1,3,5-O-methylidyne-myo-inositol (2).
61
 

This compound was made as described in the literature with a 65% yield.  



    36 

mp 176 – 178 °C (179 – 181 ºC)84 

 1
H NMR (300 MHz, CDCl3) δH 0.16 (6H, s), 0.95 (9H, s), 3.27 (2H, d, J 7.7 Hz), 

4.15-4.16 (2H, m), 4.25-4.28 (2H, m), 4.57-4.60 (2H, m), 5.51 (1H, d, J 1.2 Hz)  

13
C NMR δ (75 MHz, CDCl3)  -4.4, 18.7, 60.8, 68.8, 69.0, 74.9, 102.6  

 

OBn

O
O

O

OBn

tBDMS

 

 

4,6-Di-O-benzyl-2-O-t-butyldimethylsilyl-1,3,5-O-methylidyne-myo-inositol 

(3).
84
 

This compound was made as described in the literature with a 75% yield. 

1
H NMR (300 MHz, CDCl3) δH 0.14 (6H, s), 0.79 (9H, s), 4.17-4.18 (2H, m), 4.34-

4.36 (2H, m), 4.42-4.43 (2H, m), 4.63 (4H, JAB 11 Hz), 5.54 (1H, s), 7.29 (10 H, s)  

 

 

 

OBn

O
O

O

OBn

OH

  

 

4,6-Di-O-benzyl-1,3,5-O-methylidyne-myo-inositol (4).
84

 

This compound was made as described in the literature with a 72% yield. 
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1
H NMR (300 MHz, CDCl3) δH 3.29 (1H, broad), 4.22 (3H, m), 4.38 (2H, m), 4.49 

(1H, m), 4.62 (4H, JAB 11 Hz), 5.51 (1H, d, 1.16 Hz) 7.29 (10H, m)  

13
C NMR (75 MHz, CDCl3) δ  61.6, 68.0, 71.9, 73.2, 74.0, 103.6, 127.9, 128.14, 

128.7, 137.7   

 

 

OBn

O
O

O

OBn
O
 

 

2-Oxo-4,6-di-O-benzyl-1,3,5-O-methylidyne-myo-inositol (5).
84
 

This compound was made as described in the literature with a 85% yield 

1
H NMR (300 MHz, CDCl3) δH 4.42-4.51 (3H, m), 4.45-4.61 (7H, m), 5.66 (1H, s), 

7.26-7.30 (5H, m)
   

13
C NMR (75 MHz, CDCl3) δ 69.1, 71.8, 76.9, 78.1, 102.9, 128.0, 128.3, 128.7, 

137.1, 199.4   

 

OBn

O
O

O

OBn NH2 

 

2-Deoxy-2-amino-4,6-di-O-benzyl-1,3,5-O-methylidyne-scyllo-inositol (6).
85

 

Compound 5 (0.43 g, 1.2 mmol) was dissolved in a solution of NH3 in MeOH (2 M, 

11 mL, 22 mmol) and acetic acid (1.5 mL) was added and the reaction stirred at 0 
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°C for ten minutes.  Sodium cyanoborohydride (0.19 g, 3.0 mmol) was added and 

the mixture was stirred for 3 days at room temperature.  The reaction was quenched 

with aqueous HCl (20 mL, 10% w/v) and extracted with diethyl ether (20 mL).  The 

aqueous phase was brought to a pH of 10 by the addition of KOH pellets and 

subsequently extracted with diethyl ether (3 × 20 mL).  The organic layers were 

collected, dried (MgSO4) and evaporated to yield amine 6 (0.18 g, 0.49 mmol, 43%) 

as a white solid that was used without further purification. 

1
H NMR (500 MHz, CDCl3) δ 2.34 (broad s, 2H, D2O exchangeable), 3.36 (1H, m), 

4.40 (4H, m), 4.61 (1H, m), 4.68 (4H, s), 5.56 (1H, s), 7.28 – 7.32 (10H, m) 

13
C NMR (500 MHz) δ 50.88, 68.65, 71.81, 72.23, 73.99, 103.21, 128.13, 128.30, 

128.95, 137.80 

 

 

 

 

OH

O
O

O

OH NH2 

 

2-Deoxy-2-amino-1,3,5-O-methylidyne-scyllo-inositol. 

 

In a 100 mL round bottom flask the inosamine 6 (0.11 g, 0.3 mmol) was dissolved 

in dichloromethane (1.5 mL) and diluted with methanol (9 mL) followed by the 

addition of palladium on activated charcoal (10 % w/w, 0.20 g).  The flask was 



    39 

fitted with a rubber septum and its contents were subjected to three rounds of 

evacuation with a water aspirator followed by flushing with hydrogen gas from a 

balloon fitted onto a stopcock. The mixture was stirred for 3 days, recharging the 

balloon with fresh hydrogen each day.  The suspension was filtered through a bed of 

celite and the solvents removed to yield a white solid (0.055 g, 96% crude yield) 

that was used directly in the next step. 

1
H NMR (500 MHz, D2O) δ 4.17 (1H, m), 4.44 (1H, m), 4.47 (2H, m), 4.56 (2H, 

m), 5.64 (1H, s) 

 

OHHO

OH

OHHO

NH3Cl

 

 

Scyllo-inosamine (SI).   

 

In a 50 mL round bottom flask the crude inosamine orthoformate (0.044 g, 0.23 

mmol) was dissolved in water (8 mL).  Dowex resin 50WX8-100 (H
+
, 0.75 g) was 

added to the flask and the reaction stirred for 24 hours.  The mixture was then 

poured into a 20 mL burette plugged with glass wool forming a column of Dowex. 

After the Dowex settled, the reaction water was allowed to elute and the column 

washed with another portion of water (10 mL).  SI was eluted with HCl (20 mL, 0.5 

M) and isolated as the HCl salt (0.04 g, 0.02 mmol, 87 % yield) upon removal of the 

solvent in vacuo. 



    40 

 

1
H NMR (500 MHz, D2O) δ 3.02 (1H, t, J = 10.6 Hz), 3.27 (1H, m), 3.34 (2H, t, J = 

9.2), 3.46 (2H, t, J = 9.9 Hz)  

13
C (500 MHz, D2O) δ 56.25, 70.33, 73.57, 74.69 

HRMS m/z cal’d for C7H15NO5 (M + H
+
)
 
 180.0872, found 180.0873 (EI) 

 

2.1.2  Scyllo-inosamine via isopropylidene of myo-inositol 

O
OHO

OH

OHHO

 

 

(±) 1,2-isopropylidene-myo-inositol (7)
86

  

This compound was made as described in the literature with a 65% yield. 

mp 174-176 
o
C (lit. mp 182-184 

o
C)

  

1
H NMR (500 MHz, D2O) δ 1.25 (3H, s), 1.39 (3H, s), 3.11 (1H, t, J = 10 Hz), 3.40-

3.51 (2H, m), 3.70 (1H, dd, J = 4.2Hz, 13.9Hz), 3.91 (1H, m), 4.34 (1H, t, J = 4.4 

Hz)   

13
C NMR (500 MHz) δ 25.52, 27.69, 69.79, 72.58, 72.96, 75.02, 76.45, 78.92, 

110.79  
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O
OBnO

OBn

OBnBnO

 

 

(±±±±) 3,4,5,6-tetra-O-benzyl-1,2-isopropylidene-myo-inositol (8).
86

 
 

This compound was made as described in the literature with an 82% yield. 

1
H NMR (500 MHz, CDCl3) δ 1.46 (3H, s), 1.57 (3H, s), 3.54 (1H, t, J = 8.9 Hz), 

3.82 (1H, m), 3.92 (1H, m), 4.08 (1H, t, J = 8.5 Hz), 4.22 (1H, t, J = 6.2 Hz), 4.39 

(1H, m), 4.86-5.03 (8H, m), 7.36-7.49 (20H, m)   

13
C NMR (500 MHz) δ 26.27, 28.21, 73.77, 74.32, 75.04, 75.67, 75.72, 79.39, 

79.60, 81.40, 82.70, 82.95, 110.28, 128.01, 128.07, 128.12, 128.30, 128.44, 128.48, 

128.51, 128.74, 128.81, 128.86, 128.89, 138.74, 139.09, 139.13 

 

 

OH
OHBnO

OBn

OBnBnO

 

 

 

(±±±±) 3,4,5,6-tetrabenzyl-myo-inositol (9).
87

   

This compound was made as described in the literature with 81% yield 

mp 125-126 
o
C (lit. 126–128 

o
C) 
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1
H NMR (500 MHz, CDCl3) δ 2.51 (1H, broad s, D2O exch), 2.55 (1H, broad s, 

D2O exch), 3.51 (3H, m), 3.87 (1H, t, J = 9.5), 4.01 (1H, t, J = 9.5 Hz), 4.23 (1H, t, 

2.6 Hz), 4.72 - 5.02 (8H, m), 7.32-7.51 (20H, m);   

13
C NMR (500 MHz) δ 69.60, 72.17, 73.17, 76.05, 76.15, 76.38, 80.43, 81.74, 

82.08, 83.65, 128.06, 128.25, 128.32, 128.39, 128.81, 128.84, 128.96, 129.01, 

138.21, 138.92, 138.05 

 

OH
OBnBnO

OBn

OBnBnO

 

 

1,3,4,5,6-pentabenzyl-myo-inositol (10).  

 

A solution of tetrabenzyl 9 (6.00 g, 10.6 mmol), tetrabutyl ammonium bromide 

(3.80 g, 11.8 mmol), dibutyltin oxide (2.90 g, 11.6 mmol) and benzyl bromide (2 

mL,  16.8 mmol) in acetonitrile (230 mL) was refluxed for 24 hours.  The solvents 

were removed in vacuo to yield a brownish red residue that was taken up in diethyl 

ether (150 mL) and washed with water (50 mL).  The diethyl ether was evaporated 

to yield crude pentabenzyl 10 that was recrystallized with hot methanol to yield 5.01 

g of pure product as long needles.  Another 1.01 g (92 % total yield) was obtained 

upon slow evaporation of the methanol in the fume hood.   

mp 124-125 
o
C (lit. mp 124-127

 o
C)

88
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1
H NMR (500 MHz, CDCl3) δ 3.41 (2H, dd, J = 9.7 Hz, 2.7 Hz), 3.47 (1H, t, J = 

9.4),4.01 (2H, J = 9.5), 4.28 (1H, t, J = 2.6 Hz), 4.75 (4H, s), 4.85-4.93 (6H, m), 

7.28-7.37 (25H, m) 

 

 

OBnBnO

OBn

OBnBnO

N3

 

 

2-azido-1,3,4,5,6-tetrabenzyl-scyllo-inositol (11).
67

   

 

The pentabenzyl inositol 10 (2.6 g, 4.0 mmol) was dissolved in anhydrous pyridine 

(25 mL).  The solution was cooled to 0 
o
C when mesylchloride (1.5 mL, 20 mmol) 

was added dropwise while stirring.  The reaction was allowed to gradually reach 

room temperature and was stirred for 16 hours.  The solvents were removed in 

vacuo to yield a yellow residue that was taken up in CH2Cl2 (50 mL), washed with 

1M HCl (3 × 50 mL), 1M NaHCO3 (2 × 30 mL), brine (2 × 30 mL) and dried 

(MgSO4).  Without further purification the crude mesyl inositol was dissolved in 

dimethylformamide (22 mL) under argon.  Sodium azide (1.25 g, 19.3 mmol) was 

added in one portion and the reaction kept at a temperature of 80 °C with continuous 

stirring for 20 hours.  The mixture was allowed to cool and was then extracted 

between CH2Cl2 (100 mL) and water (100 mL).  The organic layer was washed with 

NaHCO3 (1M, 1 × 50 mL), water (1 × 50 mL), brine (1 × 50 mL), dried (MgSO4) 
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and evaporated to yield a crude solid.   Purification was achieved using flash 

chromatography (silica gel, 1:3 v/v ethyl acetate/hexane) yielding azide 11 (1.6 g, 

2.5 mmol, 63 % yield). 

mp 95-96 
°
C 

 IR νN3 2109 cm
-1
 

1
H NMR (500 MHz, CDCl3) δ 3.44 (2H, t, 9.3 Hz), 3.56-3.69 (4H, m)), 4.94-4.99 

(10H, m), 7.33-7.46 (25H, m) 

13
C NMR (500 MHz) δ 67.45, 76.41, 76.44, 76.48, 81.56, 83.03, 83.74, 128.20, 

128.25, 128.32, 128.42, 128.70, 128.92, 128.96, 138.27, 138.72, 138.74 

 

OHHO

OH

OHHO

NH3Cl

 

 

Scyllo-inosamine (SI).   

 

The azide 11 (0.07 g, 0.91 mmol) was dissolved in dichloromethane (1 mL) and 

diluted with methanol (10 mL).  Di-tert-butyl dicarbonate (0.24 g, 1.1 mmol) and 

palladium on activated charcoal (10 % w/w, 0.14 g) were added.  The flask was 

fitted with a rubber septum and it contents were subjected to three rounds of 

evacuation with a water aspirator followed by flushing with hydrogen gas from a 

balloon fitted onto a stopcock. The mixture was allowed to react for 2 days 

recharging the balloon with fresh hydrogen each day.  After this time, the mixture 
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was filtered through a pad of celite, the solvents removed in vacuo to yield a white 

solid.  The precipitate was dissolved in water (2 mL) and stirred with Dowex resin 

(50WX8-100, 0.3 g) for 16 hours. The mixture was then poured into a 20 mL 

burette plugged with glass wool forming a column of Dowex. After the Dowex 

settled into the column the reaction water was allowed to elute and the column 

washed with another portion of water (10 mL). The amine was eluted with HCl (15 

mL, 0.1 M) and isolated as the HCL salt (0.17 g, 0.74 mmol, 81 % yield) upon 

removal of the solvent. Spectroscopic properties identical to SI as described above. 

 

2.1.3  Scyllo-inosamine via tin chloride deprotection 

 

OBn

O
O

O

OBn

OBn

 

 

2,4,6-Tri-O-benzyl-1,3,5-O-methylidyne-myo-inositol (12).
57

  

To a solution of 1 (1.0 g, 5.2 mmol) in dry DMF (40 mL) at room temperature and 

under argon, sodium hydride (1.25 g of 60 % dispersion in oil, 31.2 mmol) 

(Caution: evolution of hydrogen gas!) was added.  The reaction mixture was 

stirred for ten minutes and then benzyl bromide (3.7 mL, 31 mmol) was added 

dropwise followed by continuous stirring for an additional 14 hours.  The reaction 

was quenched with water (1 mL) and then partitioned between dichloromethane 

(200 mL) and water (100 mL).  The organic phase was dried (MgSO4) and 
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evaporated in vacuo leaving an oil that was crystallized (EtOAc:hexane) to give the 

tribenzyl compound (2.2 g, 4.8 mmol, 92 % yield). 

1
H NMR (500 MHz, CDCl3) δH  4.04 (1H, m), 4.30 (2H, m), 4.35 (2H, m), 4.43 

(1H, m), 4.55 (6H, m), 5.52 (1H, d, 0.9 Hz), 7.31-7.34 (15 H, m) 

 

 

OBn
OBnBnO

OBn

OBnBnO

 

 

1,2,3,4,5,6-Hexa-O-benzyl-myo-inositol (13).
89
  

Dichloromethane (1 mL) was added to the benzyl derivative 12 (0.76 g, 1.7 mmol) 

at room temperature.  The solution was diluted with methanol (15 mL) and Dowex 

50W-X8-100 (H
+
 form, 3.5 g) was added.  The suspension was stirred for 14 hours 

after which TLC confirmed completion of the reaction.  The resin was removed by 

filtering the suspension and the resulting filtrate evaporated to yield a white solid.  

The solid was suspended in dichloromethane and evaporated three times to ensure 

sufficient removal of the methanol.  Without further purification, the crude product 

was dissolved in dry DMF (20 mL) and sodium hydride (0.28 g of 60 % dispersion 

in oil, 7 mmol) (Caution: evolution of hydrogen gas!) was added.  The reaction 

was stirred for five minutes after which benzyl bromide (0.9 mL, 7 mmol) was 

added dropwise followed by continuous stirring for fourteen hours.  The reaction 

was quenched with methanol (1 mL) and the solvents removed in vacuo to yield an 

oil that was dissolved in dichloromethane (50 mL) and extracted with water (50 
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mL).  The organic layer was then dried (MgSO4) and evaporated to yield the crude 

13 that was easily purified by crystallization from boiling methanol (1.12 g, 0.25 

mmol, 94 % yield) 

1
H NMR (500 MHz, CDCl3) δ 3.38 (2H, dd, J = 2.16, 9.83), 3.50 (1H, t, 9.25 Hz), 

4.06 (1H, m), 4.11 (1H, t, J = 9.54), 4.59 – 4.69 (5 H, m), 4.84 – 4.95 (7H, m), 7.28 

– 7.31 (30 H, m). 

 

 

OH
OBnBnO

OBn

OBnBnO

 

 

1,3,4,5,6-Penta-O-benzyl-myo-inositol (10).
89
   

To a solution of 13 (0.10 g, 0.13 mmol) in dry dichloromethane under argon gas, tin 

(IV) chloride (0.13 mL of a 1 M solution in dichloromethane, 0.13 mmol) was 

added and the reaction stirred for one hour at room temperature.  The reaction was 

diluted with dichloromethane (2 mL) then quenched with cold water (1 mL).  A 

white precipitate formed which dissolved upon successive washes with brine (3 × 1 

mL).  The organic layer was dried (MgSO4) and evaporated to yield a crude oil that 

was purified by flash chromatography (silica gel, 1:7 v/v EtOAc/toluene) to give 

pure 10 (0.048 g, 0.076 mmol, 55 % yield) as a white solid.  
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 2.1.4 Racemic 3-MSI via reductive amination 

 

 

OCH3

O
O

O

OBn

OH

 

 

(±) 4-O-Benzyl-6-O-methyl-1,3,5-O-methylidyne-myo-inositol (14).
78

 To a 

stirring solution of 1 (1.0 g, 5.2 mmol) in DMF (50 mL) under Argon gas,  NaH 

(0.23 g of 60 % dispersion in oil, 5.7 mmol) (Caution: evolution of hydrogen gas!) 

was added in one portion.  The mixture was allowed to stir for 20 minutes at room 

temperature.  Iodomethane (0.35 mL, 5.8 mmol) was added dropwise and the 

reaction allowed to react for 16 hours.  Again, NaH (0.23 g of 60 % dispersion in 

oil, 5.7 mmol) was added in one portion and the mixture stirred for 30 minutes at 

room temperature.  Benzyl bromide (0.70 mL, 5.8 mmol) was added dropwise and 

the reaction stirred for another 16 hours.  Water (1 mL) quenched the reaction 

followed by removal of solvents in vacuo to yield a brown oil.  The oil was taken up 

in CH2Cl2 (50 mL), washed with water (3 × 20 mL) and dried (MgSO4).  The 

organic layer was evaporated to leave a brown oil that was purified by flash 

chromatography (silica gel, 1:3 v/v EtOAc/toluene) yielding 14 (0.76 g, 2.4 mmol, 

47% yield) as a colourless oil.  

 
1
H NMR (300 MHz, CDCl3) δH  3.47 (3H, s), 4.12 (1H, br, s), 4.18 (1H, m), 4.27 

(1H, m), 4.34 (1H, m), 4.46 (1H, m), 4.64 (2H, m),  5.49 (1H, s), 7.32-7.56 (5H, m)  

13
C (500 MHz, CDCl3) 53.80, 57.94, 61.75, 67.89, 72.03, 73.01, 73.91, 76.23, 

103.76, 127.90, 128.35, 128.91, 137.99 
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OCH3

O
O

O

OBn
O
 

 

(±) 4-O-Benzyl-6-O-methyl-2-oxo-1,3,5-O-methylidyne-myo-inositol (15).
78

   

To a stirring solution of oxalyl chloride (3.9 mL, 7.8 mmol) in dry CH2Cl2 (13 mL) 

maintained at -75 °C with a dry ice/acetone slurry, dimethylsulfoxide (1.2 mL) was 

added dropwise (Caution: rapid evolution of gas!).  After stirring for 10 minutes a 

solution of 14 (2.10 g, 7.1 mmol) in CH2Cl2 (8 mL) was added dropwise via cannula 

over the course of 5 minutes.  The reaction was kept at -75 °C and allowed to stir for 

1 hour after which triethylamine (5mL) was added dropwise.  The solution 

immediately formed a precipitate and was allowed to gradually reach room 

temperature and subsequently diluted with diethyl ether (50 mL).  The mixture was 

filtered through a small silica gel column (approximately an inch of silica in a 

column of 1 inch diameter).  An additional portion of diethyl ether (50 mL) was 

passed through the column and combined with previous filtrate.  The ether was 

evaporated to yield 15 (1.97 g, 94% crude yield) which was used directly without 

further purification. 

