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Abstract

Current Domain Adaptation (DA) methods based on

deep architectures assume that the source samples arise

from a single distribution. However, in practice most

datasets can be regarded as mixtures of multiple domains.

In these cases exploiting single-source DA methods for

learning target classifiers may lead to sub-optimal, if not

poor, results. In addition, in many applications it is difficult

to manually provide the domain labels for all source data

points, i.e. latent domains should be automatically discov-

ered. This paper introduces a novel Convolutional Neural

Network (CNN) architecture which (i) automatically discov-

ers latent domains in visual datasets and (ii) exploits this

information to learn robust target classifiers. Our approach

is based on the introduction of two main components, which

can be embedded into any existing CNN architecture: (i) a

side branch that automatically computes the assignment of

a source sample to a latent domain and (ii) novel layers that

exploit domain membership information to appropriately

align the distribution of the CNN internal feature represen-

tations to a reference distribution. We test our approach

on publicly-available datasets, showing that it outperforms

state-of-the-art multi-source DA methods by a large margin.

1. Introduction

The problem that trained models perform poorly when

tested on data from a different distribution is commonly re-

ferred to as domain shift. This issue is especially relevant

in computer vision, as visual data is characterized by large

appearance variability, e.g. due to differences in resolution,

changes in camera pose, occlusions and illumination vari-

ations. To address this problem, several transfer learning

and domain adaptation approaches have been proposed in

the last decade [35].

Domain Adaptation (DA) methods are specifically de-

signed to transfer knowledge from a source domain to the

domain of interest, i.e. the target domain, in the form of

learned models or invariant feature representations. The

problem has been widely studied and both theoretical re-
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Figure 1: The idea behind our framework. We propose a

novel deep architecture which, given a set of images, auto-

matically discover multiple latent source domains and use

this information to align the distributions of the internal

CNN feature representations of sources and target domains

for the purpose of domain adaptation. Image better seen at

magnification.

sults [3, 33] and several shallow [10, 15, 17, 22, 30] and

deep learning algorithms have been developed [5, 6, 12, 14,

31, 32, 40]. While deep neural networks tend to produce

more transferable and domain-invariant features, previous

works [8] have shown that the domain shift is only allevi-

ated but not removed.

Most works on DA focus on a single-source and single-

target scenario. However, in many computer vision applica-

tions labeled training data is often generated from multiple

distributions, i.e. there are multiple source domains. Ex-

amples of multi-source DA problems arise when the source

set corresponds to images taken with different cameras, col-

lected from the web or associated to multiple points of

views. In these cases, a naive application of single-source

DA algorithms would not suffice, leading to poor results.

Therefore, in the past several research efforts have been de-

voted to develop DA methods operating on multiple sources
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[9, 33, 39]. These approaches assume that the different

source domains are known. A more challenging problem

arises when labeled training data correspond to latent source

domains, i.e. we can make a reasonable estimate on the

number of source domains available, but we have no infor-

mation, or only partial, about domain labels. To address this

problem, known in the literature as latent domain discov-

ery, previous works have proposed methods which simul-

taneously discover hidden source domains and use them to

learn the target classification models [16, 21, 41].

This paper introduces the first deep approach able to au-

tomatically discover latent source domains in multi-source

domain adaptation settings. Our method is inspired by the

recent works [6, 7], which revisit Batch Normalization lay-

ers [23] for the purpose of domain adaptation, introduc-

ing specific Domain Alignment layers (DA-layers). The

main idea behind DA-layers is to cope with domain shift by

aligning representations of source and target distributions to

a reference Gaussian distribution. Our approach develops

from the same intuition. However, to address the additional

challenges of discovering and handling multiple latent do-

mains, we propose a novel architecture which is able to (i)

learn a set of assignment variables which associate source

samples to a latent domain and (ii) exploit this information

for aligning the distributions of the internal CNN feature

representations and learn a robust target classifier (Fig.2).

Our experimental evaluation shows that the proposed ap-

proach alleviates the domain discrepancy and outperforms

previous multi-source DA techniques on popular bench-

marks, such as Office-31 [36] and Office-Caltech [17].

2. Related Work

DA methods with hand-crafted features. Earlier DA ap-

proaches operate on hand-crafted features and attempt to

reduce the discrepancy between the source and the tar-

get domains by adopting different strategies. For instance,

instance-based methods [15, 22, 42] develop from the idea

of learning classification/regression models by re-weighting

source samples according to their similarity with the tar-

get data. A different strategy is exploited by feature-based

methods, coping with domain shift by learning a com-

mon subspace for source and target data such as to obtain

domain-invariant representations [10, 17, 30]. Parameter-

based methods [43] address the domain shift problem by

discovering a set of shared weights between the source and

the target models. However, they usually require labeled

target data which is not always available.

