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Abstract— Smart power distribution systems require 

adopting smart approaches for the maximization of benefits. 

This paper presents a novel approach for demand side 

management (DSM) in a power distribution system by 

incorporating smart meter data. The approach is aimed at 

savings maximization by minimizing the energy consumption 

cost of electricity consumers. The core of the approach consists 

of data clustering in order to forecast demand for the benefit of 

DSM decisions by incorporating alternate profiles through 

extended k-means algorithm, Taylor series linearization and 

particle swarm optimization. Two cases including integration 

of PV generation are simulated using the Irish data of more 

than 5000 smart meters considering different demand 

flexibility levels in different Scenarios. PV profiles are 

generated using historical weather data. In both cases, the 

results demonstrate that the proposed DSM approach is more 

beneficial than conventional DSM approach. The paper argues 

that inherent non-linearity of raw profiles, is likely to provide 

suboptimal DSM solutions against electricity consumer cost 

savings, however the uniformity and smoothness of reshaped 

alternate profiles are more likely to provide optimal DSM 

solutions, providing electricity consumers a true benefit for 

their participation in the DSM process. 

Keywords— demand side management, load forecasting, load 

profiling, smart meter data 

I. INTRODUCTION  

Demand side management (DSM) is one of the smart 
techniques that enable smart grids to achieve their intended 
functionality [1]. A great deal of benefit in terms of reduction 
of peak of load and reshaping the electricity demand can be 
achieved by managing the energy demand at consumers end 
[2]. Efficient DSM can potentially optimize the utilization of 
existing infrastructure which can help in delaying 
construction of infrastructure for generation, transmission or 
distribution networks [3].  

Underlying principle behind the implementation of DSM 
within the context of smart grids is to improve the efficiency, 
security, reliability and sustainability of the system by 
enabling the renewable energy sources (RES) integration 
into the system while utilizing the maximum capacity of the 
existing infrastructure [3, 4]. Literature shows that the 
primary objective of the DSM is to reduce system peak load 
and operational cost [3]. Due to its effectiveness, load 
shifting [5] is most commonly used and widely applied load 
management technique in current distribution networks [3]. 
This technique shifts the load from peak hours to off-peak 
hours by benefiting from the time independence of the load. 
Implementation of such a technique requires prior 
knowledge about the expected load profile of the consumer 
and sophisticated coordination between the electricity 
consumer and utility.  

DSM can potentially benefit the entire smart grid, but the 
benefits are more apparent at the distribution network level 

[3]. Although the latent demand flexibility at the consumer 
end can be exploited using DSM, for a distribution network 
with thousands of consumers, managing the demand at the 
individual consumer level is a challenging task. 
Alternatively, aggregation of load at the substation level can 
potentially blind the operator from the load variations at a 
lower level. Thus, the demand flexibility at individual 
consumer level should be exploited using smart meter data. 
However, size of smart meter data, high dimensionality and 
heterogeneity of the load profiles [6] poses great 
computational challenges to the application of DSM at the 
electricity consumer level. 

The size and heterogeneity of the profiles can be 
managed using appropriate computational techniques like 
data mining algorithms. Data clustering is one such 
technique which tends to construct clusters with 
characteristics such that the profiles within the same clusters 
are relatively similar and profiles of different clusters are 
relatively different [6]. Many clustering techniques have 
been used in the literature for clustering the smart meter data, 
and k-means clustering algorithm [7] is one of the most 
commonly used clustering algorithm. Different variations of 
the k-means clustering have also been reported in literature 
including fuzzy c-means [8], x-means clustering [9] etc. 
However, authors of [6] are of the view that the number of 
partitions/clusters is governed by the local criterion of 
similarity. This essentially refers to the fact that type of the 
data and different data features such as load patterns, 
determine the number of clusters which can then be used to 
generate representative profiles. 

Clustering load profiles reduces the number of individual 
load profiles, however, the high dimensionality and non-
linear nature of energy consumption patterns undermines 
implementation of linear optimization techniques for DSM. 
At the same time load is stochastic and depends on a 
multitude of external factors. The non-linear interaction of 
the load with these factors adds to the complexity in load 
forecasting which is a pre-requisite for effective 
implementation of DSM [10, 11]. 

