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Abstract Progress in computer vision research is reshaping the video surveillance
sector: high-tech companies are starting to offer CCTV based systems now empow-
ered with Video Analytics, i.e. with software solutions able to generate meaningful
alerts by analyzing video feeds. Most surveillance applications target people as their
subject of study, where they move, how they behave, and what they carry (or leave
unattended); people tracking is therefore becoming a ever more important function-
ality for new generation technology. In this document we summarize our efforts in
realizing SmarTrack, a multi camera people tracker developed by FBK over the last
few years. We detail main research results, development efforts and applications,
and present current and future research directions.

1 Introduction

Ambient Intelligence is a paradigm that refers to technology-equipped environments
that are sensitive and responsive to the presence and actions of people. What to
sense about the environment, and how to react on it depends on the specific appli-
cation domain: Security & Surveillance, Ambient Assisted Living, Retail Monitor-
ing, Sports Analysis, etc., have different requirements in terms of system feedback;
however, they all share the need to gather information about peoples’ locations over
time, employing non-intrusive sensors. The SmarTrack project at FBK addresses
this need, and is an effort to realize a software component to track people using a
set of cameras.
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Object tracking is a well studied topic in Computer Vision (see [2] for a survey)
and proposed solutions differ largely in type of environment they are designed to op-
erate on (indoor vs. outdoor, single camera vs. multi-camera) and adopted metodol-
ogy (model-based vs. data driven, distributed vs. centralized). SmarTrack targets
persistent people tracking in structured environments employing a distributed sens-
ing and processing infrastructure. A prototype scenario is that of smart museums: to
operate reliably, such system should be

• robust to persistent occlusions. People often move in groups, and some of them
may be occluded in one or more camera views for a significant amount of time
(e.g. during a museum visit). Monitoring a subject across such events relies either
on re-identification, or on explicit occlusion handling (we investigated this latter).

• scalable. Solutions should operate in real time on a resource constrained infras-
tructure and scale to environments with complex topology. In particular, our fo-
cus is on limitations of traditional tracking characterized by passive sensing and
limited adaptation.

• flexible. Ideally, solutions should be customisable to (jointly) track a selected
set of objects of various kinds (people, cars, luggage) and operate on different
modalities (including 3D vision, infrared, but also acoustic sensing).

With these goals in mind, in the following we present the SmarTrack approach
with main research results at its current state (Sec. 2), describe applications and
related projects (Sec. 3), and give an outlook on current and ongoing efforts (Sec. 4).

2 SmarTrack: Approach and Main Results

In SmarTrack we adopt a probabilistic Bayesian framework and represent both tar-
get motion and appearance in 3D space. This allows to embed explicit models of
target behaviour and sensor mapping (see Fig. 1 for the likelihood model used by
SmarTrack) based on physics principles, including geometric constraints and visual
occlusion, and to account for ambiguity and uncertainty which is often inherently
present in the data. Since the targets are represented in 3D space, motion, appear-
ance and sensor mapping models can be designed to track various objects, using
various features (color, texture, edges, flow), at various resolutions (position, pose,
articulated motion), in various modalities (passive vision, 3D vision, audio). Exam-
ples are given in Sec.3, while the contributions detailed in this section abstract from
these choices.

While Bayesian approaches are typically more demanding in terms of computa-
tions than their data-driven counterparts, we show that in the case of visual track-
ing with explicit occlusion handling such approach can be effectively scaled to the
number of targets (Sec. 2.1), and that the same underlying model can be adopted
to solve the detection problem, via likelihood inversion (Sec. 2.2). Further savings
can be achieved by continuously adapting the resolution of probabilistic estimates
to their uncertainty, a result that allows to consistently manage the trade-off between
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Fig. 1 Likelihood model of SmarTrack. Given a hypothesis (i.e. a particle), a 3D shape model is
projected onto the image and color histograms are extracted from the projection. To assign a score,
these histograms are then compared to a previously acquired model of the target (Sec. 2.2).

robustness and efficiency in a particle filter implementation (Sec. 2.3). To highlight
the flexibility of the approach, we show in Sec. 3 how pose estimation and how multi
modal (audio-video) information can be integrated in an easy and robust way.