 

 

OCH3

O
O

O

OBn NH2 

 

(±) 4-O-Benzyl-6-O-methyl-1,3,5-O-methylidyne-scyllo-inosamine (16).
85

   

A solution of 15 (0.11 g, 0.38 mmol) in methanol (2 mL) was stirred at 0 °C.  A 

portion of NH3 in MeOH (2 M, 0.5 mL, 1.0 mmol) was added followed by acetic 



    50 

acid (19 µL, 0.33 mmol) and the reaction stirred at 0 °C for ten minutes.  After 

addition of sodium cyanoborohydride (0.070 g, 1.1 mmol) the mixture was stirred 

for 3 days at room temperature.  The reaction was quenched with aqueous HCl (1 

mL, 10% w/v) and extracted with diethyl ether (10 mL).  The aqueous phase was 

brought to pH 10 by the addition of KOH pellets and subsequently extracted with 

diethyl ether (3 × 10 mL).  The organic layers were collected, dried (MgSO4) and 

evaporated to yield the amine (0.045 g, 0.15 mmol, 40%) as a colourless oil that was 

used without further purification. 

NMR (500 MHz, CDCl3) δH 2.10 (2H, broad s D2O exchangeable), 3.47 (3H, s), 

3.65 (1H, m), 4.16 – 4.18 (1H, m), 4.31 (2H, m), 4.34 (1H, m), 4.51 - 4.55 (1H, m) 

4.64 (1H, d, J = 11.6), 4.69 (1H, d, J = 11. 3), 5.54 (1H, s), 7.29 – 7.37 (5H, m)  

13
C NMR (75 MHz, CDCl3) δ 50.5, 68.4, 71.3, 72.1, 73.7, 103.0, 128.0, 128.1, 

128.7, 137.6  

HRMS m/z cal’d for C15H20NO5 (M + H
+
)
 
 294.1341, found 294.1337 (EI) 

 

 

 

 

 

 

OCH3

O
O

O

OH
NH2 

 

(±) 6-O-Methyl-1,3,5-O-methylidyne-scyllo-inosamine.  In a 100 mL round 

bottom flask, the amine 16 (0.30 g, 1.0 mmol) was dissolved in dichloromethane (2 
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mL) and diluted with methanol (20 mL).  Palladium on activated charcoal (10 % 

w/w, 0.60 g) was added.  The flask was fitted with a rubber septum and its contents 

were subjected to three rounds of evacuation with a water aspirator followed by 

flushing with hydrogen gas from a balloon fitted onto a stopcock. The mixture was 

hydrogenated for 3 days recharging the balloon with fresh hydrogen each day.  The 

suspension was filtered through a bed of celite and the solvents removed to yield a 

white solid (92 % crude yield) that was used directly in the next step. 

NMR (500 MHz, D2O) δH 4.14 (1H, m), 4.22 (1H, m ) 4.44 (1H, m), 4.53 (1H, m), 

4.58 – 4.95 (2H, m), 4.69 (3H, s), 5.63 (1H, s) 

 

 

 

OHHO

OH

OHH3CO

NH3Cl

 

 

( + ) 6-O-Methyl-scyllo-inosamine (3-MSI).   

To a solution of crude amine from the above procedure (0.17 g, 0.83 mmol) 

dissolved in water (20 mL) Dowex resin (50WX8-100, 3.2 g) was added.  The 

suspension was stirred for 24 hours.  The mixture was then poured into a 20 mL 

burette plugged with glass wool forming a column of Dowex. After the Dowex 

settled the reaction water was allowed to elute and the column washed with another 

portion of water (10 mL). 3-MSI was eluted with HCl (20 mL, 0.5 M) and isolated 
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as the HCL salt (0.20 g, 0.82 mmol, 82 % yield) upon removal of the solvent in 

vacuo.   

1
H NMR (500 MHz, D2O) δ 3.01 (1H, t, J = 10.6 Hz), 3.11 (1H, t, J = 8.8 Hz), 3.32 

(2H, m), 3.38 (1H, m), 3.52 (4H, m) 

13
C (500 MHz, D2O) δ 56.16, 60.80, 69.82, 70.17, 72.85, 74.59, 84.52 

HRMS m/z cal’d for C7H15NO5 (M + H
+
)
 
 194.1023, found 194.1028 (EI) 

 

2.1.5 Racemic 3-MSI via tin chloride deprotection 

 

 

OCH3

O
O

O

OBn

OBn

 

 

(±)2,6-Di-O-benzyl-4-O-methyl-1,3,5-O-methylidyne-myo-inositol (17).  To a 

solution of 1 (2.0 g, 11 mmol) in dry DMF (60 mL) at room temperature and under 

argon was added sodium hydride (0.42 g of a 60 % dispersion in oil, 10.5 mmol) 

(Caution: evolution of hydrogen gas!).  The reaction mixture was stirred for ten 

minutes and then iodomethane (0.65 mL, 11 mmol) was added followed by 

continuous stirring for an additional 14 hours.  A yellowish clear solution resulted 

into which another portion of sodium hydride was added (0.84 g of a 60 % 

dispersion in oil, 21 mmol) (Caution: evolution of hydrogen gas!) and allowed to 

react for 10 minutes.  Benzyl bromide (2.5 mL, 21 mmol) was added dropwise and 
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the reaction stirred for another 14 hours.  Water (1 mL) was used to quench the 

reaction and the solution was then evaporated to dryness in vacuo at 65 °C leaving a 

yellow precipitate which was dissolved in dichloromethane (20 mL), washed with 

water (20 mL), brine (20 mL) and dried (MgSO4).  The organic phase was 

evaporated to give a yellow oil that was purified by flash chromatography (silica 

gel, 1:6 v/v EtOAc/toluene) yielding 17 (2.9 g, 8.3 mmol, 75% yield) as a colourless 

oil.  

NMR (500 MHz, CDCl3) δH 3.41 (3H, s), 3.99 (1H, m), 4.18 (1H, m), 4.25 - 4.26 

(1H, m), 4.33 – 4.34 (1H, m), 4.46 (1H, m), 4.52 (1H, d, 12.0 Hz), 4.64 (1H, d, J = 

12.0 Hz), 5.57 (1H, d, 0.9 Hz), 7.30 – 7.44 (10 H, m) 

13
C NMR (500 MHz,CDCl3) δC 57.78, 67.94, 68.21, 70.74, 70.96, 72.05, 

72.09,74.32, 76.43, 103.65, 127.92, 128.25, 128.35, 128.40, 128.72, 128.91, 138.14, 

138.31  

HRMS m/z cal’d for C42H44O6 (M + H
+
)
 
 385.1646, found 385.1642 (EI) 

Analysis Calculated for C22H24O6 : C, 68.74; H, 6.29, found  C 67.63, H 6.09 

 

OBn
OBnBnO

OBn

OCH3
BnO

 

 

(±)1,2,3,5,6-Penta-O-benzyl-4-O-methyl-myo-inositol (18).   

Dichloromethane (25 µL) was used to dissolve 17 (0.10 g, 0.27 mmol) at room 

temperature.  The solution was diluted with methanol (3 mL) and Dowex 50W-X8-
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100 (H
+
 form, 0.5 g) was added.  The suspension was stirred for 14 hours after 

which TLC confirmed completion of the reaction.  The Dowex was removed by 

filtering the suspension through a disposable glass pipette plugged with glass wool 

and the resulting solution evaporated to yield a colourless oil.  The oil was dissolved 

in dichloromethane and evaporated three times to ensure removal of the methanol.  

Without further purification, the crude oil was dissolved in dry DMF (1 mL) and 

sodium hydride (49 mg of a 60 % dispersion in oil, 0.11 mmol) (Caution: evolution 

of hydrogen gas!) was added.  The reaction was stirred for five minutes after which 

benzyl bromide (0.2 mL, 2 mmol) was added dropwise followed by continuous 

stirring for fourteen hours.  The DMF was removed in vacuo to yield a orange oil 

that was purified by flash chromatography (silica gel, 100 % toluene to 1:6 v/v 

EtOAc/toluene)  to yield 18 as a white solid (0.165 g, 0.25 mmol, 95 % yield) 

mp 72-74 ºC 

NMR (500 MHz, CDCl3) δH 3.33 (1H, dd, J = 9.85 Hz, 2.11 Hz), 3.40 (1H, dd, J = 

9.83 Hz, 2.08 Hz), 3.45 (1H, t, J = 9.19 Hz), 3.74 (3H, s), 3.86 (1H, 9.49 Hz), 4.07 

(1H, m), 4.11 (1H, t, J = 9.51 Hz), 4.63 – 4.73 (5H, m), 4.88 – 4.98 (5H, m), 7.33 – 

7.46 (25H, m)  

13
C NMR (500 MHz,CDCl3) δC 61.80, 72.56, 73.16, 73.21, 74.48, 74.88, 76.28, 

76.31, 81.29, 81.35, 84.11, 84.34, 127.75, 127.89, 127.94, 127.96, 128.00, 128.03, 

128.23, 128.38, 128.51, 128.57, 128.75, 128.78, 128.82, 128.86, 138.86, 139.03, 

139.37, 139.42 

HRMS m/z cal’d for C42H44O6 (M + Na
+
)
 
 667.3030, found 667.3031 (EI) 

Analysis Calculated for C43H44O6 : C, 78.23; H, 6.88  Found  C 78.05; H 6.87 
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OH
OBnBnO

OBn

OCH3
BnO

 

 

(±)1,3,5,6-Tetra-O-benzyl-4-O-methyl-myo-inositol (19).
89

  A solution of 18 (0.10 

g, 0.16 mmol), tin (IV) chloride (0.16 mL of a 1 M solution in dichloromethane, 

0.16 mmol) in dry dichloromethane under argon gas was stirred for one hour at 

room temperature.  The reaction was diluted with 2 mL of dichloromethane then 

quenched with cold water (1 mL).  A white precipitate formed which dissolved upon 

successive washes with brine (3 × 1 mL).  The organic layer was dried (MgSO4) and 

evaporated to yield a crude oil that was purified by flash chromatography (silica gel, 

1:7 v/v EtOAc/toluene) to give pure 19 (0.051 g, 0.09 mmol, 58 % yield) as a 

colourless oil. 

NMR (500 MHz, CDCl3) δH 2.45 (1H, s), 3.30 (1H, dd, J = 2.60 Hz, 7.03 Hz), 3.36 

-3.40 (2H, m), 3.69 – 3.74 (4H, m), 3.97 (1H, t, 9.54 Hz), 4.03 (1H, m), 4.71 – 4.80 

(4H, m), 4.87 – 4.92 (4H, m), 7.33 – 7.40 (20 H, m) 

13
C NMR (500 MHz, CDCl3) δ 61.83, 68.11, 73.11, 73.18, 76.30, 76.33, 80.07, 

80.12, 81.47, 83.47, 83.69, 127.88, 127.96, 127.99, 128.18, 128.23, 128.25, 128.27, 

128.38, 128.40, 128.75, 128.76, 128.87, 138.36, 138.52, 139.16, 139.19 

Analysis Calculated for C35H38O6 : C, 75.79; H, 6.91  Found  C 75.63; H 6.90 

HRMS m/z cal’d for C35H38O6 (M + H
+
)
 
 555.2747, found 555.2754 (EI) 
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N3

OBnBnO

OBn

OBnH3CO

 

 

(±)2-deoxy-2-azido-1,3,5,6-Tetra-O-benzyl-4-O-methyl-scyllo-inositol (20).   

A stirring solution of 19 ( 0.1 mmol)  in pyridine (1 mL) was lowered partially into 

an ice bath.  Methanesulfonyl chloride (~ 0.2 mL) was added dropwise and the 

reaction allowed to gradually reach room temperature.  After stirring for 20 hours 

the solution was poured into ice water (1 mL), partitioned and the organic layer 

further extracted with water ( 2 × 1 mL), brine ( 2 × 1 mL) and dried (Na2SO4).  

Upon evaporation a yellowish oil remained that was redissolved in CH2Cl2 and 

evaporated once more.  Without further purification, the oil was dissolved in DMF 

(1 mL) and treated with NaN3 (55 mg, 0.8 mmol) and heated at 90 °C for 16 hours.  

The DMF was removed in vacuo to yield a solid that was dissolved in ethyl acetate 

(2 mL) and washed with water (1 mL), brine (1 mL) and dried (MgSO4).  Upon 

evaporation, a yellowish oil remained that was purified by flash chromatography 

(silica gel, 1:5 v/v EtOAc/hexanes) to give pure 20 as a gummy solid (40 mg, 0.07 

mmol, 62 % yield).   

NMR (500 MHz, CDCl3) δH 3.26 – 3.27 (2H, m), 3.32 (2H, t, J = 9.3 Hz), 3.53 (1H, 

t, J = 9.0 Hz), 3.43 – 3.45 (1H, m), 3.69 (3H, s), 4.85 (8H, m), 7.32 – 7.47 (20 H, m) 
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13
C NMR (500 MHz, CDCl3) δ 61.56, 61.73, 75.95, 76.00, 76.04, 81.13, 81.01, 

82.68, 83.16, 127.78, 127.88, 129.99, 128.16, 128.31, 128.45, 128.51, 128.53, 

128.56, 137.83, 137.90, 138.36 

IR νN3 2107 cm
-1
 

Analysis Calculated for C35H37N3O5 : C, 72.52; H, 6.43 N, 7.25  Found  C 72.48; H 

6.49; N, 7.05 

 

 

2.2. Enzymology experimental 

General 

 

 Chemical reagents including buffers, salts, (S)-lysine, 2-oxobutyrate and 

pyruvate were obtained from Sigma-Aldrich Canada, Ltd (Oakville, Ontario) or 

VWR CanLab (Mississaugua, Ontario) and were categorized as Molecular Biology 

Grade or were the highest grade available.  UV-visible spectrophotometry was 

performed on a Beckman DU-640 spectrophotometer with a circulating-bath-

controlled temperature block.  Bradford assay kit was obtained from Bio-Rad and 

the Nanosep centrifugal devices from Pall Life Science. His-tag affinity columns 

were purchased from Amersham Biotech.  ITC measurements were performed on a 

CSC ITC-4200 (Calorimetry Sciences Corp., Lindon Utah).  Centrifugation was 

performed using either a Beckman Coulter microfuge 18 and 22R centrifuge or a 

Beckman J2-HS refrigerated centrifuge with a JLA-10.5 or JA-25.5 rotor.  Cultures 

were grown in a Innova 4230 incubator shaker and were lysed using a Virosonic 
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600 ultrasonic cell disrupter.  A BioCAD ® Sprint Perfusion Chromatography (Dr. 

David Sanders’ laboratory, Department of Chemistry, University Of Saskatchewan, 

Saskatoon, SK, Canada) system was routinely used for large scale protein 

purifications and the BIO-RAD mini-protean 3 used to assess protein purity.  

Aspartate-β-semialdehyde was synthesized following the method of Morris.
44
 

 

2.2.1 Expression of MosA 

 The expression vector construct containing the mosA gene has been 

described earlier.
13
  A sample of the cloned BL21 cells containing the MosA gene 

was used to inoculate a 5 mL culture of LB broth containing 30 µg/mL of 

kanamycin.  The culture was grown overnight, shaken at 250 rpm at 37 
°
C.  The 

next day a 500 µL aliquot was used to inoculate 100 mL of LB broth containing 30 

µg/mL kanamycin and incubated with shaking at 37 
°
C until the OD600 was about 

0.5.  After this time, isopropyl β-D-thiogalactopyranoside (IPTG) was added until a 

final concentration of 0.1 mM and the culture incubated overnight at 15 
°
C.  The 

next day the cells were pelleted by centrifugation at 8000 rpm for 10 minutes at 5 
°
C 

in the JA-14 rotor.  The media was decanted and the cells resuspended in 4 mL of 

binding buffer (20 mM Tris/HCl, 5 mM imidazole, 500 mM NaCl, 12.5 % glycerol, 

pH 7.9) and sonicated on ice fifteen times (two second bursts followed by two 

second cooling) at a power level of 4.  The culture was left on ice for about a minute 

and the sonication process was repeated twice more.  Insoluble material was then 

removed by centrifugation at 14000 rpm for 15 minutes at 5 
o
C using a JA-14 rotor.  

The solution was then decanted ready for purification. 
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2.2.2 Purification of MosA 

 Sonicated sample as described above was loaded onto a HiTrap™ Chelating 

HP affinity column charged with 5 column volumes of charge buffer (50 mM 

NiSO4) and equilibrated with 3 column volumes of binding buffer.  The host protein 

was eluted with 5 column volumes of binding buffer (20 mM Tris/HCl, 5 mM 

imidazole, 500 mM NaCl, 12.5 % glycerol, pH 7.9) and 5 column volumes of wash 

buffer (binding buffer with 60 mM imidazole and 10 mM EDTA). The histidine-

tagged protein was eluted with elution buffer (binding buffer with 100 mM EDTA) 

collecting 1 mL fractions.  Each fraction was visualized by SDS-PAGE and those 

pure fractions containing MosA were pooled and dialyzed into 100 mM NaCl, 20 

mM Tris-HCl and 40% glycerol at pH 8 stored at –20 
°
C. 

2.2.3 Enzyme assays 

 

 Assays were performed in a 1 mL cuvette containing 100 mM imidazole 

buffer (pH 7.7), 10 mM K2HPO4, 52 nM MosA (based on monomer weight of 

33341 g/mol) while maintaining a temperature of 37 
°
C.  Apparent KM(Pyr) values 

were measured at constant concentrations of 0.45 mM ASA, and apparent KM(ASA) 

values were measured at constant concentrations of 5 mM pyruvate.  ASA 

concentrations were determined by end point assays.
13
  Reaction progress was 

monitored spectrophotometrically @ 270 nm (formation of dihydrodipicolinate with 

ε270 = 4000 M
-1
 cm 

-1
) with measurements taken at 1 minute intervals.   The 

spectrophotometer was blanked using assay solutions containing everything but 
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pyruvate and the reaction initiated with the addition of pyruvate followed by 

inversion of the cuvette 3 times. 

 

2.2.4 Velocity measurements 

 

 Assays were performed as described above.  Data were converted into a 

Microsoft Excel file using the DU600/7000 (version 1.0) file utility software 

provided with the spectrophotometer.   This provided the data to generate a plot of 

absorbance vs. time; the slope of the linear portion of the graph divided by the 

extinction coefficient for dihydrodipicolinate (ε270 = 4000 M
-1
 cm 

-1
) gave initial 

velocities.  Data were measured in duplicate and the average initial velocity values 

recorded. 

 

2.2.5 Data processing 

 The calculated reaction rates were input into the software Leonora
90
 and 

fitted to the Michaelis-Menten equation using a nonlinear least squares method.  

The program simultaneously solves for both KM and Vmax.  The initial velocity 

patterns were fitted to the following equations 

        v = VmaxA(KM + A)                          (2.1) 

    v = VmaxA/[Ka(1 + I/Kis) + A]              (2.2) 

     v = VmaxA/[Ka + A(1 + I/Kii)]              (2.3) 

v = VmaxA/[Ka(1 + I/Kis) + A(1 + I/Kii)]        (2.4) 
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In the above equations v is the intial velocity, Vmax is the maximum velocity, A is 

the varied substrate concentration, KM is the Michaelis constant of A the varied 

substrate, Kis and Kii are the inhibition constants.  Equations 2.2 – 2.4 represent 

competitive, uncompetitive and noncompetive inhibition respectively. 

 

2.2.6 Inhibition of MosA with 2-oxobutyrate 

 Assays were performed as in the kinetic assays described above with the 

exception that 2-oxobutyrate was added and the solution incubated at 37 
°
C for 2 

minutes prior to the initiation of the reaction with pyruvate.  Four different 

concentrations of 2-oxobutyrate were used (4 mM, 1.5 mM, 1.0 mM and 0.25 mM) 

while varying pyruvate concentrations (0.125 mM, 0.25 mM, 0.5 mM, 1 mM and 

1.5 mM) and keeping ASA concentrations constant (0.23 mM).  

 

2.2.7 Determining effects of rhizopines on MosA-catalyzed aldolase activity 

 Assays were as described above with the exception that scyllo-inosamine 

was added and incubated at 37 
°
C for 2 minutes prior to the initiation of the reaction 

with pyruvate.  Four different concentrations of scyllo-inosamine were used (0.5 

mM, 2 mM, 4 mM, 10 mM) while keeping constant concentrations of pyruvate (0.5 

mM) and ASA (0.23 mM). 
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2.2.8 Detection of imine intermediates 

 Three Eppendorf tubes containing 160 µL of imidazole buffer (100 mM 

imidazole, 10 mM KH2PO4, pH 7.2) and 40 µL of 2.6 mg/mL MosA (3.11 nmol) 

were prepared and kept on ice.  A solution of pyruvate (800 mM) in imidazole 

buffer and a solution of 2-oxobutyrate (800 mM) were prepared.  One sample 

labeled as the control had 2.35 µL of imidazole buffer added to it.  The other two 

samples had 2.35 µL of the pyruvate solution (1.88 µmol) or 2.35 µL of the 2-

oxobutyrate (1.88 µmol) solution added to them.  After incubation of all three for 15 

minutes at room temperature, 2.25 µL of freshly dissolved NaBH4 (500 mM) in cold 

water (1.13 µmol) was introduced and the reaction allowed to sit for 1 hour on ice.  