This paper presents an innovative DSM approach that can 
be employed in the future smart grids. The approach uses 
smart meter data for extended k-means clustering and 
profiling to develop alternate profiles. The alternate profiles 
transpose the N-dimensional non-linear functions into a 
concatenation of continuous differentiable linear functions. 
These profiles are incorporated to generate load forecast and 
DSM application.  The effect of prosumer has also been 
studied by considering 10% penetration of solar PV 
generation. The contribution of the approach originates from 
the combination of the extended k-mean clustering, alternate 
profiling for use in forecasting, cluster selection index and 
DSM application at cluster level. 



 

II. METHODOLOGY 

The methodology for the DSM approach consists of 
multiple stages including data clustering, alternate load 
profiling [12], load forecasting, cluster selection and load 
shifting by DSM. A special consideration has been given to 
integration of renewable energy source i.e. solar photovoltaic 
(PV) by incorporating the PV capacity of 10% of individual 
clusters. The procedure adopted for all stages is detailed 
below. 

A. Smart meter data clustering 

As the number of consumers increases, the amount of 
data generated by smart meters tends to increase 
exponentially. The size of the data is a major hurdle in 
effective utilization of the smart meter data. The big data of 
smart meters requires machine learning algorithms and data 
mining techniques to extract the hidden knowledge and find 
patterns in the data which can be useful for system studies at 
different hierarchical level of the power system [10]. Data 
clustering is an unsupervised learning technique, which can 
potentially group smart meter consumers with similar 
consumption patterns [10]. There are many clustering 
algorithms which are used for clustering the smart meter 
data, however, k-means clustering is one of the most widely 
used clustering algorithm due to its simplest principle and 
fast convergence speed [13].  

A modified form of k-means clustering, namely extended 
k-means clustering, is proposed in our early research [12], 
which is used in the study of this paper. The detailed steps of 
the algorithm are given in Table I [12]. 

The first stopping criterion of the extended k-means 
clustering algorithm pertains to a minimum number of 
consumers in the cluster and second criterion refers to the 
reduction in intra-cluster pattern similarity. The extended k-
means clustering produces distinctive clusters with high 
intra-cluster pattern similarity. The resultant clusters are then 
used for the extraction of load profiles for development of 
alternate profiles. 

B. Alternate load profiling 

The final clusters are used to extract a representative 
profile for each cluster. The resulting raw profiles are often 
considered as the final representative profiles for the cluster. 
However, to develop the alternate profiles, the raw profiles 
are smoothed and then systematically linearized around the 
energy threshold points using Taylor series linearization 
process [12]. The alternate linearized profiles are optimized 
to enhance accuracy of representation by incorporating 
weighting factors for each individual pattern (linear pattern) 
in the profiles. These weighting factors are determined using 
particle swarm optimization with an objective function to 
minimize the difference of energy, between raw and alternate 
profiles, consumed during the interval of each pattern. Thus, 
N-dimensional raw profiles are linearized into concatenation 
of linear functions. The detailed process of linearization is 
given in Fig. 1 [12]. 

C. Load forecasting 

The smart meter data provides an opportunity to forecast 
the load at different hierarchical system levels, however, the 
smaller the system, the more the uncertainty which is 
challenging. This has a direct impact on forecasting and 

alternate profiles can benefit the forecasting process by 
increasing the forecast accuracy and processing speed. 

Artificial neural networks (ANNs) are commonly used in 
modern research for load forecasting [14]. The neural 
network architecture is set as feed-forward neural network 
with 4 layers and each consisting of 6 neurons. The 
prediction variables used in this study include temperature as 
the weather variable and hour of the day as calendar variable. 
Finally, the load variables included 24 hours lagged load, 
load at same hour from the previous week and average load 

Extract averaged profiles 

Apply curve smoothing 

Apply Taylor series linearization at energy 

threshold points 

Apply particle swarm optimization on data 

between the consecutive two threshold points 

Stop 

 

Incorporate weightage factors  

Select last optimized and next threshold  
  

Linearly interpolate data between the two 

threshold points 
  

No 

Threshold 

point is last 

data point? 
 

