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Abstract

Loneliness is an increasingly prevalent condition linking with enhanced morbidity and premature mortality. Despite recent
proposal on medicalization of loneliness, so far no effort has been made to establish a model capable of predicting
loneliness at the individual level. Here, we applied a machine-learning approach to decode loneliness from whole-brain
resting-state functional connectivity (RSFC). The relationship between whole-brain RSFC and loneliness was examined in a
linear predictive model. The results revealed that individual loneliness could be predicted by within- and between-network
connectivity of prefrontal, limbic and temporal systems, which are involved in cognitive control, emotional processing and
social perceptions and communications, respectively. Key nodes that contributed to the prediction model comprised regions
previously implicated in loneliness, including the dorsolateral prefrontal cortex, lateral orbital frontal cortex, ventromedial
prefrontal cortex, caudate, amygdala and temporal regions. Our findings also demonstrated that both loneliness and
associated neural substrates are modulated by levels of neuroticism and extraversion. The current data-driven approach
provides the first evidence on the predictive brain features of loneliness based on organizations of intrinsic brain networks.
Our work represents initial efforts in the direction of making individualized prediction of loneliness that could be useful for
diagnosis, prognosis and treatment.

Key words: loneliness; connectome-based predictive modeling; resting-state functional connectivity

Introduction loneliness is a trait-like phenotype that is moderately heritable,

stable across time and varied across individuals (McGuire and
Loneliness is a negative emotional state induced by subjective Clifford, 2000; Boomsma et al., 2005; Boomsma et al., 2007;
perception of social isolation even when among other people Canli et al.,, 2018). People high on loneliness experience less

(Weiss, 1973; Cacioppo and Cacioppo, 2018). Susceptibility to reward from daily social interactions, exhibit hypersensitivity
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to negative social information, show impaired social skills and
have poor self-regulation (Jones et al., 1982; Hawkley et al.,
2007; Bangee et al.,, 2014; Yildiz, 2016; Cacioppo et al., 2017).
Loneliness has also been linked to big five personality dimen-
sions, especially neuroticism and extraversion (Atak, 2009;
Abdellaoui et al., 2018a).

Loneliness is a risk factor for a variety of mental and physical
health conditions (House et al., 1988), ranging from depression
and anxiety to Alzheimer’s disease, cardiovascular disease and
cancer (Antoni et al., 2006; Cacioppo et al., 2006; Wilson et al., 2007;
Cacioppo et al., 2010; Hawkley et al., 2010). Due to the increasing
prevalence of loneliness and its detrimental effects in modern
societies, many researchers have advocated the medical solution
ofloneliness as a public health problem (Holt-Lunstad et al., 2017;
Cacioppo and Cacioppo, 2018). In this context, models that can
be used to predict loneliness severity at the individual level may
provide clinical utility in terms of diagnosis and prognosis in
future. The current work presents initial efforts in this direction
by making individualized prediction of loneliness from intrinsic
whole-brain functional connectivity.

Recent brain imaging studies on loneliness have demon-
strated links between loneliness and changes in brain functions
and structures important for affective, social and cognitive
processing. First, loneliness has been linked to attenuated
ventral striatum responses to positive social information
(Cacioppo et al., 2009; Inagaki et al, 2015), and enhanced
insular responses to negative social information (Lindner et al.,
2014), as well as aberrant fronto-limbic functional connectivity
when processing negative stimuli (Wong et al., 2016). Second,
loneliness is associated with altered structural morphometry
and integrity in brain regions that are important for social
perception, particularly the posterior superior temporal sulcus
(pSTS) and temporoparietal junction (TPJ; Kanai et al., 2012;
Nakagawa et al., 2015). Lastly, altered gray matter volume
in the prefrontal system [e.g. dorsolateral prefrontal cortex
(dIPFC)] (Kong et al., 2015) as well as its within- and between-
network organizations have been associated with diminished
self-regulation in lonely people (Tian et al.,, 2014; Layden et al.,
2017; Tian et al., 2017). Taken together, previous neuroimaging
evidence indicates diverse manifestations of loneliness in
multiple neuropsychological processes (Cacioppo and Hawkley,
2009; Cacioppo et al., 2014). Intriguingly, preliminary evidence
has shown that associations between loneliness and altered
brain functions and structures are mediated by the neuroticism
and extraversion (Kong et al., 2015).