While most earlier DA approaches focus on a single-

source and single-target setting, some works have consid-

ered the related problem of learning classification models

when the training data spans multiple domains [9, 33, 39].

The common idea behind these methods is that when source

data arises from multiple distributions, adopting a single

source classifier is suboptimal and improved performance

can be obtained leveraging information about multiple do-

mains. However, these methods assume that the domain

labels for all source samples are known in advance. In prac-

tice, in many applications the information about domains

is hidden and latent domains must be discovered into the

large training set. Few works have considered this prob-

lem in the literature. Hoffman et al. [21] address this task

by modeling domains as Gaussian distributions in the fea-

ture space and by estimating the membership of each train-

ing sample to a source domain using an iterative approach.

Gong et al. [16] discover latent domains by devising a non-

parametric approach which aims at simultaneously achiev-

ing maximum distinctiveness among domains and ensuring

that strong discriminative models are learned for each la-

tent domain. In [41] domains are modeled as manifolds and

source images representations are learned decoupling infor-

mation about semantic category and domain. By exploiting

these representations the domain assignment labels are in-

ferred using a mutual information based clustering method.

Deep Domain Adaptation. Most recent works on DA con-

sider deep architectures and robust domain-invariant fea-

tures are learned using either supervised neural networks

[5, 6, 12, 14, 31, 40], deep autoencoders [44] or genera-

tive adversarial networks [4, 37]. For instance, some meth-

ods attempt to align source and target features by mini-

mizing Maximum Mean Discrepancy [31, 32, 38]. Other

approaches operate in a domain-adversarial setting, i.e.

learn domain-agnostic representations by maximizing a do-

main confusion loss [12, 40]. Domain separation net-

works are proposed in [5], where feature representations are

learned by decoupling the domain-specific component from

a shared one. DA-layers are described in [7] which, em-

bedded into an arbitrary CNN architecture, are able to align

source and target representation distributions.

While recent deep DA methods significantly outperform

approaches based on hand-crafted features, they only con-

sider single-source, single-target settings. To our knowl-

edge, this is the first work proposing a deep architecture for

discovering latent source domains and exploiting them for

improving classification performance on target data.

3. Method

3.1. Problem Formulation and Notation

In this paper we are interested in predicting labels from

an output space Y (e.g. object or scene categories), given

elements of an input space X (e.g. images). We further

assume that our data belongs to one of several domains:

the k source domains, characterized by unknown proba-

bility distributions ps1xy, . . . , p
sk
xy defined over X × Y , and

the target domain, characterized by ptxy. Note that the

number of source domains k is not necessarily known a-
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priori, and is left as an hyper-parameter of our method.

During training we are given a set of labeled samples

from the source domains, and a set of unlabeled samples

from the target domain, while we have partial or no ac-

cess to domain assignment information for the source sam-

ples. More formally, we model the source data as a set

S = {(xs
1, y

s
1), . . . , (x

s
n
, ys

n
)} of i.i.d. observations from

a mixture distribution psxy =
∑

k

i=1
πsip

si
xy, where πsi is the

probability of sampling from a source domain si. Simi-

larly, the target samples T = {xt
1, . . . , x

t
m
} are i.i.d. ob-

servations from the marginal ptx. Furthermore, we denote

by xS = {xs
1, . . . , x

s
n
} and yS = {ys1, . . . , y

s
n
}, the source

data and label sets, respectively. We assume to know the

domain label for a (possibly empty) subset Ŝ ⊂ S of

source data samples and we denote by dŜ the domain la-

bels in {s1. . . . , sk} of the sample points in x
Ŝ

. The set

of domains labels, including target domain, is given by

D = {s1, . . . , sk, t}.

Our main goal is to learn a predictor that is able to clas-

sify samples from the target domain. When tackling this

problem we have to deal with three main difficulties: (i) the

distributions of source(s) and target can be drastically dif-

ferent, making it hard to apply a classifier learned on one

domain to the others, (ii) we lack direct observation of tar-

get labels, and (iii) the assignment of each source sample to

its domain is unknown, or known for a very limited number

of samples only.

