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Single cell RNA-seq makes possible the investigation of variability in gene expression among cells, and dependence of 
variation on cell type. Statistical inference methods for such analyses must be scalable, and ideally interpretable. We present 
an approach based on a modification of a recently published highly scalable variational autoencoder framework that provides 
interpretability without sacrificing much accuracy. We demonstrate that our approach enables identification of gene programs 
in massive datasets. Our strategy, namely the learning of factor models with the auto-encoding variational Bayes framework, is 
not domain specific and may be of interest for other applications.

Introduction
The study of the regulatory architecture 

of cells has revealed numerous examples 
of co-regulation of transcription of large 
numbers of genes (Jang et al., 2017; Kondo 
et al., 2018), and this has been used to link 
the organization of cells to their distinct 
functions in response to developmental 
or external stimuli (Romero et al., 2012). 
While studies of cells in bulk have led to 

interesting population-level insights about 
the relationships between genes (Thompson 
et al., 2015), the study of individual cells 
via single-cell RNA-seq has led to questions 
about how the relationships between genes 
depend on cell type (Lindgren et al., 2017).

Principal component analysis (PCA) is 
a popular linear method for dimensionality 
reduction in single-cell RNA-seq (Rostom et 

al., 2017; Andrews and Hemberg, 2017). As a 
result of its efficiency, PCA has been used for 
exploratory data analysis to quickly visualize 
the structure of high-dimensional data in 
two or three dimensions. PCA also provides 
a linear model of the data; a key feature of 
the method that can be used for prediction 
(Tipping and Bishop, 1999). In the case of 
single-cell RNA-seq, data points correspond 
to cells and the coordinates of each cell 
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Figure 1) Linearly decoded variational autoencoder model.
(a) A sketch of the general architecture of scVI autoencoders with two alternative 
representation models. (b) Comparison of reconstruction error during inference 
on Cao data with VAE and LDVAE. (c) Results from fitting a 10-dimensional 
LDVAE. (left column): Density plots of the 2 million cells in representation space. 
(right column): Scatter plots of gene loadings corresponding to the representation 
coordinates. Top genes indicated as vectors with names.
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represent the gene expression levels for each 
gene in the transcriptome. Thus, PCA can be 
used to study structured variation between 
cells by revealing differences along axes of 
greatest variation. In PCA, linear weight 
parameters (loadings) are used to predict 
gene expression in each cell, conditional 
on the latent variables (coordinates) per 
cell. The loadings corresponding  to the 
principal component axes can be interpreted 
as “meta-genes”: sets of genes which tend 
to be expressed together (Brunet et al., 
2004; Raychaudhuri et al., 2000). Thus, 
principal component analysis of gene 
expression provides a formal mathematical 
framework for studying the biological idea 
of “gene programs” (Stuart et al., 2003) 
by simultaneously explaining structured 
variation between cells and between genes 
(Islam et al., 2011; Guo et al., 2010).

While PCA is easy to use and is often 
applied to single-cell RNA-seq data, 
the method has some drawbacks. PCA 
models data as arising from a continuous 
multivariate Gaussian distribution, and thus 
optimizes a Gaussian likelihood (Pearson, 
1901; Tipping and Bishop, 1999). This model 
assumption is at odds with the count data 
measured in single cell RNA-seq (Svensson; 
William Townes et al., 2019), and leads to 
interpretation problems (Hicks et al., 2018). 
To address this issue, a number of methods 
define factor methods tailored to single 
cell transcriptomics data (Pierson and Yau, 
2015; Zhu et al., 2017; Durif et al., 2019). For 
example ZINB-WaVE defines a linear factor 
model where gene weights are parameters, 
cell factor values are latent variables, and data 
arises from a zero-inflated negative binomial 
distribution (Risso et al., 2018). However, 
as single cell transcriptomics datasets have 
grown in size to hundreds of thousands 
of observations (Svensson et al., 2018), 
efficiency and scalability considerations 
have become paramount and inference 
with parametric models can be intractable. 
To address scalability requirements, new 
methods based on variational autoencoders 

have been developed; these leverage the 
large amounts of available data to learn 
nonlinear maps, and crucially scale well 
thanks to efficient algorithms for inference 
that leverage the structure of autoencoders 
(Lopez et al., 2018; Eraslan et al., 2019).