2.1 Tracking multiple occluding bodies: the HJS approach

Independent tracking of individual bodies fails in the presence of occlusions, where
the disappearance of a target cannot be explained if not in relationship with the other
targets. On the other hand, describing the dynamics of the different bodies with a
joint model requires a representation size and computational cost that grow expo-
nentially with the number of bodies. To allow for a tractable solution, the Hybrid
Joint-Separable (HJS) model has been proposed [1]. Instead of maintaining distri-
butions in their joint form, a factorial representation in form of product of marginals
is estimated recursively.

As our main contribution in this field, in [3] this model is adopted to solve the
multi-target tracking problem with a occlusion robust extension of the likelihood in
Fig. 1. The salient property of this approach is that it allows for tractable inference
which is understood and theoretically grounded, and that it scales to input complex-
ity, i.e. number of targets, K: its computational complexity has a quadratic upper
bound O(N · K2), compared to O(NK) of traditional algorithms (N is the number
of particles per target, e.g. N = 200). The approach allows also to embed a MRF
motion model to account for pairwise interaction [3]: with the MRF implementing
spatial exclusion (i.e. a constraint that two targets can not share the same location)
the tracker is able to resolve severe occlusions among multiple targets with similar
appearance (avoiding coalescence). Fig. 2 shows some frames of a difficult sequence
successfully tracked with the extension proposed in [6]. The method is patent pend-
ing.
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Fig. 2 Five targets successully tracked using one camera, under severe occlusions, in a lab setting.

2.2 Target detection via likelihood inversion

The effectiveness of such approach depends on the appearance model upon which
the target is re-localized from frame to frame and, importantly, how well such a
model is initialized (and updated over time; this is still an open issue for us, see
Sec. 4). Ideally, automatic initialization should be triggered by a detection process
that searches for new objects through the view of the re-localization process for
which the appearance model has to be calibrated. In SmarTrack we have derived a
detection method that builds upon the same likelihood formulation, but, instead of a
color signature used for tracking, relies on motion edges to render its features target
independent.

Apparent motion can be quickly extracted using image differencing and resem-
bles the silhouette contour of a moving object with good approximation. Therefore,
the shape projection method designed for tracking (Fig. 1) can be used for detec-
tion in a search based fashion via contour matching (i.e by measuring how well
the shape projection outline is covered by motion edges). Note that the search here
must be performed over the joint space of 3D location and shape dimensions. To get
a scalable solution [7] we

• [off-line] compute, for each pixel, a representation of the set of object configu-
rations whose projected shape outline maps onto that pixel (done in a calibration
step, before tracking), and

• [on-line] assemble, for each tracker iteration, a detection probability map by fus-
ing the set of representations indexed by motion edges that are not explained by
other tracked targets; a prominent peak in the map triggers the initialization of a
new track.

The method can account for occlusions generated by tracked targets: it has been
derived by inversion of the HJS likelihood [7]. Fig. 3 shows the successful detection
of a person in a occluded context. The method is patent pending.
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Fig. 3 Detection in a challenging situation (6 out of the 7 people were already tracked).

2.3 Adapting the number of hypotheses to propagate

SmarTrack implements the HJS method via particle filtering, i.e by propagating a
compressed representation of the posteriors by means of particles, a set of states
with high probability. The number N of particles to propagate is a parameter that
regulates the trade-off between robustness (larger N means denser representation
of the posteriors) and efficiency (low N means less likelihoods to compute). The
uncertainty of an estimation process depends on many factors: the impact of clutter
and occlusions on it changes with the position of the targets. To track robustly with
minimal resources the number of particles N should therefore be adapted over time.

The work in [5] presents a method for adapting N on-line, during tracking, to
allocate more particles when uncertainty is high while saving resources otherwise.
The key idea is to select the number of samples necessary to populate the high proba-
bility regions with a predefined density (a parameter of the method). In information
theory the notion of high probability region is formalized through the typical set,
and the Asymptotic Equipartition Property (AEP) theorem states that the volume of
such a set is related directly to the entropy of the pdf it originates from. Based on this
property, a scheme for adapting the number N of hypotheses propagated by Smar-
Track has been derived: at each tracker iteration the scheme computes the amount
of uncertainty carried by the particles by means of the AEP and entropy estimation
(via a kernel density approach), and adapts N accordingly.

