
D-RPL: Overcoming Memory Limitations in RPL

Point-to-Multipoint Routing

Csaba Kiraly

Bruno Kessler Foundation – IRST

kiraly@fbk.eu

Timofei Istomin, Oana Iova, Gian Pietro Picco

University of Trento – DISI

{timofei.istomin, oanateodora.iova, gianpietro.picco}@unitn.it

Abstract—RPL, the IPv6 Routing Protocol for Low-Power
and Lossy Networks, supports both upward and downward
traffic. The latter is fundamental for actuation, for queries,
and for any bidirectional protocol such as TCP, yet its support
is compromised by memory limitation in the nodes. In RPL
storing mode, nodes store routing entries for each destination
in their sub-graph, limiting the size of the network, and often
leading to unreachable nodes and protocol failures. We propose
here D-RPL, a mechanism that overcomes the scalability limita-
tion by mending storing mode forwarding with multicast-based
dissemination. Our modification has minimal impact on code
size and memory usage. D-RPL is activated only when memory
limits are reached, and affects only the portion of the traffic
and the segments of the network that have exceeded memory
limits. We evaluate our solution using Cooja emulation over
different synthetic topologies, showing a six-fold improvement
in scalability.

I. INTRODUCTION

RPL [1], the standard IPv6 Routing Protocol for Low-Power

and Lossy Networks, has been designed to connect thousands

of resource-scarce devices. The protocol creates a Destination-

Oriented Directed Acyclic Graph (DODAG) topology starting

from the border router, called root. This topology enables

nodes in the network to send packets to the root while keeping

only minimal routing state information: all traffic is simply

forwarded through a preferred parent. For the root to send

packets to the nodes, however, additional control messages

have to be used and, even more important, much more routing

state needs to be stored. As it was highlighted in early

deployments [2], this is the Achilles’ heel of RPL: when used

with resource-scarce devices, the routing tables fill quickly

(especially near the root), impairing its scalability.

Problem statement. RPL creates downward paths by using

additional control messages called DAOs: Destination Ad-

vertisement Objects. The paths are built in reverse order, as

DAO messages, initiated by each potential destination node,

propagate towards the root. In the so-called storing mode,

DAOs are sent to a node’s preferred parent, and optionally

can be acknowledged by it. Then, the preferred parent is in

charge of further propagating the DAOs, ensuring the sender’s

reachability. For example, in Fig. 1a, D announces itself as

a destination to the root by sending a DAO message to its

preferred parent C, which adds it to its routing table, acknowl-

edges it, and then forwards it further up in the DODAG.

Naturally, if a node cannot store a routing entry for a new

destination, it should not retransmit its advertisement, as it is

unable to forward traffic for that destination. The RPL standard

specifies an optional DAO-ACK message with a Rejection

status code (we call it a DAO-NACK) to notify the DAO

sender that the recipient is unwilling to act as a DAO forwarder

(e.g., if it lacks space in the routing table). Still, the standard

does not define a mechanism to handle this rejection. In fact,

in popular Contiki and TinyOS implementations of RPL, such

DAO-NACK is not even sent. As a result, the DAO may be

silently dropped, leaving the path partially built and useless,

as the destination remains unknown to all routers higher in the

DODAG, including the root. The root has no choice than to

drop incoming packets with unknown destination.

Continuing with our example in Fig. 1b, now it is a turn of

node E to send a DAO, announcing itself as a destination.

However, assuming that B’s routing table is limited to 2

entries, it cannot store this new destination and have to reject it,

optionally sending a DAO-NACK. If, as in current open source

implementations, the rejection is ignored, the information

about E will not propagate up the DODAG. Consequently,

all the packets destined to E will be dropped.

Existing solutions [3] [4] have focused on mixing the storing

mode of RPL with its non-storing mode, where the root is the

only node keeping routing information. However, the mode

of operation is assigned statically to the nodes, resulting in a

rigid structure and potentially non-optimal routing.