Several previous works [5, 6, 12, 14, 31, 40] have tack-

led the related problem of domain adaptation in the con-

text of deep neural networks, dealing with (i) and (ii) in

the case in which all source data comes from a single do-

main. In particular, some recent works have demonstrated

a simple yet effective approach based on the replacement of

standard Batch Normalization layers with specific Domain

Alignment layers [6, 7]. These layers aim to reduce inter-

nal domain shift at different levels within the network by re-

normalizing features in a domain-dependent way, matching

their distributions to a pre-determined one. In the follow-

ing sections we show how the same idea can be revisited to

naturally tackle the case of multiple, unknown source do-

mains. In particular, we propose a novel Multi-domain DA

layer (mDA-layer), detailed in Section 3.2, which is able to

re-normalize the multi-modal feature distributions encoun-

tered in our setting. To do this, our mDA-layers exploit

a side-output branch we attach to the main network (see

Section 3.3), which predicts domain assignment probabil-

ities for each input sample. Finally, in Section 3.4 we show

how the predicted domain probabilities can be exploited,

together with the unlabeled target samples, to construct a

prior distribution over the network’s parameters which is

then used to define the training objective for our network.

3.2. Multi­domain DA­layers

DA-layers [6, 7, 28] are motivated by the observation

that, in general, activations within a neural network follow

domain-dependent distributions. As a way to reduce do-

main shift, the activations are thus normalized in a domain-

specific way, shifting them according to a parameterized

transformation in order to match their first and second or-

der moments to those of a reference distribution, which is

generally chosen to be normal with zero mean and unit stan-

dard deviation. While previous works only considered set-

tings with two domains, i.e. source and target, the basic idea

can in fact be applied to any number of domains, as long as

the domain membership of each sample is known. Specif-

ically, denoting as qdx the distribution of activations for a

given feature channel and domain d, an input xd ∼ qdx to

the DA-layer can be normalized according to

DA(xd;µd, σd) =
xd − µd
√

σ2

d + ǫ
,

where µd = Ex∼qdx
[x], σ2

d = Varx∼qdx
[x] and ǫ > 0 is a

small constant to avoid numerical issues. When the statis-

tics µd and σ2

d are computed over the current batch, this

equates in practice to applying standard Batch Normaliza-

tion separately to the samples of each domain.

As mentioned above, this approach requires full domain

knowledge, as, for each d, µd and σ2

d need to be calculated

on the specific samples belonging to d. In our case, how-

ever, while the target is clearly distinct from the source, we

do not know which specific source domain most or even all

of the source samples belong to. To tackle this issue, we

propose to model the layer’s input distribution as a mixture

of Gaussians, with one component for each domain. Specif-

ically, we define a global input distribution qx =
∑

d πdq
d
x ,

where πd is the probability of sampling from domain d, and

qdx = N (µd, σ
2

d) is the domain-specific distribution for d:

a normal with mean µd and variance σ2

d. Given a batch of

samples B = {xi}
b

i=1
, a maximum likelihood estimate of

the parameters µd and σ2

d is given by

µd =

b
∑

i=1

αi,dxi, σ2

d =

b
∑

i=1

αi,d(xi − µd)
2, (1)

where

αi,d =
qd|x(d | xi)

∑

b

i=1
qd|x(d | xi)

, (2)

and qd|x(d | xi) is the conditional probability of xi belong-

ing to d, given xi. Clearly, the value of qd|x is known for

all samples for which we have domain information. In all

other cases, the missing domain assignment probabilities

are inferred from data, using the domain prediction network

branch which will be detailed in Section 3.3. Thus, from the

3773



Conv1→Conv5 FC6 FC7 FC8mDA mDA mDA

Avg
Pool

FC

LogLoss

Entropy

LogLoss

Entropy

samples with
domain labels

samples without
domain labels

source
samples

target
samples

Normalize

input data

Figure 2: Schematic representation of our method applied to the AlexNet architecture (left) and of an mDA-layer (right).

perspective of the alignment layer, these probabilities be-

come an additional input, which we denote as wi,d for the

predicted probability of xi belonging to d.

By substituting wi,d for qd|x(d | xi) in (1) and (2), we

obtain a new set of empirical estimates for the mixture pa-

rameters, which we denote as µ̂d and σ̂2

d. These parameters

are used to normalize the layer’s inputs according to

mDA(xi,wi; µ̂, σ̂) =
∑

d∈D

wi,d

xi − µ̂d
√

σ̂2

d + ǫ
, (3)

where wi = {wi,d}d∈D, µ̂ = {µ̂d}d∈D and σ̂ = {σ̂2

d}d∈D.

