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Abstract

English. We present the FBK partic-
ipation at the EVALITA 2018 Shared
Task “SUGAR – Spoken Utterances
Guiding Chef’s Assistant Robots”.
There are two peculiar, and challeng-
ing, characteristics of the task: first,
the amount of available training data
is very limited; second, training con-
sists of pairs [audio-utterance,
system-action], without any in-
termediate representation. Given the
characteristics of the task, we experi-
mented two different approaches: (i)
design and implement a neural architec-
ture that can use as less training data as
possible, and (ii) use a state of art tagging
system, and then augment the initial
training set with synthetically generated
data. In the paper we present the two
approaches, and show the results obtained
by their respective runs.

Italiano. Presentiamo la partecipazione
di FBK allo shared task “SUGAR –
Spoken Utterances Guiding Chef’s As-
sistant Robots” a EVALITA 2018. Ci
sono due caratteristiche peculiari del task:
primo, la quantitá di dati di training é
molto limitata; secondo, il training con-
siste di coppie [enunciato-audio,
azione-sistema], senza alcuna rap-
presentazione intermedia. Date le carat-
teristiche del task, abbiamo sperimentato
due approcci diversi: (i) la progettazione e
implementazione di una architettura neu-
rale che riesca ad usare la minor quantitá
di traning possibile; (ii) l’uso di un sis-
tama di tagging allo stato dell’arte, au-
mentato con dati generati in modo sin-
tetico. Nel contributo presentiamo i due

approcci, e mostriamo i risultati ottenuti
nei loro rispettivi run.

1 Introduction

In the last few years, voice controlled systems
have been arising a great interest, both in research
and industrial projects, resulting in many appli-
cations such as Virtual Assistants and Conversa-
tional Agents. The use of voice controlled systems
allows to develop solutions for contexts where the
user is busy and can not operate with traditional
graphical interfaces, such as, for instance, while
driving a car or while cooking, as suggested by
the SUGAR task.

The traditional approach to Spoken Language
Understanding (SLU) is based on a pipeline that
combines several components:

• An automatic speech recognizer (ASR),
which is in charge of converting the spoken
user utterance into a text.

• A Natural Language Understanding (NLU)
component, which takes as input the ASR
output and produces a set of instructions to be
used to operate on the system backend (e.g. a
knowledge base).

• A Dialogue Manager (DM), which selects the
appropriate state of the dialogue, based on the
context of previous interactions.

• A domain Knowledge Base (KB), which is
accessed in order to retrieve relevant informa-
tion for the user request.

• An utterance generation component, which
produces a text in natural language by taking
the dialogue state and the KB response.

• Finally, a text-to-speech (TTS) component is
responsible for generating a spoken response
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to the user, on the base of the text produced
by the utterance generation component.

While the pipeline approach has proven to be
very effective in a large range of task-oriented
applications, in the last years several deep learn-
ing architectures have been experimented, result-
ing in a strong push toward so called end-to-end
approaches (Graves and Jaitly, 2014; Zeghidour
et al., 2018). One of the main advantages of
end-to-end approaches is avoiding the indepen-
dent training of the various components of the
SLU pipeline, this way reducing the need of hu-
man annotations and the risk of error propagation
among components. However, despite the encour-
aging results of end-to-end approaches, they still
need significant amount of training data, which
are often not available for the task at hand. This
situation is also true in the SUGAR task, where,
as training data are rather limited, end-to-end ap-
proaches are not directly applicable.

Our contribution at the SUGAR task mainly fo-
cuses on the NLU component, since we make use
of an ‘off the shelf’ ASR component. In particu-
lar, we experimented two approaches: (i) the im-
plementation a neural NLU architecture that can
use as less training data as possible (described in
Section 4), and (ii) the use of a state of art neu-
ral tagging system, where the initial training data
have been augmented with synthetically generated
data (described in Section 5 and 6).

2 Task and Data description

In the SUGAR task (Maro et al., 2018) the sys-
tem’s goal is to understand a set of command in
the context of a voice-controlled robotic agent that
acts as a cooking assistant. In this scenario the user
can not interact using a "classical" interface be-
cause he/she is supposed to be cooking. The train-
ing data set is a corpus of annotated utterances;
spoken sentences are annotated only with the ap-
propriate command for the robot. Transcription
from speech to text are not available.