2.4 SmarTrack at IST 2006

An early version of SmarTrack has been showcased at the IST event in 2006, earn-
ing an award. During the event more than 900 people visiting the hosting CHIL
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Fig. 4 The CHIL Project booth at IST’06 and SmarTrack’s view of it during the event.

Project stand have been tracked (Fig. 4). By using SmarTrack as an interface, vis-
itors were able interact with a tabletop device located in the booth, displaying a
shared workspace. An automatically generated personalized report has been handed
out to each visitor containing a plot of his path through the booth and a description
of the demo he was most interested in (i.e. where, according to collected tracks, he
has spend most of the time).

3 Applications and Related Projects

3.1 Monitoring the elderly at home and during care

With the ever aging population there is a real need for technology that can be inte-
grated cost effectively into elderly’s homes in order to make them feel in care while
more comfortable about remaining in this familiar environment. Also, there is an
interest in developing systems to assist caregivers in a nursing environment. In both
cases such systems should support the elderly during its everyday activities in their
living environment, monitor their behaviour to measure well-being, and be able to
detect situations of potential danger.

In NETCARITY (an EU FP6 project, http://www.netcarity.org/)
and ACUBE (a project sponsored by the Autonomous Province of Trento PAT,
http://acube.fbk.eu/) we use SmarTrack to provide tracking capabilities
to such a system. A significant effort is devoted to the development of a prototype
to be integrated in a multi-sensorial system with high level functionalities targeting
end user needs, and to deploy it in a real environment, with real users. In ACUBE
three deployments are foreseen: in a domotic lab (for demo purposes), a domotic
house (for integration tests) and in a pilot site (with Alzheimer patients).
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3.2 Tracking position and pose to monitor attention

For monitoring purposes it is often desirable to collect additional information on the
subject of interest, such as where a person is looking at, e.g. to analyze customer
behaviour in a shopping mall. Such information can be acquired from video record-
ings by means of tracking the spatial position and head orientation of people. Its
visual attention can then be logged, by intersecting the viewing cone of the subject
(rooted at the head position and oriented according to the estimated pose) with the
trajectories of other people and the location of objects collected in its surrounding
environment.

Within CHIL (an EU FP6 project, http://chil.server.de/) we have
build on SmarTrack to extract such information, including head pose, from far-field
recordings in a Smart Room environment. The goal, among others, was to provide
cues in support to automated analysis of meetings (e.g. tools to determine the leader
of a discussion, who is interacting, paying attention, and who not, etc.). To obtain
such information we expanded the estimation space of SmarTrack to include the hor-
izontal orientation of a target and re-implemented the likelihood function (Fig. 1) to
get a sensor mapping method that is sensitive to the additional dimension [4]. With
this customization the tracker estimates position and head pose jointly from low
resolution images, where pose estimation techniques based facial features cannot be
applied. Fig. 5 shows the output of SmarTrack on some frames of a sequence used
to produce an automatic transcription of the interaction of a child with an attention
object, the ball, which was also simultaneously tracked in the 3D space [8]. Note
that also body orientation and inclination of the study subject was estimated (again
by expanding the estimation space and the shape projection method, as for the ball).

Within PUMALAB (an FBK internal project) we also applied SmarTrack to in-
vestigate on the relationship between proxemics, visual attention and personality
traits during interaction. In [9] we showed that from data recorded during natural
interaction (a party) a psychologically grounded model of behaviour emerged in
the tracker’s output, and that such model can be calibrated automatically to each
individual to capture inter-personal variations that correlate with personality traits.

3.3 Integrating audio to track speech activity

Automatic analysis of interactive people behaviour is an emerging field where sig-
nificant efforts of the audio and image processing communities converge. Reports
about a persons visual attention and speaking activity may be used to study its be-
haviour during meetings, but also during social interactions, accounting for its vari-
ous modalities.