Building on recent brain imaging findings (Rosenberg et al.,
2016; Smith et al, 2017; Beaty et al,, 2018; Hsu et al., 2018),
here we implemented a connectome-based predictive modeling
approach (Shen et al, 2017) to predict individual loneliness
from whole-brain resting-state functional connectivity (RSFC).
The RSFC allows for examining interplay between large-scale
neural systems associated with loneliness (Braun et al., 2018),
which is a complex construct rooted in the functional and
structural integrity of distributed networks (e.g. Tian et al., 2014;
Nakagawa et al.,, 2015; Layden et al., 2017; Smith et al.,, 2017;
Tian et al., 2017; Smith et al., 2018). Furthermore, the machine-
learning approach typically implements cross-validation pro-
cedures to estimate the model with training samples and to
test the performance of the model with independent samples
(i.e. test samples). Therefore, the predictive model enables
subject-specific predictions, which are of help in clinical
practice where doctors require for individualized assessment
of symptom severity (Paulus, 2015; Huys et al.,, 2016; Paulus,
2017). Moreover, predictive models integrate all available brain

features (i.e. RSFC in the present study) to predict outcomes (i.e.
loneliness), which enhance statistical power and avoid multiple
comparisons and provide more practical utility compared to
commonly used group statistics (see also Woo et al., 2017).
Finally, predictive features adopted by the model implicate
neural correlates of the loneliness (Rosenberg et al., 2016;
Cui et al., 2018).

Based on previous findings, we expected that individual dif-
ferences in loneliness would be predicted by characteristics of
intrinsic connectivity across distributed networks, particularly
those implicated in emotional (e.g. the amygdala, insula, stria-
tum), social (e.g. the pSTS and TPJ) and cognitive (e.g. the dIPFC)
processing. We also expected that both loneliness and associated
network connectivity would be modulated by neuroticism and
extraversion.

Material and methods
Participants

Seventy-five healthy right-handed college students from Beijing
Normal University (62 males and 55 singles; age 21.88+3.01
years) without history of neurological or psychiatric disorder
were recruited. The study was conducted in accordance with
the 1964 Helsinki Declaration and its later amendments and was
approved by the Ethics Committee of Beijing Normal University.
Written informed consents were obtained from all participants.

Assessment of loneliness

Loneliness was assessed using the Revised UCLA Loneliness
Scale (Russell, 1996), which is a well-validated measure of
general feelings of loneliness. The scale consists of 20 items,
and each item is scored on a 4-point Likert scale ranging from
1 (never) to 4 (always). The higher scores on the scale indicate
higher levels of loneliness.

NEO personality inventory-revised

Personality was assessed by the NEO personality inventory-
revised (Costa Jr and McCrae, 1992). The scale consists of
120 items and assesses the five different dimensions of
personality: neuroticism, extraversion, openness, agreeableness
and conscientiousness. Each item is rated on a 5-point Likert
scale ranging from ‘strongly disagree’ to ‘strongly agree’.

Image acquisition

Images were acquired on a Siemens 3-Tesla TRIO scanner at
Beijing Normal University Imaging Center for Brain Research.
The resting state scanning consisted of 150 contiguous echo-
planar imaging (EPI) volumes using the following parameters:
axial slices, 33; slice thickness, 3.5 mm; gap, 0.7 mm; repetition
time (TR), 2000 ms; echo time (TE), 30 ms; flip angle, 90°; voxel
size, 3.5 x 3.5 x 3.5 mm? and field of view (FOV), 244 x 244 mm?.
In addition, high-resolution structural images were acquired
through a 3D sagittal T1-weighted magnetization-prepared rapid
acquisition with gradient-echo sequence, using the following
parameters: sagittal slices, 144; TR, 2530 ms; TE, 3.39 ms; slice
thickness, 1.33 mm; voxel size, 1 x 1 x 1.33 mm?; flip angle, 7°;
and FOV, 256 x 256 mm?.