The corpus is collected in a 3D virtual en-
vironment, designed as a real kitchen, where
users give commands to the robot assistant to ac-
complish some recipes. During data collection
users are inspired by silent cooking videos, which
should ensures a more natural spoken production.
Videos are segmented into short portions (frames),
that contain a single action, and sequentially
showed to users, who have to utter a single sen-

tence after each frame. The user’s goal is to guide
the robot to accomplish the same action seen
in the frame. The resulting dataset is a list of ut-
terances describing the actions needed to prepare
three different recipes. While utterances are to-
tally free, the commands are selected from a fi-
nite set of possible actions, which may refer ei-
ther to to ingredients or tools. Audio files are
recorded in a real acoustic environment, with a mi-
crophone posed at about 1 mt of distance from the
different speakers. The final corpus contains au-
dio files for the three recipes, grouped for each
speaker, and segmented into sentences represent-
ing isolated commands (although few audio files
may contain multiple actions (e.g. "add while mix-
ing")).

3 Data Pre-processing

The SUGAR dataset is constituted by a collection
of audio files, that needs to be pre-processed in
several ways. The first step is ASR, i.e., tran-
scription from audio to text. For this step we
made use of an external ASR, selected among the
ones easily available with a Python implementa-
tion. We used the Google API, based on a com-
parative study of the different ASR (Këpuska and
Bohouta, 2017); we conducted some sample tests
to be sure that the ASR ranking is reasonable also
for Italian, and we confirmed our choice.

After this step, we split the dataset into train-
ing set, development set and test set; in fact the
SUGAR corpus is a unique collection and there
is no train-dev-test split. Although the train-dev-
test split is quite standard, with two round of 80-
20 split of the dataset (80% of the dataset is the
training and development set, which we split 80-
20 again, and 20% is the test set), in the SUGAR
task we split the dataset in a more complex way. In
fact, the dataset is composed by only three differ-
ent recipes (i.e. a small amount of ingredients and
similar sequence of operations), and with a classi-
cal 80-20 split the training, the development and
the test sets would have been too different from
the final set (the one used to evaluate the system).
This is due to the fact this new set is composed by
new recipes, with new ingredients and new a se-
quence of operations. To deal with this peculiar
characteristic, we decided to use the first recipe as
test set and the other two as train-dev sets. The fi-
nal split of the data resulted in 1142 utterance and
command pairs for training, a set of 291 pairs for



development and a set of 286 pairs for test.
Finally we substituted all the prepositions in the

corpus with an apostrophe (e.g. "d’" "l’", "un’")
with their corresponding form without apostrophe
(e.g. "di", "lo", "una"). This substitution helps the
classifiers to correctly tokenize the utterances.

In order to take advantage of the structure of the
dialogue in the dataset, in every line of the corpus
we added up to three previous interactions. Such
previous interactions are supposed to be useful to
correctly label a sample, because it is possible that
either an ingredient or a verb can appear in a pre-
vious utterance, while being implied in the cur-
rent utterance. The implication is formalized in
the dataset, in fact the implied entity (action or
argument) are surrounded by ∗. The decision of
having a "conversation history" of a maximum of
three utterances is due to a first formalization of
the task, in which the maximum history for every
utterance was set to three previous interactions.
Even if this constraint has been relaxed in the fi-
nal version of the task, we kept it in our system. In
addition, a sample test on the data confirms the in-
tuition that usually a history of three utterances is
enough to understand a new utterance. For sake of
clarity, we report below a line of the pre-processed
dataset:

un filo di olio nella padella # e poi verso lo uovo
nella padella # gira la frittata # togli la frittata dal
fuoco

where the first three utterances are the history in
reverse order, and the final is the current utterance.

4 System 1: Memory + Pointer Networks

The first system presented by FBK is based on a
neural model similar to the architecture proposed
by (Madotto et al., 2018), which implements a
encoder-decoder approach. The encoder consists
of a Gated Recurrent Unit (GRU) (Cho et al.,
2014) that encodes the user sentence into a latent
representation. The decoder consists of a combi-
nation of i) a MemNN that generate tokens from
the output vocabulary, and ii) a Pointer network
(Vinyals et al., 2015) that chooses which token
from the input is to be copied to the output.

4.1 Encoder

Each word in the input sentence x from the user
is represented in high-dimension by using an em-
bedding matrix A. These representations are en-
coded by a Gated Recurrent Unit. The GRU takes

in the current word at time t and the previous hid-
den state of the encoder to yield the representation
at time t. Formally,

ht = GRU(ht−1, xt)

where xt is the current word at time t and ht−1 is
the previous hidden state of the network. The final
hidden state of the network is then passed on to the
decoder.

