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Abstract 

Heat-related rail buckling is a significant operational and safety issue for the railways of Great Britain 

(GB). Although continuously-welded rail is pre-stressed to a stress-free temperature of 27°C, 

degradation and local topographic and microclimatic factors can lead to failures occurring at lower 

temperatures. These buckle events can cause widespread knock-on delays. As a common risk 

mitigation approach, speed restrictions are imposed for forecasted heat events, with these measures 

also being associated with non-trivial delays and disruption. The recently published UKCP18 climate 

projections indicate that the frequency, duration and magnitude of heat wave events will increase in the 

coming decades. This paper presents a data model to explain the occurrence of heat-related disruption 

incidents on GB’s rail network. This model is built on historical delay data from Network Rail – the owner 

of GB’s railway infrastructure, given explanatory variables for important meteorological and 

infrastructure features from published research in the literature. The model is implemented at two scales. 

Firstly at the national scale, including all Network Rail operational routes, and secondly for the South 

East of England (climatologically the warmest part of the country and hence at perceived greater risk) 

including the operational routes of Anglia, Wessex and South East.  

Keywords: Rail, high temperatures, logistic regression, resilience, disruption 

1. Introduction 

Heat-related rail buckling is a safety and operational hazard which impacts the rail system during 

periods of high temperatures. Continuously welded steel track is particularly vulnerable to this hazard 

as lateral forces can build up as the track expands due to heat, with the passage of a train providing 

the additional force required to cause a buckle, potentially leading to derailment. The impact in terms 

of disruption can be significant, for instance, the hottest July day on record in the UK [1] caused 12,800 

heat-related delay minutes, with an additional 23,700 minutes caused by preventative emergency 

speed restrictions.  

 

Track is ‘pre-stressed’ to a stress-free temperature (SFT) to prevent buckling. For Great Britain (GB) 

the STF is typically 27°C [2]. In reality, once the track is laid, this resilience can reduce as the ballast 

moves and settles. STFs can be 3°C lower within a year of the track being laid, hence maintenance 

(particularly tamping) is essential to maintain resistance. Although determining track temperature can 

involve many factors, such as ambient temperature, exposure, cloud cover, relative humidity, track 

orientation and precipitation [2], a commonly-used empirical conversion gives the rail temperature as 

3/2 greater than ambient temperature [3].  

 

In terms of the causes of buckle events, as well as meteorological, topographic and asset variables, an 

important concept is that of ‘buckle harvesting’. This concept is used to explain the observation that 

critical rail temperatures (CRTs) early in the summer period tend to be associated with a greater risk of 

buckling than those later in the year. This is due to the stock of at-risk assets being higher at the 

beginning of the year. These are ‘harvested’ during early heat events, and replaced or maintained, in 

effect increasing the resilience of the railways incrementally as the summer progresses, meaning that 

a particular high temperature value poses a higher risk the first time it is encountered in a season [4]. 

 

A previous study by the authors [5] used a logistic regression approach in a test region (the Anglia route 

of GB’s rail network) to explore the relative importance of various explanatory variables, especially the 
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maximum temperature within a predefined critical period of time prior to an incident. This study 

suggested that:  

 All the temperature-related variables, except the maximum temperatures below 25°C, were 

statistically significant at the significance level of 0.05, indicating that they play a positive role 

in the causation of heat-related incidents; 

 The difference between the minimum and maximum temperatures within the predefined time 

period is also a key variable, with the odds of a heat-related incident increasing 20% with a 1°C 

increase in diurnal range;  

 The ‘buckle harvesting’ phenomenon may mean that lower temperatures earlier in the season 

cause at-risk sections of track to buckle, so that as higher temperatures are reached in the later 

summer months, the track has already become more resilient through reactive maintenance; 

 A North-South orientation acts to reduce risk compared to an East-West orientation (although 

not statistically significant); and  

 Although there was not strong statistical evidence that the other weather-related variables, such 

as wind and relative humidity, had significant impact on the occurrence of heat-related 

incidents; the signs associated with those variables reflect reasonable expectations. For 

instance, precipitation shows evidence for reducing buckling risk.  

 

The previous study used an aggregated category of ‘heat’ defined by Network Rail – the owner of GB’s 

railway infrastructure, where incidents from several ‘reasons codes’ were included, hence the 

contribution and strength of specific infrastructure and operational failures (e.g. for rail or points faults) 

were not assessed. Additionally, it was limited in application to the Anglia route in the East of England. 

The present study expands this research to include data for all regions of GB’s rail network, as well as 

a regional comparison for several routes (i.e. Anglia, Wessex and South East routes) in the southeast 

of the country.  

2. Data 

The data was available for a period ranging from the start of financial year 2006/07 to the 30th of 

September 2018; the data model however was built on a subset of the data restricted from the beginning 

of May to the end of September for each year, so as to minimize the potential influence of cold weather-

related incidents on the analysis. 

