
Proceedings of the
21st Annual Conference of
the European Association

for Machine Translation

28–30 May 2018

Universitat d’Alacant
Alacant, Spain

Edited by
Juan Antonio Pérez-Ortiz
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Abstract

A salient feature of Neural Machine Trans-
lation (NMT) is the end-to-end nature of
training employed, eschewing the need of
separate components to model different
linguistic phenomena. Rather, an NMT
model learns to translate individual sen-
tences from the labeled data itself. How-
ever, traditional NMT methods trained on
large parallel corpora with a one-to-one
sentence mapping make an implicit as-
sumption of sentence independence. This
makes it challenging for current NMT sys-
tems to model inter-sentential discourse
phenomena. While recent research in
this direction mainly leverages a single
previous source sentence to model dis-
course, this paper proposes the incorpora-
tion of a context window spanning previ-
ous as well as next sentences as source-
side context and previously generated out-
put as target-side context, using an effec-
tive non-recurrent architecture based on
self-attention. Experiments show improve-
ment over non-contextual models as well
as contextual methods using only previous
context.

1 Introduction

Neural Machine Translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2014; Cho et al., 2014) has consistently out-
performed other MT paradigms across a range of
domains, applications and training settings (Ben-
tivogli et al., 2016; Castilho et al., 2017; Toral

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

and Sánchez-Cartagena, 2017), thereby emerging
as the de facto standard in Machine Translation.
NMT models are typically trained at the sentence
level (Cho et al., 2014), whereby the probability of
an output sentence given an input sentence is max-
imized, implicitly making an assumption of sen-
tence independence across the dataset. This works
well for the translation of stand-alone sentences or
datasets containing shuffled sentences, which are
not connected with each other in terms of discur-
sive dependencies. However, in real life situations,
written text generally follows a sequential order
featuring a number of cross-sentential phenomena.
Additionally, speech-like texts (Bawden, 2017)
exhibit the trait of contextual dependency and se-
quentiality as well, often containing a greater num-
ber of references that require a common knowl-
edge ground and discourse understanding for cor-
rect interpretation. Figure 1 shows an example
of such inter-sentential dependencies. These de-
pendencies are not fully leveraged by the majority
of contemporary NMT models, owing to the treat-
ment of sentences as independent units for transla-
tion.

In order to perform well on sequential texts,
NMT models need access to extra information,
which could serve as the disambiguating context
for better translation. Recent work in this direc-
tion (Zoph and Knight, 2016; Jean et al., 2017;
Tiedemann and Scherrer, 2017; Bawden et al.,
2017; Wang et al., 2017) has primarily focused
on previous source-side context for disambigua-
tion. Since all of these approaches utilize recurrent
architectures, adding context comprising of more
than a single previous sentence can be challeng-
ing due to either (i) the increased number of esti-
mated parameters and training time, in case of the
multi-encoder approach (Jean et al., 2017), or (ii)
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Proceedings of the 21st Annual Conference of the European Association for Machine Translation, p. 11–20
Alacant, Spain, May 2018.



Figure 1: Inter-sentential dependencies requiring previous (source and target) and next (source) context

performance drop due to very long inputs (Koehn
and Knowles, 2017), in case of extended transla-
tion units (Tiedemann and Scherrer, 2017). Hence,
the impact of utilizing a large-sized context win-
dow on the source as well as the target side re-
mains unclear. Additionally, the impact of incor-
porating the next sentences as context in the source
side also needs to be examined, owing to discourse
phenomena like cataphora and gender agreement,
illustrated in Figure 1.

We address this gap and investigate the con-
tribution of a context window looking behind as
well as ahead on the source-side, combined with
previous target-side context, in an efficient non-
recurrent “Transformer” architecture with self-
attention (hereafter Transformer), recently pro-
posed by Vaswani et al. (2017). We choose this
architecture due to its effective handling of long-
range dependencies and easily achievable compu-
tational parallelization. These characteristics are
due to the fact that the Transformer is based en-
tirely on self-attention, as opposed to LSTMs or
GRUs. The non-recurrent architecture enables ef-
fective parallelization, which is not possible with
RNNs due to their sequentiality, thereby reducing
the computational complexity considerably. We
perform experiments using differently sized con-
text windows on the source and target side. This
is the first effort towards contextual NMT with
Transformer to the best of our knowledge. On
the English-Italian data from the IWSLT 2017
shared task (Cettolo et al., 2017), the best of our
models achieves a 2.3% increase in BLEU score
over a baseline Transformer model trained without
any inter-sentential context and a 2.6% increase in
BLEU score over a multi-source BiLSTM model
trained using a previous source sentence as addi-

tional context.
The major contributions of this paper are sum-

marized below:

• We demonstrate that looking ahead at the
following text in addition to looking behind
at the preceding text on the source-side im-
proves performance.

