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The white matter pathways of the brain can be reconstructed as 3D polylines, called

streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI)

data. The whole set of streamlines is called tractogram and represents the structural

connectome of the brain. In multiple applications, like group-analysis, segmentation, or

atlasing, tractograms of different subjects need to be aligned. Typically, this is done with

registration methods, that transform the tractograms in order to increase their similarity.

In contrast with transformation-based registration methods, in this work we propose the

concept of tractogram correspondence, whose aim is to find which streamline of one

tractogram corresponds to which streamline in another tractogram, i.e., a map from

one tractogram to another. As a further contribution, we propose to use the relational

information of each streamline, i.e., its distances from the other streamlines in its own

tractogram, as the building block to define the optimal correspondence. We provide

an operational procedure to find the optimal correspondence through a combinatorial

optimization problem and we discuss its similarity to the graph matching problem. In

this work, we propose to represent tractograms as graphs and we adopt a recent

inexact sub-graph matching algorithm to approximate the solution of the tractogram

correspondence problem. On tractograms generated from the Human Connectome

Project dataset, we report experimental evidence that tractogram correspondence,

implemented as graph matching, provides much better alignment than affine registration

and comparable if not better results than non-linear registration of volumes.

Keywords: diffusion MRI, tractography, alignment, combinatorial optimization, graph matching

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) data (Basser et al., 1994), provide quantitative
information about the white matter of the brain, in terms of local main direction(s) of the neuronal
axons. Such information allows to approximate the main paths of large sets of axons with polylines,
called streamlines. The whole set of streamlines is called tractogram and represents the structural
connectome of the brain (Sporns et al., 2005).

In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different
subjects need to be aligned (O’Donnell et al., 2012), i.e., it is necessary to find corresponding
anatomical structures across tractograms. Typically, two tractograms can be aligned by first
estimating a transformation between the corresponding volumetric images, like T1, fractional
anisotropy (FA, see Basser et al., 1994), or orientation distribution functions (ODFs, see Raffelt
et al., 2011; Christiaens et al., 2012, and then by applying such transformation to the streamlines
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of the tractograms1. In the literature, both linear and non-linear
methods have been proposed to register volumetric data, see
Christiaens et al. (2014). In case of linear methods, an affine
transformation is estimated, e.g., with FSL/FLIRT, see Jenkinson
et al. (2002), and then applied to the coordinates of the
streamlines. In case of non-linear volumetric transformations,
the tractogram is usually re-generated after transforming
the dMRI data accordingly. The literature on non-linear
transformations directly on streamlines is focused on fiber
bundle alignment. In Ziyan et al. (2007), corresponding
bundles are aligned across subjects by warping their spatial
probability maps computed from the coordinates of the
streamlines. In Ziyan et al. (2009), consistency clustering
is used to label streamlines in an iterative process with
polyaffine transformations. In Wassermann et al. (2011) a
diffeomorphic registration algorithm is used on the Gaussian
process representation of streamline density maps. In Durrleman
et al. (2011), the use of the framework of currents is proposed
to warp the streamlines of bundles, for registration, atlasing, and
variability analysis. This literature addresses non-linear bundle
alignment but not whole tractogram alignment, also for the
high computational cost of the algorithms. Another approach
to non-linear registration of streamlines is to use deformation
fields, computed from non-linear volume registration, directly
on streamlines. This approach is mentioned in Christiaens et al.
(2012), but without a quantitative evaluation of its effect.

Recently, new linear methods have been proposed to directly
register whole tractograms, see O’Donnell et al. (2012) and
Garyfallidis et al. (2015), without the intermediate indirect step
of registering volumetric images. These methods find an affine
transformation that minimizes a given loss function computed
only from streamlines. In O’Donnell et al. (2012), the loss
function is based on the entropy of a random subset of the
coordinates of the streamlines. In Garyfallidis et al. (2015), the
loss function is based on a streamline-streamline distance of a
subset of all streamlines.

It is common experience that a single affine transformation
can reconcile only part of the differences between the tractograms
of two subjects. Many differences remain at the local level,
e.g., systematic displacement of entire tracts, thinner/thicker, or
longer/shorter tracts. We show a simple toy example of these
issues in Figure 1, where two tracts (see Figure 1A), one U-
shaped and the other one elongated, and the corresponding two
tracts after some local changes (see Figure 1B), are presented.
This second set of streamlines, (B), is artificially constructed
from the first set (A) by adding a small displacement between
the two tracts and a moderate magnification of the U-shaped
one. By construction it is not possible to find a global affine
transformation that reconciles the difference between A and
B, because the difference is local and not global. In Figure 1C

we show the overlap between (A) and (B) with the best affine
transform obtained with the streamline linear registration (SLR,
see Garyfallidis et al., 2015) algorithm. It is clearly visible

1In the whole paper we use alignment as the generic term to indicate the task of

putting in correspondence two anatomical structures. We use the term registration

to specifically indicate the transformation-based methods to obtain alignment.

that the overlap between the green (A) and white (B) sets is
poor.

As in O’Donnell et al. (2012) and in Garyfallidis et al.
(2015), in this work we are eminently interested in methods
for tractogram alignment that directly operates on streamlines,
without resorting to volume-based registration. This is due to two
main reasons: first, in many practical cases, tractogram alignment
is based on registration of images that either do not contain
diffusion MRI information at all, i.e., T1 images, or contain just
a portion of it, e.g., FA images, which is clearly suboptimal. In
case full ODFs are considered (see for example Raffelt et al.,
2011), the effects of re-orientation may create problems when
re-generating the tractogram, see Christiaens et al. (2012). The
second reason is that the cost of re-generating tractograms,
after registering volumes, may be high, in terms of computation
time and required knowledge to operate the full pipelines of,
preprocessing, reconstruction, tracking, and filtering, see Pestilli
et al. (2014).

