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ABSTRACT 

For image based particle characterisation approaches one of the most 

common discussion points is determining the number of particles required to 

have statistical confidence that the measurement is able to adequately 

describe the distribution of the sample. This topic becomes significantly more 

challenging when applied to the extraction of single component size 

distributions from multi-component samples.  

The aim of this work was to propose a means to accurately assess the 

particle number requirements using a method specific approach.  The method 

applies a sub-sampling method to the original imaged dataset in order to 

provide an understanding of the impact of sub-sampling on the ability of 

accurately reproduce the original distribution. 

The method was applied to understand the particle number 

requirements for two batches of theophylline with varied particle size 

distributions, using the input size distribution to guide the requirements for the 

subsequent multi-component samples of both materials.    

The results demonstrate the utility of the method to determine the 

appropriate number particles required to recreate the size distributions. Whilst 

the minimum number of particles required to be sampled can be calculated, 

how those particles are sampled can also affect the validity of the 

measurement and must be taken into consideration. 
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1. INTRODUCTION  

 For image based particle characterisation approaches, one of the most 

common discussion points is determining the number of particles required to 

have statistical confidence that the measurement is able to adequately 

describe the distribution of the sample [1-4].  There have been a number of 

reported approaches [1, 2, 5] which have culminated into an ISO guidance for 

static image analysis [6] which is based upon utilising the distribution width in 

order to provide an estimation of the required number of particles.   

Whilst such approaches are useful in providing guidance to the number 

of particles required for statistical confidence, without some prior thought 

about the true nature of the sample, the analysis method utilised and the 

underlying assumptions made in the associated calculations, the results can 

be misleading [7].   

Firstly, the calculations assume a perfect log-normal distribution [5, 6].  

This may be true, in particular for highly milled materials, however, many 

materials do not demonstrate idealised log-normal distributions [8].  Such 

distributions can range from skewed (positive or negative) to multi-modal 

distributions, and consequently the predicted number of particles can be 

prone to varying degrees of error.    

Additionally, the absolute number of particles does not necessarily 

correlate with confidence of accuracy and/or precision [7].  Many dynamic 

imaging systems introduce the sample by means of a cycling loop; for such 

systems the number of particles measured may not reflect the number of 
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independent particles passing the optics but the number of cycles the particles 

make around the loop. 

Static image analysis systems often utilise a multi-lens configuration in 

order to enable selection of a particular size range in line with the particles 

being characterised.  However, such approaches can lead to confusion as to 

the relevance of the particle number requirements [7, 9-11].   

Consider the analysis of a sample with a wide particle size distribution; 

if we measure the sample using a high resolution lens we can expect to 

measure a high number of particles as the lens will be sensitive to the fine 

particles, of which there are generally high numbers.  However, care needs to 

be taken to ensure that the field of view is large enough to capture the coarse 

particles and the analysis area large enough to capture sufficient number of 

such particles.  If the distribution is wide, this approach can lead to a method 

which has low precision due to a high sensitivity to the sampling of a small 

population of high volume particles even with high particle counts.  A means 

to solve this precision issue is to utilise a lower resolution lens which would 

enable a larger area of the sample to be analysed therefore the sensitivity to 

the high volume particles reduces.  This approach, however, would also lower 

the sensitivity of the method to the fine particles and so we now have a 

situation where the number of particles counted could be lower, but the 

precision and accuracy greater.  Clearly, particle number alone can be 

misleading and so some thought needs to be applied to what is being 

measured, for what purpose and by which means [7].  

This all becomes notably more complex when dealing with the 

characterisation of individual components within multi-component systems.  In 
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recent work [8, 12, 13] the particle size and shape distributions of individual 

components within multi-component pharmaceutical systems has been 

extracted in order to monitor the change in the physical nature of formulated 

drug particles during manufacture.  Such approaches utilise spectroscopic 

tools to chemically classify the particles thus enabling extraction of the 

characteristics of the individual components. Similar work is being reported in 

a wide range of fields including characterisation of forensic samples, including 

counterfeit drugs, gunshot residues and soil samples [14, 15], nasal sprays [16], 

environmental microplastics [17] and therapeutic antibody products [18] to 

name but a few.  

