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Abstract
Glioblastoma is highly heterogeneous in microstructure and vasculature, creating various tumor microenvironments
among patients, which may lead to different phenotypes. The purpose was to interrogate the interdependence of
microstructure and vasculature using perfusion and diffusion imaging and to investigate the utility of this approach in
tumor invasiveness assessment. A total of 115 primary glioblastoma patients were prospectively recruited for
preoperative magnetic resonance imaging (MRI) and surgery. Apparent diffusion coefficient (ADC) was calculated
from diffusion imaging, and relative cerebral blood volume (rCBV) was calculated from perfusion imaging. The
empirical copula transformwas applied to ADC and rCBV voxels in the contrast-enhancing tumor region to obtain their
joint distribution, which was discretized to extract second-order features for an unsupervised hierarchical clustering.
The lactate levels of patient subgroups, measured by MR spectroscopy, were compared. Survivals were analyzed
using Kaplan-Meier and multivariate Cox regression analyses. The results showed that three patient subgroups were
identified by the unsupervised clustering. These subtypes showed no significant differences in clinical characteristics
but were significantly different in lactate level and patient survivals. Specifically, the subtype demonstrating high
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Neoplasia Vol. 21, No. 5, 2019 Interdependence of MRI Reveals Patient Subgroups Li et al. 443
interdependence of ADC and rCBV displayed a higher lactate level than the other two subtypes (P = .016 and
P = .044, respectively). Both subtypes of low and high interdependence showedworse progression-free survival than
the intermediate (P = .046 and P = .009 respectively). Our results suggest that the interdependence between
perfusion and diffusion imaging may be useful in stratifying patients and evaluating tumor invasiveness, providing
overall measure of tumor microenvironment using multiparametric MRI.

Neoplasia (2019) 21, 442–449
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lioblastoma represents the most common brain malignancy,
aracterized by treatment resistance and poor outcome [1]. The
markable interpatient variation of glioblastoma poses significant
allenges to treatment stratification [2].
Tumor angiogenesis results in aberrant microvasculature in
ioblastoma, which is typically inefficient in resource delivery and
ay induce heterogeneous blood flow [3]. In the meanwhile,
llularity significantly varies within the tumor, and high or low
llularity can exist in either sufficiently or poorly perfused subregions
]. The spatial variations of tumor vascularity and cellularity can
flect the heterogeneous tumor microenvironment, which may be
sociated with patient treatment response [5]. For clinical decision
aking of individual patients, a systematic method to evaluate the
erall tumor microenvironment is crucial.
Multiparametric magnetic resonance imaging (MRI) describes
mplementary properties of tumor physiology. Particularly, the
lative cerebral blood volume (rCBV) calculated from perfusion
aging can measure the tumor vascularity and is correlated to the
llular proliferation [6]. The apparent diffusion coefficient (ADC)
lculated from diffusion imaging can describe the tissue microstruc-
re by measuring the microscopic water mobility [7]. Therefore, an
tegrated analysis of rCBV and ADC shows potential in evaluating
mor microenvironment by incorporating the information regarding
mor microstructure and vasculature [4].
Tumor habitat imaging is an emerging method of integrating
ultiparametric MRI, which uses thresholding intensity of perfusion
d diffusion imaging to identify the local overlapping habitats [8,9].
hese habitats, however, are established to reveal the intratumoral
rious subregions and may be insufficient to provide the global
formation for individual patient evaluation. Instead, the overall
aluation of tumor microenvironment may potentially be enabled by
vestigating the interdependence between rCBV and ADC,
scribing vascularity and cellularity, respectively. However, the
rametric model fitting of this interdependence is significantly
allenged by the distinct marginal distributions of perfusion and
ffusion imaging.
The copula transform is a statistical method to describe the
terdependence of random variables by modeling the multivariate
obability distribution [10] (Supplementary material 1 demonstrates
e theoretical details of the method). In this study, we leveraged the
pula transform to obtain the joint distribution of ADC and rCBV,
om which discretized second-order features were extracted to
aracterize the interdependence between ADC and rCBV.
The purpose of this study was to investigate the utility of the
terdependence between ADC and rCBV for evaluating tumor
icroenvironment and stratifying patients. Our hypothesis is that the
terdependence among advanced imaging modalities may reflect
mor microenvironment and offer prognostic value for glioblastoma
tients.