In this work, we propose to avoid transformations and
to directly find the correspondence between streamlines of
two different tractograms, i.e., to find which streamline of
one tractogram corresponds to which streamline in the other
tractogram. This idea is inspired by our recent work on
bundle segmentation (Sharmin et al., 2016). The concept of
corresponding streamlines has been used before, for example in
the context of streamline clustering. There, the aim is to find
corresponding clusters across subjects or to label them from
an atlas. The cluster correspondence is achieved by finding the
correspondence between the representative streamlines, one per
cluster. See for example Maddah et al. (2005), O’Donnell and
Westin (2007), Guevara et al. (2012), and Yoo et al. (2015).
In this work, we take one step further and target streamline
correspondence for all streamlines in the tractogram. This can
be thought as the limit case of cluster correspondence, when
the size of the cluster decreases till one single streamline. It is
true that, given two tractograms, we cannot assume that every
streamline in one tractogram has a corresponding streamline
in the other tractogram. This occurs because, for example,
some streamlines could be artifactual and have no anatomical
counterpart. Nevertheless, in Section 3, show that, in practice,
such cases do not disrupt the quality of the resulting alignment
and that, for this reason, the number of problematic streamlines
is quite small.

The alignment based on streamline correspondence, in a
sense, acts as a non-linear alignment of the first set of streamlines
onto the second one. It can be seen as a transformation,
where each streamline of one tractogram is moved and
deformed to become of the exact shape and position of the
corresponding streamline in the other tractogram. From this
point of view, the proposed method can be thought as an
extremely local registration method. In Figure 1D, we show the
result of computing such correspondence. There, the two sets
of streamlines are displayed with arbitrary displacement and
yellow straight lines, found by the proposed algorithm, correctly
connect the midpoints of the corresponding streamlines across
the two sets. After alignment, the resulting aligned set of white
streamlines will be identical to the set of green streamlines.
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FIGURE 1 | Panels (A,B) show two equivalent sets of streamlines, with local differences. Panel (C) shows the effect and limits of linear registration of panels (A,B).

Panel (D) shows the result of the proposed tractogram correspondence, where streamlines of panel (A) are connected with a yellow straight line to the corresponding

ones of (B).

Alignment based on streamline correspondence provides
immediate means to address practical tasks such as bundle
segmentation and streamline labeling. Once the label of a
streamline is known in one subject, then such label can be directly
assigned to the corresponding streamline in the tractogram
of the other subject. In such applications, the interest is in
transferring anatomical information to a specific target subject,
for example in the context of pre-surgical planning. Notice that
this aim is different from, for example, that of constructing
atlases, see Durrleman et al. (2011). In that scenario the interest
is to find a common model from multiple subjects and, for this
reason, none of them can be considered as ground truth.

The algorithmic problem of finding the correspondence
between streamlines of different tractograms can be framed as a
combinatorial optimization problem. Given a loss function that
measures how good such correspondence is, the task is to explore
the combinatorial space of all possible correspondences in order
to find the one that minimizes such loss. To define the loss
function, in this work, we propose to encode each tractogram as
a large fully-connected weighted graph, where each node/vertex
corresponds to a streamline and the weights of the graph’s edges
are the distances between streamlines within the same set. Given
two tractograms, i.e., two graphs, the original problem of finding
the correspondence between two sets of streamlines, can be
recast as the problem of finding corresponding nodes/vertices
between the two graphs, a famous combinatorial optimization
problem called graph matching, see Conte et al. (2004). In
this work, we provide an operational procedure to compute
tractogram alignment based on a recent approximate graph
matching algorithm, i.e., the doubly stochastic fixed-point
(DSPFP) algorithm.

In the following sections of this paper, we formally present the
tractogram correspondence problem and explore its similarity
to the graph matching problem (see Section 2), from whose
literature we draw the actual algorithm adopted in our
experiments. In Section 3, on dMRI data from the Human
Connectome Project (HCP) dataset, see Sotiropoulos et al.
(2013), we show the efficacy of tractogram correspondence,
where it achieves much better alignment across subjects than

standard affine-based global registration and comparable, if not
better, results to non-linear voxel-based methods. We conclude
this work by discussing themerits and limitations of the proposed
method and by mentioning future work.

2. METHODS

In this section, we first introduce the basic terminology
and notation. Then we describe the details of tractogram
correspondence in general and its implementation based on
relational information. We proceed to describe the strong
similarity with the problem of graph matching in order to adopt
an efficient approximate solution from its literature, i.e., the
DSPFP algorithm.

Let s = [x1, . . . , xns ], xi ∈ R
3, be a streamline (or track,

or fiber), i.e., a polyline made of a sequence of ns points in
3D space. Let T = {s1, . . . , sN} be a tractogram (or track set)
of the whole brain and t ⊂ T a tract (or bundle). Let d :

T × T 7→ R
+ be a distance function between streamlines.