One challenge with the approach is that the analysis time for such 

methods can be high (in the order of days) and the resulting particle counts 

notably lower than for the comparable single component analysis. Therefore, 

assuming appropriate sampling from the bulk powder, the question of how 

many particles required to provide statistical confidence that a particle size 

distribution can be accurately described becomes significantly more important. 

This concern was highlighted by Kippax et al. [16] noting that “the results tend 

to be relatively subjective with low statistical significance, pragmatism limiting 

the number of particles that can be measured”.   

  The aim of this work is to propose a means to accurately assess the 

sensitivity of a measurement to particle number for individual samples using a 

method specific approach.  The approach is explained and applied to batches 

of a test material, theophylline anhydrous, with varied particle size 

distributions both before and after incorporation into a formulated matrix.  The 

impact of replicate analysis on the measurement outcome is also evaluated.   
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2. MATERIALS AND METHODS 

2.1 MATERIALS 

Two batches of theophylline anhydrous (Sigma Aldrich, Gillingham, 

UK), batch A (MKBV6764V) and batch B (MKCC0719), were used in this 

study. The materials were also incorporated into a formulation containing 

microcrystalline cellulose (Avicel PH102) (FMC Corp., Philadelphia, PA) and 

magnesium stearate (Mallinckrodt Inc., Philipsberg, NJ). 

2.2 Blend Preparation 

Theophylline was incorporated into a formulation as a model active 

pharmaceutical ingredient (API) containing microcrystalline cellulose and 

magnesium stearate; the weight percentages of the three components were 

50 %w/w, 49.5 %w/w and 0.5 %w/w, respectively. Theophylline and 

microcrystalline cellulose were first blended for 150 rotations (10 minutes at 

15 rpm) in a 20 L intermediate bulk container using an MB100 tumble blender 

(Pharmatech, Coleshill, UK).  The magnesium stearate was passed through a 

1 mm aperture screen prior to addition to the blend and the material was then 

blended for a further 75 rotations (5 minutes at 15 rpm). 

2.3 Image based particle characterisation (Single component) 

Particle size analysis for each batch was determined using a Malvern 

Morphologi G3-ID particle characterisation system (Malvern Instruments 

Limited, Malvern, UK). Samples were dry dispersed (air pressure of 2 bar, 

injection time of 20 ms and a settling time of 180 s) using the systems 

automated sample dispersion unit onto a glass plate.  Verification that the air 
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dispersion did not change the size and/or shape of the particles was 

conducted by dispersing the particles in octane and the suspension pipetted 

onto a microscope slide and left to air dry.  Both methods provided equivalent 

data for both size and shape and as such the more rapid and simpler dry 

dispersion approach was utilised thereafter.  

Particle Imaging was conducted using an x5 magnification lens (6.5 – 

420 μm) with z-stacking enabled to take 3 planes above the initial point of 

focus (equivalent to 147 μm) to account for 3-dimensionality within the 

sample.  Morphological filtering was applied to the raw image data in order to 

remove partially imaged/overlapping particles using a combination of 

convexity and solidity filters[19]. 

For the initial API samples the largest possible scan area was selected 

in order to maximise the number of particles imaged and ensure the particle 

count was more than sufficient to adequately describe the sample 

distributions.  

 

2.4 Image based particle characterisation (Multi-component samples) 

Characterisation of the theophylline size distribution after incorporation 

into the formulation was conducted using a Morphologi G3-ID particle 

characterisation system (Malvern Instruments Limited, Malvern, UK), an 

integrated static image analyser with Raman spectroscopic capabilities.  

The formulated samples were dry dispersed (air pressure of 2 bar, 

injection time of 20 ms and a settling time of 180 s) using the systems 

automated sample dispersion unit onto a glass plate and image analyse 
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conducted using the same method conditions as the initial theophylline 

samples, albeit, a smaller scan area and a single additional plane during z-

stacking (equivalent to 48.9 μm) was used to limit spectral variation due to 

focal depth.  Morphological filtering was applied to the raw image data in order 

to remove partially imaged/overlapping particles using a combination of 

convexity and solidity filters.  

Raman analysis of the particles was conducted using the integrated 

Kaiser Raman system (Kaiser Optical Systems Inc, Ann Arbor, MI) with a 

785nm laser with a 3 μm spot size.   