2.1 Delay Incident data 

Historical delay incident data was from Network Rail TRUST (Train RUnning Systems on TOPS) system, 

which records detailed information about every rail incident on the network, including the date, time, 

location, reason, the main actions taken in response to it, and the resultant delay (in minutes). In the 

present study, the analysis was limited to a selection of reported reasons (each abbreviated to two 

upper-case letters) for the heat-related delays: 

 Broken/cracked/twisted/buckled/flawed rail (IR) 

 Points failure (IB) 

 CRT speeds (other than buckled rails) (JH) 

 Severe heat affecting infrastructure the responsibility of Network Rail (excluding JH) (XH) 

2.2. Meteorological data  

Gridded data, supplied to Network Rail by MeteoGroup, were included for the study period:  

 Temperature, given in 1 degree Celsius (°C) increments from 24 degrees. The present study 

considered the highest temperature prior to a reported heat-related delay as a categorical 

variable, labelled ‘maximum<24°C’, ‘maximum=24°C’, ‘maximum=25°C’, ‘maximum=26°C’, 

‘maximum=27°C’, ‘maximum=28°C’, ‘maximum=29°C’, and ‘maximum≥30°C’, respectively. 

Note again, as suggested by existing studies, that 27°C is often deemed a critical temperature 

at or beyond which the risks of experiencing track buckling would dramatically increase. 

 Diurnal range of the temperature (i.e. the absolute difference between the maximum and the 

minimum temperatures in a 24-hour period prior to the time of the incident). Existing evidence 

shows that rapid changes in temperature can be an additional risk factor for rail buckling.  
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 Total precipitation – precipitation can act to cool rails and is associated with greater cloud cover, 

assuming that a higher level of rainfall might help mitigate harm of high temperature. 

 Whether it was the hottest day of year – evidence suggests that temperature-related rail failure 

follows a ‘harvesting’ pattern, with subsequent occurrences of temperature being associated 

with lower risk. This is labelled ‘hottest heretofore’ in results.   

2.3. Other data 

Track orientation 

 The data model considered only the incident locations, such as stations, junctions and the 

stretches of track between these, which had ever experienced at least one heat-related incident. 

The track orientation for each incident location in this study was identified only by the straight 

line between the start and end of the incident location. This was due to lack of detailed 

geographical information of the tracks at the time of the analysis. For all the incident records, 

their track orientations were divided into four categories: east-west, north-south, northeast-

southwest, and northwest-southeast.  

 

The analysis of the above data viewed the likelihood of occurrence of heat-related incidents as the 

outcome variable of interest, given a selection of explanatory variables (or predictors), including the 

highest temperature and total precipitation prior to a reported heat-related delay, diurnal range of the 

temperature, and track orientation. In this case, a logistic regression model was used to explore the 

feasibility of establishing a data model. All of the predictors, except the diurnal range of the temperate 

and total precipitation, were categorical variables.  

3. Data integration 

The integration of the 

above-described data 

was in both the spatial 

and temporal contexts 

was based on defining a 

‘prior-incident period’ 

(prior-IP). As illustrated 

in Figure 1, the prior-IP 

should start a certain 

number of hours (e.g. 

24 hours) before the recorded start time of an incident, and last until the occurrence of the incident. 

That way, weather observations during the prior-IP are considered to be the prevailing conditions in the 

causation of the incident. Conditions during the course of an incident are irrelevant in this case. On the 

other hand, a ‘non-incident period’ (non-IP) must be defined against each prior-IP. In contrast to the 

prior-IP, it would be assumed that the conditions (e.g. weather conditions) observed during the non-IP 

would be unlikely, or much less likely, to result in a heat-related incident (e.g. track buckling).  

 

A logistic regression model was then employed to analyse the integrated data. The analysis was 

conducted for six iterations, featuring different reason codes in isolation and combination to discern the 

relative influence of the explanatory variables for different impact type. The iterations were: 1) IR, IB, 

XH and JH; 2) JH only; 3) IR, IB and XH; 4) IR only; and 5) IB only. These were repeated both at the 

national scale and for the southeast region (covering Network Rail routes of Anglia, Wessex and South 

East), which is climatologically the warmest part of the country and hence at perceived greater risk. 

4. Results 

4.1. Test 1 – IR, XH, IB and JH.  

For all reason codes in combination at the national level, the estimated coefficient associated with the 

maximum temperatures up to 30°C were all positive and statistically significant, with odds ratios peaking 

at 1.7 at 27°C (i.e. the STF). The estimate for the hottest day heretofore was positive and significant, 

with an odds ratio of 1.5. For the southeast, maximum temperatures between 26°C and 29°C were 

Figure. 1: Illustration of ‘non-incident period’ (non-IP), latent period (LP), 

and ‘prior-incident period’ (prior-IP) in the context of heat-related 

incidents 
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significant with positive estimated coefficients, where odds ratios rose from 1.5 to 2.1 at 28°C and then 

fell to 1.8. Hottest day heretofore also had a statistically significant, positive coefficient, with an odds 

ratio of 1.3. All the other variables were either not significant or had odds ratios near to 0.  