As in previous works [6, 7, 23], during back-propagation we

calculate the derivatives through the statistics and weights,

propagating the gradients to both the main input and the

domain assignment probabilities.

3.3. Domain prediction

As explained in the previous Section 3.2, our mDA-

layers take as input a set of domain assignment probabilities

for each input sample, which need to be predicted. While

different mDA-layers in a network have in general differ-

ent input distributions, the assignment of sample points to

domains should be coherent across them. Specifically, sam-

ple points at different mDA-layers corresponding to a single

input element to the network should share the same proba-

bilities. As a practical example, in the typical case in which

mDA-layers are used in a CNN to normalize convolutional

activations, the network would predict a single set of prob-

abilities for each input image, which would then be given

as input to all mDA-layers and broadcasted across all spa-

tial locations and feature channels corresponding to that im-

age. Following these consideration, we compute domain

assignment probabilities using a distinct section of the net-

work, which we call the domain prediction branch, while

we refer to the main section of the network as the classi-

fication branch. The two branches share the bottom-most

layers and parameters as depicted in Figure 2. The domain

prediction branch is implemented as a minimal set of lay-

ers followed by a soft max operation with k outputs for the

k latent source domains (more details follow in Section 4).

As the domain membership of target samples is always as-

sumed to be known, we do not predict domain assignment

probabilities for the target. Furthermore, for each sample

xi with known domain membership d̂, we fix in each mDA-

layer wi,d = 1 if d = d̂, otherwise wi,d = 0 .

We split the network into a domain prediction branch and

classification branch at some low level layer. This choice is

motivated by the observation [1] that features tend to be-

come increasingly more domain invariant going deeper into

the network, meaning that it becomes increasingly harder to

compute a sample’s domain as a function of deeper features.

In fact, as pointed out in [6], this phenomenon is even more

evident in networks that include Domain Alignment layers.

3.4. Training the network

We want to estimate θ ∈ Θ, which comprises all train-

able parameters of the classification and domain prediction

branches, while taking advantage of both labeled and un-

labeled data. A main difficulty lies in the fact that, when

employing a discriminative model, the unlabeled samples

cannot be used to express the data likelihood. However, fol-

lowing the approach sketched in [6], we can exploit the un-

labeled data to define a prior distribution over the network’s

parameters. By doing this, we define a posterior distribution

over θ given all data and labels as follows:

π(θ|S, T , Ŝ) ∝ π(yS |xS , θ)

· π(d
Ŝ
|xŜ , θ)π(θ|T )π(θ|xS\Ŝ), (4)

where for notational convenience we have omitted some

dependences. By maximizing (4) over Θ we obtain a

maximum-a-posterior estimate θ̂ for the parameters:

θ̂ ∈ arg max
θ∈Θ

π(θ|S, T , Ŝ). (5)

The first term on the right hand side of (4) is the likeli-

hood of θ w.r.t. the source dataset, and can be written as

π(yS |xS , θ) =

n
∏

i=1

fθ
C(y

s
i ;x

s
i ) (6)
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due to the i.i.d. assumption on the training samples. Here

we denote by fθ
C(y

s
i ;x

s
i ) the output of the classification

branch of the network for a source sample, i.e. the predicted

probability of xs
i having class ysi , and, for convenience of

notation, we omit the dependence of fθ
C on the target sam-

ples induced by the mDA-layers. Similarly, the second term

in (4) is the likelihood of θ w.r.t. the known domains:

π(dŜ |xŜ , θ) =
∏

xi∈xŜ

fθ
D(di;xi),

where di is the domain corresponding to xi ∈ xŜ . In the

previous equation, fθ
D(d;x) denotes the output of the do-

main prediction branch for a sample x and domain d, i.e.

the predicted probability of x belonging to d.

To define our prior π(θ|T ) over the parameters, we ex-

ploit all available unlabeled data, biasing our classifier to-

wards exhibiting low uncertainty on the unlabeled samples,

similarly to [6]. However, in addition, we introduce a prior

term π(θ|xS\Ŝ), which exploits source sample points with

missing domain labels. Uncertainty when predicting class

labels can be measured in terms of the empirical entropy

hC(θ|xS) = −
1

m

m
∑

i=1

∑

y∈Y

fθ
C(y;x

t
i) log f

θ
C(y;x

t
i),

and similarly for the uncertainty when predicting domains.

hD(θ|xS\Ŝ) = −
1

|xS\Ŝ |

∑

x∈xS\Ŝ

k
∑

i=1

fθ
D(si;x) log f

θ
D(si;x).