 For the analysis of single components within multi-component samples, 

consideration of the aims of the analysis must be considered prior to analysis 

to ensure that the approach is suitable for purpose.  As previously highlighted, 

the analysis time of these experiments are high and the particle sample size 

lower than typically utilised for image based characterisation methods.  The 

samples described in this work were to be utilised to investigate their 

propensity to undergo process induced attrition during manufacture in 

subsequent work.   

   As particle size is generally reported in terms of the geometric 

(volume weighted) distribution, the results are more sensitive to large volume 

particles.  These large particles are also most prone to attrition[20].  As the 

number of particles within samples typically reduces as the particle size 

increases, smaller sampling populations can lead to non-representative 

sampling of the high volume particles.   
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 Replicate analysis can be utilised to increase the particle count, 

however, the requirement for replicate analyses will greatly impact the time 

taken to analyse a series of samples.  A second option is to remove particles 

below a particular size threshold; this approach removes high numbers of low 

volume particles thus reducing the risk of under-sampling high volume 

particles whilst having minimal effect on the overall geometric distribution.  

 Combinations of the two strategies have been utilised in previous work 

in this area, but the key question is how many particles are required to 

accurately describe the distribution and how does the removal of fine particles 

affect that number.  This was an additional focus of the reported approach, as 

was the impact of replicate sampling strategies.  

For each analysis run, 10,000 particles were randomly selected for 

Raman analysis by the system.  The selection of particles was conducted by 

equally spaced sampling of particles throughout the dataset; the particles in 

the dataset were sequenced in the order they were imaged from a randomly 

dispersed sample plate thus providing a randomised sampling protocol.   

For the Raman analysis, particles were analysed for 10 s (two 

sequential 5s scans) over a range of 150 – 1850 cm-1.  The measured spectra 

for each particle was compared to a reference library spectra and the 

correlation coefficient used to classify the individual components into chemical 

classes thus enabling particle size distributions of individual component within 

the formulated sample to be extracted.  
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Replicate data sets were generated and combined using a MATLAB 

script and evaluated for their geometric D[v,0.5] values. To aid comparison, 

the values were normalised with respect to the initial theophylline size.    

2.5 Scanning Electron Microscopy 

Samples were sputter coated using a JFC-1300 auto fine coater (Jeol 

Inc, MA, USA) and then imaged using a Neoscope JCM-500 (Jeol Inc, MA, 

USA) using an accelerating current of 10-15 kV.   

2.6 Estimation of Sample Size in Accordance with ISO Guidelines 

 The ISO guidelines [6, 21] are based on the approach reported by 

Masuda and Iinoya [22] in order to determine the required sample size to 

represent a distribution. This method assumes a log-normal distribution and is 

based upon the number weighted distribution of the population.  

 The logarithmic mean diameter for the number distribution of the 

population and the population standard deviation are calculated from 

equations 1 and 2 respectively.  

𝜇0 = ∫ ln 𝐷𝑝𝑓(ln 𝐷𝑝,
∞

−∞
𝜇0, 𝜎2)𝑑 ln 𝐷𝑝 = ln 𝐷[𝑛,0.5]            (1) 

𝜎 = ln 𝜎𝑔 = ln 𝐷[𝑛,0.84] − ln 𝐷[𝑛,0.5]   (2) 

 where 𝜇0 is the logarithmic mean diameter for the arithmetic (number 

weighted) distribution of the population, Dp is the particle diameter, 𝜎 is the 

standard deviation of the population, 𝜎𝑔 is the geometric standard deviation 

and D[n,0.5] and D[n,0.84]  are the diameters below which 50% and 84% of 

the number of particles reside, respectively.   

 In this method the number of particles required to describe a 

distribution can be calculated using the following equation:  
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log 𝑛∗ = −2 log 𝛿 + log 𝜔    (3) 

 where 𝜔 is a parameter described by: 

𝜔 ≡ 𝑢2𝛼2𝜎2(2𝑐2𝜎2 + 1)                                  (4) 

 where n* is the number of particles required in a measurement, δ is 

the relative error, 𝑢 is a parameter dependent upon P, the probability that the 

experimental data may be in the range of relative error, –δ to +δ and c is 

described by: 

𝑐 = (
𝛼

2
) + 𝛽                                                   (5) 

 where α is a constant and β is the basis number; this is equal to 0 for 

a count basis and 3 for a volume basis. 

