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Abstract

English. Machine learning from user cor-
rections is key to the industrial deploy-
ment of machine translation (MT). We in-
troduce the first on-line approach to auto-
matic post-editing (APE), i.e. the task of
automatically correcting MT errors. We
present experimental results of APE on
English-Italian MT by simulating human
post-edits with human reference transla-
tions, and by applying online APE on MT
outputs of increasing quality. By evaluat-
ing APE on generic vs. specialised and
static vs. adaptive neural MT, we address
the question: At what cost on the MT side
will APE become useless?

Italiano. L’apprendimento automatico
dalle correzioni degli utenti è fonda-
mentale per lo sviluppo industriale della
traduzione automatica (MT). In questo
lavoro, introduciamo il primo approccio
on-line al post-editing automatico (APE),
ovvero il compito di correggere automati-
camente gli errori della MT. Presentiamo
risultati di online APE su MT da inglese
a italiano simulando le correzioni umane
con traduzioni manuali già disponibili e
utilizzando MT di qualità crescente. Val-
utando l’APE su MT neurale generica op-
pure specializzata, statica o adattiva, af-
frontiamo la domanda di fondo: a fronte
di quale costo sul lato MT l’APE diventerà
inutile?

1 Introduction

Automatic Post-editing for MT is a supervised
learning task aimed to correct errors in a machine-
translated text (Knight and Chander, 1994; Simard

et al., 2007). Cast as a problem of “monolin-
gual translation” (from raw MT output into im-
proved text in the same target language), APE
has followed a similar evolution to that of MT.
As in MT, APE research received a strong boost
from shared evaluation exercises like those orga-
nized within the well-established WMT Confer-
ence on Machine Translation (Chatterjee et al.,
2018). In terms of approaches, early MT-like
phrase-based solutions (Béchara et al., 2011; Rosa
et al., 2013; Lagarda et al., 2015; Chatterjee et
al., 2015) have been recently outperformed and re-
placed by neural architectures that now represent
the state of the art (Junczys-Dowmunt and Grund-
kiewicz, 2016; Chatterjee et al., 2017a; Tebbi-
fakhr et al., 2018; Junczys-Dowmunt and Grund-
kiewicz, 2018). From the industry standpoint,
APE has started to attract MT market players in-
terested in combining the two technologies to sup-
port human translation in professional workflows
(Crego et al., 2016).
Focusing on this industry-oriented perspective,
this paper makes a step further on APE research
by exploring an online neural approach to the
task. The goal is to leverage human feedback
(post edits) to improve on-the-fly a neural APE
model without the need of stopping it for fine-
tuning or re-training from scratch. Online learn-
ing capabilities are crucial (both for APE and
MT) in computer-assisted translation scenarios
where professional translators operate on sugges-
tions provided by machines. In such scenarios, hu-
man corrections represent an invaluable source of
knowledge that systems should exploit to enhance
users’ experience and increase their productivity.
Towards these objectives we provide two contri-
butions. One is the first online approach to neural
APE. Indeed, while MT-like online learning tech-
niques have been proposed for phrase-based APE
(Ortiz-Martı́nez and Casacuberta, 2014; Simard
and Foster, 2013; Chatterjee et al., 2017b), nothing
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has been done yet under the state-of-the-art neural
paradigm. In doing this, the other contribution is
the first evaluation of neural APE run on the output
of neural MT (NMT). So far, published results re-
port significant gains1 when APE is run to correct
the output of a phrase-based MT system. To our
knowledge, the true potential of APE with higher
quality NMT output has not been investigated yet.
The last observation introduces a more general
discussion on the relation between MT and APE.
Since, by definition, APE’s reason of being is the
sub-optimal quality of MT output, one might won-
der if the level of current MT technology still justi-
fies efforts on APE. Along this direction, our third
contribution is an analysis of online neural APE
applied to the output of NMT systems featuring
different levels of performance. Our competitors
range from a generic model trained on large paral-
lel data (mimicking the typical scenario in which
industry users – e.g. Language Service Providers
– rely on web-based services or other black-box
systems) to highly customized online models (like
those that LSPs would desire but typically cannot
afford). Our experiments in this range of condi-
tions aim to shed light on the future of APE from
the industry standpoint by answering the question:
At what cost on the MT side will APE become
useless?