All participants underwent a 5 min resting-state functional
magnetic resonance imaging scanning, during which they
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were instructed to close their eyes, keep still, remain awake
and not to think about anything systematically (see also
Nooner et al., 2012). Several approaches were implemented
to reduce the possibility that participants might fall asleep
during the scan: (i) participants were explicitly instructed to
close their eyes but not fall asleep during the resting-state
scan; (ii) experimenters communicated with each participant
immediately after the scan, and all participants responded
promptly, indicating that they did not fall asleep; and (iii)
the current study implemented rigorous criteria (see also
‘image preprocessing’) to exclude participants from further
analyses based on their head motion. Therefore, it is likely that
participants sleeping during the scan (therefore, lower control of
head movements) were excluded from analyses in the current
study.

Image preprocessing

Neuroimaging data analyses were performed with the DPABI
software package (Yan et al., 2016), which is a convenient soft-
ware plug-in based on SPM12 (http://www.fil.ion.ucl.ac.uk/spm).
The first 10 volumes of the functional images were discarded
for signal equilibrium and participants’ adaptation to scanning
noise. The images were then realigned for head movement
correction. Seven participants (6 males, 5 singles) were excluded
from further analysis under the criteria of head motion exceed-
ing 2.5 mm maximum translation, 2.5° rotation or mean frame-
wise displacement exceeding 0.2 mm throughout the course of
scans (Power et al., 2012; Yan et al., 2013). To normalize func-
tional images, participants’ structural brain images were first
co-registered to their own mean functional images and were
subsequently segmented. The parameters derived from seg-
mentation were used to normalize each participant’s functional
images into the standard Montreal Neurological Institute space
(MNI template, resampling voxel size was 3 x 3 x 3 mm?). After-
wards, the linear trends of time courses were removed, and a
band-pass filtering (0.01-0 1 Hz) was applied to the time series
of each voxel to reduce the effect of low-frequency drifts and
high-frequency physiological noise (Biswal et al., 1995; Zuo et al.,
2010). Subsequently, the images were spatially smoothed using a
Gaussian filter to decrease spatial noise (4 x 4 x 4 mm? full width
at half maximum). Finally, three common nuisance variables
were regressed out, including the white matter signal, the cere-
brospinal fluid signal (Fox et al., 2005; Snyder and Raichle, 2012)
and 24 movement regressors including autoregressive models
of motion incorporating six head motion parameters, six head
motion parameters one time point before and the 12 correspond-
ing squared items (Friston et al., 1996).

RSFC feature extraction

In the current study, network nodes were defined by using a
functional brain atlas, derived from a graph theory-based par-
cellation algorithm that maximized the similarity of the voxel-
wise time series within each node (Shen et al., 2010; Shen et al.,
2013). The atlas includes 268 nodes spanning the whole brain
including cerebellum and brainstem (Figure 2A). Notably, the
268-node atlas comprises nodes with more coherent time series
than those defined by the automatic anatomic labeling atlas and
thus represents an improvement over anatomical parcellation
schemes because anatomical boundaries do not always match
functional ones (Shen et al., 2013).
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For each participant, the time course of each node was com-
puted by averaging the blood oxygen level-dependent signal of
all of its constituent voxels at each time point. Second, network
edges were defined as functional connectivity between each pair
of nodes, calculating as the correlation (Pearson’s r) between
time courses of each pair of nodes. Fisher’s r-to-z transformation
was then implemented to improve the normality of correla-
tion coefficients, resulting in a 268 x 268 symmetric connectivity
matrix that represented the set of edges/connections in each
participant’s resting-state connectivity profile (Finn et al., 2015;
Rosenberg et al., 2016).