When determining the Mass Median Diameter (MMD), the parameter ω 

is calculated using equation 6:  

𝜔 = 36𝑢2𝜎2(18𝜎2 + 1)    (6) 

  In this work a relative error value of 0.05 and P value of 0.95 were 

used, with the corresponding value of u being 1.96.  The number of particles 

required was calculated for each method of calculating the parameter ω for 

both batches of theophylline. 

 

2.7 Proposed method background 

A method was developed to randomly sample particles from a 

previously analysed size distribution dataset in order to determine the number 

of particles required to describe the original distribution.  The approach was 

designed remove the requirement to assume a log-normal distribution.  
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In essence, the approach is a modified bootstrap method [23, 24]; such 

methods work on the basis that without any other knowledge about a 

population, the distribution values found in a random sample of size n from the 

population is the best guide to the distribution of the population distribution of 

values in a random sample [25].  Therefore, to assess the impact of re-

sampling of the population, it is sensible to re-sample the sample [26]. The 

proposed approach utilises an adapted, non-replacement bootstrap 

methodology.  

The Morphologi measures multiple size and shape characteristics for 

each particle within a sample, the details of which can be extracted in a 

readable data format for external data analysis.  A MATLAB (Mathworks) 

script was developed to take this data, remove particles below a selected 

circle equivalent (CE) diameter and then, using an in-built function to 

randomly sample a given number of particles from this filtered sub-set, create 

a new sub-set of data.  The randomly sampled data sub-set was then used to 

determine statistical parameters (i.e. D[v,0.5], D[v,0.9] etc.); normalization of 

the results to that of the initial dataset were typically utilized to provide a scale 

independent measure of accuracy / precision.  The random sampling, 

modelling and comparison steps were repeated for a number of iterations to 

assess the expected precision.  

In this report several particle population sizes were tested.  For 

assessments of the impact of CE diameter thresholding the original data set 

for each batch was subjected to the following CE diameter filters: 3, 5, 10 and 

25 μm prior to sub-sampling.  The sub-set results were then compared to that 
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of the equivalently constrained initial dataset.  The sampling step was 

repeated six times for each condition tested. 

 

3. Results 

3.1 Characterisation of theophylline batches 
 

The geometric particle size distributions (PSD) for both batches of 

theophylline (Figure 1, upper plot) demonstrate that the distribution for batch A 

(#MKBV6764V) is narrower, containing a higher relative volume percentage of 

coarse particles, than that of batch B (#MKCC0719V). 

While batch A’s geometric PSD maybe more coarse and uniform than 

that of batch B the underlying arithmetic distribution is very different (Figure 1, 

lower plot).  Batch A was observed to have a skewed/bimodal distribution 

containing a large number of fines in addition to a smaller population of coarse 

particles, whereas the corresponding arithmetic distribution for batch B was 

observed to be more uniform in shape than batch A, containing a larger 

population of particles in the 5-40 µm size range. The observations from the 

image analysis were corroborated by the corresponding SEM images (Figure 

2). 

 Based on this data, one could suggest that whilst batch A has a 

narrower geometric distribution, the high degree of skew observed in the 

underlying arithmetic distribution would suggest that the number of particles 

that would need to be taken in order to adequately sample the coarse 

population would be higher than one may expect based purely on the 

geometric data.  In other words, as the bulk of the volume of the sample is 

contained in a small population of high volume particles but the vast majority 
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of particles in that sample are notably finer, i.e. contain little volume and as 

such will be less impactful with respect to ‘accurately’ describing the volume 

weighted size distribution, the statistical chance of sampling the high volume 

particles is generally low. 

In contrast, the wide geometric distribution for batch B would initially 

suggest a larger sampling requirement than batch A, but the underlying 

arithmetic data suggests that the particles are log-normally distributed which 

could reduce the sampling requirements.   

To investigate this further, the particle dataset was sub-classified into 3 

sub-classes: ‘Fine’ (< 30 µm), ‘Median’ (≥30<µm>60) and ‘Coarse’ (≥ 60 µm).  

This would provide an initial means to better compare the arithmetic and 

geometric nature of the two input API lots.   