After this time water (100 µL) was added and the entire solution concentrated and 

desalted in a Pall centrifugal concentrator. Water (100 µL) was used to dissolve the 

protein from the membrane and 30 µL of this was injected into a Waters 2796 

Alliance Bio HPLC fitted with a C4 Symmetry 300 column (2.1 × 100 µm, 3.5 µ 

partical size) with UV detection at 280 nm.  Mobile phases were solvent A (water 

with 0.1% v/v TFA) and solvent B (acetonitrile with 0.1% v/v TFA) set to the 

following timetable :  T0min 95% A, 5% B to T15min 30% A, 70% B (gradient), 

T15.01min to T25min 95% A, 5% B (direct).  The flow rate was set at 0.5 mL/min with a 

column temperature of 40 °C.  The HPLC was fitted with a flow splitter that 

allowed injection of eluent into a LCT Micromass mass spectrometer. 
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2.2.9 Inactivation of MosA 

 Samples were treated exactly as described above except that prior to 

concentration of the protein an overnight dialysis into imidazole buffer (100 mM 

imidazole, 10 mM KH2PO4, pH 7.2) was carried out.  The protein solutions were 

then assayed as described above and the initial velocities compared to control 

enzyme.  

 

2.2.10 HPLC investigation of MosA methyltransferase activity using 2-OB as 

methyl donor 

 Enzyme reactions were prepared containing SI (5 mM), 2-oxobutyrate 

(5mM), MosA (0.5 µM) in phosphate buffer (0.1 M, pH 7.0) to a final volume of 1 

mL.  Reactions were incubated at 37 
o
C with 250 µL samples removed for analysis 

at 1, 2 and 3 hours.  Prior to derivatization, protein was removed by a Pall Life 

Science centrifugal concentrator following manufacturer’s instructions.  A 100 µL 

sample of the filtrate was mixed with 100 µL of 9-fluorenylmethyl chloroformate (5 

mM solution in acetonitrile) and allowed to react for 15 minutes at room 

temperature.  A 10 µL injection of the reaction mixture was injected into a HPLC 

fitted with a Zorbax C8 reverse phase column (250 mm × 4.6 mm I.D., 5 µm 

particle size) pre-equilibrated with 70 % deionized H2O and 30 % acetonitrile.  A 

solvent gradient to 100 % acetonitrile over 12 minutes eluted the derivatized 

rhizopines.  The mobile phase flow rate was 1.0 mL/min, with the column 

temperature set at 25 
o
C and UV detector at 254 nm.  
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2.2.11 HPLC investigation of MosA methyltransferase activity using SAM as a 

methyl donor 

 Enzymatic reactions were prepared using 2.5 mM SAM, 2.5 mM scyllo-

inosamine, 0.23 µM MosA to a final volume of 1 mL in imidazole buffer (100 mM 

imidazole, 10 mM KH2PO4, pH 7.6).  A control reaction included all above reagents 

except MosA.  Both reactions were incubated at 37 
o
C with 250 µL samples 

removed for analysis at 1, 2 and 3 hours.  Prior to analysis protein, was removed by 

a Pall Life Science centrifugal concentrator following manufacturer’s instructions.  

A 10 µL injection of the reaction mixture was injected into a HPLC fitted with a 

Zorbax C18 reverse phase column (250 mm × 4.6 mm I.D., 5 µm particle size) pre-

equilibrated with 25 % MeOH and 75 % buffer (8 mM CH3(CH2)6SO4Na, 40 mM 

NH4H2PO4, pH 3.0) at a flow rate of 1.0 mL/min, column temperature of 25 
o
C and 

UV detector set at 254 nm.  

 

2.2.12 HPLC control reaction using COMT activity and subsequent SAH 

detection 

 

Enzymatic assays were performed using phosphate buffer (200 mM NaH2PO4, 5 

mM MgCl2, pH 7.4), 100 units of catechol O-methyltransferase (one unit is the 

amount of enzyme that can catalyze the methylation of 1 nmol of 3,4-

dihydroxybenzoic acid per hour at 37 
o
C), 3 mM SAM and 2 mM 3,4-

dihydroxybenzoic acid. A reaction assay containing everything above except 

enzyme was used as a control.  Both reactions were kept at 37 
o
C for 2.5 hours after 
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which protein was removed by a Pall Life Science centrifugal concentrator 

following manufacturer’s instructions.  A 10 µL sample was injected into the HPLC 

fitted with a C18 column equilibrated with 80% buffer (40 mM NH4H2PO4, 8 mM 

CH3(CH2)6SO4Na at pH 3.0) and 20% methanol.  The parameters were a flow rate 

of 1.0 mL/min, 25 
o
C column temperature and UV detection at 260 nm. 

 

2.3 Isothermal titration calorimetry 

 

 ITC measurements were performed on a CSC ITC-4200 (Calorimetry 

Sciences Corp., Lindon Utah) calorimeter.  Purified MosA was dialyzed 

exhaustively against assay buffer (100 mM imidazole, 10 mM K2HPO4 pH 7.7) at 5 

ºC.  A portion of the dialysate was saved for preparation of the ligand solutions.  All 

solutions were degassed under vacuum for a period of at least 10 minutes 

immediately prior to their use.  A typical experiment involved 20 injections of 5 µL 

ligand solution  (50 mM) into a sample cell containing 1.30 mL of protein solution 

(ca. 0.1 mM) after a stable baseline had been achieved.  The sample cells were 

continuously stirred at 300 rpm with 3.5 minute intervals between injections.  

Dilution heats were determined by the area of each injection peak after saturation 

and subtracted from each injection.  ITC data was analyzed by Bindworks 1.0 using 

the independent and cooperative binding models included in the software.  The 

independent model where the analytical solution for the total heat is as follows 

 

    (2.5) 
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where V is the total volume, ∆H the enthalpy of association, K is the binding 

constant, n is the number of binding sites, [M] is the concentration of the 

macromolecule, [L] is the concentration of the ligand.  A binding stoichiometry of 

1.0 was input into software prior to the curve fitting for pyruvate and 2-oxobutryate.  

For (S)-lysine titrations data was fit to the cooperative binding model which 

assumes two binding sites on the macromolecule where the general partition 

function is 

 Z = 1 + β1X + β2X
2             

(2.6) 

where β are the Adair equilibrium constants (β1 = K1 and β2 = K1K2) and X is the 

free ligand concentration.  The degree of saturation (Y) can be expressed by 

2

2
1 2

lnZ 2
Y = 

ln 1

X X

X X X

β β
β β
1 2∂ +

=
∂ + +

        (2.7) 

The total amount of ligand is  

 Xt = X + Xb                           (2.8) 

where Xb is the amount of ligand bound per unit volume and free ligand can be 

obtained by solving 

 X = Xt – [M]Y                      (2.9) 

where [M] is the concentration of macromolecule.  The cumulative heat is then 

( )2
1 2

Vcell
Q X H X H

Z
β β1 2= ∆ + ∆     (2.10) 

Where Vcell is the volume of the calorimeter cell and ∆H1 is the enthalpy of binding 

for the first molecule and ∆H2 is the enthalpy of binding for the second molecule.
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3 Results 

3.1 Chemical synthesis of proposed substrates of MosA 

3.1.1 Synthesis of scyllo-inosamine 

 In all, three novel routes to SI were developed with variations in the 

protecting groups used.  The first method began with the widely popular 

orthoformate of myo-inositol as shown in Scheme 3. The orthoformate 1 was an 

attractive structure because of the regioselectivity displayed by various protecting 

groups on this molecule.  Since the C-2 OH of 1 required conversion to an amine, 

the orthoformate provided a protecting group that allowed regioselective protection 

of the C-2 OH through various methods.  A convenient method was formation of the 

tert-butyldimethylsilyl (tBDMS) ether 2.  The reaction was done in DMF with 2,6-

lutidine as a catalyst and base providing the silyl ether in 65% yield.  A column 

purification step was required to separate the desired symmetrical compound from 

the 2,4- and 2,6-disilyl derivatives, the major side products of the reaction.  

Orthogonal protection using NaH and BnBr in DMF produced the symmetrical 4,6-

dibenzyl silyl derivative 3 in 75% yield.  Smooth removal of the tDBMS group 

using the fluoride ion in THF gave pure 4,6-dibenzyl orthoformate 4 72% yield.  

Unfortunately, direct benzylation of the orthoformate using 2 equivalents of NaH 

and BnBr resulted in a mixture of tribenzyl, 2,4 and 4,6 dibenzyl and monobenzyl 

derivatives that were difficult to separate.   Swern oxidation of 4 gave the ketone 5 
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in 85% yield, this was followed by reductive amination using ammonia in methanol 

in the presence of acetic acid and NaCNBH3.  This reaction, after simple acid base 

extractions, provided 6 with the desired stereochemistry in 43% yield.  

Hydrogenolysis of the benzyl ethers was very slow likely due to poisoning of the 

Pd/C catalyst with the amino group.
91
   The long reaction time was overcome by 

increasing the amount of catalyst to a 1:1 ratio of amine to Pd/C.  Finally, hydrolysis 

of the orthoformate moiety with Dowex ion exchange resin 50W-X8-100 (H
+
) in 

water and elution with 0.1 M HCl provided the desired compound with an 87% 

yield over both deprotection steps.  SI was produced in 6 steps with 11% yield. 
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Scheme 3. Synthesis of SI from 1.  Reagents and conditions: a) tBDMSCl, 2,6-lutidine, DMF b) 
NaH (2.5 equiv), BnBr, DMF c) TBAF, THF d) Oxalyl chloride, DMSO, CH2Cl2, TEA -60 °C f) i) 

Pd/C 10%, H2, CH3OH ii) Dowex X8-100 (H
+
), H2O 
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 The second route developed utilized a combination of benzyl ethers and the 

isopropylidene of myo-inositol (Scheme 4).  The isopropylidene 7 was produced by 

heating dimethoxypropane in DMSO with toluenesulphonic acid as a catalyst as 

described in the literature.
86
  The desired compound was easily obtained on a large 

scale without the need for column chromatography by neutralization with 

triethylamine followed by the addition of ether.  Perbenzylation of 7 with NaH and 

BnBr in DMF yielded a racemic mixture of the fully protected benzyl derivative 8 in 

82% yield.  The isopropylidene was removed by refluxing in CH3OH and HCl to 

yield racemic tetrabenzyl 9 in 81% yield.  Regioselective protection of the C-1 or C-

3 OH was attempted using NaOH and BnCl in refluxing benzene
88
 however, this 

method provided a mixture of hexabenzyl and pentabenzyl inositols.  A much better 

method was to utilize dibutyl tin oxide in the presence of BnBr and tetrabutyl 

ammonium bromide in acetonitrile.  The symmetrical pentabenzyl derivative was 

obtained in an excellent 92% yield after being easily purified by crystallization from 

methanol.   Routine mesylation in pyridine and SN2 azidolysis in DMF gives the 

protected azide 7 possessing the desired scyllo stereochemistry with no trace of the 

myo-isomer.  Simultaneous reduction of the azide and hydrogenolysis of the benzyl 

groups required the in situ protection of the amine by incorporating tBoc2O in the 

reaction mixture.  Without the addition of tBoc2O to the hydrogenolysis reaction, a 

complex mixture of partially deprotected benzyl derivatives would result 

independent of the amount of catalyst used and the reaction pressure.  After 

hydrogenolysis, the carbamate was cleaved by stirring overnight with Dowex 50W-

X8-100 (H
+
) in water.  The use of Dowex provided both the deprotection and 
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purification of the SI with an 81% yield.  SI from myo-inositol was produced in 6 

steps with a 22% overall yield. 
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Scheme 4.  Synthesis of SI from myo-inositol  
Reagents and conditions:  a)  Dimethoxypropane, TsOH, DMSO 90 °C, b)  HCl, MeOH, reflux c) 

NaH, BnBr, DMF d) Dibutyltinoxide, BnBr, TBAB, ACN e) i) MesylCl, Pyridine  ii) NaN3, DMF, 

80 °C f) i) Pd/C 10%, H2, CH3OH ii) Dowex X8-100 (H
+
), H2O elute HCl 

 

 The third route shown in Scheme 5 began with the perbenzylation of 1 with 

NaH and BnBr in DMF to produce 12 in 92% yield.  The tribenzyl ether easily 

crystallizes from methanol so flash chromatography is not required.  The next step 

involves the hydrolysis of the orthoformate moiety using Dowex 50WX8-100 (H
+
).  

A few drops of CH2Cl2 are added to dissolve the tribenzyl derivative followed by 

dilution in methanol and addition of the resin.  The reaction is stirred overnight after 

which the Dowex is filtered and the methanol evaporated to yield tribenzyl inositol.  
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Perbenzylation of tribenzyl inositol in DMF using NaH and BnBr produced the 

symmetrical hexabenzyl 13.  Again chromatography is avoided as the hexabenzyl 

derivative is easily crystallized from methanol at an 88% yield for both steps.  

Direct perbenzylation of myo-inositol was reported previously, however failed to 

work in our hands.
89
  Regioselective deprotection of the only axial benzyl group is 

achieved with SnCl4 in CH2Cl2.  Subsequent mesylation, azidolysis and deprotection 

are as described above for compound 10 to SI. This route produces scyllo-inosamine 

in a 5 step synthesis with an overall yield of 23%.   
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Scheme 5. Synthesis of SI via SnCl4.  Reagents and conditions:  a)  NaH, BnBr, DMF  b) i) Dowex 
(H+) MeOH ii) NaH, BnBr, DMF c) SnCl4, CH2Cl2   d) i) MesylCl, Pyridine  ii) NaN3, DMF, 80 °C   
e)  tBoc2O, H2, Pd/C 10% ii) Dowex H

+, H2O, elute HCl 
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3.1.2.    Synthesis of racemic 3-O-methyl-scyllo-inosamine (3-MSI) 

 Two routes towards the synthesis of racemic 3-MSI have been developed. 

The first relies on the regioselective methylation of 1 using one equivalent of NaH 

and CH3I in DMF followed by an additional 1 equivalent of NaH and BnBr to 

produce racemic 14.  This compound was purified by flash chromatography and 

obtained in 47% yield.  Swern oxidation gave the ketone 15 in 85% yield followed 

by the stereoselective reductive amination to give 16 in 40% yield.  Hydrogenolysis 

using H2 gas and Pd/C in methanol followed by hydrolysis with Dowex 50W-X8-

100 produces 3-MSI as the HCl in 82% yield.  3-MSI was synthesized from myo-

inositol in 4 steps with an overall yield of 13%.   
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Scheme 6. Synthesis of 3-MSI via 1.  Reagents and conditions a) i) 1 equiv NaH, CH3I ii) 1 equiv 
NaH, BnBr, DMF b) Oxalyl chloride, DMSO, TEA, CH2Cl2 -60 °C c)  NH3, AcOH, NaCNBH3, 

MeOH d) i) H2 Pd/C MeOH ii) Dowex (H
+
), H2O elute HCl 
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 The second route shown in Scheme 7 began with the one pot methylation 

and benzylation of 1 to produce racemic 17 in 72% yield.  One equivalent of CH3I 

and NaH in DMF was stirred overnight at room temperature followed by an 

additional two and a half equivalents of NaH and BnBr.  Hydrolysis of the 

orthoformate with Dowex 50WX8-100 (H
+
) followed by perbenzylation gave fully 

protected 18 with a 95% yield.   Regioselective removal of the axial benzyl group 

with SnCl4 in CH2Cl2 provided 19 in 58% yield.  The free axial alcohol was 

mesylated in pyridine and worked up to yield an oil that was immediately subjected 

to azidolysis in DMF.  This provided azide 20 in 62% yield with only the scyllo 

isomer detected by NMR.  Simultaneous hydrogenolysis of the benzyl groups and 

reduction of the azide in the presence of tBoc2O protected the amine in situ 

preventing poisoning of the catalyst.  Subsequent removal of the tBoc carbamate 

was achieved with Dowex 50WX8-100 (H
+
) which also allowed purification after 

pouring the slurry into a column and eluting the amine with HCl (0.1M).  Racemic 

3-MSI was obtained in a 5 step synthesis with an overall 20% yield. 
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Scheme 7.  Synthesis of 3-MSI via SnCl4.  Reagents and conditions:  a)  i) NaH, CH3I, DMF ii) 
NaH, BnBr  b) i) Dowex (H

+
) MeOH ii) NaH, BnBr, DMF c) SnCl4, CH2Cl2  d) i) MesylCl, Pyridine  

ii) NaN3, DMF, 80 °C  e)  tBoc2O, H2, Pd/C 10%, CH2Cl2/MeOH ii) Dowex H
+
 H2O, elute HCl  

 

 

3.2 Protein expression 

3.2.1 Expression of MosA 

 

 The expression of MosA at different temperatures and various 

concentrations of IPTG was investigated to optimize expression yields.  

Unfortunately, most of the MosA overexpressed was located in the insoluble 

fraction after sonication and centrifugation.  Experimental cultures were set up in 

parallel varying the concentration of IPTG from 0.1 mM to 0.5 mM and the 

expression temperatures at 15 and 20 °C.  The results show that increasing IPTG to 
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concentrations greater than 0.1 mM actually lowered the amount of soluble protein.  

On the other hand, when kept at 0.1 mM IPTG, lowering the expression temperature 

had a positive effect on the amount of soluble enzyme.  The optimal conditions were 

as follows:  cultures were grown in LB media in an incubator shaker set at 250 rpm 

and 37 °C until reaching an optical density between 0.6 and 0.8 measured at 600 

nm.  The culture temperature was lowered to 15 °C, induced with IPTG to a final 

concentration of 0.1 mM and incubated overnight with shaker speed set at 250 rpm.  

Following this procedure MosA was routinely isolated with yields of ~ 10 mg 

protein/1L culture. 

3.2.2 Purification and storage of MosA 

 The mosA gene was cloned by Tony Tam
13
 into the pET28b expression 

vector.  This vector contains the gene sequence for a hexahistidine tag that is 

expressed on the N-terminus of MosA.  This allows one-step purification of MosA 

by using a 1 mL HiTrap chelating Sepharose FF column which coordinates nickel, a 

metal with a high affinity towards hexahistidine peptides.  However, following the 

manufacturer’s procedure resulted in MosA preparation being slightly contaminated 

with proteins endogenous to the E. coli BL 21 (DE3) strain that had a low affinity to 

the chelating column (see Figure 15).   
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Figure 15.  SDS-PAGE of optimized MosA expression and purification:  Top gel: Lane 1, 
insoluble pellet after sonication; Lane 2, soluble fraction after sonication; Lane 3, flow fraction 1; 

Lane 4, binding buffer wash; Lane 5, wash buffer fraction 1; Lane 6, protein molecular weight 

standards (Invitrogen) -  molecular weight markers from top of gel as follows 1: 181.8 kDa 2: 115.5 

kDa 3: 82.2 kDa 4: 64.2 kDa* (pink band) 5: 48.8 kDa 6: 27.1 kDa; Lane 7, wash fraction buffer 2; 

Lane 8, elution fraction 1; Lane 9, elution fraction 2; Lane 10, elution 3;  Bottom gel:  Lanes 1- 4, 

elution fractions 4-8; Lane 5, protein molecular weight standards; Lane 6 – 8, elution fractions 8 – 

10. 

 

 

By washing the column with 95% washing buffer 5% elution buffer, MosA 

was purified almost to homogeneity.  MosA was found to be active for extended 

periods (more than 3 months) if stored in Tris buffer (20 mM, pH 8.0), NaCl (200 

mM) and glycerol (40% v/v) at -20 °C.  For ITC experiments, short term storage 

(less than 3 days) of MosA was typically done in imidazole buffer (100 mM, 10 mM 

K2HPO4 pH 7.7) at 5 °C.    
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3.3. Enzyme assays 

3.3.1 MosA’s aldolase activity 

To confirm the kinetic parameters of MosA, assays were performed at 37 ºC 

in imidazole buffer (100 mM imidazole, 10 mM K2HPO4, pH 7.7).  Kinetic data 

were analyzed with Leonora
90
 using equal weight curve fitting calculations.  

Apparent values were obtained by varying the concentration of one of the substrates 

(either pyruvate or ASA) while maintaining a constant concentration of the other.  

The results were an apparent KM(Pyr) = 0.58 ± 0.03 mM (see Figure 16) while 

maintaining a constant concentration of ASA (0.45 mM).  For ASA an apparent 

KM(ASA) = 0.22 ± 0.04 (see Figure 17) was obtained while maintaining a constant 

concentration pyruvate (5 mM).  Substrate inhibition was evident at higher ASA 

concentrations.  The kinetic parameters obtained are summarized in Table 1. 
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Figure 16.  Initial velocity at fixed concentrations of ASA (0.45 mM) as a function of pyruvate 

concentration.  Reactions performed in assay buffer (100 mM imidazole, 10 mM K2HPO4, pH 7.7) 
at 37ºC.  The data points (◊) are experimental data while the line represents the fit from Leonora.