Solution. In this paper we propose D-RPL, an algorithm that

enables downward packets to bypass the path-agnostic area

of the DODAG using a multicast mechanism. All the nodes

that failed to advertise a DAO (for themselves or for someone

in their sub-DODAG) join a special multicast group, whose

address is used by the root to send data to destinations for

which it does not have a route. The normal RPL unicast

operation is resumed as soon as the packet reaches a group

member knowing a route to the destination. Compared to the

previously mentioned solutions, D-RPL dynamically adapts

to appearance of “hot spots” in the topology. We present a

detailed description of D-RPL in the next section, and its

performance evaluation using Cooja in Section III.

II. OUR SOLUTION: D-RPL

The proposed algorithm, D-RPL, goes into action when

node C receives the DAO-NACK from B (Fig. 1c). At this

point, the downward path to the destination E is only partly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Fondazione Bruno Kessler

https://core.ac.uk/display/226066137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(X,X) Routing table entry

(dest, next hop)

Junction node

(D-RPL member)

Routing table full

A

B

C

D E
1: DAO (E)

3: ACK (E)
2: (E,E), (D,D)

(D,C), (C, C)

(D,B), (C,B), (B, B)

4: DAO (E)
5: NACK (E)

b) E announces itself to the root;

B is out of memory.

A

B

C

D E

2: (E,E), (D,D)

(D,C), (C, C)

(D,B), (C,B), (B, B)

6: Multicast subscription

1: DAO (E)

3: ACK (E)

4: DAO (E)
5: NACK (E)

c) C joins the D-RPL multicast group

and becomes a junction node.

a) Construction of downward routes:

D announces itself to the root.

A

B

C

D E

1: DAO (D)

3: ACK (D)

2: (D,D)

5: (D,C), (C, C)

8: (D,B), (C,B), (B, B)

7: DAO (D)

4: DAO (D)
6: ACK (D)

9: ACK (D)

d) Legend.

Fig. 1. The D-RPL algorithm (routing table of B is limited to 2 entries).

built, ending at node C. With D-RPL, C still plays a critical

role, enabling E’s reachability from the root, but instead of

making the root aware of E’s existence, C subscribes to the

special D-RPL multicast channel. When the root wants to send

a packet to E, or to another node for which it does not have

a route, it simply sends it to all the nodes subscribed to this

multicast channel. Since C is situated at the crossroad of two

delivery mechanisms, multicast dissemination and forwarding

based on routing table, we call it a junction node.

In essence, D-RPL enhances RPL’s storing mode by modi-

fying the root’s behaviour, and by proposing a straightforward

mechanism to handle DAO-NACK messages. We focus our

discussion to the case of a single root, but our mechanism

supports RPL networks with multiple roots as well.

Root behavior. For each packet, the root first checks its

routing table for normal IP forwarding. If there is no route

entry for the destination address, instead of dropping the

packet, the root forwards it to the D-RPL multicast channel.

As we can see in Fig. 2, the root first changes the packet’s

destination address to the multicast group address, and adds

a special D-RPL IPv6 extension header that contains the

original destination address1. Routing table based forwarding

is resumed at the moment the packet reaches a junction node

that knows a route to the packet’s original destination.

Junction node behavior. By subscribing to the D-RPL mul-

ticast channel, a junction node enables the delivery of packets

from the root to all the destinations in its routing table, even

those for which it received a DAO-NACK. If a node receives

several DAO-NACKs for different destinations, it joins the

group only once. Note that a junction node should keep track

of destinations for which it received DAO-NACK messages by

marking corresponding routing table entries, for the following

reason: if all the junction nodes were to forward all the

packets received on the D-RPL group for which they know

(i.e. have a routing table entry to) the original destination,

they would introduce duplicates in the network. For example,

1The extension header is inserted after the RPL hop-by-hop option header.
Other possibilities to achieve the same functionality could be the use of an
IPv6 destination option header or to use generic IPv6 tunneling.

Activate D-RPL:

Destination address group address

Add mcaster IPv6 extension header

There exists a

route for this

destination?