Several anatomically meaningful distances have been proposed
in the literature, based on the idea that streamlines with similar
path and shape belong to the same anatomical structure, see
Gerig et al. (2004), Corouge et al. (2004), Zhang et al. (2008),
and Jiao et al. (2010). In this work we use the commonly
adopted mean average minimum (MAM) distance, a modified
Hausdorff distance sometimes called also mean closest point
distance (see Corouge et al., 2004):

dMAM(s, s′) =
1

2
(D(s, s′)+ D(s′, s)) (1)

where D(s, s′) = 1
ns

∑ns
i=1 d(xi, s

′), and d(x, s′) =

minj=1,...,ns′ ||x − x′j||2. Other distances can be used without

changes to the procedure we propose here.
Let G = (V ,E, f ) be a fully-connected undirected edge-

weighted graph, made of a finite set of vertices V , the
corresponding set of edges E, and a weighting function f :E 7→ R.
We represent the tractogram T with the graph G: each vertex of
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G correspond2 to one streamline of T and the weight of each
edge is the distance between the related streamlines, i.e., G =

(id(T),E, d), where id(si) = i, id(T) = {id(s1), . . . , id(sN)}, E ⊆

id(T) × id(T) and f ((i, j)) = d(si, sj). Two different tractograms
TA and TB are then represented by two different graphs, GA and
GB. We denote as A ∈ R

NA×NA and B ∈ R
NB×NB the adjacency

matrices of the weighted graphs GA and GB, respectively. Given
a matrix A, we call aij the corresponding element at row i and
column j.

2.1. Tractogram Alignment As Tractograms
Correspondence
We cast the problem of aligning two tractograms, TA and TB, as
the problem of finding the corresponding streamlines between
them. Once such correspondence has been established, TA will
be aligned to TB by transforming each streamline sA ∈ TA

into the corresponding streamline sB ∈ TB, as if to perfectly
match it. Notice that such transformation is not explicit, i.e.,
no deformation field is computed. Knowing sB, i.e., knowing its
coordinates, is enough obtain the aligned sA.

In order to solve the correspondence problem, we define
the binary matrix Q = [qik]ik ∈ {0, 1}NB×NA , that we call
correspondence matrix, such that qik is 1 when streamline i of
TA corresponds to streamline k of TB and 0 otherwise. We
require that

∑

k qik = 1, i.e., each streamline in TA must have
a corresponding one in TB, while the contrary is not necessarily
true. This last case, for example, occurs whenNA 6= NB, i.e., when
the one-to-one correspondence cannot be made. In particular,
when NA > NB multiple streamlines of TA may correspond to
the same streamline of TB.

In the meanwhile, we notice that the discrete space on which
the loss function needs to be minimized is extremely large,

i.e., there are NNA
B different possible correspondences. Given

the typical size of tractograms, in the order of 105 streamlines,
it is apparent that the combinatorial optimization problem is
extremely hard to solve and that approximations should be
introduced (see Section 2.4).

2.2. Correspondence Based on Relational
Information
Finding the best correspondence between two tractograms
requires two ingredients: the definition of a loss function, i.e.,
a function that scores the correspondence, and the exploration
of the combinatorial space in order to actually find the best
correspondence. Notice that the definition of a loss function
for tractogram correspondence should not be based on the
direct distance between streamlines across different tractograms,
because such distance becomes anatomical meaningful only after
the alignment is done. For this reason, as the building block of
the loss function, we propose that two streamlines of different
tractograms should correspond when their respective set of
distances, with other streamlines in their own tractograms, are
similar. This idea is motivated by our results in Olivetti et al.
(2012), where it was shown that representing a streamline as the

2Technically, each vertex is an object whose property is the identifier of the

streamline to which it is associated.

set of distances from the other streamlines in its own tractogram
is indeed an accurate Euclidean embedding, i.e., the geometrical
information of the streamlines is preserved.

Formally, if Q is a correspondence matrix of TA to TB, then
the matrix QAQ⊤ ∈ R

NB×NB represents A after applying such
correspondence. To better understand this step, consider that,
in the special case where NA = NB and Q is a one-to-one
correspondence, then Q is a permutation matrix and QAQ⊤ is
a matrix where rows and columns are obtained just by permuting
those of A according to Q. As a consequence, a meaningful
definition of distance, i.e., loss L, between TA and TB is the matrix
distance (Frobenius norm, || · ||F) between the mapped A and
B: L = ||B − QAQ⊤||2F . Then, the problem of finding the best
possible correspondence Q∗ between TA and TB becomes the
combinatorial optimization problem

Q∗ = argmin
Q∈Q

||B− QAQ⊤||2F (2)

where Q is the space of all possible correspondences. As
noted before, Q is extremely large and, clearly, this problem
is extremely hard to solve. In the following, we describe its
similarity with another combinatorial optimization problem, i.e.,
graph matching, in order to draw approximate solutions from its
literature.

2.3. Graph Matching
A combinatorial optimization problem, that is strongly related to
the tractogram correspondence problem, is graphmatching (GM)
(see Conte et al., 2004; Zaslavskiy et al., 2009). The GM problem
aims at finding the corresponding vertices in two graphs, GA and
GB, of equal size, with adjacency matrices A and B. Differently
from the correspondence of streamlines described in Section 2.2,
the correspondence of GM is a one-to-one (bijection). Formally,
the GM problem is formulated as

P∗ = argmin
P∈P

||A− PBP⊤||2F (3)

which is very similar3 to the correspondence problem of
Equation (2). Specifically, when the correspondence between
streamlines is a permutation of indices, then the matrix Q
is a permutation matrix and the correspondence problem of
Equation (2) becomes identical to the graph matching problem
of Equation (3): ||A − PBP⊤||2F = ||B − QAQ⊤||2F when P = Q,
so Q∗ = P∗.