90
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Figure 17.  Initial velocity pattern at fixed concentrations of pyruvate (5 mM) while varying 

ASA concentration.  Reactions performed in assay buffer (100 mM imidazole, 10 mM K2HPO4, pH 
7) at 37 ºC.  The data points (□) are experimental data while the line represents the fit from 

Leonora.
90
 

 

 

 

Table 1. Summary of the apparent kinetic parameters determined for MosA at 37 ºC 

 Vmax (µM min
-1) KM (mM) kcat (s

-1
) kcat/KM (M

-1
s
-1
) 

Pyruvate 

L-ASA 

20 ± 3 

28 ± 3 

 

0.58 ± 0.03 

0.22 ± 0.01 

 

6.6 ± 1 

9.0 ± 1  

(1.1 ± 0.2) × 10
4
 

(4.1 ± 0.1) × 10
4
 

In calculations of kinetic parameters the molar mass of MosA was taken as 33341 

g/mol.   
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3.4 Inhibition studies 

3.4.1 Inhibition of MosA’s DHDPS activity by 2-OB 

It has been proposed that MosA may be an O-methyltransferase catalyzing 

the transfer of a methyl group from 2-OB to SI.
17
  If 2-OB was a methyl donor 

forming a Schiff base in analogy to pyruvate of the aldolase reaction of MosA, it 

would be unlikely that the active site for both reactions would reside at different 

locations in the enzyme.  Consequently, 2-OB should affect the known DHDPS 

activity of MosA if it were a substrate.  Kinetic data on MosA’s DHDPS activity 

obtained in the presence of 2-OB was analyzed by Leonora.
90
  The resulting patterns 

shown in Figure 18 fit well to that of a competitive inhibitor and a KI = 0.9 ± 0.3 

mM with respect to pyruvate was determined.  Extremely poor fits resulted when 

attempts were made to fit the kinetic data to the equations for noncompetitive and 

uncompetitive inhibitors.   
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Figure 18. Dixon Plot of inverse initial velocity (1/µM/min) vs concentration of 2-OB (mM) at 

various concentration of pyruvate (□ 0.125 mM, ♦ 0.25 mM, ▲ 0.5 mM, ○ 1.0 mM ■ 1.5 mM). 
Reactions performed in assay buffer (100 mM imidazole, 10 mM K2HPO4, pH 7.7) at 37 ºC. 

 

 

3.4.2 Inhibition of MosA’s DHDPS activity with SI 

 

 The reaction mentioned by Babbitt and Gerlt shown in Figure 5
17
 described 

SI as the potential nucleophile in the novel methyltransferase reaction with 2-OB 

catalyzed by MosA.  Since 2-OB forms a Schiff base with MosA and is a 

competitive inhibitor with respect to pyruvate it is reasonable to expect the novel 

methyltransferase activity to share the same active site as the DHDPS reaction.  

Consequently, SI could affect MosA’s DHDPS activity.  Kinetic analysis plotted in 

Figure 19, shows that even at very high concentrations of SI little change is 

observed in the rate of the DHDPS reaction.  
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Figure 19.  Inhibition of MosA’s DHDPS activity by 2-OB (□) and SI (♦) at fixed concentration of 
pyruvate (0.5 mM) and ASA (0.22 mM).  Reactions performed in assay buffer (100 mM imidazole, 

10 mM K2HPO4, pH 7.7) at 37ºC. 

 

3.5 Detection of imine intermediates 

3.5.1 Sodium borohydride reduction of imine with 2-oxobutyrate (2-OB) 

 It has been shown that DHDPS from E. coli forms a Schiff base between 

pyruvate and an active site lysine (K161)
31
 which can be observed by mass 

spectrometry.
32,92

  Sequence alignments between MosA and DHPDPS show that this 

lysine residue is conserved in the MosA sequence.  The first step in the proposed 

methyltransferase reaction involves the formation of a Schiff base between MosA 

and 2-OB. Treatment of MosA with NaBH4 followed by HPLC-MS resulted in a 

peak corresponding to a mass of 33342 (M + H
+
) as shown in Figure 21.  This is the 

mass expected for MosA without any modifications, demonstrating that the reagent 
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itself does not affect the mass of the protein.  Treatment of MosA with NaBH4 in the 

presence of 2-OB followed by HPLC-MS resulted in a peak corresponding to a 

mass of 33427 (M+ H
+
) as illustrated in Figure 22.  The difference in the masses is 

85 corresponding to the mass difference expected for a reduced Schiff base between 

MosA and 2-OB as shown in Figure 20.  
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Figure 20. Formation of a Schiff base between 2-OB and lysine residue of MosA and 

subsequent reduction by sodium borohydride.  The mass difference between modified and natural 
MosA would be 85 g/mol corresponding to the addition of C4H5O2 to the protein. 

 

3.5.2  Inactivation of MosA through reduced Schiff base intermediates 

For both the control and the 2-OB samples, a portion of the solution was 

removed and dialyzed after treatment with NaBH4.  Kinetic analysis, summarized in 

Table 2, revealed that the treatment of MosA with borohydride had little effect on 

MosA’s DHDPS activity.  On the other hand, the protein which was modified by 2-

OB and borohydride showed little activity after dialysis.  This is evidence that 2- 

OB is forming a Schiff base in the DHDPS active site of MosA. 

Table 2:  Relative activity of MosA after treatment with NaBH4 

 MosA MosA + NaBH4 MosA + 2-OB + NaBH4 

Relative Activity (%) 100 % 97 % 12 % 



     

 

Figure 21.  Control experiment for detection of a Schiff base intermediate by HPLC-MS.  Mass spectrum obtained of MosA (3.11 nmol) treated with 
NaBH4 (1.13 µmol) in assay buffer (100 mM imidazole, 10 mM KH2PO4, pH 7.2).    

8
3
 



     

 

Figure 22.  Detection of a Schiff base intermediate between MosA and 2-OB by HPLC-MS.  Mass spectrum obtained of MosA (3.11 nmol) treated with 2-
OB (1.88 µmol) and  NaBH4 (1.13 µmol) in assay buffer (100 mM imidazole, 10 mM KH2PO4, pH 7.2).   

8
4
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3.6 Rhizopine Assays 

3.6.1 HPLC for detection of MosA’s methyltransferase activity using 2-OB and SI 

as substrates 

 

A search in the literature for O-methyltransferase assays applicable to MosA’s 

proposed methyltransferase function proved unsatisfying.  Most of the assays relied on 

radiolabelled SAM or substrates, HPLC, GC or TLC, none of which were directly 

applicable towards the investigation of MosA’s methyltransfer activity.  Furthermore, 

the high polarity and the lack of a chromophore mean that the inosamine structures 

required derivatization prior to reverse phase chromatography.    

The novel methylation reaction involves the formation a Schiff base between 2-

OB and MosA during the first step of the reaction.  This provides an electron sink 

allowing nucleophilic attack by SI on the methyl group of the 2-OB-Schiff base.  This 

reaction would result in the formation of 3-MSI and pyruvate.  Consequently, if 

pyruvate or 3-MSI was detected upon incubation of SI, 2-OB with MosA, this suggests 

that a methyltransferase reaction was being catalyzed.  

Initial attempts to develop an assay was based on the HPLC separation of the 

phenylhydrazones of 2-OB and pyruvate using 2,4-dinitrophenylhydrazine as a 

derivatizing agent.  Unfortunately, reliable and mild conditions for the derivatization 

procedure proved to be difficult to develop.  Furthermore, HPLC analysis would be 

complicated by the fact that a mixture of stereoisomers is often observed in the 

chromatograms.
93
   Consequently, the focus changed to the derivatization and 
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separation of SI and 3-MSI.  Initial attempts to derivatize the rhizopines with 

phenylisothiocyanate also proved to be difficult as solubility issues complicated 

procedures.  On the other hand, 9-fluorenylmethoxycarbonyl chloride (FMOC-Cl) a 

commonly used derivatizing agent for amino-sugars, dissolved in acetonitrile proved to 

be a very convenient and reliable method.  

The FMOC derivatization of SI is illustrated in Figure 23.  The temperature, pH 

and time of reaction are all important parameters in the derivatization.  The most import 

side reaction is the hydrolysis of the FMOC-Cl by water producing FMOC-OH.  

Unfortunately, the rate of hydrolysis by water and the amino sugars both rise with 

increasing pH.  Consequently, the conditions need to be explored such that hydrolysis 

and aminolysis rate are optimal. 
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Figure 23. The derivatization reaction of SI with FMOC-Cl 

 

A reliable method for derivatizing the rhizopines was based on that used for 

assaying glucosamine concentrations
94
.   FMOC-Cl dissolved in acetonitrile is mixed 

with an equal amount of the buffered solution of the rhizopine at room temperature for 

at least 20 minutes. Initial attempts to perform the derivatization reaction at a pH of 8.0 

in borate buffer resulted in mostly hydrolysis of the FMOC-Cl.  Upon lowering of the 

pH to 7.0, the relative amounts of FMOC-OH to FMOC-SI were reasonable.  Assay 

conditions used in MosA’s DHDPS reaction were typically performed in imidazole at 
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pH 7.7. However, dissolving rhizopine in imidazole buffer and treatement with FMOC-

Cl resulted in the exclusive hydrolysis of the reagent as imidazole was likely acting as a 

nucleophilic catalyst. However, changing the buffer to phosphate (pH 7.0, 0.1 M) where 

MosA is known to be active
13
 allowed the derivatization to proceed sufficiently. 

Once suitable derivatization conditions were found, retention times were 

determined for the compounds of interest.  The FMOC derivatives of SI (Figure 25) and 

3-MSI (Figure 26) had retention times of 3.4 and 3.7 minutes respectively.  The 

FMOC-Cl eluted at 10.8 minutes while the FMOC-OH at 7.1 minutes.  Enzymatic 

assays included MosA, 2-OB and SI were allowed to proceed for 3 hours after which a 

portion of the reaction solution was removed, the enzyme filtered and the filtrate 

subjected to derivatization.  From the resulting chromatogram shown in Figure 27 no 

peaks corresponding to the FMOC-3-MSI were detected.  Conversely FMOC-SI was 

clearly present at the expected 3.4 minute elution time.  To ensure that detection of 

FMOC-3-MSI was possible in the assay conditions, a 10% w/w spike of 3-MSI to SI 

was introduced into the assay solution after the 3 hour incubation. A peak 

corresponding to FMOC-3-MSI of about 10% the area was detected in the 

chromatogram at 3.8 minutes as shown in Figure 28.   These experiments clearly show 

that MosA does not catalyze the transfer of a methyl group from 2-OB to SI to produce 

3-MSI.   MosA is not a methyltransferase that utilizes 2-OB as a novel methyl donor in 

rhizopine biosynthesis.     
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Figure 24.  Chromatogram after injection of 2-OB (5mM) in phosphate buffer (0.1 M, pH 7.0) 

 

 

Figure 25.  Chromatogram obtained by derivatization of SI in the presence of 2-OB.  SI (5mM) and 
2-OB (50 mM) in phosphate buffer (0.1 M, pH 7.0) after 30 minute incubation with 100 µL of FMOC-Cl 

(5 mM). 
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FMOC-OH 

FMOC-Cl 
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Figure 26.  HPLC chromatogram of 3-MSI derivatized with FMOC-Cl. 

 

 

Figure 27.  HPLC chromatogram of MosA displaying no methyltransferase activity using, 2-OB as 

a methyl donor.  The assay included MosA (0.5 µM), 2-OB (5 mM), SI (5 mM) after 3 hour incubation 
at 37 ºC.  The derivatization was accomplished after filtering off the enzyme and mixing the assay 

solution (100 µL) with FMOC (100 µL, 5 mM in acetonitrile) and allowing 30 minute reaction time.   
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Figure 28.  HPLC methyltransferase assay of MosA with a 10% spike of 3-MSI (10% that of SI) 

added to the derivatization mixture. 

3.6.2 HPLC for detection of methyltransferase activity using S-adenosyl-

methionine (SAM) and SI as substrates 

 Most O-methyltransferases in the protein database are S-adenosylmethionine 

(SAM) dependent. Consequently, SAM was chosen as a candidate to be tested as a 

methyl donor.  Unfortunately, SAM-dependent reactions are often difficult to assay 

given that direct spectrophotometric techniques are rare.  Most assays employ a 

separation of the products (HPLC, GC, TLC etc) and subsequent detection through a 

variety of methods.
9
 However, most of these techniques focus on the non-cofactor 

substrates and products of the reaction. The possibility exists that MosA could utilize 

SAM as a methyl donor in the formation of 3-MSI from SI.  Although no known SAM 

binding motif is present in MosA, perhaps a novel site has evolved.  HPLC experiments 

were designed to detect any methyltransferase reaction by monitoring the disappearance 

of SAM and appearance of S-adenosylhomocysteine (SAH).   

FMOC-OH FMOC-Cl 

FMOC-SI 

FMOC-3MSI 
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Figure 29.  Structures of SAM and SAH 

 

Commercially available SAM comes only 70% pure as shown in Figure 30.  

Unfortunately, one of the major decomposition products is SAH.  Consequently, any 

HPLC assays that measured the decrease in amounts in SAM and increased amounts of 

SAH must take this into account.  SAH on the other hand, comes very pure, simplifying 

its use as a standard for HPLC analysis. 

 

 

 

 

 

 

 

 

 

Figure 30.  HPLC chromatogram of commercially available SAM demonstrating purity. 
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 Enzymatic assays were set up at 37 
o
C and the samples incubated for several 

hours.  Samples were taken, protein filtered out and aliquots injected into the HPLC 

fitted with a C18 column equilibrated with 80% buffer (40 mM NH4H2PO4, 8 mM 

heptanesulfonic acid at pH 3.0) and 20% methanol.  Detection of SAM and SAH was 

done at 260 nm using retention times that were determined by the commercial 

standards.  Methyltransferase activity was qualitatively diagnosed by comparing the 

ratios of the areas of SAM to SAH.  Comparing the relative amounts of SAM to SAH 

no methyltransferase activity was detected as demonstrated in Figure 31.  Consequently, 

MosA does not utilize SAM as a methyl donor in the formation of 3-MSI from SI. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 31.  HPLC chromatogram of MosA displaying no methyltransferase activity using SAM as 

methyl donor determined by HPLC.  Assay included MosA, SI (2.5 mM) and SAM (2.5 mM) and were 

incubated for 3 hours at 37 ºC in assay buffer (100 mM imidazole, 10 mM K2HPO4, pH 7.6) 

  

 

min0 5 10 15 20 25 30

mAU

0

50

100

150

200

250

300

 DAD1 A, Sig=260,4 Ref=360,100 (CHRIS1\CIII7711.D)

 2
.1
6
2

 2
.4
3
5

 2
.6
3
5

 5
.2
3
4

 5
.5
4
6

 5
.9
7
5

 6
.9
1
4

 9
.1
3
8

 1
4
.2
1
9

 1
5
.7
1
3

 3
2
.8
4
1SAH

SAM

min0 5 10 15 20 25 30

mAU

0

50

100

150

200

250

300

 DAD1 A, Sig=260,4 Ref=360,100 (CHRIS1\CIII7711.D)

 2
.1
6
2

 2
.4
3
5

 2
.6
3
5

 5
.2
3
4

 5
.5
4
6

 5
.9
7
5

 6
.9
1
4

 9
.1
3
8

 1
4
.2
1
9

 1
5
.7
1
3

 3
2
.8
4
1SAH

SAM



 

    93 

 

3.6.3 HPLC control reaction using catechol-O-methyltransferase (COMT) activity 

 

 In order to determine if methyltransferase activity can be detected as described 

above a control assay was developed using catechol-O-methyltransferase (COMT). This 

enzyme catalyzes the transfer of a methyl group from SAM to protocatechuic acid (3,4-

dihydroxybenzoic acid) as illustrated in Figure 32.  HPLC assays shown in Figure 33 

demonstrate that the peak corresponding to SAH is increasing with time while the peak 

corresponding to SAM is decreasing.   Although the observed changes shown in Figure 

33 are not extensive, the results allow the qualitative observation of methyltransferase 

activity by monitoring the disappearance of SAM and appearance of SAH. 
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Figure 32.  The reaction catalyzed by COMT 
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Figure 33.  HPLC chromatogram of the COMT enzymatic assay.  The reaction included phosphate 
buffer (200 mM NaH2PO4, 5 mM MgCl2, pH 7.4), 100 Units COMT, 3 mM SAM and 2 mM 3,4-

dihydroxybenzoic acid 2.5 hours, 37 ºC 

 

The use of reverse phase HPLC to separate FMOC derivatives of the rhizopines 

provided direct evidence that MosA did not catalyze the transfer of a methyl group from 

2-OB to SI.  In addition, methyltransferase assays that monitored SAH production and 

SAM consumption failed to detect any MosA catalyzed methyl transfer from SAM to 

SI.  Consequently, it is very likely that MosA is not the enzyme that catalyzes the 

formation of 3-MSI from SI.  

3.7 Isothermal titration calorimetry 

3.7.1 Thermodynamics of pyruvate’s interaction with MosA 

In the inaugural report of the measurements of binding constants by ITC,  

Wiseman et al
95
 noticed that the shape of the binding isotherm for a simple one to one 

binding stoichiometry changes according to the product of the association constant (K) 
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and the concentration of the macromolecule [M].  This unitless parameter has been 

called the Wiseman constant and it calculated as shown in equation 3.1. 

c = [M]Ka              (3.1) 

                         

 It has been widely accepted that reliable thermodynamic data could be obtained only 

for those systems that the Wiseman value was 10 ≤ c ≤ 500 which are characterized by 

sigmoidal binding isotherms.
81,95,96

 For low affinity systems ITC experiments would 

require high concentrations of the macromolecule in order to achieve reasonable c 

values for extraction of accurate thermodynamic values.   

When considering ITC as a tool to characterize the thermodynamic parameters 

of MosA, estimations of the protein concentration required to achieve suitable c values 

were unreasonably high (greater than 140 mg/mL for each experiment).  Fortunately, 

Turnbull and Daranas
96
 validated the accuracy of using ITC on low affinity systems by 

studying the thermodynamic parameters of known weakly binding systems.    For low 

affinity systems, it is important to have a higher signal to noise ratio in order to 

accurately determine ∆H and Ka.  Furthermore, a sufficient portion of the binding 

isotherm is needed for reliable data to be extracted during the fitting process.  

Concentrations of the ligand and macromolecule were important, easily modified 

experimental parameters that were taken into account when designing the ITC 

experiments.  Consequently, experiments that had concentrations of MosA around 0.1 

mM (based on monomer) and pyruvate/2-OB of 50 mM were found to provide a 

reasonable binding isotherm without reaching saturation amounts too quickly.  At these 
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concentrations of MosA and pyruvate, a good signal to noise ratio was achieved with 

avoidance of early saturations thus satisfying suggestions outlined by Turnbull. 

Sufficient time must be allowed to elapse between injections to ensure that the 

system reaches equilibrium after each perturbation.  Equilibration times as long as 1200 

seconds were reported for ITC experiments characterizing the binding of an aldehyde 

analogue of Biocyclomycin to Rho protein.
97
 For pyruvate titrations into MosA, 

injection times were varied between 200 – 300 seconds ensuring that equilibrium was 

reached. Equilibrium was easily achieved within 200 seconds between injections as this 

reaction is catalyzed by MosA.  It is also important to note that the MosA-imine with 

pyruvate is likely a reversible process, an obvious requirement for determination of 

equilibrium constants.  Equilibrium conditions imply reversibility of the chemical 

process. Evidence to support reversibility comes from the fact that NaBH4 is required to 

form the covalent intermediate between MosA and pyruvate.  Furthermore, if imine 

formation was irreversible, then saturation should be reached after the second injection.  

This would have introduced more than one equivalent of pyruvate to MosA monomer.  

In addition, since water is the first product of the reaction between MosA and pyruvate 

in an aqueous environment, it seems unlikely that this process is entirely irreversible.  It 

has been noted that details of the catalytic mechanism of DHDPS in E. coli are a bit 

unclear as kinetic changes are observed at different pH’s of enzymatic assay.
34
 

 From the ITC data, a hyperbolic isotherm was obtained as shown in Figure 34.  

Using Bindworks software and assuming stoichiometry of n = 1.0, the thermodynamic 

parameters obtained for pyruvate binding to MosA are given in Table 3. 
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From Table 3, a few interesting observations can be noted.  To begin with, Kd 

was found to be 0.39 ± 0.5 mM which is reasonably close to the Michaelis constant for 

pyruvate of KM(Pyr) = 0.19 mM.  Additionally, the formation of the imine between MosA 

and pyruvate has favorable contributions from both enthalpy and entropy with values of 

∆H = -3.8 ± 0.6 kJ/mol and T∆S = 16 ± 1 kJ/mol.  The errors measured in this data 

were obtained by standard deviation of experiments done in triplicate. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Thermodynamic parameters of MosA-2-oxo-acid interactions 

a
Experiments performed in imidazole buffer (100 mM, pH 7.7).  Values are an 

average of three independent trials ± standard deviation unless otherwise indicated  
b
Values are an average of two independent trials ± standard deviation 

c
Experiments 

performed in Tris buffer (100 mM, pH 7.7).  Values are based on one trial. 

 

 

 

Ligand Kd 
 (mM) 

∆H  

(kJ/mol) 

∆G  

(kJ/mol) 

T∆S 

(kJ/mol) 

Wiseman 

constant, c 

Pyruvate 25ºC
a
 0.4 ± 0.1 -3.8 ± 0.6 -19.8 ± 0.5 16 ± 1 0.3 

Pyruvate 15ºC
a,b
 0.5 ± 0.1 -3.7 ± 0.1 -19.1 ± 0.5 16 ± 1 0.2 

Pyruvate Tris
c
 0.5 -3.7 -19 15 0.1 

2-OB
a
 2 ± 1 -3 ± 2 -15 ± 2 12 ± 3 0.1 
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Figure 34.  ITC titrations of pyruvate into buffered MosA solutions.  Top graph shows the raw data 

for 19 injections (5 µL) of pyruvate (50 mM) into an imidazole buffered MosA solution (0.07 mM based 

on monomer molar mass) at 15 ºC. The bottom graph shows data points as energy (as kJ/mol titrant) as a 

function of molar ratio with the solid line representing the fit to the 1:1 binding model from Bindworks 

1.0. 
 