Within CHIL and PUMALAB we have investigated how information from mul-
tiple and heterogeneous sensors can be integrated in SmarTrack, on the example of
audio visual tracking. This is done by expanding the estimation space with a speech
activity flag and implementing an sensor mapping function to sense it [10]: given
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Fig. 5 Real time transcription of visual attention: visual focus (in red) and proximity (green) of a
study subject (green) towards the attention object (purple) over time, and raw output of SmarTrack
on example frames from which such features were extracted.

a particle with active flag we (i) compute the theoretical time delay with which an
acoustic signal emitted at the particles position hypothesis would arrive in two mi-
crophones placed at a known distance (we assume that the distributed microphone
array is geometrically calibrated) and (ii) verify how well and with which energy
the captured signals correlate under that time shift. By integrating such measure as
an additional likelihood SmarTrack is able to detect when and in which direction a
tracked person is speaking and, importantly, who among the tracked ones is speak-
ing. We want to use this additional cue to progress on the automatic analysis of
natural interaction (previous section). Also, we are currently investigating how to
integrate 3D information provided by the Kinect sensor in a similar way, by extend-
ing the image sensor mapping function.

4 Current and Ongoing Research

4.1 Tracking in unevenly illuminated scenes

From installations in the various pilot sites (of ACUBE, in particular) it has emerged
that, in order to operate reliably in unevenly illuminated scenes (e.g. in a windowed
home environment), the color model used to re-localize a target over time must be
adapted during tracking to match the illumination conditions at its current location.

Until now, our activities to this regard have focused on the semi-automatic ac-
quisition of illumination maps encoding local illumination conditions in a off-line
calibration step, and to use them in SmarTrack to remap, at each iteration, the ap-
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pearance models of each target into a locally normalized color space [11]. When the
illumination conditions chance over time these maps have to be updated: our goal
is to extend the HJS model to learn and update non-parametric representations of
such maps using people as ’sensors’ to collect evidence for adaptation, possibly in a
multi-modal setting (including acoustic sensing and 3D information provided by the
Kinect sensor). Such method might also be applied to learn a model of the acoustic
distortion function (essential in a reverberant environment with complex absorba-
tion pattern) for improved multi-modal speaker localization, and, more generally, to
extract persistent patterns that can be modeled in the tracking space and sensed in
the various modalities (e.g. [12]).

4.2 Boosting scalability through active sensing

Until recently, object tracking has mostly been considered as a pure estimation prob-
lem, i.e. as the problem of inferring information about the targets’ location (and/or
movement, orientation, pose, etc.) over time from given sensor data, i.e. from ob-
servations acquired by an independent process. A notable exception comes from
robotics, where the possibility of purposely driving a sensor-equipped robotic plat-
form (thus controlling the sensing process) for better inference to solve the simul-
taneous localization and mapping (SLAM) problem has got large attention earlier.
However, there the focus was on the spatial dimension of active sensing, i.e. where
to (move to) take the next observation in compliance with the constraints of the re-
source, i.e. with the controllable but limited mobility of the platform. The temporal
and multi-modal dimensions, i.e. when to take the next observation for inference,
and from which of a set of available and possibly heterogeneous sensors, become of
evident importance if additional limitations are to be considered, possibly of critical
importance if scalability is an issue.

In this context, our investigations are twofold [13]; we aim at developing:

• Task-driven polling strategies that control the sensing process in order to mini-
mize the number of observations to be (transmitted and) processed while maxi-
mizing their expected impact on the estimation process;

• Parameter adaptation techniques for the estimation process (e.g. number of prop-
agated hypotheses in a particle filter tracking framework, progressing on [5])
that re-allocate computational resources dynamically and opportunistically, ac-
cording to task complexity and measured evidence.

The first objective has obvious implications in terms of energy consumption at
sensor side (the sensor is queried only if this is requested by the estimation process),
and in terms of network resources if data has to be transferred to a processing node
(e.g. in a centralized architecture). The second objective impacts on the amount of
processing to be performed on each requested observation, which may even be car-
ried out locally on the sensor, impacting on energy consumption as well. Effective
solutions to both problems are thus expected to have a significant impact on a mon-
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itoring system’s throughput and scalability, potentially enabling them to operate on
previously uncovered scenarios.
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