aterials and Methods

atients
This study was approved by the local institutional review board.
formed written consent was obtained from all patients. Patients
ith a radiological diagnosis of de novo supratentorial glioblastoma
ere prospectively and preoperatively recruited for maximal safe
rgical resection from July 2010 to August 2015. Exclusion criteria
clude the history of previous cranial surgery or radiotherapy/
emotherapy or contraindication for MRI scanning. All patients
ere required to have a good performance status (World Health
rganization performance status 0-1). Preoperative MRI and
stoperative histology were performed on all patients. All imaging
d histological data were collected prospectively. A flowchart
monstrating patient recruitment is in Supplementary material 2.

RI Acquisition
AllMRI sequences were performed at a 3-TMRI system (Magnetron
rio; Siemens Healthcare, Erlangen, Germany) with a standard 12-
annel receive-head coil. MRI sequences included: postcontrast T1-
eighted, T2-weighted, diffusion tensor imaging (DTI) with an inline
DC calculation using b values of 0-1000 s/mm2, dynamic suscepti-
lity contrast-enhancement (DSC), and multivoxel two-dimensional
-MRS chemical shift imaging (CSI). Scanning parameters were as

llows: postcontrast T1-weighted [repetition time (TR)/echo time
E)/TI 2300/2.98/900 milliseconds; flip angle 9°; field of view (FOV)
56 × 240 mm; 176-208 slices; no slice gap; voxel size
0 × 1.0 × 1.0 mm] after intravenous injection of 9 ml gadobutrol
adovist,1.0 mmol/ml; Bayer, Leverkusen, Germany); T2-weighted
R/TE 4840-5470/114 milliseconds; refocusing pulse flip angle 150°;
V 220 × 165 mm; 23-26 slices; 0.5-mm slice gap; voxel size of

7 × 0.7 × 5.0 mm); DSC (TR/TE 1500/30 milliseconds; flip angle
°; FOV 192 × 192 mm; 19 slices; slice gap 1.5 mm; voxel size of
0 × 2.0 × 5.0 mm) with 9 ml gadobutrol (Gadovist 1.0 mmol/ml)
llowed by a 20-ml saline flush administered via a power injector at
ml/s. DTI was acquired before contrast imaging using a single-shot
ho-planar sequence (TR/TE 8300/98 milliseconds; flip angle 90°;
OV 192 × 192 mm; 63 slices; no slice gap; voxel size
0 × 2.0 × 2.0 mm; 12 directions; b values: 350, 650, 1000, 1300,
d 1600 s/mm2; imaging time: 9 minutes 26 seconds). CSI utilized a
mi-LASER sequence (TR/TE 2000/30-035 milliseconds; flip angle
°; FOV 160 × 160 mm; voxel size 10 × 10 × 15-20 mm). PRESS
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citation was selected to encompass a grid of 8 rows × 8 columns on
2-weighted images.
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reatment and Evaluation of Response
Tumor resection was performed with the guidance of neuronaviga-
on (StealthStation, Medtronic, Fridley, MN) and 5-aminolevulinic
id fluorescence (5-ALA, Medac, Stirling, UK) for maximal safe
section. Chemoradiotherapy regimen was determined after surgery
the multidisciplinary team according to patient postoperative