In addition to obtaining the thermodynamic parameters, ITC is also useful in 

providing evidence as to whether or not protons are released into the aqueous media 

upon binding or reaction.  Release of protons is diagnosed by performing identical 

experiment in different buffers of varying ionization enthalpy and comparing the 
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enthalpy of binding values obtained.
81
    In the case of pyruvate, similar values were 

obtained from ITC experiments when Tris (the ionization enthalpy of Tris ∆H ≈ -47 

kJ/mol) was used as the buffer system instead of imidazole (the ionization enthalpy of 

imidazole ∆H ≈ -36 kJ/mol) at pH 7.7.  This suggests that no protons were released to 

or removed from the aqueous solution during the binding process.   

The measurements of ∆H and T∆S at different temperatures are used to 

determine changes in heat capacity of the system.  Changes in heat capacity, ∆Cp can 

provide information about the mechanism of the binding event.
98
  For example, 

hydrophobic binding interactions are often characterized by small (frequently positive) 

enthalpy changes, large positive entropy changes and a negative contribution to ∆Cp.  

On the other hand, factors that often contribute to a positive value of heat capacity are : 

1) changes in ligand conformation 2) changes in protein conformation 3) interactions 

between the side chains and the protein with solvent 4) interactions between the solvent 

and ligand.
99
  The thermodynamic parameters of pyruvate’s interaction with MosA 

showed no significant dependence on temperature suggesting no large changes in heat 

capacity for those experiments done at 15 ºC and 25 ºC.  These findings may be due to 

limitations of the instrument on a low affinity system rather than a ∆Cp actually being 0, 

especially given that pyruvate binding is dominated by entropy. 

3.7.2 Thermodynamics of 2-oxobutyrate’s interaction with MosA 

 Earlier in this dissertation it was shown that 2-OB forms a Schiff base with 

MosA.  Furthermore, kinetic studies indicate that 2-OB is a competitive inhibitor with 

respect to pyruvate on MosA’s DHDPS activity.  ITC gave the in data shown in Figure 

35 with the thermodynamic parameters of binding of 2-OB to MosA outlined in Table 
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3.  Similar to pyruvate’s binding to MosA, 2-OB’s interaction with MosA is 

entropically driven; T∆S = 12 ± 3 kJ/mol, and a slightly favorable enthalpy with ∆H = -

3 ± 2 kJ/mol is obtained.  Furthermore a Kd = 2 ± 1 mM was consistent with Ki = 1.0 ± 

0.3 mM that was determined kinetically. 

 

 

 

Figure 35.  ITC titrations of 2-OB into buffered MosA solution. Top graph shows the raw data for 20 

injections (5 µL) of 2-OB (50 mM) into a buffered solution of MosA (0.11 mM based on monomer molar 

mass) at 25 ºC. The bottom graph shows data points as energy (as kJ/mol titrant) as a function of molar 

ratio with the solid line representing the fit to the 1:1 binding model from Bindworks 1.0. 
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 3.7.3 Thermodynamics of (S)-lysine’s interaction with MosA in the presence of 

pyruvate 

  

 It is known that (S)-lysine is an allosteric feedback inhibitor of the 

dihydrodipicolinate synthases (DHDPS) in plants
100
 and E. coli.

34
  However, the exact 

mechanism of (S)-lysine inhibition is unclear.  Initial work done on DHDPS from E. 

coli suggested that (S)-lysine is an uncompetitive inhibitor with respect to pyruvate and 

noncompetive with respect to ASA.
34
  More recently, Gerrard has shown that (S)-lysine 

displays partial mixed inhibition with respect to pyruvate meaning that (S)-lysine has 

some effect on the first half reaction.
40
  

ITC experiments performed on MosA should help determine the nature of (S)-

lysine’s inhibition. Titrations of (S)-lysine (50 mM) into imidazole buffered solutions of 

MosA (≈ 0.1 mM) were done both in the presence and absence of pyruvate.  The data 

resulted in isotherms with a high signal to noise ratio.  Using the software Bindworks, a 

cooperative binding model fit the data, well, supporting the previously suggested notion 

that (S)-lysine binds to MosA in a cooperative manner, as suggested previously.
13
  

Neither the independent nor the multiple independent models built into the Bindworks 

software provide reasonable fits to the data. 

In constrast to the 1:1 binding model, the cooperative binding model assumes 

two molecules of ligand bind to two interacting binding sites.  The crystal structure of 

DHDPS from E. coli with bound (S)-lysine, has two lysine molecules bound at the 

dimer-dimer interface.  The binding site of the second molecule of (S)-lysine is within 

the coordination sphere of the first lysine molecule, explaining the cooperativity 
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observed.  Consequently, concentrations of MosA used in curve fitting by Bindworks 

were based on the molar mass of the dimer.  Furthermore, Hill plots gave Hill 

coefficients all greater than 1, supporting the conclusion that (S)-lysine binds to MosA 

in a cooperative manner.
13
 

From the data shown in Figure 36 obtained by titrating (S)-lysine (50 mM) into 

buffered solutions of MosA and pyruvate, thermodynamic values for the first and 

second binding events were determined, as outlined in Table 4.  The binding of the first 

(S)-lysine displayed a weak affinity with a Kd = 0.4 ± 0.1 M and ∆G1 = -2.3 ± 0.6 

kJ/mole.  A slightly favorable enthalpy of ∆H1 = -2.2 ± 0.4 kJ/mole and a small change 

in entropy of T∆S1 = 0.2 ± 0.6 kJ/mole was extracted.  For the second molecule of (S)-

lysine a much higher affinity was determined with a Kd = 2.2 ± 0.7 µM and ∆G2 = -32 ± 

6 kJ/mole.  A favorable ∆H2 = -21 ± 2 kJ/mole and a favorable change in entropy of 

T∆S2 = 11 ± 6 kJ/mole contributed to the higher affinity binding.   
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Figure 36.  ITC titrations of (S)-lysine into a buffered pyruvate/MosA solution.  Top graph shows the 

raw data for 20 injections (5 µL) of (S)-lysine (50 mM) into a buffered solution of MosA (0.055 mM 

based on dimer molar mass) saturated with pyruvate at 15 ºC. The bottom graph shows data points as 

energy (as kJ/mol titrant) as a function of molar ratio with the solid line representing the fit to the 

cooperative binding model from Bindworks 1.0. 
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Table 4.  Thermodynamic parameters of (S)-Lysine association with MosA at 25 ºC 

Ligand 

(enzyme form) 

Kd1 

(M) 

Kd2 

(µM) 

∆H1 

(kJ/mol) 

∆H2 

(kJ/mol) 

∆G1 

(kJ/mol) 

∆G2 

(kJ/mol) 

T∆S1 

(kJ/mol) 

T∆S2 

(kJ/mol) 

(S)-lys
a 

(MosA + 

pyruvate) 

0.4 

± 0.1 

2.2 

± 0.7 

-2.2 

± 0.4 

-21 

± 2 

-2.3 

± 0.6 

-32 

± 6 

0.2 

± 0.6 

11 

± 6 

(S)-lys
b
 

(apo-MosA) 

0.4 

± 0.1  

3.2 

± 0.7 

-0.8 

± 0.5 

-3.3 

± 0.1 

-2.5 

± 0.5 

-31 

± 7 

2 

± 1 

28 

± 7 

(S)-lys
a
 

(MosA + 

2-OB) 

0.3 

± 0.1 

10 

± 3 

-0.3 

± 0.1 

-14 

± 1 

-3.4 

± 1 

-28 

± 8 

3 

± 1 

14 

± 8 

a
Experiments performed in imidazole buffer (100 mM, pH 7.7).  Values are an  

average of at least three independent trials ± standard deviation unless otherwise  

indicated  
b
Values are an average of two independent trials ± standard deviations. 

 

3.7.4 Thermodynamics of (S)-lysine’s binding to MosA in the absence of pyruvate 

As discussed in section 3.7.3, it is not entirely clear whether or not (S)-lysine 

binds to DHDPS in the absence of pyruvate.  Initial reports by Karsten
34
 suggested that 

(S)-lysine was uncompetitive with respect to pyruvate meaning that pyruvate must 

occupy the active site prior to the binding of (S)-lysine.  Alternatively Gerrard 

reported
29
 that (S)-lysine was a mixed inhibitor with respect to pyruvate thus binding to 

MosA regardless of the occupancy of the pyruvate in the active site of MosA.  In both 

reports, these interpretations were made by the analysis of kinetic data.  ITC, on the 
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other hand, measures the heat released or absorbed upon the association of two 

interacting species making the technique very useful in determining the nature of (S)-

lysine inhibition.  Consequently, ITC experiments were performed by titrating (S)-

lysine into solutions of MosA in imidazole buffer (pH 7.7) in the absence of pyruvate.    

ITC isotherms in Figure 37 clearly indicate that an interaction between MosA 

and (S)-lysine was occurring without the requirement of pyruvate in the enzyme 

solution.  The thermodynamic data obtained (outlined in Table 4) reveals no significant 

differences Kd1 or Kd2. However, significant changes in enthalpy and entropy are 

observed such that a complete reversal of the dominating forces of binding is observed.  

The enthalpy value for the second (S)-lysine drops from ∆H2(Pyr) of -21 ± 2 kJ/mol to a 

much lower ∆H2(Apo) of -3.3 ± 0.1 kJ/mol.  The entropy values for T∆S2 = 11 ± 6 

kJ/mole increased significantly giving T∆S2(Apo) = 28 ± 7 kJ/mol.  The resulting increase 

in entropy compensated for the unfavorable enthalpy keeping the binding constants for 

the second (S)-lysine relatively unchanged in the absence of pyruvate.  Since the 

enthalpy term for the binding of the second lysine increased significantly (became less 

favorable) the loss of some important intermolecular interactions must be occurring 

during the binding event in the absence of pyruvate.  This, however, was compensated 

for by an increase in the entropy, allowing the affinity constants to remain relatively 

unchanged.   
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Figure 37. ITC titrations of (S)-lysine into buffered MosA solution.  Top graph shows the raw data for 

20 injections (5 µL) of (S)-lysine (50 mM) into a buffered solution of MosA (0.05 mM based on dimer 

molar mass) at 25 ºC. The bottom graph shows data points as energy (as kJ/mol titrant) as a function of 

molar ratio with the solid line representing the fit to the cooperative binding model from Bindworks 1.0. 
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3.7.5 Thermodynamics of (S)-lysine binding to MosA in the presence of 2-OB 

 The interaction of 2-OB with MosA has been thermodynamically characterized 

by ITC supporting the fact that 2-OB interacts with MosA in an analogous way to 

pyruvate.  However, 2-OB only appears to be an inhibitor of MosA and does not appear 

to be a substrate of MosA.  To examine whether or not 2-OB can influence the binding 

of (S)-lysine to MosA, ITC experiments were performed.   The binding isotherm in 

Figure 38 resulted from titrations of (S)-lysine into 2-OB saturated solutions of MosA.  

The resulting thermodynamic parameters are outlined in Table 4.  The binding 

thermodynamics of the first (S)-lysine did not significantly change in the presence of 2-

OB.  This was also the case for those experiments done in the absence of pyruvate.  For 

the second (S)-lysine a slightly higher dissociation constant was observed compared to 

the Kd(Pyr) suggesting a slightly lower affinity in the presence of 2-OB.  The most 

significant changes came from comparison of the enthalpy and entropy values.  The 

observed enthalpy in the presence of pyruvate changed from ∆H2(Pyr) of -21 ± 2 kJ/mol 

to ∆H2(2-OB) of -14 ± 1 kJ/mol in the presence of 2-OB. Entropy, on the other hand, 

changed from T∆S2(Pyr) = 11 ± 6 kJ/mole in MosA/pyruvate solution to T∆S2(2-OB) of 14 

± 8 kJ/mol.  Again, enthalpy-entropy compensation kept the dissociation constant fairly 

constant in all three cases.    
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Figure 38.  Titrations of (S)-lysine into a buffered 2-OB/MosA solution.  Top graph shows the raw 

data for 20 injections (5 µL) of (S)-lysine (50 mM) into a buffered solution of MosA (0.052 mM based on 

dimer molar mass) saturated with 2-OB at 25 ºC. The bottom graph shows data points as energy (as 

kJ/mol titrant) as a function of molar ratio with the solid line representing the fit to the cooperative 

binding model from Bindworks 1.0. 
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3.7.6 Heat capacity changes upon (S)-lysine’s binding to MosA 

Changes in heat capacity provide useful information about the release of solvent 

upon binding of a ligand to a protein.
101
  Unlike enthalpy, entropy and free energy, heat 

capacity changes can distinguish between effects caused by polar and nonpolar 

hydration.
102
  Change in heat capacity is expressed as 

 

 ∆Cp = d∆H/dT               (3.2) 

This expression relates changes in enthalpy with respect to changes in temperature 

assuming that no change in heat capacity occurs over the range of temperatures 

examined.  An influential paper by Sturtevant listed six possible sources of heat 

capacity change involving proteins in aqueous solutions: 1) exposure of hydrophobic 

groups to aqueous solvent, 2) exposure of electrostatic charges to aqueous solvent,  3) 

hydrogen bond formation, 4) conformational changes to protein or interacting 

molecules, 5) changes in intramolecular vibrations, 6) changes in equilibria due to 

temperature changes.
101
   During the association of a ligand to a protein, these sources 

all contribute to a change in the heat capacity of the system which can make ∆Cp 

positive, negative or zero. Other events such as proton uptake or release into the solvent 

also must be considered when interpreting data.
103

  

Titrations of (S)-lysine into buffered solutions of MosA and pyruvate were 

performed at 15, 18, 20 and 25 ºC.  The data summarized in Table 5 demonstrate that no 
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temperature dependent trends were observed for the binding of the first (S)-lysine.   

However, this may be due to the low and scattered enthalpic values for this ligand 

making any relationship difficult to diagnose.  On the other hand, the thermodynamic 

data obtained for the second lysine reveal a linear relationship between Gibbs free 

energy, enthalpy, entropy and temperature.   Plots of ∆H2 versus temperature are shown 

in Figure 39. An estimate of ∆Cp = 1 kJ/mol K was obtained by determining slope of 

the linear relationship between ∆H2 and T.  Large positive heat capacity changes upon 

intermolecular associations involving proteins are rare although several cases have been 

reported in the literature.
103-106  

Table 5. Thermodynamic parameters obtained for the binding of (S)-lysine to MosA in 

pyruvate saturated solutions at 20, 18 and 15 ºC 

Ligand Kd1 

(M) 

Kd2 

(µM) 

∆H1 

(kJ/mol) 

∆H2 

(kJ/mol) 

∆G1 

(kJ/mol) 

∆G2 

(kJ/mol) 

T∆S1 

(kJ/mol) 

T∆S2 

(kJ/mol) 

(S)-lys
a
 

20ºC 

0.4 

± 0.1 

2 

± 0.6 

-3.7 

± 0.1 

-28 

± 1 

-4.9 

± 1.2 

-33 

± 10 

1 

± 1 

5 

± 10 

(S)-Lys
a
 

18 ºC 

0.2 

± 0.1  

1 

± 0.3 

-2.0 

± 1.2 

-28 

± 2 

-4.0 

± 2 

-34 

± 10 

2 

± 2 

6 

± 10 

(S)-Lys
b
 

15 ºC 

0.8 

± 0.1 

0.6 

± 0.1 

-2.2 

± 0.2 

-32 

± 1 

-0.6 

± 0.4 

-35 

± 6 

-2 

± 1 

3 

± 6 

a
Experiments performed in imidazole buffer (100 mM, pH 7.7).  Values are an  

average of at least two trials ± standard deviation  
b
Values are an average of two independent trials ± standard deviation 
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Figure 39.  Temperature dependence of ∆H2 (♦) for the binding of the second (S)-lysine to MosA in 

the presence of pyruvate. Estimation of ∆Cp was obtained by the slope of the linear relationship 
between ∆H2 and temperature.  
 

 For the binding parameters of the second (S)-lysine, enthalpy and entropy are 

temperature dependent whereas Gibbs free energy shows little dependence at the 

temperatures studied.  Gibbs independence of temperature is typically found in protein-

ligand associations and is a reflection of the basic fact that stronger noncovalent bonds 

(enthalpically favorable) is compensated by a loss of degree of freedom (entropically 

disfavorable) or vice versa.
107
  A plot of ∆H2 versus T∆S2 usually yields a linear 

relationship that provides the extent of enthalpy-entropy compensation.  A slope equal 

to one is considered complete compensation, a slope greater than 1 is enthalpically 

dominant and less than one is entropically dominant.
108
  However, the large error 

associated with the T∆S2 for the binding of the second (S)-lysine values do not allow a 

meaningful plot of enthalpy-entropy compensation.  However, from examining the 
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thermodynamic parameters outlined in Table 5, enthalpy and entropy compensation is 

likely occurring.  

 

 

3.7.7 Thermodynamics of the interactions of the rhizopines and SAM with MosA 

 

 ITC experiments were performed by injecting SI or 3-MSI into buffered 

solutions of MosA.  The heats of each injection were corrected for dilution and 

normalized with respect to moles of titration as shown in Figure 40 A and B.  The 

energy associated with the raw data peaks were consistent in their magnitudes 

corresponding to an average energy release of -51.6 µJ per injection for SI and -54.1 µJ 

per injection for 3-MSI. Titrations into the sample cell containing only dialysis buffer 

(i.e. no enzyme) produced average dilution heats of -53.5 µJ per injection for SI and -

54.6 µJ for 3-MSI.  Once dilution heats were subtracted from the rhizopine-MosA 

titration data, it was clear that no interaction was detected, calorimetrically.  

Additionally, no interaction was observed upon titrations of SI into 2-OB saturated 

solutions of MosA as shown Figure 40 C.  It is unlikely that the novel methyltransferase 

reaction is occurring without any observable enthalpy changes.   

 In attempt to detect any interactions between MosA and the ubiquitous methyl 

donor SAM, ITC experiments were performed.  Titrations of SAM into buffered 

solutions of MosA produced peaks that, once dilution heats were subtracted from the 

data, failed to detect any association. The enthalpy values corrected for dilution heats 

were normalized with respect to moles of titrant and plotted in Figure 40 D.  
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Figure 40.  ITC titrations of SI, 3-MSI and SAM into a buffered MosA solution and SI into a 

buffered 2-OB/MosA solution.  A)  Graph shows the data obtained for 20 injections (4 µL) of SI (25 

mM) into a buffered solution of MosA (0.1 mM based on monomer molar mass) at 15 ºC.   Dilution heats 

were subtracted and the energy per injection normalized with respect to moles of titrant.  B)  Graph shows 

the data obtained for 20 injections (4 µL) of 3-MSI (25 mM) into a buffered solution of MosA (0.1 mM 

based on monomer molar mass) at 15 ºC.   Dilution heats were subtracted and the energy per injection 

normalized with respect to moles of titrant. C)  Graph shows the data obtained for 17 injections (5 µL) of 

SI (25 mM) into a buffered solution of MosA (0.12 mM based on monomer molar mass) saturated with 2-

KB at 15 ºC.   Dilution heats were subtracted and the energy per injection normalized with respect to 

moles of titrant.  D)  Graph shows the data obtained for 20 injections (4 µL) of SAM (25 mM) into a 

buffered solution of MosA (0.09 mM based on monomer molar mass) at 15 ºC.   Dilution heats were 

subtracted and the energy per injection normalized with respect to moles of titrant.   
 

The difference between the ITC data of an interaction known to occur versus the 

data obtained for rhizopine titrations is quite significant and is illustrated in Figure 41.  

This graph directly compares the enthalpy values obtained for titrations of (S)-lysine 

into pyruvate saturated solutions of MosA with titrations of 3-MSI into MosA.  This 
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figure further demonstrates that ITC technique failed to detect any interactions between 

the rhizopines and MosA. 
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Figure 41.  For comparison purposes: normalized heat as a function of injection for ITC titrations 

of 3-MSI into a buffered MosA solution versus 25 injections of (S)-lysine into a buffered 

pyruvate/MosA solution. 3-MSI (25 mM denoted by ○) into a buffered solution of MosA (0.1 mM 
based on monomer molar mass) and 25 injections of (S)-lysine (50 mM denoted by □) into pyruvate 

saturated solutions of MosA (0.12 mM based on monomer molar mass).  Both experiments were done at 

15 °C. 
  

These results clearly indicate that the binding thermodynamics of MosA with its 

substrates and inhibitors was effectively determined by the ITC technique.  The 

association between MosA and pyruvate and MosA and 2-OB was entropically driven 

as shown in Table 3.  In addition, the binding isotherms produced by titrating (S)-lysine 

in pyruvate saturated solutions of MosA fit well to the cooperative binding model.  As 

in Table 4, clear differences in the calorimetrically determined values of enthalpy and 

entropy were observed depending on the presence and absence of pyruvate in the MosA 

solution.  In addition, the thermodynamic parameters extracted from titrating (S)-lysine 
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into 2-OB saturated solutions of MosA demonstrated that 2-OB evoked similar changes 

in MosA such that more exothermic binding was observed for the second (S)-lysine.   