4.2 Decoder

The input sentences, denoted by x1, x2, ..xn, are
represented as memories r1, r2, ..rn by using an
embedding matrix R. A query ht at time t is gen-
erated using a Gated Recurrent Unit (GRU) (Cho
et al., 2014), that takes as input the previously gen-
erated output word ŷt−1 and the previous query
ht−1. Formally:

ht = GRU(ŷt−1, ht−1)

The initial query h0 is the final output vector o
output by the encoder. The query h is then used
as the reading head over the memories. At each
time-step t, the model generates two probabilities,
namely Pvocab and Pptr. Pvocab denotes the prob-
ability over all the words in the vocabulary and it
is defined as follows:

Pvocab(ŷt) = Softmax(Wht)

where W is the parameter learned during training.
The probability over the input words is denoted by
Pptr and is calculated using the attention weights
of the MemNN network. Formally:

Pptr(ŷt) = at

at,i = Softmax(hTt ri)

By generating two probabilities, Pvocab and
Pptr, the model learns both how to generate words
from the output vocabulary and also how to copy
words from the input sequence. Though it is possi-
ble to learn a gating function to combine the distri-
butions, as used in (Merity et al., 2016), this model
uses a hard gate to combine the distributions. A
sentinel token $ is added to the input sequence
while training and the pointer network is trained
to maximize the Pptr probability for tokens that
should be generated from output vocabulary. If the
sentinel token is chosen by Pptr, then the model



switches to Pvocab to generate a token, else the in-
put token specified by Pptr is chosen as output to-
ken. Though the MemNN can be modelled with
n hops, the nature of the SUGAR task and sev-
eral experiments that we carried on, showed that
adding more hops is not useful. As a consequence
the model is implemented as a single hop as ex-
plained above.

We use the pre-trained embeddings from (Bo-
janowski et al., 2016) to train the model.

5 System 2: Fairseq

The second system experimented by FBK is based
on the work in (Gehring et al., 2017). In particular,
we make use of the Python implementation of the
toolkit known as Fairseq(-py)1. The toolkit is im-
plemented using PyTorch, and provides reference
implementations of various sequence-to-sequence
models. There are configurations for several tasks,
including translation, language model and stories
generation. In our experiment we use the toolkit
as a black-box since our goal is to obtain a dataset
that could be used with this system; hence, we use
the generic model (not designed for any specific
task) without fine tuning. Moreover, we do not
add any specific feature or tuning for the implicit
arguments (the ones surrounded by ∗), but we let
the system learn the rule by itself.

A common approach in sequence learning is
to encode the input sequence with a series of
bi-directional recurrent neural networks (RNN);
this can be done with Long Short-Term Memory
(LSTM) networks, Gated Recurrent Unit (GRU)
networks or other types of network, and generate a
variable length output with another set of decoder
RNNs, not necessarily of the same type, both of
which interface via an attention mechanism (Bah-
danau et al., 2014; Luong et al., 2015).

On the other hand convolutional networks cre-
ate representations for fixed size contexts, that can
be seen as a disadvantage compared to the RNNs.
However, the context size of the convolutional net-
work can be expanded by adding new layers on top
of each other. This allows to control the maximum
length of dependencies to be modeled. Further-
more, convolutional networks allow paralleliza-
tion over elements in the sequence, because they
do not need the computations of the previous time
step. This contrasts with RNNs, which maintain
a hidden state of the entire past that prevents par-

1https://github.com/pytorch/fairseq.

allel computation within a sequence. This can in-
crease dramatically the training time of the sys-
tem without reducing the performance, as shown
in (Gehring et al., 2017).

The weak point of the system is that it needs a
consistent amount of training data to create rea-
sonable models. In fact, Fairseq(-py) trained with
only the SUGAR dataset can not converge and
gets stuck after some epochs, producing pseudo-
random sequences. Due to the small size of the
SUGAR training set, combined with its low vari-
ability (training data are composed by possible
variations of only two recipes), for the system is
impossible to learn the correct structure of the
commands (e.g. balancing the parenthesis) or to
learn how to generalize arguments. In order
to use effectively this system we have expanded
the SUGAR dataset with data augmentation tech-
niques, presented in Section 6.