Exploratory correlation analysis

An exploratory correlation analysis was implemented across
all participants to examine the relevance of RSFC to loneliness.
Specifically, Pearson correlation between each edge in the con-
nectivity matrices and loneliness scores was computed across
participants. The resultant r values were forward to a threshold
of P <0.05 (Finn et al., 2015; Rosenberget al., 2017; Rosenberget al.,
2018) and separated into a positive tail (i.e. positive correlation
between strength of edge and loneliness scores) and a negative
tail (i.e. negative correlation between strength of edge and
loneliness scores). Therefore, connections in the positive tail
(hereafter referred to as ‘positive network’) and negative tail
(hereafter referred to as ‘negative network’) were selected by cor-
relations with loneliness scores rather than positive or negative
functional connections themselves (see also Rosenberg et al.,
2016; Beaty et al., 2018; Hsu et al., 2018). Afterwards, a single
aggregate metric of network strength was employed to char-
acterize degree of connectivity in the positive and negative
tails for each participant. That is, positive network strength
was computed by summing the edge strengths (i.e. Z scores)
for all the edges in the positive tail. Similarly, negative network
strength was computed by summing the Z scores of all the edges
in the negative tail. Lastly, the positive and negative network
strengths were correlated with loneliness scores. Notably, results
of this analysis were for display purpose, and no statistical
tests were performed (Kriegeskorte et al., 2009; Kristensen and
Sandberg, 2017). Furthermore, conclusions on the relationship
between positive/negative network strengths and loneliness
were not derived from this analysis, but instead were based on
results from cross-validation detailed below. In other words, this
analysis was conducted to illustrate an overview of data before
formal prediction analysis (see also Rosenberg et al., 2016).

Prediction analysis using cross-validation

To determine whether network strength predicted loneliness in
unseen individuals, a leave-one-out cross-validation (LOOCV)
was used to evaluate the out-of-sample prediction performance.
Specially, N-1 participants were used as the training set and
the remaining one was used as the testing sample, where N is
the number of the participants. During the training procedure,
predictive networks were defined and employed for calculating
positive and negative network strengths as described in the
exploratory correlation analysis. Afterwards, simple linear mod-
els were constructed to respectively relate positive and negative
network strengths to loneliness scores in the training set. During
the testing procedure, each testing participant’s strengths of
positive and negative network was normalized using the param-
eters acquired during training procedure, and then the trained
models were used to predict the testing participant’s loneliness
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score (Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017).
The training and testing procedures were repeated N times such
that each participant was used once as the testing participant.

Pearson correlation coefficient (r) and mean squared error
(MSE) between actual and predicted loneliness scores were used
to evaluate the accuracy of prediction. The permutation test was
applied to determine whether the obtained metrics were signif-
icantly better than expected by chance. Specially, we permuted
the loneliness scores across participants without replacement
1000 times, and each time re-applied the above LOOOCYV predic-
tion procedure. This resulted in a distribution of correlation (r)
and MSE values reflecting the null hypothesis that the model did
not exceed chance. The number of times the permuted value was
greater than (or with respect to MSE values, less than) or equal
to the true value plus one was then divided by 1001 providing
an estimated P-value for both the correlation coefficient (r) and
observed MSE.

Contributing network in the prediction of loneliness
scores

To characterize the neural substrates of the contributing
network, the network was defined as the set of edges that were
present in the every iteration of the LOOCV described above.
Afterwards, the 268 nodes were grouped into 10 macroscale
brain regions, including the prefrontal lobe (46 nodes), motor
lobe (21 nodes), insular lobe (7 nodes), parietal lobe (27 nodes),
temporal lobe (39 nodes), occipital lobe (25 nodes), limbic lobe
(36 nodes), cerebellum lobe (41 nodes), subcortical lobe (17 nodes)
and brainstem lobe (9 nodes) (Finn et al., 2015; Rosenberg et al.,
2016). The number of edges between each pair of macroscale
regions was then calculated. Furthermore, the importance
of individual nodes was measured as the number of their
connections (Rosenberg et al, 2016; Beaty et al, 2018). The
connectivity patterns of the top 20 most highly connected nodes
were illustrated.