This provides strong evidence that Schiff base formation between 2-OB and MosA is 

occurring at the active site of MosA.  A large positive heat capacity was determined for 

the binding of the second (S)-lysine to MosA demonstrating the importance of solvent 

in this interaction.  Additionally, the ITC technique proved very effective in 

determining that no associations between MosA and the rhizopines were occuring.  

Consequently, MosA does not use SI as a substrate in the production of 3-MSI using 

either 2-OB or SAM as a methyl donor as no assocations between these molecules and 

MosA was detected.  

 

 

3.8 Summary of Results 

 

The results obtained from the above experiments are as follows: 

• SI was chemicall synthesized via three separate routes with yields of 11%, 22% 

and 23% 

• Two synthetic routes were developed to produce racemic 3-MSI with yields of 

13% and 20% 

•  MosA was expressed in good yields and purified using nickel affinity 

chromotagraphy 

• Assays of MosA’s aldolase activity provided kinetic parameters summarized in 

Table 1 and are consistent with DHDPS from E. coli   
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• 2-OB is a competitive inhibitor of MosA’s DHDPS activity  

• Schiff base trapping experiments using NaBH4 and HPLC-MS demonstrated 

that 2-OB forms a Schiff base with MosA and once reduced diminishes the 

DHDPS activity 

• SI had no significant effects on the DHDPS reaction nor could 2-OB replace 

pyruvate as the substrate for the aldolase chemistry catalyzed by MosA 

• MosA does not catalyze the transfer of a methyl group from 2-OB to SI as 

determined by HPLC which separated FMOC derivatives of the rhizopines   

• MosA does not catalyze the transfer of a methyl group from SAM to SI as 

observed by monitoring levels of SAM and SAH using HPLC 

• COMT was used as a model enzyme to validate the HPLC method used in  

detecting possible methyltransferase activity of MosA   

• ITC failed to detect any associations between SI, 3-MSI, SAM and SI in the 

presence of 2-OB and MosA 

• ITC was used to determine the binding thermodynamics of pyruvate and 2-OB 

to MosA (Table 3) 

• ITC was used to support the fact that (S)-lysine binds cooperatively to the 

MosA-pyruvate complex with the thermodynamic parameters determined for the 

binding of the first and second (S)-lysine summarized in Table 4 

• ITC was used to demonstrate that (S)-lysine is a cooperative non-competitive 

inhibitor of MosA with respect to pyruvate and the thermodynamic parameters 

summarized in Table 4   
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• The binding of the second (S)-lysine to the MosA-pyruvate complex was 

characterized by a large positive heat capacity change and the resulting 

thermodynamic parameters obtained at different temperatures are summarized in 

Table 5 

• Titrations of (S)-lysine into 2-OB/MosA solutions produced more exothermic 

enthalpy values for the binding of the second inhibitor compared to those values 

obtained for (S)-lysine titrations into MosA alone.
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4. Discussion 

4.1 Chemical synthesis of proposed substrates of MosA 

 Over the course of this work, three novel synthetic routes were developed for the 

chemical synthesis of SI.  The first method shown in Scheme 3 relies on the popular use 

of the 1,3,5-monoorthoformate of myo-inositol 1.   Since the C-2 OH of myo-inositol 

was required to be converted to an amine, the orthoformate was an obvious starting 

point due to known reactions which allowed orthogonal protection at the C-2 and C-4/6 

positions. Formation of the  C-2 t-BDMS ether was reportedly obtained in 48% yield by 

using imidazole as the nucleophilic catalyst and base in DMF.
84
  However, our lab and 

others
61
 upon attempting to follow the procedure, obtained a mixture of mono- and di-

silylated derivatives which lowered the overall yield and complicated purification.  This 

problem was overcome by replacing the imidazole with 2,6-dimethylpyridine.  This 

served to increase the steric hindrance of the nucleophilic catalyst, improving the 

regioselectivity such that 65% of pure 3 was obtained.
61
  Compound 3 was then 

benzylated, followed by removal of the silyl group with fluoride ion to produce 4.  A 

reported procedure described the direct protection of the C-4 and C-6 hydroxyl groups 

of the orthoformate using 2.1 equivalents of NaH and p-methoxybenzylbromide in 40% 

yield.
109
  However, inconsistent yields resulted upon replacement of  p-methoxybenzyl 

bromide with benzyl bromide when attempting to synthesize 4 directly from 1. 
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 In order to synthesize SI, the C-2 OH requires conversion to an amine while 

simultaneously inverting the substituent to the axial position.   Several synthetic routes 

can be envisaged; however, the most obvious choice would be SN2 displacement of a 

tosyl or mesyl group with NaN3 followed by reduction to the amine.  However, the rigid 

orthoformate structure is remarkably resistant to SN2 reactions.  This is not surprising 

considering its structural similarity to adamantane, a molecule that has been shown to 

undergo solvolysis of tosylate or bromide derivatives with retention of configuration.
110
  

Furthermore, addition of an ether in place of a methylene group within the adamantane 

ring led to a higher proportion of products formed via the SN1 mechanism.
111

  This 

resistance to substitution reactions has enabled tosyl, mesyl and camphorsulfonyl 

groups to be conveniently used in the regioselective protection of the 

orthoformate.
60,63,112

   

 Another route to synthesis of the amine is the stereoselective reductive 

amination of a ketone derivative of the orthoformate.  A similar reaction was previously 

reported using CH3NH2 and NaCNBH3 on an oxidized orthoformate derivative to give a 

secondary amine possessing the scyllo- configuration.
85
   In an attempt to follow a 

similar strategy of reductive amination, Swern oxidation of 4 produced the symmetrical 

ketone 5.  It was important to avoid water when working up this reaction due to the 

formation of a stable hydrate between water and the ketone. In fact, stable hydrates have 

been crystallized from stirring a related compound in wet THF.
109
  Sufficiently pure 5 is 

easily obtained by simply passing the crude reaction mixture, diluted in ether, through a 

small column of silica gel (~ 1- 2 inches of silica).  Without further purification 5 is 

reductively aminated using a 2 M solution of ammonia in MeOH and acetic acid in the 
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presence of NaCNBH3.  Following this procedure amine 6 is obtained in 43% yield.  

 Typically, ammonia is not used for reductive aminations because the primary 

amine product formed is often more nucleophilic than the ammonia.  As a result, the 

aminated substrate often reacts with another molecule of unreacted ketone.  To 

circumvent this, ammonia is held in large excess therefore minimizing the probability of 

this occurring.  Furthermore, inductive effects and steric hindrance of the orthoformate 

derivative may have reduced the reactivity of 6.  The stereoselectivity of the reductive 

amination may be explained by steric hindrance of the benzyl ethers at C-4 and C-6 

preventing the borohydride from donating the hydride ion from that side of the 

structure.  Other examples of stereoselective reduction of protected inositols resulting in 

the scyllo configuration are known.
85,113

  The frequently observed long range coupling 

between the orthoformate hydrogen and the proton at C-2
61,114

 characteristic of the myo-

isomer, is not observed in the NMR spectrum of compound 6, supporting the 

assignment of the scyllo- configuration.  

 Hydrogenolysis of the benzyl groups of 6 using hydrogen gas and Pd/C (10%) 

as a catalyst proved to be difficult.  Normally, hydrogenolysis of benzyl ethers are 

carried out smoothly with catalytic amounts of the Pd/C under an atmosphere of 

hydrogen.  However, the presence of an amine in the inositol structure likely resulted in 

poisoning of the Pd catalyst.
91
  Fortunately, this problem was overcome by increasing 

the amount of catalyst in the reaction.    

 Hydrolysis of orthoformate derivatives typically requires strongly acidic 

conditions such as trifluoroacetic acid or aqueous HCl.  However, our lab began using 

Dowex 50W-X8 100 (H
+
) ion exchange resin to hydrolyze the orthoformate moiety.  
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The use of Dowex in water has provided a convenient and simple method of removing 

the orthoformate moiety in our lab on many different compounds.
115
 By simply filtering 

off the resin
 
and evaporating the solvent after overnight stirring at room temperature, 

inositol derivatives that were sufficiently pure for further reactions are easily obtained.  

Furthermore, in the case of the inosamines, hydrolysis and purification can be achieved 

in one step by pouring the slurry into a small column plugged with glass wool, washing 

the column of resin with water and eluting SI with 0.1 M HCl.   

 The second route towards SI shown in Scheme 4, began with the isopropylidene 

protected myo-inositol 7.  This reaction was easily performed on large scale and did not 

require chromatography as the product would precipitate out of solution upon partial 

neutralization with TEA and dilution of the reaction solution with ether.
86
  

Simultaneous protection of the C-1/C-3 and C-2 hydroxyl groups allowed 

perbenzylation of the inositol frame under routine conditions, producing 8, which upon 

hydrolysis produces racemic 9. The regioselective protection of the equatorial C-1 (or 

C-3) hydroxyl group of 9 provides the symmetrical 10 keeping the hydroxyl group at C-

2 open to derivatization.  Previous reports suggest that compound 10 can be synthesized 

by refluxing 9 in a mixture of benzyl chloride and NaOH in benzene.
116
  In our hands 

these conditions proved inefficient, producing mostly hexabenzyl inositol with a 

mixture of the symmetrical and unsymmetrical benzyl ethers.   

 The reaction of diols with dibutyltin oxide to produce stannylene acetals is 

routinely used in carbohydrate chemistry.
117
  Stannylene acetals are well known for 

undergoing regioselective alkylation and acylation reactions of nonsymmetrical diols.
118
  

As shown in Figure 42, the regioselectivity is believed to arise from the formation of 
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dimers in solution which result in one of the two oxygen atoms from the parent diol 

being coordinated to two tin atoms in the equatorial position of the coordination 

polyhedron.
119
  The other oxygen from the parent diol, in the apical position, maintains 

its nucleophilicity as it is coordinated to one tin atom leading to the regioselectivity 

often observed.    

 

Sn
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Figure 42.  Dimer formation of stannylene acetals rationalizing the regioselectivity observed.  The 

oxygen atoms in the apical position of each Sn maintain their nucleophilicity and are selectively 

alkylated. This diagram is adapted from reference 119. 

 

 Recently, the stringent conditions typically required for stannylene formation 

and subsequent alkylation was challenged.
120
  For example, the azeotropic removal of 

water via Dean-Stark apparatus, typically described as necessary for stannylene 

formation, was shown to be redundant in some cases.   Furthermore, use of the 

inexpensive tetrabutylammonium bromide (TBAB) in place of the more expensive and 

typically used tetrabutylammonium iodide provided good yields.  Following the 

modifications suggested above, pentabenzyl 10 is easily obtained by refluxing 9 with 

dibutyltin oxide and benzyl bromide in the presence of TBAB in ACN.  The reaction 
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showed high regioselectivity with excellent efficiency as 10 was obtained in 92% yield.  

Furthermore, purification was easily achieved by crystallization from hot methanol. 

 Once the symmetrical alcohol was obtained routine mesylation and SN2 

azidolysis produced the protected azide possessing the desired scyllo- with no trace of 

the myo-isomer. Support for the scyllo configuration comes from the 
1
H NMR spectrum 

which displays coupling constants of approximately 9 Hz.  This is consistent with the 

axial-axial coupling constants characteristic of ring protons possessing a dihedral angle 

of about 180º.  Simultaneous reduction of the azide and routine hydrogenolysis of the 

benzyl groups proved difficult in our hands, possibly due to poisoning of the catalyst.  

Unfortunately, increasing the amount of catalyst did not produce successful results as in 

the hydrogenolysis of 6.  The problem was later overcome by in situ protection of the 

amine by inclusion of tBoc2O in the hydrogenolysis mixture.
121
  Once the 

hydrogenolysis was complete, stirring overnight in Dowex (H
+
) followed by loading the 

suspension into a small column and elution with 0.1 M HCl provided the amine 1 as the 

HCl salt, with spectroscopic properties identical to SI produced previously.  

 The third route towards synthesizing SI shown in Scheme 5 relies on the 

regioselective deprotection of hexabenzyl 13.  A previously reported procedure to 

directly benzylate myo-inositol was ineffective in our hands.
89
  A much more 

convenient route was developed by perbenzylation of the orthoformate producing 12, 

which after routine work up and dissolution of the crude solid in methanol, crystallized 

out of solution.  Dowex hydrolysis and subsequent perbenzylation provided the 

hexabenzyl 13 in excellent yields with no chromatography required for any step.   
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 The most important reaction of this route was the use of tin (IV) chloride in 

CH2Cl2 to regioselectively remove the axial benzyl group of 13.
89
  Two drawbacks of 

this reaction are its sensitivity to water and the resulting mixture of benzyl inositols that 

require careful separation by column chromatography.  The mechanism of this reaction 

has been proposed
122
 to begin with the coordination of two suitably located oxygen 

atoms from the benzyl ethers to the SnCl4.  Upon coordination of a third oxygen atom, 

one of the chlorides on the tin atom displaces the benzyl group of the inositol resulting 

in benzyl chloride and a tin-alkoxy complex as shown in Figure 43.  
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Figure 43.  Regioselective removal of the axial benzyl ether of compound 13. Diagram adapted from 

reference 122. 

 

The tin-alkoxy derivative is then hydrolyzed upon quenching the reaction with 

water to yield symmetrical 10.  Once 10 is obtained, an identical procedure as described 

above produces 11 and SI.  Although this route provides SI in 5 steps and 23% yield, 

the use of SnCl4 limited the convenience of the route due to the stringent conditions and 

difficult separation required. 

 Two routes towards the synthesis of racemic 3-MSI were developed.  The first 

route shown in Scheme 6 began with the regioselective methylation and benzylation of 

1 to produce racemic 14.    The regioselectivity of these reactions has been suggested to 

be due to the pKa of the C-4 and C-6 protons being lowered by intramolecular hydrogen 
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bonding between C-4 and C-6 hydroxyl groups.  In addition, it has been suggested that 

small metal ions such as sodium form stable chelates (see Figure 12) that contribute to 

the selectivity.
58
 It is vital to maintain the order of alkylation such that the methyl ether 

is formed prior to the benzylation in this one pot reaction.  Placement of a benzyl ether 

at the C-4 or C-6 hydroxyl groups leads to subsequent alkylation preferentially 

occurring at the C-2 position and loss of the desired regioselectivity.
78
  Once racemic 14 

is obtained, an identical procedure is used, as discussed for synthesis of the intermediate 

compounds 5 and 6 to form SI.  

The second route shown in Scheme 7 described for synthesis of 3-MSI relied on 

the ability of SnCl4 to remove the axial benzyl group of the fully protected compound 

18 regioselectively.  This procedure is identical to that described for compound 13 as 

discussed for synthesis of SI.  Fortunately, the replacement of a benzyl group with 

methyl group at the C-4/C-6 position in 18 did not affect the regioselectivity of this 

reaction.  Once the tetrabenzyl derivative 19 was synthesized, identical reactions were 

used as discussed for 10 to SI.  In summary, two routes were developed for the 

synthesis of 3-MSI starting from the orthoformate of myo-inositol with overall yields of 

13% and 20%, respectively.  

 

4.2 MosA does not display any methyltransferase activity 

4.2.1 Catalysis and inhibition of the DHDPS reaction of MosA 

 

 The assignment of MosA as a methyltransferase is controversial due to the fact 

that its amino acid sequence is highly related to that of dihydrodipicolinate synthase 

(DHDPS) from E. coli.  In fact, MosA is more closely related to DHDPS from E. coli 
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than DHPDS’s from other organisms are to each other (see Figure 4).
18
  Once MosA 

was cloned, expressed and purified
13
 in our lab it was shown that MosA is a DHDPS 

catalyzing the condensation between pyruvate and ASA with Michaelis constants 

similar to that of the DHDPS from E. coli.
18
  Additionally, the turnover number and 

specificity constants shown in Table 1 are too high to be associated with a side reaction. 

 In 1997, Babbitt and Gerlt mentioned the possibility of a novel methyl 

transferase reaction illustrated in Figure 5 that explains MosA’s role in rhizopine 

biosynthesis without ignoring its similarity to DHDPS.
17
  The proposed mechanism, in 

analogy to DHDPS, forms an imine between 2-OB and an active site lysine providing 

an electron sink for nucleophilic attack by SI on the terminal methyl of the imine.  This 

would result in the release of 3-MSI and pyruvate into solution.  No known 

methyltransferase reactions that proceed through an aldol-like mechanism have ever 

been observed in nature.   

 The finding that MosA has DHDPS activity seriously calls into question its 

implication in rhizopine biosynthesis but does not rule it out.  The proposed 

methyltransferase function of MosA is easier to accept considering the subtle 

differences between 2-OB and pyruvate in the first half of the reaction.  Furthermore, 

experimental evidence has been provided to suggest that MosA is possibly a 

methyltransferase.  Considering both the similarity of the proposed mechanism and the 

existing rhizopine evidence, in vitro observation of MosA’s catalytic promiscuity is 

important to investigate this interesting issue. 

 In order to possess the methyltransferase activity proposed, MosA would be 

required to catalyze Schiff base formation between the active site lysine and 2-OB.     
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Schiff base trapping experiments using NaBH4 in the presence of MosA and 2-OB 

demonstrated that 2-OB does indeed form a Schiff base with MosA.  As shown in 

Figure 22 a major peak corresponding to the mass expected for a reduced imine 

between 2-OB and MosA was found by HPLC-MS.  Incubation of NaBH4 with MosA 

in assay buffer did not alter the mass of the protein.  Despite the fact that MosA forms a 

Schiff base with 2-OB, it is still unclear whether or not this is occurring at the active site 

or at some other lysine near the surface of the enzyme.   

However, after Schiff base trapping experiments were performed, dialysis of the 

modified MosA resulted in enzyme with significantly reduced DHDPS activity (see 

Table 2), suggesting that the modification was occurring at the active site.  A control 

reaction, in which MosA was treated with NaBH4 and dialyzed, determined that 

aldolase activity was not affected by the reducing agent in the absence substrate.  This 

confirms that the NaBH4 did not react with MosA destroying aldolase activity, and that 

the reduction of the active site imine to the amine was most likely responsible for loss in 

MosA’s aldolase activity. 

 Previously, it was reported that 2-OB is a competitive inhibitor of DHDPS from 

E. coli.
34
  Since 2-OB competes with pyruvate for the active site of DHDPS from E. 

coli, it is reasonable to expect the same for MosA.  Kinetic analysis in Figure 18 

suggested that 2-OB is a competitive inhibitor of MosA with respect to pyruvate.  A Ki 

of approximately 1 mM was determined, revealing that both pyruvate and 2-OB have 

similar affinities to MosA.  It is also plausible that 2-OB participates in the 

condensation reaction with ASA forming a dipicolinic acid derivative with an additional 

methyl group.  However, no aromatic dipicolinate derivatives are detected 
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spectrophotometrically upon replacement of pyruvate with 2-OB in the DHDPS assays.  

This was also the case in E. coli DHDPS.
31
 

 The Schiff base reaction between MosA and 2-OB is likely occurring.  This is 

supported by the fact that HPLC-MS detected a 2-OB-MosA Schiff base and that 2-OB 

is a competitive inhibitor of the DHDPS activity of MosA.  However two important 

points should be considered when reflecting upon these results; 1) just because 2-OB 

forms a Schiff base with MosA does not mean it is a methyl donor and 2) 2-OB and 

pyruvate are structurally similar so that discrimination by the active site is unlikely.  

Consequently, 2-OB may form a Schiff base in the active site of MosA, but no 

subsequent aldolase or methyl transfer is catalyzed.  One important difference may be 

the tautomerization of the 2-OB-lysine imine to form the enamine.  Since 2-OB does 

not replace pyruvate in the aldol part of the DHDPS reaction, it is possible that the 

enamine is not forming in the active site.  Steric hindrance of the C-4 methyl group of 

2-OB may be preventing enamine formation.  Alternatively, the enamine may be 

forming but the C-4 methyl group of 2-OB is preventing the approach of ASA and the 

aldol chemistry from occurring.   

 There are many examples of enzymes that cannot exclusively distinguish 

pyruvate from 2-OB as substrates, including lactate dehydrogenase,
123
 pyruvate 

oxidase
124
 and 2-oxo-acid:ferrodoxin oxoreductase.

125
 This was an unfortunate finding 

because a coupled assay that detected pyruvate in the presence of 2-OB would be useful 

in monitoring the proposed methyltransferase activity of MosA.  Based on the number 

of enzymes that use both pyruvate and 2-OB as substrates it should not be surprising 

that MosA interacts with 2-OB in a way analogous to pyruvate.   
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 The first experiments done involving SI were to determine if the presence of this 

molecule affected MosA’s DHDPS activity.  A graph of the initial velocity vs inhibitor 

concentrations demonstrated that at high concentrations of SI (~10 mM) little change is 

observed in the DHDPS activity of MosA as illustrated in Figure 19.  In other words, SI 

does not seem to strongly interact with the active site that MosA uses to catalyze the 

DHDPS reaction.  Any effects seen at high concentrations of SI are likely due to 

spontaneous imine formation between the SI and the pyruvate in solution, thereby 

lowering concentrations of free pyruvate and hence slowing down enzymatic activity.  