Yes 

Fig. 1. Alternate profile generation process 

Cluster smart meter data using extended k-

means clustering 

TABLE I 
ALGORITHM : EXTENDED K-MEANS CLUSTERING 

1: Let k=2. Initialize the k-means clustering with 2 clusters  
2: Check stopping criterion 1 for cluster of child node 1  
3: If stopping criterion 1 is true, save the cluster as output 

cluster and break the cluster out of loop  
4: If false, check stopping criterion 2  
5: If stopping criterion 2 is true, save the node of cluster which 

resulted in cluster satisfying criterion 2 as output cluster and 

break the cluster out of loop  
6: If false, go to step 7  
7: Repeat steps 2-5 on remaining cluster child node clusters  
8: If stopping criteria 1 & 2 are false, apply k-means clustering 

with k=2 on all the child nodes/clusters  
    where the stopping criteria 1 & 2 are false  
9: Repeat the steps 2-5 on all nodes of child clusters  
10: Repeat the steps 2-8 at each stage until criteria 1 & 2 are 

true for all clusters  
11: Save all the output clusters as final clusters   
 



of previous 24 hours. The same architecture and variable 
were used to forecast for both raw and alternate profiles. 
Training data used for both raw and alternate profiles is half 
hourly energy consumption records of 504 days and the 
forecast was generated for the next 168 hours.  

An important aspect of the forecast accuracy using a 
neural network is determining the correct learning rate. The 
convergence of solution is highly dependent on learning rate 
[15] and this necessitates a suitable learning rate for good 
forecast results. The best learning rate for raw and alternate 
profile may vary as the data functions vary significantly from 
each other. To address this issue, a dynamic algorithm is 
created which starts training the network for each raw and 
alternate profile with initial learning rate of 0.01 and 
increment of 0.01 up till 1. The algorithm selects the learning 
rate which gives minimum forecasting error. The dynamic 
selection of learning rate enables higher forecasting accuracy 
as each profile has optimum accuracy at different learning 
rate. Thus, neural network parameters are fine tuned for each 
profile to generate the best results. 

D. Demand side management (DSM) 

DSM most commonly serves the purposes of peak 
clipping, valley filling, load shifting, load growth, load 
conservation or to make the load shape flexible [1]. As 
discussed in the introduction, load shifting is the most 
commonly used DSM technique, particularly with 
development of smart loads, the deferrable loads can 
automatically respond to the utility signals. Therefore, this 
study incorporated load shifting with different levels of 
demand flexibility ranging from 10% to 90%. This helps in 
quantifying the impact of consumer participation on the 
objective function. A comparison has been made between 
cost saving by DSM application for raw forecasted profile 
and alternate forecasted profile both with and without PV. 

An important aspect in DSM application at distribution 
system level using the smart meter data is selection of the 
appropriate consumers. The appositeness of the consumers is 
decided by the cluster load profiles and it should be such that 
causes minimum disruption to the consumers and avoids 
customer fatigue. 

Thus, the objective of cluster selection should enable 
DSM to achieve maximum cost savings with minimum 
consumer disruption. To achieve this, an algorithm (Fig. 2)  
is developed which selects the clusters based on an index 
considering per consumer energy density in each cluster 
during the peak load hours in combination with the forecast 
error. The clusters with the highest index are selected first for 
DSM. Before selection of the clusters, total system load is 
quantified using the summation of all cluster loads. The peak 
hours are identified from the system load curve. In this study, 
the periods with load beyond 85% of the maximum system 
load are considered peak hours. The peak is result of 
combined load by all clusters as given in (1);  

𝐸𝑃𝑇 = ∑ 𝐸𝑃𝐶𝑖

𝑘

𝑖=1

 (1) 

Where, EPT represents the total energy consumed by the 
system during peak hours and EPCi represents the energy 
consumed by cluster ‘i’ during peak hours. Average energy 
consumed by each member of cluster ‘k’ quantified as in (2); 

𝐸𝐶𝑘 = 𝐸𝑃𝐶𝑘/𝑁𝑘 (2) 

ECk represents the average energy consumed by members 
of cluster ‘k’ during peak hours. Nk is number of consumer in 
cluster ‘k’. Finally, the selection index ‘S’ is calculated using 
(3). 