atus. Extent of resection was assessed according to the postoperative
RI scans within 72 hours as complete resection, partial resection of
hancing tumor, or biopsy [11]. All patients were followed up
cording to the criteria of Response Assessment in Neuro-Oncology
2], incorporating clinical and radiological parameters. Patient
rvival was analyzed for overall survival (OS) and progression-free
rvival (PFS). The latter was made retrospectively in some patients to
oid the issue of pseudoprogression, where new contrast enhance-
ent appeared within the first 12 weeks after completing
emoradiotherapy.
as
di
w
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age Processing
DSC data were processed and rCBV maps were generated after
akage correction using NordicICE (Nordic Neuro Lab, Bergen,
orway), during which an arterial input function was automatically
fined. For each subject, all MR images were co-registered to T2-
eighted images with an affine transformation using the linear image
gistration tool (FLIRT) functions in FSL [13].
The superimposed 1H MR spectroscopy data were analyzed using
C Model as described previously [14]. Briefly, only CSI voxels
ithin tumor regions were included for analysis. All spectra were
gure 1. Study design. All images are co-registered before tumor re
ages (T1WI). Voxels are then extracted from both ADC and rCBVmaps
ADC and rCBV voxels, which is then discretized before extracting se
tient clustering to reveal patient subtypes.
sessed for artifacts [15]. The quality and reliability of the 1H spectra
ere evaluated using Cramer-Rao lower bounds, with values greater
an 20% discarded. A spectroscopic measure of lactate (Lac) was
lculated as a ratio to the total creatine (Cr) [16]. To account for the
fferent spatial resolution of T2 and CSI imaging, T2 pixels were
ojected to CSI space according to the spatial coordinates in
ATLAB 2017b (The MathWorks, Inc., Natick, MA). Only CSI
xels completely in tumor region were included for further analysis.
egions of Interest
The study design is illustrated in Figure 1. Tumor regions of
terest (ROIs) were manually segmented using 3D slicer v4.6.2
ttps://www.slicer.org/) by a neurosurgeon with N8 years of
perience (C.L.) and a researcher with N4 years of brain tumor
age analysis experience (N.R.B.) on the postcontrast T1 images. An
terrater reliability testing was performed using Dice similarity
efficient scores to assure consistency among observers. For each
dividual patient, ROIs of normal-appearing white matter were
anually segmented from the contralateral white matter and used
normal controls. The ADC and rCBV images were normalized by
viding by the mean value in the contralateral normal-appearing
hite matter.
opula Transform and Patient Clustering
We applied the copula transform to the ADC and rCBV maps on
ch patient individually, with no outliers removed. A discrete feature
traction was then applied. The extracted features included Energy,
ontrast, Entropy, Homogeneity, Correlation, SumAverage, Vari-
ce, Dissimilarity, and AutoCorrelation [17]. A hierarchical
ustering, using the complete method, was then performed on the
gions are manually segmented from postcontrast T1-weighted
. Empirical copula transform is performed on the joint distribution
cond-order features from the matrix. These features are used in

https://www.slicer.org/
Image of Figure 1
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tients based on the extracted features. To find the most stable and
ambiguous patient clustering, we varied the number of clusters
om 2 to 10. The optimal number of clusters was selected according
the majority vote among the 26 indices as implemented in the
bclust” package in R [18]. An R package, “XXXX,” for the
plementation of the empirical copular transform and feature
traction was published online (https://github.com/XXX).

eave-One-Out Cross-Validation of the Clustering
A leave-one-out cross-validation (LOOCV) procedure was applied
r constructing and validating the patient clusters. The clustering
ep was repeated by leaving one patient out of the cohort at each
petition. The consensus analysis was performed based on the
ustering results from the LOOCV approach. A consensus matrix M
as calculated, where M (i, j) indicates percentage of times that the
tients i and j were clustered together across the dataset
rturbations.