• We demonstrate that both source-side context
as well as target-side context help to improve
translation quality, the latter however is more
prone to error propagation.

• We demonstrate that looking further beyond
a single previous sentence on the source-side
results in better performance, especially in
absence of target-side context.

• We show that a simple method like concate-
nation of the multiple inputs, when used with
the Transformer, generates efficient transla-
tions, whilst being trained more than three
times faster than an RNN based architecture.

The rest of the paper is organized as follows: We
describe an outline of the related work in Section
2, and provide a theoretical background in Section
3. Section 4.1 briefly describes the discourse phe-
nomena which we would like to capture using our
contextual NMT models. Our approach to model
discourse and the experiments conducted are de-
scribed in Section 4. Section Section 5 presents
the results obtained by our models, along with a
linguistic analysis of the implications therein. We
present the conclusions of the present research and
highlight possible directions for future work in
Section 6.
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2 Related Work

Discourse modeling has been explored to a sig-
nificant extent for Statistical Machine Translation
(Hardmeier, 2012), using methods like discrim-
inative learning (Giménez and Màrquez, 2007;
Tamchyna et al., 2016), context features (Gim-
pel and Smith, 2008; Costa-Jussà et al., 2014;
Sánchez-Martı́nez et al., 2008; Vintar et al.,
2003), bilingual language models (Niehues et al.,
2011), document-wide decoding (Hardmeier et
al., 2012; Hardmeier et al., 2013) and factored
models (Meyer et al., 2012). The majority of these
works, however, look mainly at intra-sentential
discourse phenomena, owing to the limited capa-
bility of SMT models to exploit extra-sentential
context. The neural MT paradigm, on the other
hand, offers a larger number of avenues for look-
ing beyond the current sentence during translation.

Recent work on incorporating contextual infor-
mation into NMT models has delved primarily into
multi-encoder models (Zoph and Knight, 2016;
Jean et al., 2017; Bawden et al., 2017), hierarchy
of RNNs (Wang et al., 2017) and extended transla-
tion units containing the previous sentence (Tiede-
mann and Scherrer, 2017). These approaches build
upon the multi-task learning method proposed by
Luong et al. (2015), adapting it specifically for
translation. Zoph and Knight (2016) propose a
multi-source training method, which employs mul-
tiple encoders to represent inputs coming from dif-
ferent languages. Their method utilizes the sources
available in two languages in order to produce bet-
ter translations for a third language. Jean et al.
(2017) use the multi-encoder framework, with one
set of encoder and attention each for the previous
and the current source sentence as an attempt to
model context. However, this method would be
computationally expensive with an increase in the
number of contextual sentences owing to the in-
crease in estimated parameters.

Wang et al. (2017) employ a hierarchy of RNNs
to summarize source-side context (previous three
sentences). This method addresses the computa-
tional complexity to an extent, however it does
not incorporate target-side context, which has been
shown to be useful by (Bawden et al., 2017).
Bawden et al. (2017) present an in-depth analysis
of the evaluation of discourse phenomena in NMT
and the challenges faced thereof. They provide a
hand-crafted test set specifically aimed at captur-
ing discursive dependencies. However, this set is

created with the assumption that the disambiguat-
ing context lies in the previous sentence, which is
not always the case (Scarton et al., 2015).

Our work is most similar to (Tiedemann and
Scherrer, 2017), who employ the standard NMT
architecture without multiple encoders, but using
larger blocks containing the previous and the cur-
rent sentence as input for the encoder, as an at-
tempt to better model discourse phenomena. The
primary limitation of this method is the inability to
add larger context due to the ineffective handling
of long-range dependencies by RNNs (Koehn and
Knowles, 2017). Additionally, this method does
not look at the following source-text, due to which
phenomena like cataphora and lexical cohesion are
not captured well.