Comparison of the arithmetic and geometric percentages within each of 

the pre-defined size classes for the two theophylline batches (Figure 3) 

demonstrates that the fine particles (< 30μm) account for the majority of the 

number of particles measured for both batches (88.4% and 88.8% 

respectively), however, for batch A this arithmetic majority accounts for just 

0.8% of the total sample volume whereas for batch B the volume percentage 

is an order of magnitude higher (8%).  

In the coarse size class (≥ 60 µm), it is observed that 97% of the 

volume is contained in just 6% of the particles arithmetically for batch A 

whereas the same size class constitutes just 76% of the volume for batch B , 

however, this is contained in just 2% of the particles arithmetically.   

The results suggest that for batch A the coarse particle class, 

containing over 95% of the total sample volume, almost singularly describe 
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the geometric particle size distribution whereas for batch B, approximately 

24% of the volume is distributed in the median and fine populations meaning 

sampling of these fractions is more ‘consequential’.  Whilst less volume is 

present in the coarse size class for batch B, the arithmetic sampling frequency 

of this class is much lower than batch A adding further sampling challenges 

for this sample.      

The results clearly demonstrate that an understanding of the inter-

relationship between the arithmetic and geometric distributions is required to 

fully elucidate the sampling requirements.   

 

3.2 Application of ISO Guidance approach 
 

The number of particles, n*, required to estimate the Mass Median 

Diameter (MMD), within a given degree of relative error and confidence limit 

(10% and 95% respectively), were calculated for both theophylline batches 

using the approach outlined in the ISO guidance (Table 1).  

Table 1: Statistical parameters and estimated number of particles 
required to estimate (with a 10% relative error at a 95% confidence limit) the 

MMD for each batch 

Material 

Logarithmic 

Mean, 

μ(0) 

 

Standard 

Deviation, 

σ (σ=ln σg) 

Geometric 

Standard 

Deviation, 

σg 

n* (MMD) 

Batch A  1.88 1.22 3.40 578,000 

Batch B  2.45 0.79 2.20 105,000 

 

Figure 4 compares the theoretical log-normal distribution as described 

by the logarithmic mean and standard deviation (Table 1) with the measured 
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distribution for each of the theophylline batches.  The arithmetic PSD of batch 

B is described better by the log-normal distribution than that of batch A where 

almost half of the theoretical distribution resides below the measurement 

capabilities of the utilized system.   

As a consequence, the calculated number of particles required to 

estimate the MMD (equivalent to D[v,0.5]) is significantly greater for batch A 

than batch B.  

Clearly, whilst the approach does provide a useful guide to population 

requirements, the underlying assumption of a log-normal distribution can 

introduce inaccuracies in determining a representative measure of the number 

of particles required for a particular measurement approach.   

 

3.3 Application of proposed method 

The proposed method removes the assumption of normality 

requirement by repeatedly sub-sampling the original dataset in order to 

provide a sample/method specific handle on the number of particles required 

to accurately describe the original distribution with adequate precision.  Figure 

5 shows the results generated by the method for batches A and B; a 

normalization of the D[v,0.5] against the original dataset was utilized in order 

to enable comparison of materials of varying particle size.   

The results show that as the sample size increases the normalised 

D[v,0.5] value approaches unity, indicating that the sampled sub-dataset 

closely matches that of the original, whilst the variation between the iterations 

decreases demonstrating increasing precision as a consequence of 

decreasing sensitivity of the measured result to sample size.  
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Comparing the results for the two batches, the data for batch A shows 

convergence to unity at a far lower sample size than batch B; the data 

suggests that for batch A an ‘accurate’ result could be achieved with as few as 

1000 particles, however, to ensure greater precision a sample population of 

closer to 10,000 is required.  

For batch B the story is a very different one; the low sample population 

of the coarse particles and the higher volume ratio in the finer classes means 

that the method predicts that much higher particle populations are required to 

achieve an ‘accurate’ result.  The method suggests that a sample population 

of approximately 10,000 is required, whereas the result is prone to more 

variability below particle populations of approximately 50,000. 

The results are closely aligned with the expectations based upon the 

initial characterization; the variation between iterations is much lower for batch 

A as it has a higher arithmetic percentage of coarse particles and lower 

arithmetic percentage of fine and mid-range particles than batch B. There is 

therefore a higher probability of the method sampling these coarse particles, 

which contain the majority of the volume.  Correspondingly, for batch B the 

variability is higher due to the larger number of fine and mid-range particles, 

which also contain a higher proportion of the overall sample volume.   