Now, π(θ|T ) can be obtained as the distribu-

tion with maximum entropy under the constraints
∫

π(θ|xS)hC(θ|xS)dθ = εC and, similarly, π(θ|xS\Ŝ)
can be regarded as a maximum entropy distribution under

the constraint
∫

π(θ|xS\Ŝ)hD(θ|xS\Ŝ)dθ = εD, where

εC > 0 and εD > 0 define the desired average uncertain-

ties for class and domain predictions, respectively. These

optimization problems can be shown to have solutions:

π(θ|T ) ∝ exp(−λChC(θ|T ))

π(θ|xS\Ŝ) ∝ exp(−λDhD(θ|xS\Ŝ)),

where λC and λD are the Lagrange multipliers correspond-

ing to εC and εD, respectively.

In practice, the optimization in (5) can be replaced by

the equivalent minimization of the negative logarithm of the

likelihood, obtaining our loss function:

L(θ) =−
1

n

n
∑

i=1

log fθ
C(y

s
i ;x

s
i )

− λt

1

|xŜ |

∑

xi∈xŜ

log fθ
D(di;xi)

− λC

1

m

m
∑

i=1

∑

y∈Y

fθ
C(y;x

t
i) log f

θ
C(y;x

t
i)

− λD

1

|xS\Ŝ |

∑

x∈xS\Ŝ

k
∑

i=1

fθ
D(si;x) log f

θ
D(si;x).

(7)

The four terms, balanced by the hyper-parameters λt, λC

and λD, can be interpreted as two log-losses and two en-

tropy losses applied to the classification and domain predic-

tion branches of the network, respectively to samples with

known and unknown labels. Interestingly, since the classi-

fication branch has a dependence on the domain prediction

branch via the mDA-layers, by optimizing (7), the network

learns to predict domain assignment probabilities that result

in a low classification loss. In other words, the network is

free to predict domain memberships that do not necessar-

ily reflect the real ones, as long as this helps improving its

classification performance.

4. Experiments

4.1. Experimental Setup

Datasets. In our evaluation we consider several com-

mon DA benchmarks: the combination of the USPS [11],

MNIST [26] and MNIST-m [12] datasets, the Office-31 [36]

dataset, Office-Caltech [17] and the PACS [27] dataset.

MNIST, MNIST-m and USPS are three standard

datasets for digits recognition. USPS [11] is a dataset built

using digits scanned from U.S. envelopes, MNIST [26] is

the popular benchmark for digits recognition and MNIST-

m [12] its counterpart obtained by blending the original

images with colored patches extracted from BSD500 pho-

tos [2]. Due to their different representations (e.g. col-

ored vs gray-scale), these datasets have been adopted as a

DA benchmark by many previous works [4, 5, 12]. Here,

we consider a multi source DA setting, using MNIST and

MNIST-m as sources and USPS as target, training on the

union of the training sets and testing on the test set of USPS.

Office-31 is a standard DA benchmark which contains

images of 31 object categories collected from 3 different

sources: Webcam (W), DSLR camera (D) and the Amazon

website (A). Following [41], we perform our tests in the

multi-source setting, where each domain is in turn consid-

ered as target, while the others are used as source.

Office-Caltech [17] is obtained by selecting the sub-

set of 10 common categories in the Office31 and the Cal-
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tech256 [19] datasets. It contains 2533 images, about half

of which belong to Caltech256. The different domains are

Amazon (A), DSLR (D), Webcam (W) and Caltech256 (C).

In our experiments we consider the set of source/target com-

binations used in [16].

PACS [27] is a recently proposed benchmark which is

especially interesting due to the significant domain shift be-

tween different domains. It contains images of 7 categories

(dog, elephant, giraffe, guitar, horse) extracted from 4 dif-

ferent representations, i.e. Photo (P), Art paintings (A), Car-

toon (C) and Sketch (S). Following the experimental proto-

col in [27], we train our model considering 3 domains as

sources and the remaining as target, using all the images of

each domain.Differently from [27] we consider a DA set-

ting (i.e. target data is available at training time) and we do

not address the problem of domain generalization.

Networks and training protocols. We apply our approach

to three different CNN architectures: the MNIST network

described in [12], AlexNet [25] and ResNet [20]. We

choose AlexNet due to its widespread use in state of the

art DA approaches [6, 12, 31, 32], while ResNet is taken

as an exemplar for recent architectures employing batch-

normalization layers. Both AlexNet and ResNet are first

pre-trained on ImageNet and then fine-tuned on the datasets

of interest. The MNIST architecture in [12, 13] is chosen

following previous works considering digits datasets.