When the two graphs have different sizes, the GM problem
is called sub-graph matching (sub-GM) problem and the goal is
to find the corresponding vertices from the small graph to the
large graph. The GM and sub-GM problems are known to be
NP-hard (Conte et al., 2004), in general, and only approximate
solutions can be obtained in most of the practical cases, i.e.,
when the number of vertices is more than twenty. Notice that
a matching P can also be considered a correspondence, i.e., P ∈

P ⊆ Q. For this reason, an approximate solution of GM is also
an approximate solution of the correspondence problem.

3Historically, the GM problem refers to finding the vertices of GB that match those

of GA, and not the contrary, which is the natural way to formulate the alignment

problem.
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2.4. Graph Matching: Approximate
Solutions
Finding good approximate solutions to the GM and sub-GM
problems is a difficult task with extensive literature. The main
solutions available are divided in two groups (Zaslavskiy et al.,
2009): the first group operates on spectral representations of
the adjacency matrices (see for example Umeyama, 1988).
The second group is based on relaxation methods (see for
example Zaslavskiy et al., 2009), i.e., on solving the optimization
problem on a continuous superset of P , where more efficient
continuous optimization techniques can be used, and then by
projecting the result back to P . To the best of our knowledge, the
computational time and space complexity of the most efficient
algorithms4 for sub-GM are, respectively, O(n3)/iteration and
O(n2), reached only by the following algorithms (see Zaslavskiy
et al., 2009; Lu et al., 2016): projected gradient, graduated
assignment, PATH, and DSPFP. With such computational
complexity, approximate solutions can be found for graphs with
several thousands of vertices. To scale-up to larger graphs, it is
necessary to derive methods with lower complexity per iteration
or to introduce assumptions on the structure of the data.

According to Lu et al. (2016) and to our tests, the DSPFP
algorithm outperforms others algorithms in terms of actual time
and memory requirements, moreover with higher quality of
the approximated solution. For this reason we adopted that
algorithm for the experiments of Section 3. In the following we
briefly review DSPFP. For a comprehensive description see Lu
et al. (2016).

2.5. The Doubly Stochastic Projected
Fixed-Point (DSPFP) Algorithm
The DSPFP algorithm provides an approximate solution to the
GM and sub-GM problems. In its original formulation (see Lu
et al., 2016), the algorithm accounts for the similarity between
both the weights of corresponding edges and the attributes of
corresponding vertices. For sake of simplicity, here we omit the
part pertaining vertex attributes, since it does not play a role
in the proposed application of tractogram alignment5. In the
following we report the main steps to describe DSPFP.

Theminimization problem of Equation (3) can be recast as the
maximization problem

P∗ = argmax
X

1

2
tr(X⊤AX⊤B) (4)

s.t. X1 = 1,X⊤1 = 1, xij ∈ {0, 1}

see for example Lu et al. (2016), Appendix A, for the complete
derivation of Equation (4). By relaxing the constraint that xij ∈
{0, 1} into xij ≥ 0, the original discrete space of the partial
permutation matrices becomes the continuous one of doubly
stochastic matrices. The quadratic maximization problem on this
continuous space can be addressed by means of the projected

4All these algorithms are iterative, with some sort of convergence criteria.
5Technically, this means simply to set to zero the matrix K in all equations in Lu

et al. (2016).

fixed-point method, which is iterative:

Xt+1 = (1− α)Xt + α5(∇f (Xt)) (5)

where α is the step size, 5(·) is the doubly stochastic projection,
f (X) is the target function to be maximized, i.e., f (X) =
1
2 tr(X

⊤AX⊤B), so ∇f (X) = AXB. The projection method
adopted in DSPFP is based on a recent closed-form solution
of doubly stochastic projection, proposed in Zass and Shashua
(2006), which is solved by iterating two successive projections
until convergence: 5(X) = . . . 52515251(X), where

6:

51(X) = X +

(

1

NA
I +

1⊤X1

N2
A

−
1

NA
X

)

11⊤ −
1

NA
11⊤X (6)

and

52(X) =
X + |X|

2
. (7)

The resulting procedure is reported in Algorithm 1, where Y is a
NA × NA matrix, assuming NA ≥ NB. The initialization of X and
Y recommended in Lu et al. (2016) is such that xij = 1/(NANB)
and yij = 0, ∀i, j.

Data: A,B,α
Result: P
Initialize X and Y ;
repeat

Y1:NA ,1:NB = AXB;
repeat

Y = Y +
(

1
NA

I + 1⊤Y1
N2
A

− 1
NA

Y
)

11⊤ − 1
NA

11⊤Y ;

Y =
Y+|Y|

2 ;

until Y converges;
X = (1− α)X + αY1:NA ,1:NB ;
X = X/max(X);

until X converges;
Discretize X to obtain P.

Algorithm 1: Doubly Stochastic Projected Fixed-Point

(DSPFP), from Lu et al. (2016).

The discretization of X, required in the last step of Algorithm 1,
is a linear assignment problem, which can be implemented with
the Hungarian method or approximated with a faster greedy
algorithm for the linear assignment method, such as the one
used in Leordeanu and Hebert (2005). This greedy approach
comprises the steps described in Algorithm 2.