4.2. Test 2 - JH only. 

The testing model estimated from the 

data of the reason code JH only showed 

the greatest significance for the 

explanatory variables among all the 

tests in this study. Nationwide, the 

coefficients associated with all 

temperature-related variables were   

statistically significant, with the highest 

odds ratio of 8.7 at 27°C. The track 

orientation of North-South was 

significant, with an odds ratio of 1.2. 

Hottest day heretofore was also 

significant, with an odds ratio of 2.9. 

Temperature change was positive and 

significant, with an odds ratio of 1.24. 

The coefficient of precipitation was 

negative and significant, with an odds 

ratio of 0.89.   

 

For the southeast region (see Table 1), 

temperature showed positive 

significance throughout the range. 

Odds ratios were all above 4 for 

temperatures higher than 26°C, with 

values over 9 at 27°C and 30°C. 

Temperature change was positively 

significant with an odds ratio of 1.2. Total precipitation had a significant negative influence with an odds 

ratio of 0.9. Hottest day heretofore had a significant positive influence with an odds ratio of 2.1. The 

ROC curve for the JH model showed good predictive ability against random guess for the southeast 

region (see Figure 2), Figure 3 shows the actual delay minutes versus predicted likelihood of incident 

occurrence from the model, with a threshold of 0.51, capturing a majority of the high magnitude incidents.  

 

 

4.3. Test 3 – IR only.  

The estimated coefficients associated with the maximum temperatures between 27°C and 30°C were 

Figure 2: ROC plot for JH incidents in the 

southeast  

 

Figure 3: Actual delay minutes vs. predicted 

likelihood of the incident occurrence. 

 

Latent period = 5 × 24 hours    No. observations = 1391 

     Degree of freedom = 13 

Log-likelihood ≈ –741.31       

Variable Coef. est. Std. err. 𝒛-statistic 𝑷 >  𝒛  [95% conf. interval] Odds ratio 

(Intercept) -2.3191 0.300 -7.729 0.000 [-2.907, -1.731] 0.0984 

Temperature (℃)       

Change within prior-IP 0.1944 0.031 6.332 0.000 [0.134, 0.255] 1.2146 

maximum < 24 (ref.) 0.0000 - - - - 1.0000 

maximum = [24.0, 25.0) 0.4563 0.200 2.279 0.023 [0.064, 0.849] 1.5782 

maximum = [25.0, 26.0) 1.6100 0.300 5.364 0.000 [1.022, 2.198] 5.0028 

maximum = [26.0, 27.0) 2.2527 0.411 5.476 0.000 [1.446, 3.059] 9.5131 

maximum = [27.0, 28.0) 2.0823 0.541 3.851 0.000 [1.023, 3.142] 8.0226 

maximum = [28.0, 29.0) 1.4545 0.633 2.296 0.022 [0.213, 2.696] 4.2825 

maximum = [29.0, 30.0) 2.2094 1.048 2.108 0.035 [0.155, 4.264] 9.1106 

maximum ≥  30.0 1.6909 0.803 2.105 0.035 [0.117, 3.265] 5.4244 

Track orientation       

East – West (ref.) 0.0000 - - - - 1.0000 

Northeast-Southwest 0.0164 0.190 0.086 0.931 [-0.357, 0.390] 1.0165 

Northwest-Southeast -0.1762 0.210 -0.840 0.401 [-0.587, 0.235] 0.8384 

North-South  0.1428 0.207 0.689 0.491 [-0.263, 0.549] 1.1535 

Hottest heretofore 0.7280 0.166 4.381 0.000 [0.402, 1.054] 2.0710 

Total Precipitation (mm) -0.0869 0.024 -3.640 0.000 [-0.134, -0.040] 0.9167 

 

Table 1: Estimation result (Southeast region) 



- 5 - 

 

positive and showed statistical significance in the nationwide context, with odds ratios rising from 1.5 to 

2 within this range. For IR in the southeast region, only the maximum temperatures of 28°C and 29°C 

showed significance with an odds ratio of 1.5 and 2.9, respectively. 

4.4. Test 4 – IB only.  

Nationwide, temperature had significance for point failure between the maximum temperatures of 25°C 

and 29°C, with odds ratios rising between 1.2 and 1.4. Hottest day heretofore also showed significance 

with an odds ratio of 1.3. In the southeast region, the maximum temperatures of 25°C and 27°C showed 

positive significance in the causation of point failures, with odds ratios rising from 1.4 to 1.6.  