For the evaluation on digits datasets we employ the

MNIST architecture described in [12]. Since the original ar-

chitecture does not contain BN layers, we add mDA-layers

after each layer with parameters. We train the architecture

following the schedule defined in [12], with a batch-size

containing 128 images per domain. The side-branch starts

from the conv1 layer, applies a second convolution with

the same parameters of conv2 and a fully-connected layer

with 100 output channel, before the final domain-classifier.

For the experiments on the Office-31 and Office-Caltech

datasets we employ the AlexNet architecture. We follow a

setup similar to the one proposed in [6, 7], fixing the pa-

rameters of all convolutional layers with mDA-layers in-

serted following each fully-connected layer and before their

corresponding activation functions. The domain predic-

tion branch is attached to the last pooling layer following

conv5. It is composed of a global average pooling, fol-

lowed by a fully connected layer and a softmax operation to

produce the final domain probabilities. The training sched-

ule and hyperparameters are set following [6].

For the experiments on the PACS dataset we consider the

ResNet architecture and we choose the 18-layers setup de-

scribed in [20] and denoted as ResNet18. This architecture

comprises an initial 7 × 7 convolution, denoted as conv1,

followed by 4 main modules, denoted as conv2 – conv5,

each containing two residual blocks. To apply our approach,

we replace each Batch Normalization layer in the network

with an mDA-layer. The domain prediction branch is at-

tached to conv1, and is formed by adding a residual block

(with the same number of filters as the ones in conv2) and

a global average pooling layer followed by a fully connected

layer and a softmax. For training we use a weight-decay of

10−6, with the same initial learning rate and momentum

adopted for AlexNet. The network is trained for 1200 it-

erations with a batch-size of 48, equally divided between

the domains. The learning rate is scaled by a factor 0.1 af-

ter 75% of the iterations. More details about the training

procedures can be found in the supplementary material.

Regarding the hyper-parameters of our method, we set

the number of source domains k equal to Q− 1, where Q is

the number of different datasets used in each single exper-

iment. Following [6], in the experiments with AlexNet ar-

chitecture we fix λC = λD = 0.2. Similarly, for the exper-

iments on digits classification, we keep the weights λC , λD

of the two entropy losses fixed to the same value (0.1). For

ResNet we select the values λC = 0.1 and λD = 0.0001
through cross-validation, following the procedure adopted

in [6, 30]. When domain labels are available for a subset of

source samples, we fix λt = 0.5.

We implement1 all the models with the Caffe [24] frame-

work and our evaluation is performed using a NVIDIA

GeForce 1070 GTX GPU. We initialize both AlexNet and

ResNet networks through their models pre-trained on Ima-

geNet. For AlexNet we take the pre-trained model available

in Caffe, while for ResNet we use the converted version of

the original model developed in Torch 2.

4.2. Results

In this section we report the results of our evaluation.

We first analyze the proposed approach, demonstrating the

advantages of considering multiple sources and discover-

ing latent domains. We then compare the proposed method

with state-of-the-art approaches. For all the experiments we

report the results in terms of accuracy, repeating the experi-

ments 5 times and averaging the results.

Analysis of the Proposed Approach. In a first series of

experiments, we test the performance of our approach on

the MNIST-MNIST-m to USPS benchmark. We compare

our method with different baselines: (i) the network trained

on the union of all source domains (Single source (uni-

fied)), (ii) the model which leads to the best performance

among those trained on each single source domain (Best sin-

gle source) (iii) the domain adaptation method DIAL in [7]

which uses as source set the union of all source domains

(DIAL [7] - Single source (unified)) and (iv) the DIAL

model which leads to the best performance among those

1Code available at https://github.com/mancinimassimiliano/
latent_domains_DA.git

2https://github.com/HolmesShuan/

ResNet-18-Caffemodel-on-ImageNet
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Table 1: Digits datasets: comparison of different models

in the multi-source scenario. MNIST (M) and MNIST-m

(Mm) are taken as source domains, USPS (U) as target.

Method M-Mm to U

Single source (unified) 57.1

Best single source 59.8

DIAL [7] - Single source (unified) 81.7

DIAL [7] - Best single source 81.9

Ours k = 2 82.5

Ours k = 3 82.2

Ours k = 4 82.7

Ours k = 5 82.4

Multi-source DA 84.2

Table 2: PACS dataset: comparison of different methods us-

ing the ResNet architecture. The first row indicates the tar-

get domain, while all the others are considered as sources.