Send packet to

next hop from routing table

(normal RPL behaviour)

Yes

No

Send packet to

D-RPL multicast channel

Packet to send

IPv6 Hdr
RPL

HBHO
Payload

IPv6 Hdr

(DST=D-RPL multicast)

RPL

HBHO
Payload

RPL

Ext. HDR

Fig. 2. Flow chart of a RPL root that implements D-RPL

let us assume that, in Fig.1c, there is a node C ′ between C

and E, which is a junction node for other destinations, but

not for E. In this case, both C and C ′ would forward the

packet, thus E would receive all the packets from the root

in duplicate. To overcome this problem, the junction node

should only act upon packets whose destination received a

DAO-NACK. Otherwise, the message is dropped. Using this

simple rule in our example, C is the only junction node in

the network to resume routing table based forwarding for the

packets that have E as a destination.

To reduce traffic overhead in space and time to the necessary

minimum, nodes that have no more marked route entries can

leave the D-RPL group.

Implementation. In principle, D-RPL could use any multicast

protocol like MPL (Multicast Protocol for Low power and

Lossy Networks) [5], or SMRF (Stateless Multicast RPL For-

warding) [6], or build on a multicast already embedded in the

RPL implementation, significantly reducing the need for extra

code. We have implemented D-RPL on top of Contiki RPL,

using the SMRF protocol that is already part of the Contiki

codebase. SMRF has no per-packet state, and only very little

structure-related state. In SMRF, multicast DAO messages are

initiated by nodes joining the group and propagated up the

RPL DODAG. Nodes receiving these messages, even if they

did not join the group, store the multicast address in their

routing table and forward the DAO message upwards. Thus,

nodes that have exhausted their memory can still use SMRF,

TABLE I
MEMORY USAGE

Flash [Bytes] RAM [Bytes]

ContikiRPL 41498 8246
SMRF 948 (+2.3%) 296 (+3.6%)
improvements 172 (+0.4%) 0
D-RPL specific 722 (+1.7%) 124 (+1.5%)

D-RPL 43340 (+4.4%) 8666 (+5.1%)

TABLE II
SETTINGS

L3 L2: ContikiMAC MRM

60 routing entries 125 ms sleep period noise (dBm):
ETX metric 5 TX attempts −90 mean, σ = 1;

MRHOF obj. func. 20 neighbor entries path loss exponent: 3

given that only a single multicast routing table entry is reserved

for the D-RPL multicast address.

Our implementation of D-RPL includes some modifications

to ContikiRPL and SMRF. First of all, we have extended

ContikiRPL with the sending and reception of DAO-ACK and

NACK messages: a requisite for D-RPL operation, but also

an optional part of the standard. We have also corrected the

handling of sequence numbers in forwarded DAO messages,

necessary to match an ACK to the corresponding DAO. In

SMRF, we improved the propagation of DAO ACK messages,

and changed the separation between packet reception and

forwarding, improving the group join time and reliability of

SMRF, respectively. While the above changes are beneficial for

D-RPL, they do not affect the performance of ContikiRPL.

The code specific to D-RPL includes a hook in the IPv6

packet forwarding logic to divert packets on the D-RPL

channel and to add the D-RPL extension header; the handling

of the D-RPL extension header in the incoming packet pro-

cessing code; an extension of routing table entries with DAO-

ACK/NACK status field; and the corresponding logic in the

RPL DAO-ACK handling code.

Table I shows the overall code and data memory increase

and its breakdown. The cost of D-RPL alone is only 722 B of

Flash and 124 B of RAM, which is very small. Of course, we

need to consider also the cost of the multicast layer, however,

in applications that already use it, this is amortized.

III. PERFORMANCE EVALUATION

We evaluate D-RPL using Cooja emulator, which allows

us to test exactly the binary that would run on real TelosB

WSN nodes, and provides full freedom in evaluating radio

environments and topologies. We fixed the routing table to

60 entries, which is the maximum number that fits in RAM

if all the RAM is allocated for the network stack, without

leaving any space for the application. ContikiMAC is used as

the underlying duty-cycling MAC layer. For the radio model,

we use Cooja’s MRM code supporting SINR-based (Signal-

to-Interference-plus-Noise Ratio) reception and capture effect,

with the addition of propagation path loss exponent. Table II

summarizes the most important simulation parameters.

Nodes are deployed in a 2D grid with 20 m distance from

each other, and a small randomization (±2 m) to avoid tie

situations due to unrealistic regularity. For the root placement,

we studied both center and corner locations. After a 4 minute

warm-up period, a message with 8 B of application data is

sent with UDP over IPv6 every 10 s to a randomly selected

node. 500 messages are being sent in each run. Simulations are

repeated 30 times with different random seeds for statistical

relevance, curves show mean and its 95% confidence interval.