While the above-mentioned works employ the
previous source text, we propose employing a con-
text window spanning previous as well as next
source sentences in order to model maximal dis-
course phenomena. On the target-side, we decode
the previous and current sentence while looking
at the source-window, thereby employing target-
side context as well. Additionally, we employ the
Transformer for our contextual models, as opposed
to the above-mentioned works using RNNs, due to
the enhanced long-range performance and compu-
tational parallelization.

3 Background

3.1 NMT with RNNs and Transformer

Neural MT employs a single neural network
trained jointly to provide end-to-end translation
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Bahdanau et al., 2014). NMT mod-
els typically consist of two components - an en-
coder and a decoder. The components are gener-
ally composed of Stacked RNNs (Recurrent Neu-
ral Networks), using either Long Short Term Mem-
ory (LSTM) (Sundermeyer et al., 2012) or Gated
Recurrent Units (GRU) (Chung et al., 2015). The
encoder transforms the source sentence into a vec-
tor from which the decoder extracts the proba-
ble targets. Specifically, NMT aims to model
the conditional probability p(y|x) of translating a
source sentence x = x1, x2...xu to a target sentence
y = y1, y2, ...yv. Let s be the representation of
the source sentence as computed by the encoder.
Based on the source representation, the decoder
produces a translation, one target word at a time
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and decomposes the conditional probability as:

log p(y|x) =
v∑

j=1

log p(yj |y<j , s) (1)

The entire model is jointly trained to maximize the
(conditional) log-likelihood of the parallel training
corpus:

max
θ

1

N

N∑

n=1

log pθ(y
(n)|x(n), θ) (2)

where (y(n), x(n)) represents the nth sentence in
parallel corpus of size N and θ denotes the set of
all tunable parameters.

Research in NMT recently witnessed a major
breakthrough in the Transformer architecture pro-
posed by Vaswani et al. (2017). This architec-
ture eschews the recurrent as well as convolution
layers, both of which are integral to the major-
ity of contemporary neural network architectures.
Instead, it uses stacked multi-head attention as
well as positional encodings to model the com-
plete sequential information encoded by the in-
put sentences. The decoder comprises of a sim-
ilar architecture, using masked multi-head atten-
tion followed by softmax normalization to gener-
ate the output probabilities over the target vocab-
ulary. The positional encodings are added to the
input as well as output embeddings, enabling the
model to capture the sequentiality of the input sen-
tence without having recurrence. The encodings
are computed from the position (pos) and the di-
mension (i) as follows:

PE(pos,2i) = sin(pos/10000(2i/dmodel)) (3)

PE(pos,2i+1) = cos(pos/10000(2i/dmodel)) (4)

where PE stands for positional encodings and
dmodel is the dimensionality of the vectors result-
ing from the embeddings learned from the input
and output tokens. Thus, each dimension of the
encoding (i) corresponds to a sinusoid.

3.2 Inter-sentential discourse phenomena

Coherence in a text is implicitly established using
a variety of discourse relations. Contextual infor-
mation can help in handling a variety of discourse
phenomena, mainly involving lexical choice, lin-
guistic agreement, coreference - anaphora (Hard-
meier and Federico, 2010) as well as cataphora,

and lexical coherence. Spoken language espe-
cially contains a large number of such dependen-
cies, due to the presence of an environment facil-
itating direct communication between the parties
(Pierrehumbert and Hirschberg, 1990), where ges-
tures and a common ground/theme are often used
the disambiguating context, thereby rendering the
need for explicit mentions in the text less impor-
tant. A reasonable amount of noun phrases are es-
tablished deictically, and the theme persists until
it’s taken over by another theme.

The deictic references are challenging to resolve
for NMT models using only the current sentence-
pair in consideration, and possible errors involving
gender usage as well as linguistic agreement can
be introduced in the translation. For instance, for
English→ Italian translation, establishing the lin-
guistic features of the noun under consideration is
crucial for translation. The co-ordination with the
adjective (buona vs buono), pronominal references
(lui vs lei), past participle verb form (sei andato vs
sei andata) as well as articles (il vs la) depends on
the noun.