Method Sketch Photo Art Cartoon Mean

ResNet [20] 60.1 92.9 74.7 72.4 75.0

DIAL [7] 66.8 97.0 87.3 85.5 84.2

Ours 69.6 97.0 87.7 86.9 85.3

Multi-source DA 71.6 96.6 87.5 87.0 85.7

trained on each single source domain (DIAL [7] - Best sin-

gle source). Moreover, we report the results of our approach

in the ideal case where the multiple source domains are

known and we do not need to discover them (Multi-source

DA). For our approach, we consider several different val-

ues for the hyper-parameter k, i.e. the number of discovered

source domains. All these methods are based on the MNIST

network in [12] with the addition of BN layers.

Table 1 shows the results of our comparison. By looking

at the table several observations can be made. First, there

is a large performance gap between models trained only on

source data and DA methods, confirming the fact that deep

architectures do not solve the domain shift problem [8].

Second, in analogy with previous works on DA [9, 33, 39],

we found that considering multiple sources is beneficial for

reducing the domain shift with respect to learning a model

on the unified source set. Finally, and more importantly,

when the domain labels are not available, our approach is

successful in discovering latent domains and in exploiting

this information for improving accuracy classification on

target data, partially filling the performance gap between the

single source models and Multi-source DA. Interestingly,

the performance of the algorithm are comparable when the

number of latent domains k changes, highlighting the ro-

bustness of our model to different values of k. This mo-

tivates our choice to always fix k to the known number of

domains in the next experiments.

In a second series of experiments we consider the PACS

dataset. We compare the proposed approach with the orig-

inal ResNet architecture trained only on source data and

with DA method DIAL [7] trained on the unified source

set. As in the previous experiments, we report the results of

the ideal multi-source DA setting, i.e. our approach is ap-

plied to multiple known source domains. Table 2 shows our

results. As expected, DA models are especially beneficial

when considering the PACS dataset. Moreover, the multi-

source DA network outperforms the single source one. Re-

markably, our model is able to infer domain information au-

tomatically without supervision. In fact, its accuracy is ei-

ther comparable with the multi-source model (i.e. for Photo,

Art and Cartoon) or in between the single-source, i.e. DIAL,

and the multi-source models (i.e. Sketch).

Looking at the partial results, it is especially interesting

to see that the improvements of our approach and the multi-

source model over DIAL trained on the unified source set

are especially significant when either the Sketch or the Car-

toon domains are employed as target set. Since these do-

mains are less represented in the ImageNet database, we

believe that the corresponding features derived from the pre-

trained model are less discriminative. In this case DA meth-

ods play a significant role.

We also conduct experiments on the Office31 dataset.

As baselines we consider the standard AlexNet architec-

ture trained on source data, AlexNet with Batch Normal-

ization added after each fully-connected layer and the DA

model of [7] with all source domains unified in a single set.

Again, the multi-source DA model obtained assuming the

domain labels known for each source sample is taken as

upper bound. The results reported in Table 3 trigger two

main observations. First, in this dataset there is a small mar-

gin for improvement when using a multi-source model with

respect to adopting a single source one. This is in accor-

dance with findings in [27], where it is shown that, with

respect to PACS dataset, in Office31 the domain shift with

deep features is limited and it is linked mainly to changes

in background (i.e. Webcam-Amazon, DSLR-Amazon) or

acquisition camera (DSLR-Webcam). Second, in this case

our approach only slightly improves performance over the

single-source DA model, suggesting that accuracy in auto-

matically inferring latent domains may not be sufficient for

learning better target classifiers.

To further analyze this fact and to demonstrate the flexi-

bility of our framework, we also perform an experiment in

a semi-supervised setting. In particular, we consider dif-

ferent levels of supervision in terms of domain information

and analyze how the performance of our method change at

varying number of labeled source samples. The results of

this experiment are reported in Fig. 3. Looking at the fig-

ure we can see that by using just few domain labels (5%

of the source samples), our model is able to completely

fill the performance gap between the unsupervised and the

multi-source model. Furthermore, by increasing the level of

supervision the accuracy saturates towards the value corre-

sponding to the multi-source model.
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Table 3: Office-31 dataset: comparison of different methods

using AlexNet. In the first row we indicate the source (top)

and the target domains (bottom).