Scalability. The left plot of Fig. 3 shows the packet delivery

ratio (PDR) averaged over all nodes and all messages sent2, as

a function of the number of nodes in the network. ContikiRPL

performance starts to degrade at 60 nodes, since the root,

and nodes near the root, run out of routing table entries.

The degradation is severe, proportional to the ratio of the

routing table size to the number of nodes in the network,

and independent of root placement. D-RPL yields considerably

higher performance for the whole studied range.

In the case of D-RPL, there is a slight decrease of PDR with

scale because: i) the network diameter increases, leading to

occasional losses on longer multi-hop wireless paths; ii) more

DAO messages (control packets used by RPL to create and

maintain the downward routes) are sent, increasing congestion

near the sink. Average PDR is somewhat lower with the root

in the corner, due to larger hop counts; nevertheless it exceeds

60% with 529 nodes, while all the nodes remain reachable,

achieving 6-fold improvement compared to ContikiRPL.

The center plot of Fig. 3 provides more insights into the

differences in protocol operation by showing average radio

duty cycle (including both listening and TX time). For less

than 60 nodes, the two protocols behave almost the same,

since D-RPL does not get activated. Slight differences are due

to the extra signaling traffic of DAO-ACKs in the D-RPL case.

Above 60 nodes, two important changes can be noticed:

ContikiRPL curves remain low, but this is due to the fact

that it is delivering messages to only a small portion of the

nodes. From a network operational point of view, these duty

cycle values, corresponding to low delivery rates, are almost

irrelevant. The modified protocol operation of D-RPL, instead,

kicks in for an increasing portion of the traffic, and its effect

can clearly be seen on both curves.

The average duty cycle of D-RPL is increasing with the

network size, since a growing portion of the messages are sent

as link-local broadcasts instead of unicasts that, due to the way

duty-cycling MACs operate, means that longer packet trains

are being transmitted in each hop. Further, messages diverted

to the D-RPL channel are spawned to multiple junction

forwarders, also increasing duty cycle; this is the price to pay

for scalability in a network of memory-constrained devices.

Interesting is the decrease of average duty cycle at larger

network sizes: while the duty cycle near the root is increasing,

at the edges of the network it is decreasing. Considering also

that there are more nodes to average over, the overall value

could stabilize or even decrease as the network scales.

Finally, the right plot of Fig. 3 shows that end-to-end delay

of D-RPL is also increasing. Naturally, larger networks mean

2For lack of space, we do not discuss per-node spatial distribution of PDR.

●●●● ●●

●●

●●

●
●

●●
●● ●● ●● ●●

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

0 200 400

number of nodes

M
e

a
n

 P
D

R

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
.0

0
1
.2

5
1
.5

0
1
.7

5

0 200 400

number of nodes

R
a

d
io

 d
u

ty
 c

y
c
le

,
%

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

5
0
0

2
5
0
0

4
5
0
0

0 200 400

number of nodes

M
e

a
n

 d
e

la
y,

 m
s

● ●D−RPL, center D−RPL, corner RPL, center RPL, corner

Fig. 3. Average PDR, radio duty cycle and delivery delay vs. network size (2D grid).

longer delivery paths, however a part of the increase is due

to SMRF delaying packet forwarding with 1–4 cycles (125–

500 ms) in each hop to avoid collision of broadcast messages,

a well-known inefficiency in duty-cycled networks.

To summarize, D-RPL does not alter performance in the

conditions when ContikiRPL works, but it can make the

network operate at scales where ContikiRPL would fail. In

these latter cases, the relative cost of packets delivered by

D-RPL is higher than that of packets delivered by RPL, but

this cost is only paid for packets that would otherwise not be

delivered at all.

●●

●

●

●
●

●
●

●●

●●

5
1
0

1
5

2
0

10 20 30

node distance, m

M
e
a
n
 #

 n
e
ig

h
b
o
rs

●●

●

●

●

●

●

●

●

●

●
●

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

10 20 30

node distance, m

M
e
a
n
 P

D
R

● ●

D−RPL, 121 nodes D−RPL, 49 nodes

RPL, 121 nodes RPL, 49 nodes

Fig. 4. Average PDR vs. network density.