If MosA is a methyltransferase that catalyzes two reactions in the same active site, one 

would expect the presence of SI to effect DHDPS activity.  However, the absence of 

inhibition does not rule out the possibility that MosA has two functions.  

 

 

 

  

4.2.2 HPLC assays fail to detect methyltransferase activity of MosA 

 

 In order to observe methyltransferase activity catalyzed by MosA, an HPLC 

assay is required.  Developing such a method was challenging as the assays needed to 

distinguish 2-OB from pyruvate and 3-MSI from SI after enzymatic treatment.  

Furthermore, all analytes involved were polar, charged molecules (at pH’s required for 

activity) and did not possess chromphores required for immediate UV-Vis detection.   

Consequently, pre-column derivatization would be necessary for both the detection and 

separation of pyruvate from 2-OB and SI from 3-MSI.    
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 Initial efforts to develop an assay focused on the separation and detection of 

pyruvate and 2-OB.  Historically, derivatization of carbonyl containing compounds with 

2,4-dinitrophenylhydrazine has been used for over 80 years.
126
  This reagent forms 

phenylhydrazones with the carbonyl reactant which would provide a nonpolar and 

chromophoric group necessary for reverse-phase chromatography and 

spectrophotometric detection.  However, the lack of recent literature examples and the 

harsh conditions often employed for the derivatization reaction limited the desirability 

of this route.  Additionally, phenylhydrazones exist as a mixture of interconverting 

isomers, often suffering from instability which would potentially complicate the 

analysis.
93,127,128

 After only a few attempts to develop a reliable, convenient and 

compatible procedure it was clear that the rhizopines were the better choice for 

derivatization and subsequent detection in an HPLC assay. 

 A significant amount of work has been done on the derivatization and HPLC 

separation of hexosamines such as glucosamine and galactosamine.  Being structurally 

similar to the rhizopines, the literature describing the derivatization and quantification 

of amino sugars provided excellent insight into designing a method for observing 

methyltransfer activity of MosA.
129
 Several reagents have been used in the 

derivatization of various amino sugars and primary amines.  These include 

phenylisothiocyanate (PITC),
130,131

 o-phthaldehyde (OPA)
132
 and 

fluorenylmethylcarboxy chloroformate (FMOC-Cl).
133-135

 These reagents react with 

primary and secondary amines which would serve to reduce the overall polarity and 

basicity of the molecules allowing separation on a reverse phase column.  Furthermore, 

all possessed aromatic functional groups allowing UV detection.   
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 Despite the fact that OPA and PITC serve to introduce some of the chemical 

properties desired for the assay, they were not without drawbacks.  To begin with, OPA 

is an unstable reagent that needs to be prepared daily.  Furthermore, the separation of 

OPA derivatized compounds has been shown to be heavily influenced by inorganic 

cations.
136
  On the other hand, PITC required inconvenient, time consuming 

derivatization procedures lowering the attractiveness of the reagent.
130
     

 Recent papers have been published that quantitatively analyzed glucosamine 

concentrations using HPLC and pre-column derivatization with FMOC-Cl.
94,137

  Due to 

the ease of derivatization and stability of both the reagent and the derivatized products, 

FMOC-Cl was the best choice for derivatizing the rhizopines.  However, one issue 

associated with FMOC-Cl was the spontaneous hydrolysis of the reagent to produce the 

acid FMOC-OH.
129
  The ratio of amine attack versus water attack was influenced 

heavily by pH and temperature.
94
 In addition, the derivatization of the rhizopines was to 

be performed in the presence of buffers which could also influence the derivatization 

reaction. 

 Initial attempts to react rhizopines with FMOC-Cl were done in borate buffer at 

pH 9.0.
133
  However, derivatization at this high pH resulted in almost exclusive 

hydrolysis of the FMOC-Cl forming FMOC-OH from nucleophilic attack by hydroxide. 

However, upon lowering the pH to 7.0, a favorable ratio of derivatized rhizopine to 

hydrolysis product was obtained.   

 In addition to the issues at high pH, choice of buffer is also an important factor.  

MosA has been shown to be active in imidazole, phosphate and Tris buffers.
13
  

However, when the rhizopines are dissolved in imidazole, the derivatization reaction 
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resulted in exclusive formation of FMOC-OH.  This is not surprising as imidazole is 

likely to act as a nucleophilic catalyst or general base leading to the hydrolysis of the 

FMOC-Cl.  Fortunately, the rhizopines dissolved in phosphate buffer at pH 7.0 resulted 

in significant formation of both FMOC-SI and FMOC-3-MSI.  The effects of 

temperature and reaction time on the derivatization of the rhizopines was similar to 

those found for glucosamine.
138
   

 MosA assays were set up using MosA, 2-OB and SI in phosphate buffer at pH 

7.0.  At 1, 2 and 3 hours a 100 µL aliquot was removed, filtered to remove MosA and 

subjected to derivatization with FMOC-Cl.  The chromatogram shown in Figure 27 

revealed a peak corresponding to the retention time of FMOC-SI with no peaks 

corresponding to the FMOC-3-MSI. To be sure that the peaks corresponding to FMOC-

3-MSI and FMOC-SI were distinguishable after assay conditions, a 10% spike of 3-

MSI was included in the derivatization after 3 hours.  As shown in Figure 28, the 

derivatized rhizopine peaks were easily resolved and eluted at the retention times 

determined from control reactions.  Consequently, no methyltransferase activity by 

MosA was observed using 2-OB as a methyl donor to SI in the formation of 3-MSI.   

 S-Adenosyl methionine (SAM) is a ubiquitous methyl donor required by the vast 

majority of methyltransferases throughout nature.  These enzymes catalyze the 

formation of methyl ethers, methylthio ethers, methyl amines, methyl esters and methyl 

amides most of which rely on SAM for methyl donation.
139
  Upon donation of the 

methyl group, S-adenosyl homocysteine (SAH) and the corresponding methylated 

product are formed.  Due to the widespread use of SAM for methyltransferase enzymes 

it is reasonable to suggest that MosA may utilize SAM despite the fact that the sequence 
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of MosA does not reveal any known SAM binding sites.  Consequently, HPLC assays 

were developed to detect any methyltransferase activity MosA may have on SI using 

SAM as a methyl donor.  Interestingly, no known assays have been developed to 

monitor concentration changes of the cofactors SAH and SAM over the course of an 

enzymatic reaction. 

 HPLC methods have been developed that allow reverse phase HPLC to separate 

and quantify both SAM and SAH.
140
  Since both molecules are charged at assay pH, ion 

pairing agents were included to ensure retention onto the nonpolar column.  

Commercially available SAM and SAH were obtained so that retention times of these 

cofactors could be determined.  Unfortunately, SAM is available only 60% pure from 

the manufacturer with SAH being one of the contaminants in the preparation.  This 

complicates matters if our goal was to detect SAH in an enzymatic assay.  Fortunately, 

the ratio of SAM to SAH remained constant throughout control reactions.   This allows 

detection of methyltransferase activity by monitoring an increase in the amounts of 

SAH and corresponding decreases in SAM.   

 Enzymatic assays containing MosA, SAM and SI were incubated in imidazole 

buffer for 3 hours.  The chromatogram in Figure 31 show that the ratio of SAM to SAH 

did not change over the course of the reaction time.  This suggests that MosA does not 

utlize SAM as a methyl donor in rhizopine formation.  In an attempt to simplify the 

analysis, the reverse reaction containing MosA, SAH and 3-MSI was analyzed.  The 

appearance of a peak corresponding to the retention time of SAM would suggest the 

reverse methyltransferase reaction is occurring.  Aliquots removed at 1, 2 and 3 hours 
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failed to detect the presence of SAM; thus, no reverse methyltransferase activity was 

observed by MosA on 3-MSI and SAH. 

 To be certain that the method of measuring the relative amounts of SAH to SAM 

to detect methyltransferase activity was valid, a control reaction was sought.  The 

highly studied, commercially available, SAM-dependent enzyme catechol O-

methyltransferase (COMT) was an ideal candidate.  This enzyme catalyzes the transfer 

of a methyl group from SAM to one of the hydroxyls of various catecholamines, 

including the neurotransmitters dopamine, epinephrine and norepinephrine. In addition, 

COMT is involved in the metabolism of dietery catechols and catecholic drugs such as 

those in the treatment of hypertension, asthma and Parkinson disease.
141
  

 There have been many assays developed in the characterization of this enzyme, 

none of which directly determined SAM/SAH levels to monitor enzymatic activity. 

Over the course of a three hour reaction, 100 µL aliquots were withdrawn, filtered to 

remove enzyme and the filtrate analyzed by HPLC.  The chromatogram in Figure 33 

clearly detects changes in the relative amounts of SAM to SAH over the assay time 

validating this method.  Although these assays may not be the best choice for 

determination of accurate kinetic parameters, they are sufficient to observe 

methyltransferase activity qualitatively, as the COMT experiments demonstrate. 

  

4.2.3 ITC does not detect any interactions between the rhizopines and MosA 

 Isothermal titration calorimetry is a valuable technique for thermodynamically 

characterizing biomolecular associations.  In a single experiment ∆H, Ka, ∆G, ∆S and n 

can be determined making this technique extremely valuable in biological chemistry.  
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ITC is a very attractive tool for investigation of MosA’s role in rhizopine biosynthesis 

as it should detect any specific intermolecular interactions between SI and 3-MSI with 

MosA. 

 Titrations of SI, 3-MSI and SAM into buffered solutions of MosA produced 

peaks of similar magnitude throughout each experiment.  Titration of those molecules 

into identical buffer produced heats of dilution which once subtracted from the data 

obtained, resulted in effectively canceling out the heats determined for each titration of 

the rhizopines and SAM into MosA (Figure 40).  Consequently, no interactions between 

MosA and the rhizopines or SAM were detected by ITC.  Furthermore, titrations of SI 

into 2-OB-saturated solutions of MosA produced heats consistent with dilution heats 

obtained without enzyme.  The failure to detect interactions between MosA and the 

rhizopines and SAM strongly supports the conclusion that MosA is only a DHDPS and 

not an O-methyltransferase in the production of 3-MSI from SI.   

The reaction in Figure 5, although hypothetically possible, has to my knowledge 

never been observed as part of an enzymatic or nonenzymatic mechanism.  It was an 

exciting possibility that seemed to be supported by initial findings that 2-OB interacted 

with MosA.  The interaction of 2-OB with enzymes that use pyruvate as a substrate is 

not uncommon due to the structural similarity of the two 2-oxo acids.  Furthermore, 

since the aldolase reaction requires close juxtaposition of the aldehyde carbonyl of ASA 

to the pyruvate enamine, there should be enough room to accommodate the presence of 

a longer alkyl tail as in 2-OB.  In fact, other long chain 2-oxo acids, as well as succinic 

acid semialdehyde, are inhibitors of DHDPS from E. coli, with several published crystal 

structures containing these molecules in the active site.
33
  It has been shown previously 
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that 2-OB is a competitive inhibitor of DHDPS from E. coli
34
 and in agreement with 

MosA, no aldolase product is detected upon replacement of 2-OB in the DHDPS assay.  

This may be due to steric hindrance of the C-4 carbon of 2-OB preventing the 

electrophilic carbon of ASA from getting close enough for the aldol reaction.  

Alternatively, the tautomerization of the Schiff base to the enamine is not occurring 

within the active site.   The C-4 methyl group of the 2-OB may sterically clash with 

active site residues of MosA preventing tautomerization and subsequent aldolase 

activity.  No evidence for either of these scenarios was obtained.  Another important 

point to consider is that SI had almost no effect on the DHDPS reaction.  If SI was 

indeed a substrate of MosA sharing the same active site as the aldol reaction, one would 

expect it affect the DHDPS activity.  However, little effect was observed by SI on the 

DHDPS reaction catalyzed by MosA.  In addition, no calorimetrically detected 

interactions were observed to occur between the rhizopines and MosA.  

 In light of the evidence that MosA is only a DHDPS, how does one explain the 

results observed in rhizopine biosynthesis?  To begin with, all of the rhizopine 

experiments provided indirect evidence that MosA was a methyltransferase.  The first 

hint that MosA may be involved in 3-MSI biosynthesis comes from Sm 220-3, a strain 

closely related to Sm L5-30.  In Sm 220-3 the mos locus shares extensive similarity to 

that of the mos locus of Sm L5-30 with the exception that it lacks the mosA gene. In Sm 

220-3 only SI is produced suggesting that MosA must be involved in 3-MSI 

biosynthesis.  However, this is only indirect evidence as discussed by the authors 

themselves.
15
 Furthermore, Sm 220-3 and Sm L5-30 are only related strains of bacteria 
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meaning other, perhaps important genetic differences exist, limiting the extent of the 

conclusions.  

 In addition to global genetic differences between the two strains, differences in 

the mos genes also exist.  For example, the MosB protein from Sm 220-3 has 5 amino 

acids different from that of the MosB from L5-30.  Although the function of this protein 

has yet to be demonstrated in vitro its amino acid sequence suggests it is likely an 

inosose-aminotransferase.
13
  Although it is unlikely that the differences in 5 amino acids 

would significantly alter the substrate specificity or catalytic activity of MosB, it must 

be considered.  On the other hand, MosC which is believed to be a transport protein, has 

26 amino acids differing between Sm 220-3 and L5-30.  This indicates genetic 

variations between the two strains that must be considered.  For example, transport of 

rhizopine precursors into and out of the cell could be influencing production of 3-MSI.  

Metabolic comparison of the two bacterial strains is valid although conclusions must be 

considered carefully due to the genetic differences between the two strains. 

 Additional evidence that MosA was a methyltransferase was obtained by the use 

of a plasmid that contained a truncated mosA gene.  Restriction enzymes were used to 

cut a 771 bp internal fragment from the mosA gene creating a plasmid that would not 

express a functional MosA protein.  This plasmid was then introduced into 

Sinorhizobium meliloti 1021 (Sm 1021), a strain that does not produce rhizopines.  In 

the newly transformed Sm 1021 containing the truncated mosA, only SI was produced 

apparently confirming that MosA was a methyltransferase.  However, this again is only 

indirect evidence that MosA is a methyltransferase.  It is noteworthy that the rhizopine 

produced by this strain is identified by a very weak spot roughly corresponding to the 
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position of SI using high voltage paper electrophoresis.
15
  A significant reduction in SI 

amounts was observed and this was suggested to be due to the small non-functional 

upstream reading frame (i.e. the truncated mosA gene) that may be reducing expression 

levels of the Mos proteins and affecting rhizopine production.
142
  This brings into 

question what effects the presence of the disrupted mosA gene may have had on 3-MSI 

production by influencing the expression of other closely linked proteins such as MosB 

or MosC.  Interestingly, two other gene sequences encoding proteins homologous to 

MosA have been identified in the genome of Sm 1021.  One of the proteins shares 59% 

identity to MosA and is very likely a DHDPS.
13
  Since the expression of this protein 

would not have been affected by the truncation of MosA, changes in the rhizopine 

production actually resulting from removal of the catalytic enzyme is puzzling.  

 The in vitro investigation of MosA’s role in rhizopine biosynthesis failed to 

observe methyltransferase activity.  It is very likely that MosA is only a DHDPS that 

may somehow affect the production of 3-MSI indirectly.  Perhaps biosynthesis of (S)-

lysine affects these pathways influencing methyltransferase activity.  Alternatively, 

MosA may have nothing at all to do with rhizopine biosynthesis and is only an isozyme 

of DHDPS that belongs to the NAL sub-family of enzymes and a member of the 

metabolic pathway producing (S)-lysine in sinorhizobia.   

 

 

4.3 The binding thermodynamics of substrate and inhibitors to MosA 

  Prior to the use of ITC to investigate rhizopine interactions with MosA, it was 

decided to characterize the thermodynamics of associations between MosA and known 
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substrates and inhibitors.  Consequently, titrations of pyruvate, 2-OB or lysine into 

buffered solutions of MosA would allow us to evaluate the practicality of applying this 

technique to the rhizopine investigation.  Additionally, ITC could provide interesting 

thermodynamic insight into the binding forces driving the interactions between MosA 

and its substrates and inhibitors.  Once the characterization of the known associations 

was accomplished, experiments to detect any interactions between MosA and the 

rhizopines could be pursued with confidence. 

 Dissection of the thermodynamic parameters upon biomolecular associations is 

important in understanding binding affinity.
80  
In general, binding interactions that are 

exothermic are due to the formation of hydrogen bonds, van der Waals forces and 

electrostatic interactions stronger or more numerous than those that existed prior to the 

binding event.  These enthalpic contributions can arise from ligand-protein, protein-

solvent and ligand-solvent interactions.
81
 Entropy, on the other hand, is more 

complicated due to the importance of solvent effects arising from the degree of 

hydration of the protein and ligand.
82
  Furthermore, during a binding event, 

contributions to entropy come from overall rotational and translation degrees of 

freedom of both protein and ligand.  A third contribution includes both internal 

rotational and vibrational entropy of both ligand and protein plus any changes upon 

ionization.
101
 During a typical association between a ligand and protein, positive 

contributions to entropy are usually due to release of solvent from protein and ligand 

upon binding while negative contributions usually occur from loss of translational, 

vibrational and rotational entropy of both protein and ligand.
101
 The overall result for 
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the binding enthalpy and entropy is a collection of all the contributions that result in the 

thermodynamic values for the association.   

It has been shown that MosA catalyzes the formation of a Schiff base between 

pyruvate and most likely an active site lysine.
13
  As shown in Figure 34, binding 

isotherms from ITC experiments of pyruvate titrations into MosA determined that the 

interaction was characteristic of a low affinity system.  Typically, low affinity systems 

cannot be accurately studied with ITC as discussed by Wiseman in the inaugural ITC 

report.
95
  Recently, Turnbull

96
 showed that reliable binding data can be obtained for low 

affinity systems if the following four criteria are met:  1) the binding stoichiometry is 

known, 2) a sufficient portion of the binding isotherm is used for the analysis, 3) 

accurate determinations of the concentrations of both ligand and macromolecule, and 4) 

adequate signal to noise ratio.  All four of these criteria were met with the MosA-

pyruvate system. 

 In order to extract reliable data from ITC it was important that the binding 

stoichiometry was known prior to the curve fitting process.  Results from Schiff base 

trapping experiments of MosA in the presence of pyruvate and NaBH4 indicated that 

one molecule of pyruvate was bound per monomer of MosA.  Furthermore, the crystal 

structure of MosA that contained pyruvate in the active site confirmed the 

stoichiometry.  This stoichiometry was also assumed for 2-oxobutyrate titrations into 

MosA.  Prior to the curve fitting, a stoichiometry of n = 1.0 was input into the 

Bindworks software while ∆H and Ka were allowed to vary.  For pyruvate titrations into 

MosA, a hyperbolic isotherm characteristic of low affinity systems was observed.  The 
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thermodynamic parameters obtained are reproducible with MosA remaining visually 

soluble over the course of the experiments. 

 The thermodynamic values obtained for Schiff base formation between MosA 

and pyruvate, summarized in Table 3, indicate the process is entropically driven.  This 

is not surprising as the burial of the negatively charged pyruvate into the active site of 

MosA should release water from both the surface of pyruvate and the MosA active site 

with favorable entropy.  Furthermore, since the reaction itself involves MosA and 

pyruvate forming the MosA-pyruvate Schiff base and water, no large decrease in 

rotational and translational entropy is expected.   

 In addition to the favorable entropy, the enthalpy term of this reaction is also 

favorable likely due to the formation of the imine and some favorable interactions in the 

active site of MosA.  Similar thermodynamic values were obtained by ITC for Rho 

protein covalently binding an inhibitor through a Schiff base formed between a binding 

site lysine and an aldehyde group.
97
  The Kd extracted for pyruvate’s interaction with 

MosA was quite close to the KM of pyruvate, determined kinetically, supporting that the 

ITC technique and the criteria outlined for low affinity systems was applicable in this 

case.  This research represents the first reported example of an enzyme-covalent 

intermediate which has been thermodynamically characterized by ITC. 

 In addition to providing binding information, ITC is also useful in diagnosing 

the release of protons to or from the solvent during a protein-ligand association.  This is 

achieved by performing the ITC experiments in different buffers that vary in their 

ionization enthalpy.  Since the enthalpy of proton transfer to and from buffer molecules 

contributes to the enthalpy of binding, proton transfers in different buffer systems 
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would result in significantly different overall enthalpy.  Pyruvate titrations into MosA 

buffered with imidazole at pH 7.7 (the ionization enthalpy of imidazole ∆H ≈ -36 

kJ/mol
143
) did not produce thermodynamic parameters significantly different from those 

titrations buffered with Tris at pH 7.7 (the ionization enthalpy of Tris ∆H ≈ -47 

kJ/mol
143
) suggesting net proton exchange is not occurring upon formation of the Schiff 

base.  Furthermore, if a proton was released into the solvent during the formation of the 

pyruvate-MosA Schiff base, it is reasonable to expect much larger enthalpy values per 

injection than those experimentally observed.  For example, a typical ITC experiment 

had approximately 0.07 µmoles of MosA monomer buffered with imidazole.  Upon 

injection of pyruvate, assuming all of the MosA monomer is forming a Schiff base with 

pyruvate and releasing a proton, one would expect to see approximately 2500 µJ of heat 

released from ionization of imidazole.  Experimentally, each injection was about 100 µJ 

for the first few titrations which represent the largest heats of the experiment.  This is 

significantly lower than expected if proton release and ionization of buffer molecules 

was occurring.  Additionally, the mechanism of Schiff base formation does not require 

the net release or uptake of protons into the solvent, justifying this observation.   