Establishing the noun under consideration could
improve MT quality significantly, an example of
which is shown in (Babych and Hartley, 2003),
wherein Named Entity Recognition benefit trans-
lation. This would eventually lead to less post-
editing effort, which is significant for correcting
coreference related errors (Daems et al., 2015).
Other inter-sentential phenomena we would like to
capture include temporality (precedence, succes-
sion), causality (reason, result), condition (hypo-
thetical, general, unreal, factual), implicit asser-
tion, contrast (juxtaposition, opposition) and ex-
pansion (conjunction, instantiation, restatement,
alternative).

4 Experiments

4.1 Context integration
We model discourse using context windows on the
source as well as the target side. For the source,
we use one, two and three previous sentences and
one next sentence as additional context. For the
target, we use one and two previous sentences as
additional context.1 We choose the Transformer
for our experiments. The non-recurrent architec-
ture enables it to better handle longer sequences,
without an additional computational cost. This
1Increasing beyond this caused a drop in performance in our
preliminary experiments.
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is made possible by using a multi-headed self-
attention mechanism. The attention is a mapping
from (query, key, value) tuples to an output vec-
tor. For the self-attention, the query, key and value
come from the previous encoder layer, and the at-
tention is computed as:

SA(Q,K, V ) = softmax(QKT /
√
dk)V (5)

where Q is the query matrix, K is the key matrix
and V is the value matrix, dk is the dimensionality
of the queries and keys, and SA is the computed
self-attention. This formulation ensures that the
net path length between any two tokens irrespec-
tive of their position in the sequence is O(1).

The multi-head attention makes it possible for
the Transformer to model information coming in
from different positions simultaneously. It em-
ploys multiple attention layers in parallel, with
each head using different linear transformations
and thereby learning different relationships, to
compute the net attention:

MH(Q,K, V ) = Concat(head1, ..., headh)W
O

(6)
where MH is the multi-head attention, h is the
number of attention layers (also called “heads”),
headi is the self-attention computed over the ith

attention layer and WO is the parameter matrix of
dimension hdv*dmodel. In this case, queries come
from the previous decoder layer, and the key-value
pairs come from encoder output.

For training the contextual models, we inves-
tigate the usage of all the possible combinations
from the following configurations for modeling
context on both sides:

• Source side configuration:

– Previous sentence, previous two sen-
tences, previous three sentences, previ-
ous and next sentence, previous two and
next sentence.

• Target side configuration:

– Previous sentence, previous two sen-
tences.

For our experiments using the Transformer
model, we concatenate the contextual information
in our training and validation sets using a BREAK
token, inspired by (Tiedemann and Scherrer,
2017). Since the Transformer has positional

encodings, it encodes position information inher-
ently and using just a single BREAK token worked
better than appending a feature for each token
specifying the sentence it belongs to. The models
are referred to by the following label subsequently:

Prevm + Curr + Nextn→ Prevp + Curr
where m is the number of previous sentences used
as source-side context, n is the number of next sen-
tences used as source-side context, and p is the
number of previous sentences used as target-side
context. Curr refers to the current sentence on
both sides.

For comparison with RNN based techniques, we
trained baseline as well as contextual models using
a BiLSTM architecture. We employed the previ-
ous sentence as source-side context for the contex-
tual models, integrated using the methods of con-
catenation and multi-encoder RNN proposed by
Tiedemann and Scherrer (2017) and Jean et al.
(2017) respectively. These are denoted by the la-
bels concat andMulti−Source. For the concate-
nation, the BREAK token was used, similar to
the Transformer experiments. We also compared
the performance using target-side context (Tiede-
mann and Scherrer, 2017; Bawden et al., 2017).
The contextual models using only source-context
are labeled “2 to 1”, while those using the previ-
ous target sentence as context are labeled “2 to 2”.

4.2 Dataset

For our experiments, we employ the IWSLT 2017
(Cettolo et al., 2012) dataset, for the language di-
rection English → Italian (en → it). The dataset
contains parallel transcripts of around 1000 TED
talks, spanning various genres like Technology,
Entertainment, Business, Design and Global is-
sues.2 We use the “train” set for training, the
“tst2010” set for validation, and the “tst2017” set
for testing. The statistics for the training, valida-
tion and test splits are as given in Table 1. For
training the models, the sentences are first tok-
enized, following by segmentation of the tokens
into subword units (Sennrich et al., 2015) us-
ing Byte Pair Encoding (BPE). The number of
BPE operations is set to 32,000 and the frequency
threshold for the vocabulary filter is set to 35.