Node density. Network operation—including signal interfer-

ence, L2 behavior, the structure of the constructed DODAG,

and the hop count of downward routes—is also greatly influ-

enced by node density. Fig. 4 compares the performance of

D-RPL with ContikiRPL on 2D grids with different distances

between neighboring grid nodes. To put our performance

results in perspective, the left side shows average neighbor-

hood size (N) as a function of grid distance between nodes

(D). Instead of trying to give a geometric interpretation of

our SINR-based radio model, we show N as seen by the

Contiki protocol stack itself, i.e. as the number of nodes in the

neighbor table. N is limited to 20 by default in ContikiRPL.

Although this could be increased, we have intentionally kept

this limit since additional neighbor entries would take away

valuable RAM resources from the system. With D = 20 m,

i.e. the value used earlier, N is around 9, i.e. nodes can

communicate with their grid neighbors, diagonal neighbors,

and 1–2 other nodes. D = 25 m corresponds to seeing the

four grid neighbors only, while with D ≤ 15 m nodes can

communicate directly to multiple grid hops in each direction.

The right side of Fig. 4 shows average PDR for two network

sizes: 49 nodes, where routing could work even without

D-RPL, and 121 nodes, where ContikiRPL is expected to fail.

At D = 30 m, the topology gets disconnected, thus neither

protocol can deliver packets. There are also issues with dense

networks, as shown for D ≤ 10 m. When the neighbor

table is saturated, ContikiRPL operates incorrectly due to the

asymmetry in neighbor relations [7]. Our D-RPL inherits this

issue from its underlying ContikiRPL implementation. Still, it

manages to alleviate the effects due to the introduction of the

junction node, improving protocol performance.

For middle densities (10 m < D < 25 m), instead, density

has no significant impact on average PDR.

IV. CONCLUSIONS AND FUTURE WORK

Downward routing in RPL is constrained by the amount of

memory allocated to routing table entries; with current open

source implementations and hardware, a routing table of 50-

60 entries fits in RAM if all the RAM is allocated for the

network stack, without leaving space for the application itself.

This is a serious limitation for a protocol that targets the LLN

(low-power and lossy network) ecosystem.

We proposed the D-RPL extension to the standard, enhanc-

ing scalability when the above limits are exceeded. In this

initial evaluation, our fully functional prototype showed at

least 6-fold scalability improvement. Moreover, through an

example of ContikiRPL’s issue with large node densities, we

showed that D-RPL can also improve RPL’s robustness.

Whether D-RPL shows the same scalability improvements

in real deployments with different radio conditions and topolo-

gies, and how the protocol works under higher traffic loads,

are still open for future evaluation.

REFERENCES

[1] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks,” IETF, RFC 6550, 2012.

[2] T. Clausen, U. Herberg, and M. Philipp, “A Critical Evaluation of the
IPv6 Routing Protocol for Low Power and Lossy Networks (RPL),” in
IEEE WiMob, 2011.

[3] J. Ko, J. Jeong, J. Park, J. A. Jun, O. Gnawali, and J. Paek, “DualMOP-
RPL: Supporting Multiple Modes of Downward Routing in a Single RPL
Network,” ACM Transactions on Sensor Networks, vol. 11, no. 2, pp.
39:1–39:20, 2015.

[4] W. Gan, Z. Shi, C. Zhang, L. Sun, and D. Ionescu, “MERPL: A More
Memory-Efficient Storing Mode in RPL,” in IEEE ICON, 2013.

[5] J. Hui and R. Kelsey, “Multicast Protocol for Low power and Lossy
Networks (MPL) draft-ietf-roll-trickle-mcast-12,” IETF, Internet-Draft,
2014.

[6] G. Oikonomou and I. Phillips, “Stateless Multicast Forwarding with RPL
in 6LowPAN Sensor Networks,” in IEEE PERCOM Workshops, 2012.

[7] T. Istomin, C. Kiraly, and G. Picco, “Is RPL ready for actuation? A
comparative evaluation in a smart city scenario,” in EWSN, 2015.