𝑆 = 𝐸𝐶𝑘 + 𝐸𝐶𝑘 ∗ (𝑀𝐴𝑃𝐸/100) (3) 

The cluster selection index ‘S’ incorporates the impact of 
the mean absolute percentage error (MAPE) by adding the 
energy difference due to the MAPE. The MAPE is taken 
from the available historic forecast error of each cluster. The 
index S helps in selection of clusters with low number of 
consumers and in turn provides the utility an opportunity to 
identify the target group of consumers for DSM 
participation. 

Clusters are selected using the selection index starting 
with the single cluster which carries the highest value of ‘S’. 
The selected cluster is evaluated for the percentage of the 
system energy. If the energy of the cluster is less than 20% of 
the system energy, cluster with next high value of the index 

Generate the total system load curve by adding all ‘i’ 

cluster forecast 

Identify the peak hours of system load (load above 85% 

of maximum load) 

Quantify average energy consumed by each cluster 

Quantify the total energy consumed by consumers in 

selected clusters 

Yes 

No 

Start smart DSM Algorithm 

Apply load shifting DSM on each of ‘n’ selected clusters 

individually considering different level of demand 

flexibility 

No 

Energy of selected 
clusters>20% of 

total system energy? 

i=n? 

Yes 

Terminate algorithm 

Add cluster with next highest index 

Fig. 2. Smart DSM algorithm  

Calculate the index for cluster selection 

Select the cluster with highest index 



is added to selection. At each point, the selection is checked 
to be a minimum of 20% of the system load so that when 
applying the demand flexibility, a minimum of two percent 
impact on the system load can be achieved i.e. with 10% 
demand flexibility. Once the selection is finalized, the 
selected clusters are utilized for DSM. 

The objective of DSM application in this study is to 
acquire maximum saving for the consumer by minimizing 
the energy consumption during peak hours when the 
electricity prices are higher as compared to off-peak hours. 
The DSM optimization problem is solved using linear 
programming. The optimization problem can be 
mathematically formulated as in (4); 

minimize ∑(𝐶𝑖)

𝑘

𝑖=1

 (4) 

Where, Ci is the cost of energy consumed at time i and is 
defined in (5); 

𝐶𝑖 = 𝐿𝑖 ∗ 𝑃𝑖  (5) 

Li is forecasted load at time i given in kWh and Pi gives 
the price of energy at the time i and is given in pence/kWh. 
To ensure that the energy before and after optimization 
remains the same, an equality constraint is introduced (6); 

∑ 𝐸𝑅𝑖

𝑘

𝑖=1

= ∑ 𝐸𝐷𝑖

𝑘

𝑖=1

 (6) 

Where ERi represents the real energy consumed and EDi 
gives energy after the demand side energy management. Two 
Scenarios are considered for the upper bound of the 
optimization variable. In the first Scenario, the upper bound 
is set to equal peak value of the cluster, whereas in the 
second case peak shaving of 5% is considered. 

Impact of solar PV integration at cluster level has also 
been analysed by incorporating 10% PV penetration in each 
cluster. However, this is considered as a data pre-processing 
element by using simulated PV profiles to reduce the system 
load as per PV generation during the day.  

III. NUMERICAL APPLICATION AND RESULTS 

For the case study, smart meter data for more than 5000 
homes and businesses from Ireland [16] with 30 minutes data 
resolution is used for clustering. The clusters are used to 
extract the alternate profiles which are used to forecast load 
for the next one week (168 hours) in half hour intervals. Fig. 
3 shows raw and alternate profiles of a cluster to demonstrate 
the difference between the two profiles.  