2This dataset is publicly available at https://wit3.fbk.eu/
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Phase Training Validation Test
#Sentences 221,688 1,501 1,147
#Tokens-en 4,073,526 27,191 21,507
#Tokens-it 3,799,385 25,131 20,238

Table 1: Statistics for the IWSLT dataset

4.3 Model Settings

We employ OpenNMT-tf (Klein et al., 2017) for
all our experiments.3 For training the Transformer
models, we use the Lazy Adam optimizer, with a
learning rate of 2.0 , model dimension of 512, la-
bel smoothing of 0.1, beam width of 4, batch size
of 3,072 tokens, bucket width of 1 and stopping
criteria at 250,000 steps or plateau in BLEU, in
case of the larger context models, since we ob-
served some instability in the convergence behav-
ior of the Transformer, especially for the contex-
tual models. The maximum source length is set to
be 70 for the baseline model, increasing linearly
with more context. The maximum target length is
set to be 10% more than the source length.4 For
training the RNN models, we employ the stochas-
tic gradient descent optimizer, with a learning rate
of 1.0, decay rate 0.7 with an exponential decay,
beam width of 5, batch size 64, bucket width 1
and stopping criteria 250,000 steps or plateau in
BLEU, whichever occurs earlier.

4.4 Evaluation

The evaluation of discourse phenomena in MT is
a challenging task (Hovy et al., 2002; Carpuat
and Simard, 2012), requiring specialized test sets
to quantitatively measure the performance of the
models for specific linguistic phenomena. One
such test set was created by (Bawden et al., 2017)
to measure performance on coreference, cohesion
and coherence respectively. However, the test set
was created with the assumption that the disam-
biguating context always lies in the previous sen-
tence, which is not necessarily the case. Tradi-
tional automatic evaluation metrics do not cap-
ture discourse phenomena completely (Scarton et
al., 2015), and using information about the dis-
course structure of a text improves the quality of
MT evaluation (Guzmán et al., 2014). Hence,
alternate methods for evaluation have been pro-

3The code is publicly available at
https://github.com/OpenNMT/OpenNMT-tf
4This is done to ensure no loss in target-side information, a
known sensitivity of the Transformer architecture.

Configuration BLEU TER
(i) BiLSTM, no context 28.2 52.9

(ii) BiLSTM, Concat, 2 to 1 26.3 53.7
(iii) BiLSTM, Multi-Source, 2 to 1 28.9 52.6

(iv) BiLSTM, Concat, 2 to 2 25.4 53.4
(v) BiLSTM, Multi-Source, 2 to 2 28.9 52.5

Table 2: Performance using RNN based approaches

Model Configuration BLEU TER
(i) Curr→ Curr 29.2 52.8

(ii) Prev1 + Curr→ Curr 29.4 52.5
(iii) Prev2 + Curr→ Curr 29.8 51.9
(iv) Prev3 + Curr→ Curr 29.2 52.8
(v) Curr + Next1→ Curr 29.7 51.9

(vi) Prev1 + Curr + Next1→ Curr 30.6 51.1
(vii) Prev2 + Curr + Next1→ Curr 29.8 51.4

Table 3: Results of our models using only source-side con-
text, on en→ it, IWSLT 2017

posed (Mitkov et al., 2000; Fomicheva and Bel,
2016) However, these methods do not look at the
document as a whole, but mainly model intra-
sentential discourse. Developing an evaluation
metric that considers document-level discourse re-
mains an open problem. Hence, we perform a pre-
liminary qualitative analysis in addition to the au-
tomatic evaluation of our outputs.

For automatic evaluation, we measure the per-
formance of our models using two standard
metrics: BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006). For comparison with
the test set, we extract the current sentence sepa-
rated by the BREAK tokens from the output gen-
erated by the contextual models. We also measure
the percentage of sentences for which the contex-
tual models improve over the baseline model. This
is done by computing the sentence-level TER for
each generated output sentence, and comparing it
with the corresponding one in the test set.