3. EXPERIMENTS

In this section, we describe the experiments to support the
claims about the advantages of tractogram correspondence over
registration methods for tractogram alignment. The experiment
was conducted on the Human Connectome Project (HCP) dMRI

61 indicates the vector with all elements equal to one.
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Data: X
Result: P
Initialize P as NA ×NB zero matrix and L as its set of indices
{(i, j)}i,j;
repeat

(i∗, j∗) = argmax(i,j)∈L xij;

pi∗ ,j∗ = 1;
remove from L all pairs (i, j) s.t. i = i∗ or j = j∗;

until L is empty;
Algorithm 2: Greedy algorithm for the linear assignment

problem.

dataset, see Van Essen et al. (2013), Sotiropoulos et al. (2013),
and Glasser et al. (2013). From that, we extracted data of 10
random subjects, single shell (b = 1000), with the original
voxel size (isotropic, 1.25 mm) and 90 gradients. Reconstruction
was computed using the constrained spherical deconvolution
algorithm (CSD, see Tournier et al., 2007) and tracking was based
on the Euler Delta Crossing method (EuDX, see Garyfallidis
et al., 2014), with 106 seeds. The resulting tractograms consist
of approximately 100–140 thousands streamlines, as reported in
Table 1, third and fourth columns.

In order to quantify the quality of tractogram alignment
produced by the methods in the literature and by the
proposed one, we relied on measuring the degree of overlap of
corresponding anatomical bundles/tracts after whole tractogram
alignment (see Golding et al., 2011; Garyfallidis et al., 2015).
Since the bundle/tract information is never used to compute
alignments, we can safely assume that, the better such overlap, the
better the alignment of tractograms. In the following, we provide
details of the set of alignment methods used in the comparison
and of the procedure to obtain the bundles/tracts. Then we report
the results of all experiments.

3.1. Alignment of Tractograms
We aligned all pairs of tractograms obtained from the 10
subjects, i.e., 45 pairs. We compared the following alignment
methods: standard affine registration of voxels, affine registration
of streamlines, non-linear registration of voxels and the
proposed method based on graph matching (GM). Voxel-
level affine registration was computed with FSL/FLIRT on
the B0 images. Streamline affine registration was computed
with two different algorithms: the entropy-based group-wise
registration (ENT) algorithm7 from O’Donnell et al. (2012)
and with the streamline linear registration (SLR) algorithm8

from Garyfallidis et al. (2015). In all cases, affine registration
was applied to streamline coordinates using the function
dipy.tracking.streamline.apply_affine(), from
DiPy. Non-linear voxel-level registration was computed with
FSL/FNIRT, using the deformation fields directly provided within
the HCP dataset9. GM-based alignment was computed using the

7We adopted the software implementation provided by the authors of ENT,

available at: https://github.com/ljod/whitematteranalysis.
8As implemented in DiPy, http://nipy.org/dipy.
9The estimation of the deformation fields of theHCP dataset is described inGlasser

et al. (2013) in the following way: “After bias field correction of the T1w and T2w

images, the T1w image is registered to MNI space with a FLIRT 12 DOF affine

DSPFP algorithm described in Section 2.5 and implemented by
us in Python language. Our implementation is available under
a Free/OpenSource license at: https://github.com/emanuele/
DSPFP.

In order to quantitatively compare the five different whole-
tractogram alignment methods we followed the common
practice, also described in Garyfallidis et al. (2015) and Golding
et al. (2011), i.e., we computed the overlap in voxels of a
set of corresponding anatomical tracts after the whole brain
alignment is done. Before alignment, we segmented a set of
tracts in each tractogram with the white matter query language
(WMQL, see Wassermann et al., 2013)10 and then used the
streamline IDs to obtain the tracts on the tractogram after
alignment. The set of tracts comprised: Cingulum Bundle (left
and right), Inferior Occipito Frontal Fascicle (left and right),
Uncinate Fascicle (left and right), Arcuate Fascicle (left), and
Corpus Callosum (part 2 and 7). We selected these specific nine
tracts because their segmentation, obtained through WMQL,
was more consistent across subjects, in terms of number of
streamlines, see Supplementary Material for additional details. In
Supplementary Material, we extend also this analysis to include
further bundles/tracts, which are known to have high variability
across subjects. The fraction of overlapping voxels between the
tract (talA ) of the aligned tractogram and the one (tB) in the target
tractogram, usually called Jaccard index J, is then:

J =
|v(talA ) ∩ v(tB)|

|v(tB)|
(8)

where v(t) indicates the set of voxels crossed by the streamlines
of tract t, while | · | is the set size.

3.2. Graph Matching: Further
Approximation
As mentioned in Section 2.4, one limitation of the algorithms
for approximate graph matching is the high computational cost
when the number of nodes exceeds a few thousands. Specifically,
for the adopted DSPFP, see Figure 2 for the exact timing to
perform graph matching on sets of streamlines till size 3000.
The computational and storage resources necessary to handle
the matching of graphs generated from an entire tractogram,
i.e., n = 105 nodes and 1010 edges, are beyond the capability
of modern computers. For this reason, in order to obtain the
correspondence between tractograms, we introduced a further
approximation with a simple three-steps procedure, similar to the
one proposed for the SLR algorithm inGaryfallidis et al. (2015):

1. We clustered each tractogram into a given number of clusters
(k = 1000) and defined the median (centroid) streamline as
the representative for each cluster. We adopted the fast mini-
batch k-means algorithm described in Olivetti et al. (2013) and
Porro-Muñoz et al. (2015).

2. We computed graph matching between the two graphs
made only with the k representatives, in order to obtain
corresponding clusters.

and then a FNIRT non-linear registration, producing the final non-linear volume

transformation from the subject’s native volume space to MNI space.”
10According to the white matter parcellation provided by the HCP initiative.
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TABLE 1 | All results of tractograms alignment with FLIRT, ENT, SLR,

FNIRT, and the proposed GM across all pairs of subjects.