 

3.4 Application of the method to multi-component analysis 

approaches 

One use of the method has been to support the characterization of 

single components within multi-component samples.  In the approach utilized 

to date, a sub-set of randomly selected particles from the full imaged dataset 
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and chemically classified using Raman spectroscopy.  The analysis takes up 

a lot of instrument time per sample and the particles of interest are ‘diluted’ in 

the formulated matrix; as a consequence, the API particle population sampled 

is generally much smaller than typically utilized for image characterization of 

single components.  The importance of understanding the number of particles 

required to have confidence that the distribution is accurately determined, or 

that any changes are real and not due to sampling, is therefore critical.    

Achieving the required number of particles may require numerous 

replicate runs and thereby significant instrument time.  An alternative means 

of shifting the sampling statistics is to subtract the fine particle classes from 

the dataset; such size classes often constituting very high fraction of the 

particle count but very little in terms of the sample volume.  By applying such 

filters the number of particles within the population required to be sampled to 

describe the size distribution can be significantly reduced, with minimal effect 

on the volume percentage of the mid-range and coarse particle size classes.   

Such an approach does assume that the geometric distribution is of 

interest and that any changes of interest will be occurring to the higher volume 

particles, i.e. in the case of particle attrition, the approach could be utilized to 

track the change in size of the coarse/median particles (which are more prone 

to attrition) rather than the increase in fines as a consequence of the attrition.  

Selection of a suitable threshold for the fines cut-off, and thereby 

ensuring that the selection statistics are shifted such that reduced number of 

particles can be utilized to accurately describe the size distribution whilst 

minimizing the percentage of the overall sample volume removed, is therefore 

critical to understand.   
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To assess the impact of such an approach the method was adapted to 

apply a range of size class thresholds to sample datasets prior to the random 

sampling stage.  For this work, size classes below 3, 5, 10 and 20 µm were 

assessed and compared to the unrestrained (full) dataset.  In all cases, the 

threshold applied to the subsets was also applied to the reference dataset.  

The effect of each size threshold applied on the arithmetic and geometric 

percentages for both batches is detailed in Table 2. 

Table 2 Effect of CE particle size threshold implementation on particle 
number and volume 

The results for the arithmetic and geometric size classifications for both 

API batches (Figure 6) show how the filters affect the sampling statistics.  As 

previously addressed, it would have been predicted that Batch A would be 

less sensitive to the size filtering as 97% of the volume is contained in the 

coarse particles and thus removal of fines particles would not greatly affect 

the volume percentages in the geometric distribution whilst the impact on 

CE Diameter 

Filter Applied 

[μm] 

Batch A Batch B 

Number 

of 

Particles 

Numerical 

Reduction 

[%] 

Volumetric 

Reduction 

[%] 

Number 

of 

Particles 

Numerical 

Reduction 

[%] 

Volumetric 

Reduction 

[%] 

0 

(unconstrained) 
135,000 - - 93,000 - - 

3 110,000 18.8 0.002 89,000 5.0 0.002 

5 82,000 39.3 0.008 79,000 15.4 0.02 

10 48,000 64.4 0.06 53,000 43.1 0.3 

20 24,000 82.0 0.3 23,000 74.9 2.9 
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sampling would improve the expected precision at lower sampling 

populations.   

The results clearly corroborate this demonstrating that the volume 

distribution of the sample is generally unaffected by any of the size class 

filters, however, the shift in the arithmetic frequency for the coarse particle 

class is observed to shift significantly from 6% up to approximately 35% for 

the 20 µm filter.  This would suggest that for this batch, the 20 µm filter could 

be utilized without affecting the ability to describe the geometric size 

distribution.  The particle number data from the method for this batch (Figure 

7) clearly shows that the use of the filters greatly enhances the precision of 

the smaller population sizes suggesting a lower particle population could be 

applied.  