2 Online neural APE

APE training data usually consist of (src, mt, hpe)
triplets whose elements are: a source sentence
(src), its translation (mt) and a human correction
of the translated sentence (hpe). Models trained
on such triplets are then used to correct the mt el-
ement of (src, mt) test data. Neural approaches
to the task have shown their effectiveness in batch
conditions, in which a static pre-trained model is
run on the whole test corpus. When moving to an
online setting, instead, APE systems should ide-
ally be able to continuously evolve by stepwise
learning from the interaction with the user. This
means that, each time a new post-edit becomes
available, the model has to update its parameters
on-the-fly in order to produce better output for the
next incoming sentence. To this aim, we extend a
batch APE model by adding the capability to con-
tinuously learn from human corrections of its own
output. This is done in two steps:
(1) Before post-editing, by means of an instance

1Up to 7.6 BLEU points at WMT 2017 (Bojar et al., 2017)

selection mechanism that updates the model by
learning from previously collected triplets that are
similar to the input test item (see lines 2-5 in Al-
gorithm 1);
(2) After post-editing, by means of a model adap-
tation procedure that learns from human revisions
of the last automatic correction generated by the
system (lines 8-10).

Similar to the methods proposed in (Chatter-
jee et al., 2017b) and (Farajian et al., 2017),
the instance-selection technique (first update step)
consists of two components: i) a knowledge base
(KB) that is continuously fed with the processed
triplets, and ii) an information retrieval engine
that, given the (src, mt) test item, selects the most
similar triplet (lines 2-3). The engine is simulta-
neously queried using both src and mt segments
and it returns the triplet that has the highest co-
sine similarity with both (Top(R)). If the similar-
ity is above a threshold τ , a few training iterations
are run to update the model parameters (line 5).
Depending on the application scenario, KB can be
pre-filled with the APE training data or left empty
and filled only with the incoming triplets. In our
experiments, the repository is initially empty.

Algorithm 1: Online neural APE
Require M: Trained APE model
Require Ts: Stream of test data
Require KB: Pool of (src, mt, hpe) triplets
1: while pop (src, mt) from Ts do
2: R← Retrieve ((src, mt), KB)
3: (srctop, mttop, hpetop)← Top (R)
4: if Sim ((srctop, mttop, hpetop), (src, mt)) > τ do
5: M∗← Update (M,(srctop, mttop, hpetop))
6: ape← APE (M∗,(src, mt))
7: hpe← HumanPostEdit ((src, ape))
8: KB← KB ∪ (src,mt,hpe)
9: M∗∗← Update (M∗,(src, mt, hpe))
10: M← M∗∗

11: end while

Once the hpe has been generated, the second up-
date step takes place (line 9) by running few train-
ing iterations on the (src, hpe) pair. When training
using only one single data point, the learning rate
and the number of epochs have a crucial role be-
cause too high/small values can make the training
unstable/inefficient. To avoid such problems, we
connect the two parameters by applying a time-
based decay learning rate that reduces the learning
rate when increasing of the number of epochs (i.e.
lr = lr/(1+num epoch)). In our experiments, this
strategy results in better performance than setting
a fixed learning rate.



3 Experiments

We run our experiments on English-Italian data,
by comparing the performance of different neural
APE models (batch and online) used to correct the
output of NMT systems of increasing quality.