5 Results and Discussion

5.1 Performance on automatic evaluation
metrics

Tables 3 and 4 show the results obtained by the
different configurations of our models using the
Transformer architecture. For comparison with
previous approaches, we also train four contextual
configurations using RNN-based models, and re-
port the results in Table 2.

The RNN results confirm that:

• Adding contextual information is useful for
RNN models, provided that it is incorporated
using a multi-encoder architecture (≈ 28.9

16



Model Configuration BLEU TER
(i) Prev1 + Curr→ Prev1 + Curr 29.5 52.1
(ii) Prev2 + Curr→ Prev1 + Curr 29.8 51.9
(iii) Prev2 + Curr→ Prev2 + Curr 29.7 52.1
(iv) Prev3 + Curr→ Prev1 + Curr 29.2 52.2
(v) Prev3 + Curr→ Prev2 + Curr 28.9 52.9

(vi) Prev1 + Curr + Next1→ Prev1 + Curr 31.5 49.7
(vii) Prev2 + Curr + Next1→ Prev1 + Curr 31.1 50.5
(viii) Prev2 + Curr + Next1→ Prev2 + Curr 30.2 51.2

Table 4: Results of our models using source as well as target
side context, on en→ it, IWSLT 2017

Model Configuration % sentences
Prev1 + Curr→ Curr 62.8
Curr + Next1→ Curr 61.3

Prev1 + Curr + Next1→ Curr 67.2

Table 5: Percentage of sentences for which TER score is
less than or equal to the baseline model, depending upon the
source-context used

BLEU score with multi-source, ≈ 0.8 more
than the baseline BLEU score of 28.18).

• RNNs are sensitive to the length of the sen-
tence, both on the source and target side (Ta-
ble 2, (ii) and (iv)). This can be attributed to a
vanishing signal between very long-range de-
pendencies, despite the gating techniques em-
ployed.

• The RNN models need more sophisticated
techniques than concatenation, like multi-
source training, to leverage the information
from the previous sentence (Table 2, (iii),
(v)). This can be attributed to the drop in per-
formance on very long sequences (Cho et al.,
2014; Koehn and Knowles, 2017)5, owing to
concatenation.

For the Transformer architecture, the contex-
tual models achieve an increase of 1-2% in BLEU
score over a baseline model trained without any
inter-sentential context (Tables 3 and 4).

The results suggest that:

• Looking further ahead at the next sentence
can help in disambiguation, evident from the
improved performance of the configurations
involving both previous as well as next sen-
tences on the source side than those looking
only at previous context (Table 3, (v) - (vii)).

• Target-side context also helps to improve per-
formance (Table 4, (i)-(v) vs. Table 3. (ii)-
(iv)). as also suggested by (Bawden et al.,

5On manual inspection, we observed frequent short, incom-
plete predictions in this case.

2017). However, a larger context window on
the source side and a window with one pre-
vious sentence on the target side generally
works better. Our intuition is that going be-
yond one previous sentence on the target side
increases the risk of error propagation (Table
4, (viii)).

• The Transformer performs significantly better
than RNN’s for very long inputs (Table 2, (iv)
vs. Table 4, (i)). This can be attributed to
the multi-head self-attention, which captures
long-range dependencies better.

• Contextual information does not necessarily
come from the previous one sentence. Incor-
porating more context, especially on source-
side, helps on TED data (Table 4, (vi), (vii)),
and can be effectively handled with Trans-
former.

• The self-attention mechanism of the Trans-
former architecture enables a simple strategy
like concatenation of a context window to
work better than multi-encoder RNN based
approaches.

Additionally, the training time for the Trans-
former models was significantly shorter than the
RNN based ones (≈ 30 hours and ≈ 100 hours re-
spectively). This can be attributed to the fact that
the positional encodings capture the sequentiality
in the absence of recurrence, and the multi-head
attention makes it easily parallelizable. In addi-
tion to the corpus level scores, we also compute
sentence level TER scores, in order to estimate the
percentage of sentences which are better translated
using cross sentential source-side context. These
are given in Table 5.