The linearization process is applied to both PV and load 

profiles to create alternate load and generation profiles. For 
incorporation of the PV profile into the load profile, the 
simulated PV profile is normalized between 0 and 1 and 
multiplied with 10% of the average cluster load before 
subtracting it from the cluster load. These profiles are used 
for short term load forecast. 

A comparison of forecast accuracy for raw and alternate 
profiles with and without PV integration is carried out. It can 
be clearly seen from Fig. 4 that the alternate profiles 
demonstrate better forecasting accuracy than the raw 
profiles. The MAPE with and without PV does not vary 
significantly in majority of the clusters because the overall 
reduction due to PV in the entire distribution system load is 
nearly 2% of the total distribution system energy during the 
day. An increase in the PV capacity can potentially have a 
higher impact on the forecast accuracy. 

Two DSM cases are simulated with each case 
considering two DSM Scenarios for raw and alternate 
profiles. The price of electricity to determine the cost of total 
energy consumed is considered dynamic with Time-of-Use 
Tariff i.e. higher rates for peak hours and lowers for off peak 
hours. The clusters selected for DSM application are 10 
clusters having 5% consumers and 28% load and 15 clusters 
having 10% population and 32% load. High number of 
cluster selection was used to produce distinct solutions to 
differentiate between the two approaches i.e. DSM using raw 
profiles and alternate profiles. The cases are briefly discussed 
below. 

A. CASE I 

In the first case, the smart meter data is considered for 
load forecasting and then DSM application. PV generation is 
not considered. Two different Scenarios are simulated for 
case I and both Scenario compare the results of DSM 
application using raw and alternate profiles. The Scenarios 
and results are given in the following; 

1. Scenario I 

In the first Scenario, the objective function is set to 
minimize the cost of energy consumption to maximize the 

 
(a) MAPE for different clusters without PV integration 

 
(b) MAPE for different clusters with 10% PV generation 

Fig. 4. Forecast error for clusters with and without PV for raw and alternate profiles (X-axis show cluster and Y-axis show MAPE) 
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Fig. 3. Raw and Alternate Profile 



savings of electricity consumers. The constraints include an 
equality constraint to ensure that the total energy 
consumption over the day should remain constant. The upper 
limit of the objective profile is set as the maximum value of 
load in the cluster profile. This limits the maximum value of 
load and limits the load to the existing peak. 

Scenario I is simulated using the raw and alternate 
forecasted profiles to compare their efficacy. Fig. 5a shows 
cost saving for raw and alternate profiles in Scenario I. It is 
clear from the Fig. 5a that except 90% demand flexibility, 
the alternate profiles propose higher cost saving. Impact of 
level of selected clusters load on the DSM for raw and 
alternate profiles is proportional and overall dominance of 
alternate profiles stays unchanged. 

Despite optimum cost saving for consumers, the utility 
can face another peak which can be higher than previous 
peaks, however this can be handled by coordination between 
the different clusters or by choosing the right level of 
demand flexibility as secondary load control.  

2. Scenario II 

Scenario II considers load shifting with peak shaving of 
5%. As the upper bound is reduced to 95%, the freedom for 
the optimization variable to find global optima reduces thus 
overall cost savings using peak shaving reduces as compared 
to Scenario I. The alternate profiles once again provide 
higher cost saving solution as compared to the raw profiles. 
Fig. 5b shows the cost saving for raw and alternate profile 
for Scenario II. 

B. CASE II 

Case II simulates the DSM application on the load 
profiles which have already incorporated PV generation of 
10%. Raw profiles incorporated raw PV profiles while the 
alternate profiles were incorporated with alternate PV 
profiles (linearized generation profiles). Two Scenarios (as in 
Case I) are considered to simulate DSM for PV integrated 
loads. The same clusters are selected by the cluster selection 
algorithm as in Case 1.The selected clusters are used for 

DSM application and two Scenarios considered for DSM are 
described below; 

1. Scenario I 

Scenario I in case II considers similar conditions as in 
Scenario I of case I. As described above, all clusters are 
already incorporated with PV generation. The results given 
in Fig. 6a show that there is a significant improvement in the 
cost saving for alternate profiles and only slight 
improvement in savings with raw profiles. The intermittency 
of the PV increases the non-linearity of the raw profile and 
consequently the solution provided by linear programming is 
not optimum as compared to the alternate profiles where the 
profiles were more convex resulting in a better solution. 