ID subj.A ID subj.B |TA| |TB| JFLIRT JENT JSLR JFNIRT JGM

100307 124422 117354 107891 0.26 0.27 0.26 0.43 0.59

161731 117354 105490 0.33 0.32 0.36 0.44 0.64

199655 117354 134759 0.21 0.24 0.25 0.44 0.62

201111 117354 145364 0.18 0.19 0.18 0.45 0.51

239944 117354 116598 0.22 0.23 0.23 0.47 0.63

245333 117354 106215 0.22 0.20 0.24 0.45 0.62

366446 117354 138380 0.19 0.21 0.20 0.47 0.61

528446 117354 123856 0.16 0.10 0.25 0.44 0.53

856766 117354 116532 0.25 0.26 0.27 0.45 0.59

124422 161731 107891 105490 0.28 0.27 0.28 0.42 0.56

199655 107891 134759 0.19 0.20 0.21 0.41 0.46

201111 107891 145364 0.21 0.20 0.21 0.44 0.54

239944 107891 116598 0.26 0.19 0.26 0.45 0.56

245333 107891 106215 0.26 0.28 0.29 0.44 0.54

366446 107891 138380 0.19 0.17 0.24 0.44 0.59

528446 107891 123856 0.19 0.17 0.27 0.44 0.55

856766 107891 116532 0.24 0.23 0.25 0.42 0.60

161731 199655 105490 134759 0.17 0.21 0.24 0.41 0.53

201111 105490 145364 0.14 0.17 0.19 0.43 0.48

239944 105490 116598 0.23 0.24 0.24 0.42 0.58

245333 105490 106215 0.28 0.27 0.29 0.45 0.57

366446 105490 138380 0.16 0.11 0.20 0.45 0.43

528446 105490 123856 0.18 0.24 0.27 0.44 0.54

856766 105490 116532 0.23 0.22 0.27 0.44 0.58

199655 201111 134759 145364 0.25 0.25 0.23 0.43 0.57

239944 134759 116598 0.23 0.17 0.30 0.42 0.65

245333 134759 106215 0.18 0.10 0.26 0.44 0.58

366446 134759 138380 0.30 0.28 0.30 0.43 0.62

528446 134759 123856 0.26 0.30 0.30 0.43 0.58

856766 134759 116532 0.25 0.22 0.27 0.40 0.63

201111 239944 145364 116598 0.25 0.29 0.27 0.41 0.58

245333 145364 106215 0.20 0.25 0.27 0.44 0.57

366446 145364 138380 0.33 0.35 0.33 0.44 0.64

528446 145364 123856 0.29 0.10 0.31 0.43 0.58

856766 145364 116532 0.27 0.28 0.28 0.42 0.54

239944 245333 116598 106215 0.24 0.23 0.24 0.42 0.53

366446 116598 138380 0.21 0.22 0.25 0.40 0.57

528446 116598 123856 0.17 0.22 0.24 0.39 0.47

856766 116598 116532 0.20 0.17 0.24 0.41 0.58

245333 366446 106215 138380 0.14 0.23 0.22 0.41 0.54

528446 106215 123856 0.17 0.25 0.24 0.44 0.60

856766 106215 116532 0.20 0.25 0.26 0.41 0.55

(Continued)

TABLE 1 | Continued

ID subj.A ID subj.B |TA| |TB| JFLIRT JENT JSLR JFNIRT JGM

366446 528446 138380 123856 0.29 0.28 0.32 0.45 0.54

856766 138380 116532 0.27 0.23 0.28 0.44 0.62

528446 856766 123856 116532 0.22 0.19 0.27 0.45 0.61

average over all 45 pairs 0.23 0.22 0.26 0.43 0.57

standard dev. over all 45 pairs ±0.05 ±0.06 ±0.03 ±0.02 ±0.05

In each row are indicated the pairs of subjects IDs, the size of the two tractograms and

the five degrees of overlap after alignment,in terms of Jaccard index (J), averaged over

nine tracts. The averages and standard deviations over all 45 pairs are reported in the last

row.

This table reports the results of the comparison of five different methods across multiple

pairs of subjects. In each row, the score of each of the five methods is reported: JFLIRT ,

JENT , JSLR, JFNIRT , JGM. In each row, the higher the value, the better. The number in bold

face is the highest value among the five values in the same row, i.e., it indicates the best

method for each pair of subjects [highest overlap score (J) for each pair of subjects].

3. For each pair of corresponding clusters, we computed the
graph matching between their streamlines, in order to find
streamline correspondence.

Notice that, in all cases, approximate graph matching was
computed with the DSPFP algorithm (see Section 2.5), with
random initialization, i.e., xij ∼ U[0, 1]. This is different from
the initialization recommended in Lu et al. (2016), i.e., xij =

1/(NANB), but we observed failure of convergence in a few cases
with such constant value, while random initialization always
converged. We also tried the initialization resulting from an
initial affine registration (based on SLR) and we obtained very
similar results. For generality of the proposed method, we prefer
to recommend random initialization.

The steps introduced above aim at simplifying the original
tractograms, in order to reduce the computational problem of
graph matching. Other choices can be made, for example using
different clustering algorithms, see for example Garyfallidis et al.
(2012), or recent specific methods for tractogram simplification,
like Gori et al. (2016). The motivation of our choice, for adopting
the algorithm described in Olivetti et al. (2013), is eminently
computational. The time required to carry out the simplification,
which is in the order of a couple of minutes, see Figure 2, is
substantially inferior to that of other algorithms in the literature.