5.2 Qualitative analysis

In addition to the performance evaluation using the
automatic evaluation metrics, we also analyzed a
random sample of outputs generated by our mod-
els, in order to have a better insight as to which lin-
guistic phenomena are handled better by our con-
textual NMT models. Tables 6 and 7 compare the
outputs of our best-performing contextual models
(Table 4, (vi)) with the baseline model. The con-
textual models in general make better morphosyn-
tactic choices generating more coherent transla-
tions than the baseline model. For instance, in the
output of the contextual model (Table 6, (iii)), the
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Source I went there with my friend. She was amazed to see that it had multiple floors. Each one had
a number of shops.

(i) Baseline
Transformer

Arrivai li con il mio amico. Rimaneva meravigliato di vedere che aveva una cosa piu incredibile.
Ognuna aveva tanti negozi.

(ii) Contextual
Transformer
(Prev)

Arrivai la con il mio amico. Era sorpresa vedere che aveva diversi piani. Ognuno aveva un
certo numero di negozi.

(iii) Contextual
Transformer
(Prev + Next)

Sono andato con la mia amica. Fu sorpresa nel vedere che aveva piu piani. Ognuno aveva tanti
negozi.

Reference Sono andato la’ con la mia amica. E’ rimasta meraviglia nel vedere che aveva piu’ piani.
Ognuno aveva tanti negozi.

Table 6: Qualitative analysis - Improvement for cataphora, anaphora and gender agreement

Source OK, I need you to take out your phones. Now that you have your phone out, I’d like you to
unlock your phone.

(i) Baseline
Transformer

Ok, devo tirare fuori i vostri cellulari. Ora che avete il vostro telefono, vorrei che bloccaste il
vostro telefono.

(ii) Contextual
Transformer
(Prev)

OK, dovete tirare i vostri cellulari. Ora che avete il vostro telefono, vorrei che faceste sbloccare
il vostro telefono.

(iii) Contextual
Transformer
(Prev + Next)

Ok, ho bisogno che tiriate fuori i vostri telefoni. Ora che avete il vostro telefono, vorrei che
sbloccaste il vostro telefono.

Reference Ok, ho bisogno che tiriate fuori i vostri telefoni. Ora che avete il vostro telefono davanti vorrei
che lo sbloccaste.

Table 7: Qualitative analysis - Improvement for lexical cohesion and verbal inflections

phrase sono andato employs the passato prossimo
(“near past”) verb form andato, which is more ap-
propriate than the passato remoto (“remote past”)
form arrivai, since the latter refers to events oc-
curred far in the past, while the former refers to
more recent ones. Additionally, the cataphor my
friend is successfully disambiguated to refer to the
postcedent she, apparent from the correctly pre-
dicted gender of the translated phrase la mia amica
(feminine) as opposed to il mio amico (masculine).
Similarly, the anaphora Each one is resolved (og-
nuna as opposed to ognuno). In the second ex-
ample from Table 7, improved lexical choice -che
tiriate (second person plural subjunctive), bisogno
(“I need”) as opposed to devo (“I must”) and lex-
ical cohesion cellulari (“mobile phones”) vs. tele-
foni (“phones”) can be observed.

While our models are able to incorporate con-
textual information from the surrounding text, they
cannot leverage the disambiguating context which
lies very far away from the current sentence being
translated. In such cases, concatenating the sen-
tences would be non-optimal, since there is a high
possibility of irrelevant information overpowering
disambiguating context. This is also evident from
our experiments using n > 2 previous sentences as
additional context using concatenation (Table 3,
(iv)).

6 Conclusion

Neural MT methods, being typically trained at sen-
tence level, fail to completely capture implicit dis-
course relations established at the inter-sentential
level in the text. In this paper, we demonstrated
that looking behind as well as peeking ahead in
the source text during translation leads to better
performance than translating sentences in isola-
tion. Additionally, jointly decoding the previous
as well as current text on the target-side helps to
incorporate target-side context, which also shows
improvement in translation quality to a certain ex-
tent, albeit being more prone to error propagation
with increase in the size of the context window.
Moreover we showed that using the Transformer
architecture, a simple strategy like concatenation
of the context yields better performance on spo-
ken texts than non-contextual models, whilst being
trained significantly faster than recurrent architec-
tures. Contextual handling using self-attention is
hence a promising direction to explore in the fu-
ture, possibly with multi-source techniques in con-
jugation with the Transformer architecture. In the
future, we would like to perform a fine-grained
analysis on the improvement observed for specific
linguistic phenomena using our extended context
models.
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