4.5. Test 5 – IR, XH and IB.  

This combination showed statistical significance between maximum temperatures of 25°C and 30°C, 

with odds ratios ranging between 1.1 and 1.4 at 29, then falling to 1.3 at the national scale. For the 

southeast region, this combination showed positive significance between 26°C and 29°C, with odds 

ratios increasing from 1.3 to 1.8 at 28, then falling to 1.6.  

5. Discussion 

5.1. Influence of explanatory variables on heat-related rail incidents 

The results indicate that the specific impact categories or reason codes associated with heat-related 

failure have a less clear relationship with the explanatory variables than the operational measure of 

temporary speed restrictions. It is also apparent that for the infrastructure-related reason codes, the 

significance and odds ratios of the maximum temperature variables tends to reduce at relatively low 

temperatures e.g. 27°C to 28°C, whereas for JH peaks at comparatively higher temperatures and 

remains high and significant above 30°C. This suggests that the precautionary measures taken to 

reduce speeds at higher temperatures work well to reduce the impact of heat at these temperatures. 

As JH is an operational measure and governed by predefined temperature thresholds, this also explains 

the strength of the predictive power in Figures 2 and 3 for Test 1, the greater significance of Test 2 

compared to 3-5, and the fact that the models were weaker in Tests 2-5.  

 

The regional analysis shows that the southeast region generally have higher odds ratios associated 

with equivalent temperatures than the national picture. Further research is required to ascertain the 

reason for this, but the southeast is generally subjected to more frequent and longer duration heat 

events, with an additional component of latitude (lower latitudes being associated with greater incident 

solar radiation) potentially being a component [4]. The variable of hottest day heretofore was significant 

in several instances, again giving evidence to support the buckle harvesting theory [1]. Track orientation 

played very little part in the in terms of explaining incident occurrence. However, incident counts for 

each orientation indicate that east-west is by far the most frequent, however, these figures are not 

normalized, with further analysis of exposure (i.e. length of track orientation) required.  

5.2. Further analysis and improvements to model 

Additional interrogation of the delay data would be beneficial to ensure that the incidents are heat-

related. This could involve analysis of keywords in the incident description for those commonly 

associated with heat-related incidents. Further sources of meteorological and asset information can be 

added, such as incoming solar radiation, cloud height, humidity, shading, latitude and asset condition. 

Furthermore, there is potential to incorporate interactions between variables in the statistical modelling 

approach, as well as modification of the prior incident period length to capture antecedent conditions. 

 

Improvements to the allocation of weather cells for incidents can also be made. As incidents which 

occur between two stations or junctions do not have an exact location, a simple midpoint approach was 

used, with that location being used to select the weather cell. This does not account for the potential 

deviation of the track between these two points. The start and end locations are typically >10km part. 

An interim approach to deal with this uncertainty (both the exact location of the incident and the deviation 

of the line) is to create a buffer, formed by the radius between the midpoint and the end locations, within 

which the weather cells will be averaged.   
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5.3. Implications for industry  

There is potential for the results to be integrated with output from the Natural Environment Research 

Council-funded project “Weather-induced single point of failure assessment methodology for railways”, 

which produced a criticality map of the GB rail network. Such a risk mapping approach would 

demonstrate how targeted interventions can be made at locations with the greatest risk of buckling and 

the greatest potential network disruption. The approach can also be improved with integration of high 

resolution topographic data currently being produced by the industry, such as LIDAR surveys of 

vegetation and topography. 

 

The results demonstrate the potential for an operational forecast tool which can inform decisions for 

extreme event preparation and response through processes such as Network Rail’s Extreme Weather 

Action Team (EWAT) procedure. In the longer term, the approach is suitable for climate impact analysis. 

The frequency of rail buckling events is predicted to increase due to climate change [6]. The resolution 

of the model lends itself to the input of climate data from weather generator tools, which produce 

synthetic weather time series representative of future climates, such as those included in the recently 

released UKCP18 and H++ climate scenarios, the later providing projections for low probability, high 

impact extreme heat events. This will allow for the potential frequency and spatial distribution of future 

heat-related impacts to be assesses. 

6. Conclusion 

This is the most comprehensive data model for heat-related delays and presents a step change in 

temporal and spatial resolution from that of previous studies, presenting a clear pathway for further 

development by the meteorological services sector. The study indicated that although operational 

measures to reduce the risk of rail buckling and generally effective at higher temperatures, those 

temperatures around the STF (27°C) are associated with higher odds ratios for the specific 

infrastructure-related reason codes. The results have significance in the present day, and can also be 

coupled with recently released climate change projections (UKCP18 and H++) to gauge the potential 

impact of future climates and to prepare adaptation responses.  
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