Validation analysis with different cross-validation
schemes

Main results were further validated with different cross-
validation schemes (i.e. 2-fold, 5-fold and 10-fold). Taken the
2-fold cross-validation as an example, all participants were
divided into two subsets, in which one subset was used as the
training set, and the remaining one was used as the testing
set. Training set was normalized and used to train a linear
prediction model, which then was used to predict scores of the
normalized testing data. The normalization of testing data used
the normalizing parameters acquired from training data. This
procedure was repeated twice, so that each subset was used as
testing set once. Finally, the correlation r and MSE between the
true and predicted scores were calculated across all participants.
As the full data set were randomly divided into two subsets, the
performance might depend on the data division. Therefore, the
2-fold cross-validation was repeated 100 times, and the results
were averaged to produce a final prediction performance. A 1000
times permutation test was applied to test the significance of
the prediction performance.

Control analyses

Several control analyses were implemented to further
examine the significance of predictions of our models despite
potential confounds of age, gender, relationship status (single vs

in a romantic relationship) and motion. In these analyses, new
predictive networks were constructed by employing those edges
whose partial Pearson correlation with loneliness scores while
controlling for confounding variables (e.g. motion) passed the
P <0.05 threshold (see also Shen et al.,, 2017; Hsu et al., 2018).
Finally, head motion was further controlled for in the data
preprocessing, such that volumes with an FD > 0.5 mm, along
with the immediately preceding volume and two subsequent
volumes, were considered micromovement-containing volumes,
and each of these volumes was modeled as a separate regressor
in nuisance covariates regression (Yan et al., 2013; Power et al.,
2014).

Relationship of personality with loneliness and
associated network connectivity

The associations between loneliness and five personality dimen-
sions (neuroticism, extraversion, openness, agreeableness and
conscientiousness) were estimated with a linear regression, with
the loneliness as the dependent variable and five personality
dimensions as predictors. Since the regression analysis revealed
reliable association of loneliness with neuroticism and extraver-
sion (see also Results section), we examined whether networks
contributing to the prediction of loneliness were capable of
predicting neuroticism and extraversion. In these analyses,
connectivity features selected by the prediction model of loneli-
ness were forward to the predictive models for these personality
scores. In other words, these analyses examined whether
loneliness-related predictive networks were also associated
with neuroticism and extraversion. Finally, control analyses
were conducted to examine whether RSFC-based model could
still predict loneliness after controlling for neuroticism and
extraversion (for details, see also ‘Control analyses’ section).

Results
Exploratory correlation analysis

As expected, loneliness showed significant positive association
with neuroticism (8=0.51, t=3.99, P <0.0005) and negative
association with extraversion (8 =-0.33, t =—3.28, P =0.002),
but not with conscientiousness (8=0.06, t=0.46, P=0.65), open-
ness (8=-0.06, t=—0.61, P=0.55) or agreeableness (8=-0.18,
t=—1.90, P=0.06). Additionally, loneliness scores were not
significantly correlated with mean frame-to-frame head motion
(r =0.0003, P =1.00) or age (r =—0.04, P =0.75) and did not differ
as a function of gender (males vs females: t =—0.26, P =0.80) or
relationship status (single vs in a romantic relationship: t =0.99,
P =0.33).

Regarding the correlation between RSFC and loneliness
scores, across all participants, the average r value was 0.298
(range: 0.241 ~ 0.3400) in the positive tail that comprised
14 edges. The average r value was —0.292 (range: —0.239 ~ —0.508)
in the negative tail that comprised 8163 edges. Because limited
number of edges in the positive tail could not provide reliable
predictions, the following analyses focused on the negative
network.