In a similar manner, it could be predicted that batch B would be more 

sensitive to the size filtering as approximately 25% of its volume is contained 

in both the median and fine particle fractions.  As with batch A, application of a 

size threshold was observed to have little impact on the volume percentage of 

each of the size classes, however, there was an approximate fourfold 

increase in the arithmetic frequency of the median and coarse particles when 

a 20 µm size threshold is applied.  Accordingly, it can be seen that the whilst 

the precision does increase, due to the smaller population size, the relative 

precision at any given sample size was less than that which would be 

expected for batch A; even with a 20 µm size threshold the fine particle class 

still accounts for 55% of the number of particles in batch B and the coarse just 

8%; the equivalent arithmetic frequencies for batch A were approximately 35% 

in both classes.  
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The results demonstrate that, for batch B, only the 20 µm size 

threshold has any significant effect on the arithmetic sampling frequency and 

consequently the precision of at any given sample size appears to remain 

unchanged from that of the unconstrained sample.  For this sample it could be 

suggested that a higher threshold value could have been applied.  

 
  The approach enables a means to provide a sample/method 

appropriate estimation of the number of particles required to accurately 

represent the geometric size distribution whilst the variance between the 

iterations gives an indication of the expected precision due to the selected 

sample size.   

The results demonstrate that by removing fine particles from the 

dataset the sample size required to accurately represent the distribution is 

significantly reduced whilst causing little change on the geometric distribution.  

Using this method it can be seen that when a 20 µm is applied the number of 

particles to represent the volume distribution with a degree of accuracy is in 

the range of 5,000 particles for batch A and 10,000 for batch B.   

These values are order of magnitude lower than those calculated using 

the ISO guidance method; with respect to batch A, even without removal of 

fines, this approach would provide justification that 10,000 particles would be 

sufficient to provide statistical confidence of appropriateness and therefore 

having the consequence of vastly reducing the required analysis time when 

compared to the target population of 500,000 that the ISO guidance would 

suggest for the same sample.  In addition it can clearly be seen that less 

particles are required accurately represent batch A than batch B,  contrary to 

the values calculated using the ISO guidance method. 
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3.5 Verification of the method for multi-component analysis 

To experimentally verify the prediction output from the method batch B 

was incorporated into a formulated blend.  The multi-component sample was 

then analysed using the Morphologi G3-ID, an integrated imaged based 

characterization system with Raman spectroscopic capability, to size and 

classify the particles in terms of their chemistry.  Based on the earlier method 

data a 20 µm size threshold was utilized for the analysis.  Eight replicate 

samples were analysed in order to generate a large enough sample 

population; each individual replicate measured approximately 2,000 API 

particles.  

In order to assess the inherent variability due to sampling approach, 

permutated combinations of the replicates were generated using the below 

equation:  

𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = ∑
𝑖!

(𝑛 − 𝑖)! 𝑖!
+ 1

𝑛−1

𝑖=1

 

 

where n is the number of measurements taken and i is the number of 

measurements, thus creating 225 different data sets of varying sample 

population.  

These were normalised with respect of the initial data set (with a 20µm 

filter applied).  Figure 8 shows the results; the dotted lines show the error 

limits due to sample size for a log-normal distribution which were calculated 

using the method described by Yoshida et al.[5] using the logarithmic mean 

and standard deviation of batch B. 
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It can clearly be seen that as the replicates are combined to create 

greater particle populations the variation between similar sized samples is 

reduced, with the variability within the expected limits.  The results show a 

convergence of the normalised D[v,0.5] values at a particle count of 

approximately 13,000, however, the convergence occurs at a normalised 

value offset from unity.   

Although the measured size is observed to converge at an value offset 

from unity, it can be seen that the number of particles at which the precision 

reaches an acceptable level is in good agreement with the earlier prediction of 

the method; the data converges at a sample size of 13,000 which is slightly 

higher than the 10,000 predicted by the method method, but still far lower than 

the 105,000 sample size calculated using the ISO guidance method (albeit for 

a unconstrained dataset).   

Whilst the data validates the reduced particle count requirements, the 

presence of an offset for batch B does raise a question about the ‘accuracy’ of 

combining replicate samples below the particle requirement threshold.  One 

possible reason for the observed offset could be the sampling approach 

utilised to generate the final datasets.  The method suggests that randomly 

selecting approximately 10,000 particles is required to provide statistical 

confidence that the distribution can be recreated, however, how those 

particles are sampled may be just as important as the number itself.   