atistical Analysis
All analyses were performed in RStudio v3.2.3 (RStudio, Boston,
A). The clinical characteristics and CSI data of the clusters were
mpared with Kruskal-Wallis rank sum test using the Benjamin-
ochberg procedure to control the false discovery rate in multiple
mparisons. Kaplan-Meier and Cox proportional-hazards regression
alyses were performed to evaluate patient survival. Survival analysis
as based on the subset of patients who received concurrent
mozolomide (TMZ) chemoradiotherapy followed by adjuvant
MZ postoperatively. Cox proportional-hazards regression was
rformed, accounting for relevant covariates, including O-6-
ethylguanine-DNA methyltransferase (MGMT) methylation, iso-
trate dehydrogenase-1(IDH-1) mutation, sex, age, extent of
gure 2. Patient clustering. Three patient clusters are identified using t
ansformed ADC and rCBV.
section, and contrast-enhancing tumor volume. Patients who
ere alive at the last known follow-up were censored. The hypothesis
no effect was rejected at a two-sided level of .05.

esults

atient Population
A total of 136 patients were recruited for preoperative MRI scan
d surgery. After surgery, 115 (84.6%) glioblastoma patients (mean
e 59.3 years, range 22-76 years, 87 males) were histologically
nfirmed. Of the 115 patients, 84 (73.0%) postoperatively received
ncurrent TMZ chemoradiotherapy followed by adjuvant TMZ
tupp protocol). Other patients received short-course radiotherapy
7.4%, 20/115) or best supportive care (9.6%, 11/115) due to their
or postoperative performance status. Survival data were available
r 80 of 84 (95.2%) patients as 4 (4.8%) patients were lost to follow-
.
Interrater reliability testing of ROIs showed excellent agreement
tween the two raters, with Dice scores (mean ± standard deviation
D]) of 0.85 ± 0.10.

atient Clustering
Based on the quantitative features characterizing the copula of
DC and rCBV, three patient clusters were identified through the
erarchical clustering, containing 40 patients (35%), 48 patients
2%), and 27 patients (23%) respectively (Figure 2). The average
scretized matrices of ADC-rCBV joint distribution of three
btypes are demonstrated in Figure 3. Among the three subtypes,
btype I displayed a most uniform joint distribution, and subtype III
splayed a most diagonalized joint distribution. Three subtypes
owed no significant differences in clinical characteristics, as
dicated in Table 1. However, the lactate levels of three subtypes
he features extracted from the joint distribution matrix of copula-

https://github.com/XXX
Image of Figure 2
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Figure 3. Average joint distribution matrices of three subtypes. The joint distribution of transformed ADC and rCBV values is discretized
into a 10 × 10 joint distributionmatrix for eachpatient. This figure shows the averagematrix for each patient subgroup. Particularly, Subtype I
displayed a most uniform joint distribution, and Subtype III displayed a most diagonalized joint distribution.
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ere distinct (Table 2, Supplementary material 3). Particularly,
btype III displayed a higher level of Lac/Cr ratio than Subtype II
= .016) and Subtype I (P = .044).

OOCV of Patient Subtypes
After the LOOCV, the co-occurrence consensus clustering matrix
as computed. The results showed that three patient clusters
nerated from the unsupervised clustering were highly stable
upplementary material 4). The mean values of the co-occurrence
nsensus clustering matrix were 0.91 for Subtype I, 0.95 for Subtype
and 0.98 for Subtype III.

urvivals of Patient Subtypes
Kaplan-Meier analysis using the log-rank test showed significantly
fferent OS (P = .039) and PFS (P = .025) (Table 1, Figure 4) for
e three identified subtypes. The Cox regression models (Table 3)
counted for all relevant clinical covariates. In the multivariate
odeling of PFS, Subtype I showed significantly worse survival than
btype II [hazard ratio (HR) = 1.992, P = .046]. Subtype III also
owed significantly worse survival than Subtype II (HR = 3.062,
= .009). Extent of resection (HR = 2.710, P = .007) and
GMT methylation status (HR = 0.532, P = .025) significantly
fected PFS. In the multivariate model of OS, Subtype I showed
gnificantly worse survival than Subtype II (HR = 3.042, P = .003).
sh
si
of
m

Su
su
m
th

ble 1. Clinical Characteristics of Subtypes

Variable Subtype I
(n = 40)

Subtype II
(n = 48)