3.3. Results
Performing the three-steps procedure required approximately 30
min of computation for each pair of tractograms on a standard
desktop computer. In Figure 2, we report the time to compute
mini-batch k-means for streamlines on a full tractogram11 Linear
registration required a few minutes of computation for FLIRT
and SLR and approximately 30min for ENT. FNIRT deformation
fields were already available within the HCP dataset, anyway they
usually require a few minutes of computation.

Table 1 shows the results of all 45 pairs across the five
different alignment methods, averaged over nine tracts. The

11reproducing the results in Olivetti et al. (2013). and the time for DSPFP, for

various k.
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FIGURE 2 | The graph reports the time required to simplify a

110K-streamlines tractogram (HCP subject ID:100307) with the

mini-batch k-means (blue dots, plus linear interpolation), as a function

of the number of clusters. It reports also the time required to run graph

matching (DSPFP, red dots, plus cubic interpolation) between two simplified

graphs, each of k streamlines/vertices, of two subjects (HCP ID1:100307,

ID2:124422).

first two columns report the HCP subject identifiers of the
two tractograms considered in the alignment. The third and
fourth columns report the size of the tractograms of the two
subjects in terms of number of streamlines. The remaining
five columns report the degree of overlap between the aligned
tractograms (J, higher is better), averaged over the NINE tracts
considered, for the five methods considered in the comparison:
FLIRT, ENT, SLR, FNIRT, and GM. For each pair of subjects,
the highest degree of overlap is indicated in bold face. In order
to avoid unreasonable outliers, we filtered out the cases for
which the difference in number of streamlines for the same tract
was extreme, i.e., > 60%, denoting problems in the WMQL
segmentation. See Supplementary Material for an analysis of this
issue.

Figure 3 reports a visual aggregated summary of the results
of the experiments. In the upper graph, for each subject, five
barplots are reported. Each barplot indicates the overlap of
tractograms after alignment (J, higher is better) averaged over the
nine pairs that include that subject and all nine tracts. The graph
in the lower part of Figure 3 shows the results for each tract,
where the overlap for each of the five methods in the comparison
is averaged over the 45 pairs of subjects.

In order to show the performance of the proposed method,
with respect to the difference between the same bundle in two
different subjects, in Figure 4 we report the quality of alignment
(JGM) as a function of the difference between |tA| and |tB|,
where |t| is the number of streamlines of tract/bundle t. Such
difference is quantified as: 1AB =

||tA|−|tB||
max(|tA|,|tB|)

, which is 0 for

bundles with the same number of streamlines and increases up
to one according to how much the two sizes differ. Each point
represents one tract for one pair of subjects, e.g., Cingulum left
for the pair HCP ID:100307 and HCP ID:124422. Thus, there
are 45 × 9 = 405 points in total. In Supplementary Material we

report the equivalent graphs for the other alignment methods in
the comparison.

In Figure 5 we show one paradigmatic example where there
is a systematic displacement between the corresponding tracts
(Corpus Callosum, Section 7, as defined by the WMQL) of two
subjects (HCP ID1: 100307, ID2: 199655) after whole-brain affine
registration. In white and green we show the two tracts after the
registration computed with FSL/FLIRT, ENT, and SLR12. In the
same figure, we also report the alignment computed with GM,
which shows a much superior match because GM acts also at the
local level. For this specific example, the fractions of overlapping
voxels for that tract are: JFLIRT = 0.18, JENT = 0.26, JSLR = 0.24,
JFNIRT = 0.52, and JGM = 0.81.

3.4. A Technical Comment About ENT
As reported in the last row of Table 1, we noticed that the ENT
algorithm, from O’Donnell et al. (2012), exhibited substantially
higher variance in the results with respect to other algorithms
and in particular with respect to the SLR algorithm, which
is the most similar one. We explored this issue and, from
preliminary experiments, we believe that such increased variance
is mainly due to the way in which the tractograms are simplified,
in order to reduce the amount of computation. In ENT, a
random subsample of streamlines for each tractogram is used,
while in SLR the subsample is the set of representatives of
the clusters. The random subsample of ENT is of 20000
streamlines13 and then it is repeatedly reduced within that
algorithm. Conversely, SLR registration is based on 2000–3000
representatives, see Garyfallidis et al. (2015). Additionally, ENT
is optimized for the joint alignment of multiple subjects. All these
facts contributes to the explanation of the observed increased
variance14.

4. DISCUSSION AND CONCLUSIONS

In this work, we present whole brain tractogram alignment
based on computing streamline correspondence across subjects
as a graph matching problem. This work is the first one
that presents a quantitative comparison across streamline-based
alignment methods for tractograms. Table 1 and Figure 3 clearly
show that tractogram correspondence, implemented as graph
matching (GM), is able to align tractograms much better than
what global affine registration can do, both voxel-based and
streamline-based. The overlap, in terms of voxels, of the aligned
tracts with respect to the target tracts is two times better with
the proposed method than with affine methods. This occurs
uniformly across all subjects and all tracts. We also notice that,
as expected, all the affine-based registration methods exhibit
comparable results between each other, within the reported
standard deviations, meaning that there is an inherent limitation

12FSL/FNIRT is missing from this visual example because we did not apply the

resulting deformation field to the streamlines: such procedure is not sufficiently

analyzed in the literature. Nevertheless, we report the quantitative results at

voxel-level.
13According to the guidelines in https://github.com/ljod/whitematteranalysis.
14We thank Reviewer 2 for insightful comments on this part.
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FIGURE 3 | Summary of the results: average overlap between corresponding tracts after whole brain alignment for the FLIRT, ENT, SLR, FNIRT, and

the proposed GM. The upper bar-graph shows the overlap for each subject averaged over all nine tracts and the remaining nine subjects. The lower bar graph

shows the overlap for each tract averaged over all pairs of subjects.

in affine transformations, irrespective of the loss function they
optimize.