In the current approach, the final particle population is a merged 

dataset collated from multiple (n was generally between 4 and 6) 

measurements of replicate dispersions, with approximately 2000-3000 API 

particles sampled from each dispersion all of which is then combined.  For 
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batch A, the population size of each sample replicate is greater than the 

requirement for adequate sampling obtained from the method, consequently, 

good reproducibility is observed.  For batch B, however, the approach 

assumes that  whilst the API particle count for each individual replicate is 

below the required particle population sampling threshold suggested by the 

method, the summation the aliquots will provide an adequate sample 

population indicative of the bulk, but is this a correct assumption?   

To test this, six randomly sampled particle populations, each consisting 

of exactly 2000 particles selected from the initial sample datasets for each of 

the batches were extracted; the 20 micron thresholded datasets were utilised 

for the purpose of this test in order to match the conditions for the original 

observations.  In order to obtain an approximation of the expected variability 

for the multiple dispersion approach, these sub-sets were then combined into 

all possible non-repeating permutations, thereby creating five separate 

populations of 10,000 particles.  Additionally, a single randomly selected 

population of 10,000 particles was sampled from the same original datasets, 

representing sampling from a single dispersion; this sampling approach was 

also replicated five times to represent the expected variability.     

The results (Figure 9) provide verification that for batch B, where the 

sampling from each dispersion is below the required particle sampling size 

suggested by the earlier analysis, the sampling approach does have a notable 

impact on the final result.  The data demonstrated that the variability of each 

dispersion is high and combination of the individual sub-samples did result in 

an over-estimation of the measured size, simulating the observations in the 
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real data.  In comparison, utilising a single large sample was observed to 

correct the previously observed offset.   

This anomaly was not observed for batch A as the particle population 

requirement was below the actual sample size for each individual dispersion 

sample thus the results demonstrate minimal variation.  This data further 

strengthens the validity of the method output.   

As a final verification, the above sampling method was applied to the 

blended sample of batch B in order to verify that the overall approach could 

extract a meaningful (equivalent) API particle size distribution from the multi-

component sample. The results (Figure 10) demonstrate that the obtained 

volume weighted cumulative particle size distribution (~10,000 particles) was 

observed to match closely with that of the input API. 

This work demonstrates that whilst a minimum number of particles 

required to be sampled can be calculated, how those particles are sampled 

can also affect the validity of the measurement and must be taken into 

consideration prior to analysis. 

4. Conclusions  

A method has been developed to estimate the number of particles 

required to describe geometric particle size distributions using static image 

based approaches.  The approach removes the need for an assumption of 

log-normality and instead applies a sub-sampling method to the original 

imaged dataset in order to provide an understanding of the impact of sub-

sampling on the ability of accurately reproduce the original distribution.   
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The application was also utilized to assess the impact of size 

thresholding samples on the arithmetic and geometric size distributions as a 

means to reduce particle sampling requirements for the utility in multi-

component particle characterization approaches.  The method was validated 

experimentally and it has been shown that the approximate number particles 

required to recreate the geometric distribution can be predicted.  

The work also demonstrates that whilst a minimum number of particles 

required to be sampled can be calculated, how those particles are sampled 

can also affect the validity of the measurement and must be taken into 

consideration prior to analysis.  
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FIGURES 
 
Figure 1  Volume (top) and number (bottom) weighted particle size distributions of 

two batches of theophylline. Batch A (Dashed line) and Batch B (Solid 

line) 

Figure 2  SEM images taken of batches A (left) and B (right) 

Figure 3 Comparison of the number (top) and volume (bottom) weighted 

frequencies in manually defined size classes  

Figure 4 Arithmetic and fitted log-normal distributions for batch A (left) and batch B 

(right) 

Figure 5 Normalised D[v,0.5] versus particle count for batches A (left) and B (right) 

 Figure 6 Effects of filtering on the number and volume percentage of different size 

classes for each batch 

Figure 7 Normalised D[v,0.5] values versus particle count for batches A (top) and 

B (bottom) with different applied size constraints 

Figure 8 Normalised D[v,0.5] values for combinations of replicates of varying 

particle count  

Figure 9 Comparison of measured particle size using differing sampling 

populations and sampling regimes  

Figure 10 Comparison of volume weighted cumulative particle size distribution plots 

for batch B (Solid line = Input API size (unconstrained); Dot/Dash line = 

Input API size (CE>20 µm constraint); Dashed line = API extracted from 

blended samples) 

  
 

 

 