The edges in the negative network represented <25% of
the whole-brain 35778 total edges defined in the current atlas.
The negative network strength, computed by summing the edge
strengths for all the edges in the negative tail, were correlated
with loneliness scores (r=-0.488). These findings impli-
cated the validity of negative network strength as a summary
statistic.
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Prediction analysis using cross-validation

A LOOCV approach was implemented to examine whether the
relevance between negative network strength and loneliness
scores generalized to novel individuals. It was demonstrated
that RSFC in the negative network was able to predict loneliness

scores in th
predicted sc
tatio tests, F

e novel individuals (correlation between actual and
ores:r=0.244,P=0.019; MSE=72.70,P =0.019, permu-
igure 1). However, RSFC in the positive network could

not reliably predict loneliness scores (correlation between actual
and predicted scores: r =—0.30, P > 0.05; MSE=97.72, P > 0.05).
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Fig. 2. Macroscale regions used for characterizing contributing connectivity. (A) The 268 nodes. (B) Twenty macroscale brain regions. (C) The connectivity patterns
selected by the prediction model, plotted as number of connections within each macroscale regions. (D) Connections plotted as number of edges within and between
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Contributing networks in the prediction of loneliness
scores

Across all folds of LOOCYV, the numbers of edges that contributed
to the prediction ranged from 2001 to 10865. Notably, 1912 of
these edges appeared in the every iterations of the LOOCV and
were defined as the contributing network (Rosenberg et al., 2016;
Shen et al., 2017).

Based on macroscale regions (Figure 2B), it was revealed that
connections within prefrontal, temporal and occipital lobes;
connections of the prefrontal lobe with subcortical, limbic and
temporal lobes; and connections of the temporal with limbic,
occipital and cerebellum lobes were primary predictors of
loneliness scores (Figure 2C and D).

In addition, the top 20 most highly connected nodes were
located in the dIPFC, lateral orbital frontal cortex (IOFC), ven-
tromedial prefrontal cortex (vmPFC), caudate, amygdala, inferior
temporal gyrus (ITG), middle temporal gyrus (MTG), supplemen-
tary motor area (SMA), precentral gyrus and cerebellum impli-
cating the critical roles of these regions in predicting loneliness
(Figure 3 and Table 1).

Validation with different cross-validation schemes

Using different cross-validation schemes, the performance of
predication was re-estimated. The resultant correlation coeffi-

cients between actual and predicted loneliness scores remained
significant (Table 2), thus validating the main findings.

Control analyses

After controlling for the potential confounds of head motion,
age, gender, relationship state, head motion, neuroticism
and extraversion, new predictive networks were constructed
and used in the cross-validation schemes. These analyses
indicated that predictive models could still significantly predict
loneliness scores (i.e. correlation between actual and predicted
loneliness scores remained significant), independent of age,
gender, relationship state, head motion, neuroticism and
extraversion (Table 2).

Personality prediction based on the loneliness-related
network

To assess the association between personality (i.e. neuroticism
and extraversion) and networks that contribute to the prediction
of loneliness, we examined whether these networks were
capable of predicting neuroticism and extraversion. It was
demonstrated that the loneliness-related network was able
to predict these personality scores in the novel individuals:
neuroticism (correlation between actual and predicted scores:
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Fig. 3. Connectivity patterns of the top 20 nodes with the most connections. L, left; R, right; dIPFC, dorsolateral prefrontal cortex; IOFC, lateral orbital frontal cortex;
ITG, inferior temporal gyrus; vmPFC, ventromedial prefrontal cortex; MTG, middle temporal gyrus; SMA, supplementary motor area; PFC, prefrontal cortex; Mot, motor;
Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem.

r=0.45, P =0.001; MSE=143.01, P =0.001, permutation tests,
Figure 4A and C) and extraversion (correlation between actual
and predicted scores: r=0.22, 