6 Data augmentation

Overfitting is still an open issue in neural mod-
els, especially in situations of data sparsity. In the
realm of NLP, regularization methods are typically
applied to the network (Srivastava et al., 2014; Le
et al., 2015), rather than to the training data.

However, in some application fields, data aug-
mentation has proven to be fundamental in im-
proving the performance of neural models when
facing insufficient data. The first fields exploring
data augmentation techniques were computer vi-
sion and speech recognition. In these fields there
now exist well-established techniques for synthe-
sizing data. In the former we can cite techniques
such as rescaling or affine distortions (LeCun et
al., 1998; Krizhevsky et al., 2012). In the latter,
adding background noise or applying small time
shifts (Deng et al., 2000; Hannun et al., 2014).

In the realm of NLP tasks, data augmenta-
tion has received little attention so far, some no-
table exceptions being feature noising (Wang et
al., 2013) or Kneser-Ney smoothing (Xie et al.,
2017). Additionally, negative examples generation
has been used in (Guerini et al., 2018).

In this paper we build upon the idea of the
aforementioned papers by moving a step forward
and taking advantage of the structured nature of
the SUGAR task and of some domain/linguistic
knowledge. In particular, we used the following
methods to expand the vocabulary and the size of
the training data, but applying some substitution



strategies to the original data:

• most-similar token substitution: based on a
similarity mechanisms (i.e. embeddings).

• synonym token substitution: synonymy re-
lations taken from an online dictionary and
applied to specific tokens.

• entity substitution: replace entities in the
examples with random entities of the same
type taken from available gazetteers.

The first approach implies substituting a to-
ken from a training example with one of the five
most similar tokens (chosen at random) found
through cosine similarity in the embedding space
described in (Pennington et al., 2014). We use
the top five candidates in order to add variabil-
ity, since many tokens appeared multiple times in
the training data. If the token appeared also as an
argument in the command, it was substituted
as well, while if it appeared as action it was
left unchanged. This approach was applied with a
probability of 30% on each token of the utterances
in the training data.

The second approach has been used over verbs
recognized in training utterances using the TextPro
PoS tagger (Pianta et al., 2008). Such verbs have
been substituted with one possible synonym taken
from an electronic dictionary2. Also in this case,
the action in the command was kept the same
(in fact the verbs present in the utterance are usu-
ally paired with the action in the command).
The third approach has been used to substitute in-
gredients in the text with other random ingredients
from a list of foods (Magnini et al., 2018). In this
case the ingredient has been modified accordingly
also in the annotation of the sentence.

These methodologies allow to generate several
variants starting from a single sentence. While
the first approach has been used in isolation, the
second and the third one have been used together
to generate additional artificial training data. Do-
ing so, we obtained two different data sets: the
first is composed by 45680 pairs of utterances
and commands (most-similar token applied forty
times per example, 1142 ∗ 40); the second dataset
contains 500916 pairs (each original sentence got
at least each verb replaced 3 times, and for each of
these variants, ingredients were randomly substi-
tuted twice), the high number of variants is due to

2http://www.sinonimi-contrari.it/.

the inclusion of the history of three previous utter-
ances in the process.

7 Results

Actions Arguments
Memory + Pointer Networks

- Data Augmentation 65.091 30.856
+ Data Augmentation 65.396 35.786

Fine Tuning 66.158 36.102
Fairseq

+ Data Augmentation 66,361 46,221

Table 1: Accuracy of the two experimented ap-
proaches in recognizing actions and their argu-
ments.

Results of the two approaches are reported in
Table 1. Both approaches obtain a higher accu-
racy in recognizing actions, than in recogniz-
ing arguments. Fairseq trained with augmented
data is the top performer of the task, outperform-
ing more than 10% of accuracy on arguments
compared to the others approach. The ablation test
on Memory + Pointer Networks also show the im-
portance of data augmentation for tasks with low
resources, in particular fine tuning the classifier
with the new data.

8 Conclusion and Future Work

We presented the FBK participation at the
EVALITA 2018 Shared Task “SUGAR – Spo-
ken Utterances Guiding Chef’s Assistant Robots”.
Given the characteristics of the task, we exper-
imented two different approaches: (i) a neural
architecture based on memory and pointer net-
work, that can use as less training data as pos-
sible, and (ii) a state of the art tagging system,
Fairseq, trained with several augmentation tech-
niques to expand the initial training set with syn-
thetically generated data. This second approach
seems promising and in the future we want to
deeper investigate the effect of the different tech-
niques of data augmentation on the performances.
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