 To characterize further the covalent interaction between MosA and pyruvate, 

heat capacity changes were examined by comparing enthalpy values extracted from 

experiments done in the range 15 ºC - 25 ºC.  The thermodynamic parameters (Table 3) 

obtained did not differ significantly between the two temperatures suggesting small 

changes in heat capacity for this system.  Heat capacity changes offer insight into the 

participation of solvent in the association of two molecules and is further discussed 

below. 
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 In analogy to pyruvate, 2-OB’s interaction with MosA was examined by ITC.  

The thermodynamic values for the interaction between 2-OB and MosA were quite 

similar to those values obtained from the MosA-pyruvate system suggesting similar 

chemistry is taking place (see Table 3).  As with pyruvate, entropy is the dominant 

parameter with a slightly favorable contribution from enthalpy.  However, both 

enthalpy and entropy changes for 2-OB were slightly less favorable compared to the 

values determined for pyruvate.  Kinetically-determined Ki values of 2-OB were 

approximately 1 mM which compared favorably to dissociation constants of about 2 

mM as determined by ITC.  The resulting isotherms plotted for the 2-OB/MosA system, 

shown in Figure 35, demonstrate that we are approaching the detection limits of the ITC 

instrument.  This is reflected in the scatter of data thus increasing the errors associated 

with the thermodynamic parameters for 2-OB.  The general thermodynamic trends 

observed between pyruvate and 2-OB interactions with MosA are most important.  

However, the accuracy of the calorimetrically determined dissociation constants for the 

pyruvate/2-OB and MosA system is supported by kinetically determined Ki and KM 

values. 

 The next set of ITC experiments were designed to characterize 

thermodynamically the cooperative association of (S)-lysine and MosA which should 

provide insight into the allosteric inhibition of the DHDPS enzymes.  The residues 

involved in binding of (S)-lysine to DHDPS from E. coli have been studied by X-ray 

crystallography and discussed in section 1.3.1.  The inhibition of DHDPS from E. coli 

by (S)-lysine was initially reported to be uncompetitive with respect to pyruvate.
34
  The 

labeling of (S)-lysine as an uncompetitive inhibitor implies that it binds only after 
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pyruvate has occupied the active site in DHDPS.  However, Gerrard has recently 

reported that (S)-lysine is a mixed inhibitor; binding to DHDPS in the presence or 

absence of pyruvate.
40
  Direct measurement of the binding parameters of (S)-lysine to 

MosA in the presence and absence of pyruvate would directly determine the nature of 

the inhibition.  In addition to the binding issues, the mechanism through which (S)-

lysine exerts its influence on DHDPS activity is unknown.  Consequently, ITC can 

provide thermodynamic insight into the inhibition of MosA leading to further 

understanding of DHDPS’s from other organisms.   

 ITC experiments were conducted by titrating (S)-lysine into pyruvate-saturated 

solutions of MosA.  The resulting isotherm shown in Figure 36.  The thermodynamic 

parameters summarized in Table 4 illustrate a very strong cooperativity of binding that 

exists between the first and second (S)-lysine.  The thermodynamic parameters obtained 

for binding of the first inhibitor molecule revealed the association is driven by a 

favorable enthalpy with a negligible change in entropy.   Thermodynamic parameters 

extracted for the second (S)-lysine revealed the association is largely dominated by an 

exothermic enthalpy with further contribution from a favorable entropy.  With both 

enthalpy and entropy driving the association, MosA has a much higher affinity for the 

second (S)-lysine compared to the first.   

 Rationalization of the thermodynamic parameters in Table 4 is a bit difficult as 

no crystal structure of MosA simultaneously bound to pyruvate and (S)-lysine is 

available.  However, some general suggestions can be proposed to rationalize the 

thermodynamics observed.  To begin with, (S)-lysine is a highly charged zwitterionic 

molecule with four relatively non-polar methylene groups and one methyne group.  
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Consequently, upon binding to MosA, ordered water should be freed from both the 

surface of (S)-lysine and the binding site.  However, for the binding of the first (S)-

lysine we observe a negligible entropy change, suggesting that the entropy gained from 

the release of water into the bulk is cancelled out by a loss in conformational and 

internal rotational freedom of the protein and the ligand itself.  The enthalpy term is 

slightly favorable and is the dominant parameter driving the weak association.  The 

relatively low enthalpic values are due to the overall contributions made from the 

noncovalent interactions in the partially formed binding site being effectively cancelled 

out by the enthalpic cost of shedding the binding site and the ligand of solvent.   

For the second (S)-lysine, a much more favorable enthalpy is not surprising for 

this association as the first (S)-lysine completes the binding pocket. This is reflected in 

the observed exothermicity and is likely a consequence of the formation of the 

hydrogen bonds, dipole and ionic interactions in the (S)-lysine-MosA complex.  These 

are significantly stronger than those noncovalent associations formed between the 

solvent and ligand and between the solvent and binding site.  A portion of this enthapic 

gain may be due the first (S)-lysine diminishing the degree of solvation in the binding 

site.  Consequently, the association of the second inhibitor would lead to a more 

negative value of change in enthalpy as no strong interactions between the solvent and 

the binding site would require breaking upon ligand association.  In addition, any 

conformational changes of the enzyme structure associated with the binding of the 

second inhibitor would contribute to more favorable entropy.  However, this could 

potentially be partially cancelled out by increased solvent exposure to protein structure 

resulting in ordering of water. 
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 As discussed above, the exact nature of the inhibition of DHDPS from E. coli by 

(S)-lysine was debated in the literature.  ITC experiments performed on MosA in the 

absence of pyruvate would shed light on the nature of (S)-lysine’s inhibition of DHDPS.  

If one could detect any interactions between MosA and (S)-lysine in the absence of 

pyruvate one could conclude that (S)-lysine is a mixed inhibitor with respect to 

pyruvate.  ITC revealed in Figure 37 that indeed (S)-lysine did interact with MosA 

without the need to bind pyruvate first.  Interestingly, values shown in Table 4 for the 

dissociation constants for both the first and second (S)-lysine molecules were relatively 

independent of pyruvate.  The thermodynamic parameters were not significantly 

different for the binding of the first (S)-lysine; however significant changes were 

observed in the enthalpy and entropy terms for the binding of the second lysine.  In the 

presence of pyruvate, the binding of the second (S)-lysine is dominated by a very large 

exothermic value of -21 kJ/mol.  However, without pyruvate, this value drops to -3.3 

kJ/mol but is compensated for by a large increase in the entropy.  This observation may 

be due to the presence of pyruvate ensuring that favorable enthalpic contacts are being 

formed between the enzyme and the second (S)-lysine that are lost without pyruvate.  

Without pyruvate, a slight change in the structure of the protein may prevent the 

formation of one or more hydrogen bonds upon inhibitor binding, leading to the less 

favorable enthalpic values. 

 Despite the lower enthalpy changes without pyruvate, the binding affinity 

remains relatively unchanged due to a significant increase in entropy.  One possible 

explanation for this gain in entropy could be a relative decrease in exposure of the 

protein to water upon inhibitor binding.  With pyruvate in the active site, slight changes 
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in the protein structure upon inhibitor binding may lead to increased exposure to water.  

This would result in favorable contributions to enthalpy and unfavorable contributions 

to entropy.  In the absence of pyruvate, the active site is filled with water molecules.   

Therefore, binding of the second (S)-lysine may not result in a significant change in 

hydration of the active site.  This would preserve the entropy gains from removal of 

solvent from the surface of (S)-lysine and the inhibitor binding site without being 

partially cancelled out by active site exposure to water.  The crystal structure of MosA 

with both pyruvate and (S)-lysine bound compared to a structure of MosA bound only 

to (S)-lysine will determine any changes in protein structure upon inhibitor binding.  

Any differences between the two structures will allow a complete understanding of the 

thermodynamic differences of (S)-lysine binding to MosA in the presence and absence 

of pyruvate as observed by ITC. 

 Titrations of (S)-lysine into 2-OB-saturated solutions of MosA also produced 

interesting results and the resulting isotherm is shown in Figure 38.  The parameters 

extracted (see Table 4) for the binding of the first (S)-lysine did not differ significantly 

from previous experiments.  On the other hand, the second (S)-lysine showed a 

favorable enthalpy of -14 kJ/mol, a value in between the -21 kJ/mol in the presence of 

pyruvate and -3.3 kJ/mol for the apo-enzyme. The favorable enthalpic interactions that 

are being formed upon the binding of (S)-lysine are only partially contributing to the 

enthalpy compared to when pyruvate is bound.  The entropy values, as with enthalpy, 

are in between those for MosA-pyruvate and apo-enyzme.  Since MosA has less affinity 

for 2-OB, the weaker association is reflected in the binding of the second (S)-lysine 

suggesting important linkage between the two sites.   Additionally, since the presence of 
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2-OB produces similar thermodynamic results as the presence of pyruvate upon the 

binding of (S)-lysine, this is strong evidence that 2-OB is interacting at the active site of 

MosA. 

 It is difficult to interpret the results obtained upon binding due to the complexity 

of the events, especially in the absence of structural data. However, it is clear that upon 

introduction of pyruvate or 2-OB into the active site of MosA, a significantly more 

enthalpically favorable interaction is occurring upon binding of the second (S)-lysine.   

In addition to local changes in the binding and active site structures, more global 

changes in the protein structure could occur.  As mentioned above, one could imagine 

“loosening” of the active site upon inhibitor binding, influencing catalytic activity while 

simultaneously exposing protein groups to the solvent.  If the presence of a 2-oxo acid 

increased exposure of protein groups to solvent upon binding of the second (S)-lysine, 

this should be reflected in heat capacity changes at different temperatures.    

 Changes in heat capacity (∆Cp) upon intermolecular associations provide 

information regarding molecular interactions with aqueous solvent upon binding.  

Although the interpretation of such data is not always straightforward,
144
 it typically 

provides valuable insight into the mechanism by changes in hydration levels of 

solutes.
145
  For example, exposure of hydrophobic and polar solutes are accompanied by 

changes in heat capacity, but of opposite sign.
102
  In 1977 Sturtevant reported several 

aspects of binding involving proteins that can affect heat capacity changes.  These were 

described as 1) hydrophobic interactions, 2) electrostatic interactions, 3) hydrogen 

bonds, 4) intramolecular vibrations, 5) changes in equilibria, and 6) temperature-

dependent conformational changes.
101
  Consequently, biophysical analysis of protein-
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ligand interaction at different temperatures can provide insight into the mechanisms 

dominating the interaction.   

 The vast majority of ∆Cp data on protein-ligand interactions are characterized by 

a negative heat capacity change.
144
   This value is typically dominated by “hydrophobic 

interactions” which display more favorable enthalpic and less favorable entropic effects 

at higher temperatures.  Although uncommon, positive heat capacity changes associated 

with binding between proteins and small molecules are known
99,103,105,106,146

 and 

typically result from exposure of hydrophobic surfaces to solvent,
147
 dehydration of 

polar surfaces
148
 or structural transitions of the protein-ligand complex.

144
 

 ITC experiments of titration of (S)-lysine into pyruvate-saturated solutions of 

MosA at 15, 18, 20 and 25 ºC revealed a large positive ∆Cp of approximately 1 

kJ/mol/K indicating the importance that solvent plays in the binding of (S)-lysine to 

MosA (see Table 5).  During this event the burial of a highly charged molecule into a 

polar-charged binding site on MosA would contribute positively to ∆Cp.  This positive 

contribution to heat capacity has been suggested to be due to increased thermal motion 

disordering the ions’ double layer resulting in a smaller decrease in entropy at higher 

temperatures.
102
  However, the contributions from removal of ions would not entirely 

account for the magnitude of the heat capacity observed.  Heat capacities of hydration 

for the ammonium ion were experimentally found to be -28.9 J/mol/K and for the 

carboxylate ion, -46 J/mol/K.
102
   Consequently, the burial of (S)-lysine at 25 ºC would 

approximately contribute 104 J/mol/K to the ∆Cp, assuming the values are additive.  

Furthermore, this is ignoring the hydrophobic interactions that methylene groups of (S)-

lysine would have with water that should contribute negatively to the ∆Cp possibly 
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canceling out this effect. On the other hand, the binding site on MosA which already 

has one (S)-lysine and several other charged groups would require desolvation upon 

binding of the second inhibitor, contributing positively to the ∆Cp. 

 A common source of positive ∆Cp is conformational changes upon association 

of a ligand and a protein.  Often, loosening of the protein structure results in exposure of 

hydrophobic and hydrophilic residues to the solvent as seen with some antibody-antigen 

interactions.
99
  In the case of hydrophobic residues, this would have the opposite effect 

of hydrophobic interactions leading to a positive heat capacity change.  With DHDPS 

from E. coli, the binding of (S)-lysine did not bring about large conformational changes 

although several small changes were observed.
29
  However, the crystal structure solved 

was of DHDPS bound to (S)-lysine without pyruvate present.  ITC experiments clearly 

illustrated the thermodynamic differences upon binding (S)-lysine to MosA in the 

presence and absence of pyruvate.  Consequently, any inferences made regarding the 

interaction of DHDPS and (S)-lysine on apo-enzyme may only provide part of the story 

in attempts to rationalize the inhibition observed.     

 The positive heat capacity changes are indicative that solvent plays an important 

role in the binding of (S)-lysine with pyruvate in the active site.  This confirms part of 

the previous discussion suggesting the importance of solvent behind the 

thermodynamics of MosA’s association with (S)-lysine.  This would create an 

enthalpically favorable contribution from the ordered water making the overall enthalpy 

more exothermic as observed.  Alternatively, entropically unfavorable solvent-protein 

interactions would lead to a decrease in the overall entropy gains from desolvation of 

the inhibitor and its binding site.  Consequently, we observe an enthalpically dominant 
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driving force with a favorable but less dominant value for entropy.  In addition, any 

changes in protein structure that lead to an increase in the number of soft internal 

vibrations will contribute positively to heat capacity.
101,104

 Thus, upon binding of the 

second (S)-lysine with pyruvate present in the active site, a loosening of protein 

structure may lead to an increase in the number of easily accessible vibrational states 

contributing to the positive heat capacity observed. 

Systems that display large heat capacity changes are often subject to entropy-

enthalpy compensation.  This is typical of many protein-ligand interactions and seems 

evident in the binding of MosA to the second (S)-lysine in the presence of pyruvate.  

However, due to the large degree of error in the values of entropy, a linear equation is 

impossible to fit.  As illustrated in Figure 39, the enthalpy component of the interaction 

decreases significantly with increasing temperature.  The data suggests that this is 

compensated by more favorable entropy with increasing temperature keeping ∆G 

relatively unchanged.  The compensation phenomenon has been suggested to be due to 

a natural consequence of any system that relies on non-covalent interactions over the 

course of an association and is a source of frustration when dissecting binding forces of 

protein-ligand interactions.
144
  In processes that display entropy-enthalpy compensation, 

a plot of ∆H vs T∆S typically reveals a linear relationship.  If the slope of this 

relationship is about 1.0 this implies the compensation is complete and ∆G is 

independent of temperature.  From the data of MosA binding the second (S)-lysine, it 

appears that the enthalpy of this interaction is not fully compensated by entropy.  A 

more dominant enthalpy term may suggest an efficient displacement of water from the 



 

    152 

(S)-lysine binding site
149
 which is supported by crystal structures of the DHDPS from E. 

coli. 

 Isothermal titration calorimetry experiments have proved valuable in 

understanding the thermodynamics of the interactions between pyruvate, 2-OB and (S)-

lysine and MosA.  Furthermore, the inhibition displayed by (S)-lysine has been 

determined to be mixed as binding of the inhibitors clearly takes place prior to and after 

the binding of pyruvate.  Exactly how (S)-lysine affects MosA during its inhibition is 

still unclear; however, ITC data suggests the importance of slight protein structural 

changes that lead to the inhibition.  A crystal structure of the MosA-pyruvate-(S)-lysine 

complex would help determine exactly how the inhibitor exerts its influence on MosA. 
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5.  Conclusions 

 

 The main goal of this thesis was to determine if MosA, a dihydrodipicolinate 

synthase, is also an O-methyltransferase catalyzing the formation of 3-MSI from SI.  

Prior to the investigation three synthetic routes towards SI were developed with yields 

of 11%, 22% and 23%. In addition, two synthetic routes were developed to produce 

racemic 3-MSI with yields of 13% and 20%.  Once these compounds were in hand the 

focus turned to finding evidence that MosA may be a methyltransferase. 

 The rhizopine investigation began with the finding that 2-OB may be a substrate 

of MosA.  Using kinetic analysis it was determined that 2-OB is a competitive inhibitor 

of MosA’s DHDPS activity.  Furthermore, HPLC-MS demonstrated that 2-OB forms a 

Schiff base with MosA; however, no methyltransferase activity was observed in HPLC 

assays.  Interestingly, SI had no significant effects on the DHDPS reaction nor could 2-

OB replace pyruvate as the substrate for the aldolase chemistry catalyzed by MosA.  In 

addition, the ubiquitous methyl donor SAM failed to provide MosA with any 

methyltransferase activity observable by HPLC.  ITC also failed to provide any 

evidence that SI, 3-MSI, SAM and SI in the presence of 2-OB formed any significant 

associations with MosA.  Consequently, MosA is a DHDPS and not an O-

methyltransferase as this research has failed to provide any in vitro evidence to suggest 

otherwise.   In addition, it is likely that MosA is a member of the (S)-lysine biosynthetic 

pathway in Sinorhizobia due to the structural and enzymatic characteristics of MosA 
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being so similar to that of DHDPS from E. coli.  Experimental evidence, such as the 

Michaelis constants associated with the DHDPS activity and the (S)-lysine inhibition, 

strongly support this conclusion. 

  ITC was used to determine that the binding of pyruvate and 2-OB to MosA was 

largely entropically driven.  This was the first time an enzyme-covalent intermediate 

has been observed by ITC.  In addition, (S)-lysine was found to bind cooperatively to 

MosA with binding constants determined for the second association of inhibitor to 

MosA significantly higher than the first.  Furthermore, (S)-lysine was found to be a non-

competitive inhibitor of MosA with respect to pyruvate as binding constants were 

measurable for associations between the inhibitor and the enzyme in the presence and 

absence of pyruvate.  Interestingly, MosA solutions saturated with pyruvate 

demonstrated that (S)-lysine binding was dominated by enthalpy.  However, without 

pyruvate in the enzyme solution, the binding affinity remained similar but now the 

association was largely dominated by entropy. Consequently, the presence of the 

substrate significantly influenced the binding thermodynamics of (S)-lysine’s 

association with MosA.  Similar effects were observed when pyruvate was replaced 

with 2-OB in the enzyme solution.  This clearly demonstrates the aldolase active site 

and the lysine binding site possesss significant linkage that allow control of the 

enzymatic activity. The importance of solvent in the association between the pyruvate-

MosA complex and the second (S)-lysine was revealed by a large positive heat capacity 

change.  This heat capacity change was likely due to removal of lysine ions out of the 

aqueous solution and slight conformational changes to MosA upon inhibitor binding.  

This would lead to protein structural changes that increased hydration levels of nonpolar 
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groups and hence the positive heat capacity change.  The thermodynamic parameters 

obtained in this research have provided valuable insight into understanding binding 

affinity of MosA to its substrates and inhibitors.  Furthermore, this research resulted in 

the groundwork for an understanding of the mechanism of the inhibition of MosA by 

(S)-lysine.  This thermodynamic data will prove to be extremely useful when used in 

conjunction with X-ray crystallographic studies of MosA with the inhibitors and 

substrates bound.  
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6. Future work 

 

 The future work of this project would be to finally settle the issue of rhizopine 

biosynthesis by finding the protein or proteins responsible for the production of 3-MSI 

and SI.  A good place to start would be MosB, a protein found in the mos operon that 

shares identity with StsC; an amino acid-inosose aminotransferase.  It is likely that this 

enzyme could produce either SI or 3-MSI.  In addition, the thermodynamic parameters 

determined for the association between MosA and (S)-lysine will lead to an 

understanding of the binding affinity and provide interesting insight into the mechanism 

of inhibition.  However, this will require the direct comparison of the crystal structures 

of the MosA/(S)-lysine complex with and without pyruvate bound.  Changes observed 

between the two structures can be used to rationalize the thermodynamic differences of 

(S)-lysine binding in the presence and absence of pyruvate.  Furthermore, since MosA is 

a DHDPS and can be studied using ITC, this may be a suitable system for the 

calorimetry assisted development of potent inhibitors of DHDPS’s from E. coli. The 

design of good inhibitors of the DHDPS enzyme has eluded researchers thus far despite 

receiving significant attention.  With the exception of our group, none of the active 

DHDPS researchers have elicited the use of ITC to understand binding affinity of small 

molecules to these aldolases. 
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