Subtype III
(n = 27)

P Value

e at diagnosis (range, years) 59 (33-76) 62 (38-75) 55 (22-73) .261
mor volumes(cm3) 48.6 ± 31.4 41.0 ± 25.1 55.9 ± 33.1 .172
ale † 32 36 19

.663
male † 8 12 8
mplete resection † 30 30 17

.208rtial resection † 7 16 9
opsy † 3 2 1
ethylated MGMT promoter*,† 20 17 11

.373
methylated MGMT promoter*,† 19 30 14
H-1 mutant † 1 3 3

.354
H-1 wild-type † 39 45 24
edian OS (range) 403 (163-1077) 551 (78-1376) 407 (52-1333) .039 ‡

edian PFS (range) 262 (93-758) 389 (25-1130) 244 (37-589) .025 ‡

* MGMT promoter methylation status unavailable for four patients.
† Number of patients.
‡ Log-rank test.

Ta

S

S
Su
Su
he survival of Subtype III was not significantly different from
btype II. Extent of resection (HR = 2.691, P = .011) and tumor
lume (HR = 1.019, P = .001) significantly affected OS. Figure 5
monstrates a case example of Subtype II.
iscussion
this study, we characterized the interdependence of ADC and
BV using the copula transform and evaluated the clinical
gnificance of the interdependence in patient outcomes. The results
owed that the interdependence of ADC and rCBV may provide
formation to evaluate the tumor microenvironment associated with
tient prognosis.
Tumor microstructure estimated from diffusion imaging and
sculature estimated from perfusion imaging can describe key
aracteristics of solid tumor. Although evidence suggests that
mbining imaging modalities can identify tumor habitats respon-
ble for treatment failure [8], a systematic method to investigate the
terdependence of modalities is lacking. Previous studies have
lidated the robustness of the copula transform in estimating
nlinear correlation in multimodal neuroimaging data analysis [19].
ere we leveraged the copula transform to extract the joint
stribution matrix of ADC and rCBV. The second-order statistics
lculated from the joint distribution matrix can yield an array of
easures for patient characterization. The resultant patient subtypes
owed no significance in clinical factors but demonstrated
gnificance in patient outcomes, suggesting that the interdependence
perfusion and diffusion imaging may offer information comple-
entary to clinical factors.
The second-order features of ADC-rCBV joint distribution in
btype III demonstrated the diagonalized pattern (Figure 3),
ggesting the higher interdependence between vasculature and
icrostructure. Correspondingly, this subtype had a higher lactate
an the other two subtypes, indicating a more hypoxic
ble 2. Lac/Cr Ratio of Subtypes

ubtype Descriptive Subtype II Subtype III

Mean ± SD 95% CI P Value P Value

ubtype I 12.9 ± 2.7 7.2 ± 18.6 .341 .030
btype II 9.8 ± 5.8 5.8 ± 13.8 / .006
btype III 21.4 ± 3.4 14.3 ± 28.5 / /

Image of Figure 3


Figure 4. Survivals of patient clusters. Log-rank test shows that Subtype II displays better OS (P = .039) (A) and PFS (P = .025) (B) than Subtype I and Subtype III.

Image of Figure 4
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Table 3. Survival Modeling

Factor PFS OS

Univariate Multivariate Univariate Multivariate

HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value

Age 1.004 0.979-1.029 .758 1.027 0.994-1.062 .106 1.000 0.974-1.027 .988 1.004 0.971-1.038 .812
Sex (M) 1.555 0.923-2.618 .097 1.807 0.976-3.346 .060 1.243 0.695-2.222 .464 1.242 0.624-2.471 .537
Extent of resection 2.821 1.556-5.114 .001 2.710 1.321-5.560 .007 2.040 1.132-3.676 .018 2.691 1.259-5.754 .011
MGMT promoter methylation status * 0.619 0.369-1.039 .069 0.532 0.306-0.924 .025 0.573 0.320-1.027 .061 0.565 0.307-1.040 .067
IDH mutation status 0.986 0.356-2.733 .978 0.936 0.270-3.246 .917 1.038 0.369-2.926 .943 1.066 0.286-3.973 .925
Tumor volume † 1.005 0.996-1.015 .297 1.002 0.991-1.012 .742 1.018 1.008-1.029 .001 1.019 1.008-1.030 .001
Subtype I 1.267 0.701-2.289 .433 1.992 1.011-3.925 .046 2.017 1.051-3.873 .035 3.042 1.453-6.367 .003
Subtype III 2.389 1.240-4.602 .009 3.062 1.327-7.062 .009 2.089 1.092-4.386 .027 1.857 0.790-4.367 .156