3.1 Data

To train our NMT models we use both generic
and in-domain data. Generic data cover a vari-
ety of domains. They comprise about 53M par-
allel sentences collected from publicly-available
collections (i.e. all the English-Italian parallel cor-
pora available on OPUS2) and about 50M sen-
tence pairs from proprietary translation memories.
Generic data, whose size is per se sufficient to
train a competitive general-purpose engine, are
used to build our basic NMT model. On top of it,
in-domain (information technology) data are used
in different ways to obtain improved, domain-
adapted models. In-domain data are selected to
emulate the online setting of industrial scenarios
where input documents are processed sequentially
on a sentence-by-sentence basis. They consist in a
proprietary translation project of about 421K seg-
ments, which are split in training (416K segments)
and test (5,472) keeping the sentence order. Post-
edits are simulated using references.

To train the APE models we use the English-
Italian section of the eSCAPE corpus (Negri et al.,
2018). It consists of about 6.6M synthetically-
created triplets in which the mt element is pro-
duced with phrase-based and neural MT systems.

3.2 NMT models

Our NMT models feature increasing levels of
complexity, so to represent a range of conditions
in which a user (say a Language Service Provider)
has access to different resources in terms of MT
technology and/or data for training and adaptation.
Our systems, ranked in terms of complexity with
respect to these two dimensions are:
Generic (G). This model is trained on the large
(103M) multi-domain parallel corpus. It repre-
sents the situation in which our LSP entirely re-
lies on an off-the-shelf, black-box MT engine that
cannot be improved via domain adaptation.
Generic Online (GO). This model extends G with
the capability to learn from the incoming human
post-edits (5,472 test items). Before and after

2http://opus.lingfil.uu.se dump of mid June
2017.

translation, few training iterations adapt it to the
domain of the input document. The adaptation
steps implement the same strategies of the online
APE system (see §2). This setting represents the
situation in which our LSP has access to the inner
workings of a competitive online NMT system.
Specialized (S). This model is built by fine-tuning
(Luong and Manning, 2015) G on the in-domain
training data (416K). It reflects the condition in
which our LSP has access both to customer’s data
and to the inner workings of a competitive batch
NMT engine. The adaptation routine, however, is
limited to the standard approach of performing ad-
ditional training steps on the in-domain data.
Specialized Online (SO). This model is built by
combining the functionalities of GO and S. It uses
the in-domain training data for fine-tuning and the
incoming (src, hpe) pairs for online adaptation to
the target domain. This setting represents the sit-
uation in which our LSP has access to: i) cus-
tomer’s in-domain data and ii) the inner workings
of a competitive online NMT engine.

All the models are trained with the ModernMT
open source software,3 which is built on top of
OpenNMT-py (Klein et al., 2017). It employs
an LSTM-based recurrent architecture with atten-
tion (Bahdanau et al., 2014) using 2 bi-directional
LSTM layers in the encoder, 4 left-to-right LSTM
layers in the decoder, and a dot-product attention
model (Luong et al., 2015). In our experiments
we used an embeddings’ size of 1024, LSTMs of
size 1024, and a source and target vocabulary of
32K words, jointly trained with the BPE algorithm
(Sennrich et al., 2016). The fact that ModernMT
already implements the online adaptation method
presented in (Farajian et al., 2017) simplified our
tests with online neural APE run on the output of
competitive NMT systems (GO and SO).

3.3 APE models

We experiment with two neural APE systems:
Generic APE. This batch system is trained only
on generic data (6.6M triplets from eSCAPE) and
is similar to those tested in the APE shared task
at WMT. The main difference is that the training
data are neither merged with in-domain triplets nor
selected based on target domain information.
Online APE. This system is trained on the generic
data and continuously learns from human post-
edits of the test set as described in §2.

3http://github.com/ModernMT/MMT.



MT Type MT Generic Online
APE APE

Generic (G) 40.3 39.0 47.1†

Gen. Online (GO) 45.6 41.9 48.1†

Specialized (S) 52.1 45.5 53.5†
Spec. Online (SO) 55.0 47.4 54.8

Table 1: APE performance on NMT outputs of dif-
ferent quality (“†” denotes statistically significant
differences wrt. the MT baseline with p<0.05).