Method
Source A-D A-W W-D

Mean
Target W D A

AlexNet [25] 89.1 94.6 49.1 77.6

AlexNet+BN 92.9 95.2 60.1 82.7

DIAL [7] 94.3 93.8 62.5 83.5

Ours 94.6 93.7 62.6 83.6

Multi-source DA 95.8 94.8 62.9 84.5

0% 5% 10% 25% 50% 75% 90% 100%
Domain-labels Percentage

83.6

83.8

84.0

84.2

84.4

84.6

Ac
cu

ra
cy

Figure 3: Office31 dataset. Performance at varying number

of domain labels (%) for source samples.

Comparison with state of the art. In this section we com-

pare the performance of our model with previous works on

DA which also consider the problem of inferring latent do-

mains [16, 21, 41]. As stated in Section 2, there are no pre-

vious works adopting deep learning models (i) in a multi-

source setting and (ii) discovering hidden domains. There-

fore, the considered baseline methods [16, 21, 41] only em-

ploy handcrafted features. For these approaches we report

results taken from the original papers. To further analyze

the impact of different feature representations, we also re-

port results obtained running the method of Gong et al. [16]

using features from the last layer of the AlexNet architec-

ture. For a fair comparison, in this series of experiments we

extract features from the fc7 layer, without fine-tuning, ap-

plying mDA layers to these features and after the classifier.

We first consider the Office31 dataset, as this benchmark

has been used in [21, 41]. Table 4 shows the results of

our comparison. Our model outperforms all the baselines,

with a clear margin in terms of accuracy. Importantly, even

when the method in [16] is applied to features derived from

AlexNet, still our approach leads to higher accuracy. For the

sake of completeness, in the same table we also report re-

sults from previous multi-source DA methods [18, 29, 34].

Notice that also these methods are based on shallow mod-

els. While these approaches significantly outperform [21]

and [41], still their accuracy is much lower than ours.

To compare with [16, 21], we also consider the Office-

Caltech dataset. Following [16], we test both single target

(Amazon) and multi-target (Amazon-Caltech and Webcam-

DSLR) scenarios, for our model can be easily extended to

the latter case. We assume to know which samples belong

Table 4: Office-31: comparison with state-of-the-art algo-

rithms. In the first row we indicate the source (top) and the

target domains (bottom).

Method
Sources A-D A-W W-D

Mean
Target W D A

Hoffman et al. [21] 24.8 42.7 12.8 26.8

Xiong et al. [41] 29.3 43.6 13.3 28.7

Gong et al. (AlexNet) [16] 91.8 94.6 48.9 78.4

Ours 93.1 94.3 64.2 83.9

Gopalan et al. [18] 51.3 36.1 35.8 41.1

Nguyen et al. [34] 64.5 68.6 41.8 58.3

Lin et al. [29] 73.2 81.3 41.1 65.2

Table 5: Office-Caltech dataset: comparison with state-of-

the-art algorithms. In the first row we indicate the source

(top) and the target domains (bottom).

Method
Source A-C W-D C-W-D

Mean
Target W-D A-C A

Gong et al. [16] - original 41.7 35.8 41.0 39.5

Hoffman et al. [21] - ensemble 31.7 34.4 38.9 35.0

Hoffman et al. [21] - matching 39.6 34.0 34.6 36.1

Gong et al. [16] - ensemble 38.7 35.8 42.8 39.1

Gong et al. [16] - matching 42.6 35.5 44.6 40.9

Gong et al. (AlexNet) [16] 87.8 87.9 93.6 89.8

Ours 93.5 88.2 93.7 91.8

to the source domains and which samples to the target do-

mains. Then, we apply two different mDA modules: one for

discovering latent source domains and one for discovering

latent target domains. To this extent we need two domain

prediction branches: in our implementation they share only

the input features, while their parameters are independently

learned. Notice that, since we do not assume to know the

target domain to which a sample belongs, the task is even

harder since we require a domain prediction step also at test

time. Again, our approach outperforms all baselines, even

the method in [16] adopting features derived from AlexNet.

5. Conclusions

In this work we presented a novel deep DA model

for automatically discovering latent domains within visual

datasets. The proposed deep architecture is based on a side-

branch which computes the assignment of a source sample

to a latent domain. These assignments are then exploited

within the main network by novel domain alignment lay-

ers which reduce the domain shift by aligning the feature

distributions of the discovered sources and the target do-

mains. Our experimental results demonstrate the ability of

our model to efficiently exploit the discovered latent do-

mains for addressing challenging domain adaptation tasks.
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