Such a positive result for GM against affine methods is
not surprising, because it is expected that one global linear
transformation cannot reconcile local systematic differences
between white matter bundles across subjects. Differently, GM
is designed to optimize the match both at the global and local
level. This aspect is clearly exemplified in Figure 5, where some
notable displacement between the tracts remains after global
affine alignment, but not in the case of GM. The locality of GM
and, more in general, of the correspondence-based alignment, act
as if each streamline in one tractogram is deformed to exactly
match the corresponding streamline in the other tractogram.
This corresponds to a different deformation for each streamline.
The global aspect is also preserved because GM is a joint
optimization problem across all vertices/streamlines.

The results in Table 1 show also the quality of alignment
obtained through non-linear registration of volumes, by means
of FSL/FNIRT (eighth column). Since non-linear registration
is able to operate local changes, the quality of such alignment
is much better than that of linear methods, as expected. By
comparing the results of GM and FNIRT, we observe that the
quality of GM is still superior, i.e., JFNIRT = 0.43 ± 0.02 vs.
JGM = 0.57 ± 0.05, even though not by a large margin. Our
interpretation of this result is that FNIRT optimized the match

of the T1 images, which contain white matter boundaries but not
the detailed structure, while our GM-based alignment procedure
optimized the match of streamlines. Since the evaluation is
based on corresponding anatomical white matter tracts, our
proposed method has an advantage, that may explain part of
difference in the results. It is true that non-linear volumes-based
alignment can target other kinds of volumes that incorporates
dMRI information, like FA (fractional anisotropy) or B0. For
this reason, further experiments are needed in order explore
this comparison. Nevertheless, a main difference remain: the
proposed method operates on streamlines, which is the focus of
this paper, while the non-linear volume-based algorithms, like
FNIRT, operate on voxel-level information.

The quality of whole brain alignment provided by GM
is expected to decrease when the difference in number of
streamlines between corresponding bundles is large. In Figure 4,
the trend line shows this expected decay, at the level of
individual pairs of bundles. Nevertheless we can also expect
that, given one bundle, large differences do not occur between
all pairs of subjects. This is confirmed in Figure 3 (lower
part), where standard deviations are moderate. This is further
confirmed in Supplementary Materials, where the result is
extended to SLF II (right) and MDLF (right and left), which
are known to be highly variable across subjects. Nevertheless,
we have also to take into account the limitations of the ground
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FIGURE 4 | For each of the 45 pairs of subjects and 9 tracts/bundles

(45 × 9 = 405 points in total), the graph shows the tract overlap after

whole tractogram alignment performed with GM, as a function of the

difference between that tract across the two subjects. The difference, in

number of streamlines, is quantified as 1AB =
||tA|−|tB||

max(|tA|,|tB|)
.

FIGURE 5 | A paradigmatic example where there is systematic

displacement between the corresponding tract (CC, Section 7) of two

subjects after whole-brain affine registration, with FSL/FLIRT, ENT and

SLR. Conversely, GM is able to provide much better alignment.

truth used in this study, which is based on automatic bundle
segmentation, see Wassermann et al. (2013). The limitations
of such segmentation are explored in Supplementary Materials
and may contribute to the variability of the results observed
in Figure 4. The use of expert-based segmentation might partly
mitigate this problem.

The proposed GM algorithm, despite multiple
approximations, can recover a substantial portion of what

other methods miss. It has to be noted that this improvement
comes at the cost of a substantial increase in the time of
computation, at least with respect to FLIRT, SLR, and FNIRT.
The time required by the proposed implementation of the
GM-based algorithm is ten times more than that required by
these algorithms. The total amount of time required by the
proposed method is a function of the number of clusters (k)
chosen during the clustering-based approximation, as illustrated
in Figure 2. Specifically, it is composed by the time to obtain
the clustering, the time to compute the graph matching between
cluster representatives and the time for graph matching between
the streamlines of corresponding clusters. Notice that the
proposed clustering-based approximation could be used for
addressing the scalability issues of other algorithms, such as the
one of Durrleman et al. (2011). Future work has to be done in
this direction.

Despite clearly positive results, the solution proposed in
this work suffers various limitations, that provide ground
for interesting future work. At a general level, the idea of
putting in correspondence streamlines across tractograms may
be limited by the quality of the tractography algorithms, topic
on which there is still major debate. Moreover, finding the
correspondence for all streamlines across tractograms may be
challenged because, for example, artifactual streamlines should
not have a corresponding one. A filtering mechanism to avoid
such cases is currently not available. In the same way, at the
implementation level, the sub-optimal constraint of one-to-
one correspondence of GM may be excessive in some cases.
Future work should address the relaxation of such constraint.
At the application level, aligning tractograms for transferring
anatomical knowledge to a new subject, e.g., for segmentation
of bundles, is the straightforward application of the proposed
method. Despite the usefulness of such task, it is still not clear
how to address other common tasks, like alignment at the group-
level and atlas construction, on which we are focusing our
future work. From this point of view, the idea of exploiting the
correspondence between streamlines opens up new directions of
research and opportunities for improvement in neuroscientific
and clinical applications.
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