* MGMT promoter methylation status unavailable for 2 patients.
† Contrast-enhancing tumor volume.
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icroenvironment. Interestingly, although Subtype I showed the
ost uniform joint distribution and therefore the least interdepen-
nt vasculature and microstructure, the survival of this subtype was
orse than Subtype II. The higher lactate level of Subtype I implies a
ore hypoxic microenvironment than Subtype II. This finding
ggests that both high interdependence and low interdependence
tween vasculature and microstructure are associated with more
poxic tumor microenvironment and more invasive phenotypes,
hich may imply the nonlinear correlation between tumor cellularity
d vascularity. A possible explanation could be that Subtype III may
present a highly proliferative phenotype with an unmet oxygen
mand leading to global hypoxia, while Subtype I may have a less
upled microvasculature and microstructure leading to subregional
poxia. The hypoxia in both subtypes could result in treatment
sistance and poorer outcomes.
Our findings have clinical significance. The subtypes revealed by
e interdependence between perfusion and diffusion may give
sights that are potentially relevant for treatment strategy. Our
ndings showed that both high interdependence and low interde-
ndence in tumor vasculature and microstructure were associated
ith hypoxia, which may cause resistance to adjuvant therapy.
ytoreductive surgery may be more crucial in these phenotypes.
uture studies using a prospective cohort study design is needed to
lidate the clinical significance.
gure 5. Case example of Subtype II. Pixel-wise ADC values (A) and rC
fter the copula transform, the joint distribution is discretized (C). The m
terdependence of ADC and rCBV in this case.
Previous studies have demonstrated the utility of classic radiomics
alysis of single modality in patient stratification [20,21]. Our proposed
ethod could be further integrated with classic radiomics analysis in
veral regards. Firstly, the copula transform framework could be applied
a singlemodality as a normalizationmethod, which could eliminate the
quisition uncertainty from different MRI sequences and scanners.
oreover, the features from the joint distribution of multiple modalities
uld be integrated with classical texture features from single modalities
r tumor characterization. Further, our current study focused on the
aracterization of intertumoral heterogeneity. In our future study, this
ethod could be integrated with habitat imaging to characterize the
tratumoral heterogeneity [22,23] by investigating the interdependency
ithin habitats.
Our approach had limitations. Firstly, the resolution of CSI was
wer than the resolution of the anatomical imaging, and 1H MR
ectroscopy voxels were, therefore, larger than rCBV and ADC
xels. Secondly, our findings have not been validated in another
dependent validation cohort. Thirdly, our findings need further
ological validation. Radiogenomics has been shown to unravel
mor phenotypes, which could possibly validate our results. Lastly,
reduce complexity, i.e., the spatial information–related noise, we
plied discretization to the copula-transformed joint matrix in this
udy. Our future work will focus on feature extraction technique that
corporates the weight and continuous information of copula matrix.
BV values (B) are overlaid on postcontrast T1-weighted images.
atrix demonstrates a uniform distribution, which suggests a low

Image of Figure 5
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onclusion
he interdependence between perfusion and diffusion imaging offers
eful information that could potentially be used for evaluating the
mor microenvironment and glioblastoma patient stratification.
his method could be extended to include more imaging modalities
future studies, with the advantage of copula transform in

ultidimensional distributions.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2019.03.005.
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