2. Scenario II 

Scenario II considers the raw and alternate profiles with 
10% PV penetration for load shifting with 5% peak shaving. 
From Fig. 6b it is evident that for Scenario II, the cost 
savings face a slight reduction as compared to case I. 
However, interestingly in this Scenario, even 10 clusters of 
raw profiles showed higher savings as compared to the 15 
raw clusters DSM. This relates to non-linearity of the higher 
level of load for raw profiles as the intermittent PV profiles 
were non-linear and they added to the non-linearity of the 
existing profile. Whereas, the alternate generation (PV) 
profiles were incorporated in alternate profiles thus the 
convexity of the alternate profiles was maintained. 

A comparative analysis of both cases suggests that 
alternate profiling method produces better DSM optimization 
solutions with higher cost savings as compared to raw 
profiling method. The savings increase with increase in the 
load for DSM as the flexibility to find the optimum solution 
increases.  

An overview of the results for both cases shows that 
higher demand flexibility results in higher cost savings. 
Although the second Scenario of peak shaving tries to 
control occurrence of second peak, the combination of 
different cluster loads can potentially create another peak. 

 
(a) Scenario I 

 
(b) Scenario II 

  Fig. 5.   Case I (Without PV): Cost saving and peak reduction by load shifting (Alternate profile (AP),Raw profile (RP)) 
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(a) Scenario I 

 
(b) Scenario II 

Fig. 6. Case II (with PV): Cost saving and peak reduction by load shifting (Alternate profile (AP),Raw profile (RP)) 
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This can be controlled by using different levels of demand 
flexibility of the clusters. It has been observed that the peak 
of load starts to rise after 25% demand flexibility. Therefore, 
the threshold of demand flexibility should be 25% to ensure 
a smoother system profile with reduced risk of rebound. The 
results also show that the alternate profiles provide relatively 
better DSM solution at lower demand flexibility as compared 
to the traditional DSM approach which uses raw profiles. 
This is primarily due to the inherent non-linearity of the raw 
cluster profiles leading to sub optimal solutions. The non-
linearity leads to highly non-convex behaviour of the raw 
profiles and linear optimization techniques do not necessarily 
provide the optimal solutions for such profiles. 

It is important to see the impact of DSM optimization at 
individual cluster level to the reshaped system profile. The 
reshaped profile in Fig. 7  (scenario I, Case II) signifies the 
benefit of linearity of alternate profiles. The system profiles 
shown in the Fig. 7 demonstrate relatively smoother and 
uniform reshaped system profile for alternate profile as 
compared to the raw profile. Due to the limitation of demand 
flexibility, the overall growth or reduction in the cluster load 
for the cases of raw profiles tends to be non-linear and 
consequently non-linear reshaped profiles. The alternate 
profiles produce linear boundaries for optimization problem 
with linear constraints resulting in optimal solution. The 
solution provided using raw cluster profiles does not provide 
a uniform load growth and reduction of load which is 
eminent in the alternate profiles.     

With the evolution of new technologies, modelling 
energy consumption at every node is highly intricate and 
challenging process. This is particularly eminent in 
applications where the non-linear functions are required to be 
processed using linear techniques. The paper has presented a 
smart approach for DSM where load profiles of smart meter 
consumers are clustered and the N-dimensional non-linear 
data functions are systematically linearized to concatenation 
of linear profiles which are used for DSM optimization. The 
convexity of data functions has been tested for DSM 
optimization and results have validated the applicability and 
effectiveness of the approach with case studies.  

IV. CONCLUSION 

Demand side management has the potential to provide 
benefits at the power distribution level. An innovative 
approach for DSM application at the power distribution 
system level is proposed in this paper by incorporating smart 
meter data. The approach used extended k-mean clustering 
and linear programming for DSM application by 
incorporating alternate profiles to enhance the convexity of 
non-linear profiles.  