The two systems are based on a multi-source
attention-based encoder-decoder approach simi-
lar to (Chatterjee et al., 2017a). It employs a
GRU-based recurrent architecture with attention
and uses two independent encoders to process the
src and mt segments. Similar to the NMT systems,
it is trained on sub-word units by using BPE, with
a vocabulary created by selecting to 50K most fre-
quent sub-words. Word embedding and GRU hid-
den state sizes are set to 1024. Network param-
eters are optimized with Adagrad (Duchi et al.,
2011) with a learning rate of 0.01. A develop-
ment set randomly extracted from the training data
is used to set the similarity threshold used by the
online model for the first update step (τ=0.5) as
well as the learning rate (0.01) and the number of
epochs (3) of both adaptation steps.

4 Results and discussion

APE results computed on different levels of trans-
lation quality are reported in Table 1. Looking
at the NMT performance, all the adaptation tech-
niques yield significant improvements over the
Generic model (G). The large gain achieved via
fine-tuning on in-domain data (S: +11.8 BLEU) is
further increased when adding online learning ca-
pabilities on top of it to create the most competi-
tive Specialized Online system (SO: +14.7).

As expected, the batch APE model trained on
generic data only (that is, without in-domain in-
formation) is unable to improve the quality of
raw MT output. Moreover, although APE results
increase with higher translation quality, also the
performance distance from the more competitive
NMT systems becomes larger (from -1.3 to -7.6
points respectively for G and SO). These results
confirm the WMT findings about the importance
of domain customization for batch APE (Bojar et
al., 2017), and advocate for online solutions ca-
pable to maximize knowledge exploitation at test
time by learning from user feedback.

Online APE achieves significant4 improve-
ments not only over the output of G (+6.8) and
its online extension GO (+2.5), but also over the
specialized model S (+1.4). The gain over GO is
particularly interesting: it shows that even when
APE and MT use the same in-domain data for on-
line adaptation, the APE model is more reactive to
human feedback. Though trained on much smaller
generic corpora (6.6M triplets versus 103M paral-
lel sentences), the possibility to leverage richer in-
formation in the form of (src, mt, pe) instances at
test time seems to have a positive impact. A deeper
exploration of this aspect falls out of the scope of
this paper and is left as future work.

Also with online APE, the gains become
smaller by increasing the MT quality, reaching
a point where the system can only approach the
highest MT performance of SO (with a non-
significant -0.2 BLEU difference). This confirms
that correcting the output of competitive NMT en-
gines is a hard task, even for a dynamic APE sys-
tem that learns from the interaction with the user.
However, besides improving its performance by
learning from user feedback acquired at test time
(similar to the APE system), SO also relies on
previous fine-tuning on a large in-domain corpus
(similar to S). To answer our initial question (“At
what cost on the MT side will APE become use-
less?”) it is worth remarking that leveraging in-
domain training/adaptation data is a considerable
advantage for MT but it comes at a cost that should
not be underestimated. In terms of the data itself,
collecting enough parallel sentences for each tar-
get domain is a considerable bottleneck that limits
the scalability of competitive NMT solutions. In
addition to that, the technology requirements (i.e.
having access to the inner workings of the NMT
engine) and the computational costs involved (for
fine-tuning the generic model) are constraints that
few LSPs are probably able to satisfy.

5 Conclusion

We introduced an online neural APE system,
which is trained on generic data and only exploits
user feedback to improve its performance, and
evaluated it on the output of NMT systems fea-
turing increasing complexity and in-domain data
demand. Our results show the effectiveness of
current APE technology in the typical setting of

4Statistical significance is computed with paired bootstrap
resampling (Koehn, 2004).



most LSPs while, in terms of resources (especially
in-domain data) and technical expertise needed.
We also conclude that developing MT engines that
make APE useless is still a prerogative of few.
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