The results using the proposed approach show significant 
increase in monetary benefits at lower demand flexibility 
levels as compared to the conventional approach. The paper 
also argues that proposed DSM approach provides true 
benefits for the electricity consumers for their participation 
in the DSM process.  

ACKNOWLEDGMENT  

 This work is supported by the University of Birmingham, United 
Kingdom (U.K.) and Mirpur University of Science and Technology 
(MUST), Mirpur (AJK) Pakistan. 

REFERENCES 

[1] P. Palensky and D. Dietrich, "Demand Side Management: Demand 

Response, Intelligent Energy Systems, and Smart Loads," IEEE 

Transactions on Industrial Informatics, vol. 7, pp. 381-388, 2011. 
[2] D. S. Kirschen, "Demand-side view of electricity markets," IEEE 

Transactions on Power Systems, vol. 18, pp. 520-527, 2003. 

[3] T. Logenthiran, D. Srinivasan, and T. Z. Shun, "Demand side 
management in smart grid using heuristic optimization," IEEE 

transactions on smart grid, vol. 3, pp. 1244-1252, 2012. 

[4] G. Strbac, "Demand side management: Benefits and challenges," 
Energy Policy, vol. 36, pp. 4419-4426, 2008/12/01/ 2008. 

[5] C. W. Gellings and J. H. Chamberlin, "Demand-side management: 

concepts and methods," 1987. 
[6] B. Pitt and D. Kitschen, "Application of data mining techniques to 

load profiling," in Power Industry Computer Applications, 1999. 

PICA'99. Proceedings of the 21st 1999 IEEE International 
Conference, 1999, pp. 131-136. 

[7] J. MacQueen, "Some methods for classification and analysis of 

multivariate observations," in Proceedings of the fifth Berkeley 
symposium on mathematical statistics and probability, 1967, pp. 281-

297. 

[8] J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in 
detecting compact well-separated clusters," 1973. 

[9] D. Pelleg and A. W. Moore, "X-means: Extending k-means with 

efficient estimation of the number of clusters," in Icml, 2000, pp. 
727-734. 

[10] Z. A. Khan and D. Jayaweera, "Planning and Operational Challenges 
in a Smart Grid," in Smart Power Systems and Renewable Energy 

System Integration, ed: Springer, 2016, pp. 153-177. 

[11] A. Ghasemi, H. Shayeghi, M. Moradzadeh, and M. Nooshyar, "A 
novel hybrid algorithm for electricity price and load forecasting in 

smart grids with demand-side management," Applied Energy, vol. 

177, pp. 40-59, 2016/09/01/ 2016. 
[12] Z. A. Khan, D. Jayaweera, and M. S. Alvarez-Alvarado, "A novel 

approach for load profiling in smart power grids using smart meter 

data," Electric Power Systems Research, vol. 165, pp. 191-198, 2018. 

[13] X. Rui and D. Wunsch, "Survey of clustering algorithms," IEEE 

Transactions on Neural Networks, vol. 16, pp. 645-678, 2005. 

[14] Z. A. Khan and D. Jayaweera, "Approach for forecasting smart 
customer demand with significant energy demand variability," in 

2018 1st International Conference on Power, Energy and Smart Grid 

(ICPESG), 2018, pp. 1-5. 
[15] K. L. Ho, Y. Hsu, and C. Yang, "Short term load forecasting using a 

multilayer neural network with an adaptive learning algorithm," IEEE 

Transactions on Power Systems, vol. 7, pp. 141-149, 1992. 
[16] Available: ISSDA, CER Smart Meter Customer Behaviour Trials 

Data, accessed via the Irish Social Science Data Archive,  CER 

Electricity, Accessed via  www.ucd.ie/issda (revised March2012) 

 
(a) Raw system profile DSM (b) Alternate system profile DSM 

Fig. 7. System profiles before and after DSM application (15% demand flexibility) 
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