Autoencoders consists of a pair of 
functions: a representation function and a 
reconstruction function, which are typically 
parameterized as neural networks (Hinton 
and Zemel, 1994). Autoencoders can be 
seen as a nonlinear generalization of PCA, 
which can be viewed of consisting of two 
projections (Plaut, 2018). By optimizing 
the pair of neural networks, efficient low-
dimensional representations of data can 
be identified. A variational autoencoder 
(VAE) uses a similar strategy but with latent 
variable models (Kingma and Welling, 2013). 
Each datapoint is represented by a set of 
latent variables, which can be decoded by 
neural networks to produce parameters for a 
probability distribution, forming a generative 
model. To infer the latent variable values 
(the representation), a neural network is 
used to find per-datapoint parameters for a 
probability distribution in the representation 
space. This defines an “inference model” 
which attempts to approximate the posterior 
distribution of the latent variables given the 
observed data with a variational distribution 
(Marino et al., 2018).

Inference using VAEs scales to arbitrarily 
large data since mini-batches of data can be 
used to train the parameters for both the 
inference model and the decoder function 
(Kingma and Welling, 2013). We show 
that using a flexible non-linear inference 
model along with a linear reconstruction 
function makes it possible to benefit from 
the efficiency of VAEs, while retaining the 
interpretability provided by factor models. 
Specifically, by adapting the method of 
scVI (Lopez et al., 2018), we demonstrate 
a scalable approach to learning a latent 
representation of single-cell RNA-seq data, 
that identifies the relationship between cell 

(a) (b)

Figure 2) Inference speed for LDVAE. 
(a) Runtimes to reach 10 epochs with and without GPU for increasing numbers of cells. (b) Comparison of 
reconstruction error per epoch during inference for datasets with different numbers of cells.

representation coordinates and gene weights 
via a factor model. Our approach results in 
a tradeoff: whereas typically autoencoder 
models are designed with the same network 
topology in the inference functions and the 
reconstruction functions, what we propose 
is a less flexible reconstruction function that 
suffers an increase in reconstruction error, yet 
provides an interpretable link between gene 
programs and cellular molecular phenotypes 
(Figure 1a).

The generative model in scVI, when data 
is from a single batch and zero-inflation is 
deactivated, is 

In this model  is a random variable 
for the exposure or count depth of a cell, 
with priors  and . The random variable 

 provides a D-dimensional representation 
of cells. The parameter  represents the 
overdispersion of a gene. Our proposial is 
to replace the neural network  with a 
linear function: 

This way the expression level    of a 
gene g in cell n  is affected by the weights 

depending on the coordinate  of a 
cell n, giving a direct link between cell 
representation and gene expression.

Results
To investigate the potential for 

interpretability in the VAE framework, we 
implemented a linearly decoded variational 
autoencoder (LDVAE) in scVI. The model 
was applied to a recent dataset of single-
cell RNA-sequencing from a large number 
of developing mouse embryos in different 
stages of development (Cao et al., 2019). The 
dataset consists of 2 million cells from 61 
embryos in total, and is to our knowledge 
the largest scRNA-seq study published to 
date. After running the inference for three 
epochs, we confirmed that the LDVAE 
does indeed have a larger reconstruction 
error than the standard VAE (Figure 1b). 
However, the axes of representation learned 
by the LDVAE model can be directly related 
to axes of co-expressed genes (Figure 1c). For 
example, variation along the  axis is related 
to simultaneous variation in expression of 
Tbx15 and Runx2, two genes important for 
cranial skeleton development (Choi et al., 
2005; Singh et al., 2005). As another example 
variation along the  axis is related to co-
variation in alpha-fetoprotein (Afp) and 
albumin (Alb) which are related to liver 
development (Nayak and Mital, 1977).
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To investigate the scalability, cells were subsampled to different 
numbers before fitting LDVAE. We found that inference runs in 
linear time, with 5 seconds per 1,000 cells to reach 10 epochs using a 
CPU (Intel Core i7-7800X). Using a consumer grade GPU (NVIDIA 
GeForce RTX 2070), inference only requires 2 seconds per 1,000 cells 
to reach 10 epochs, with a total time of less than an hour for the full 
dataset (Figure 2a). Investigating the reconstruction error curves per 
epoch, the models had converged after 2-3 epochs for datasets larger 
than 100,000 cells (Figure 2b). Determining a minimal number of 
epochs is a difficult general problem, but our results suggest a rule 
of thumb of “1 million divided by the number of cells in the dataset” 
epochs for first pass analysis.

Jupyter notebooks to produce the results are available at https://
github.com/pachterlab/SP_2019 as well as  CaltechDATA at http://
dx.doi.org/10.22002/D1.1266. For convenience, the embryo data from 
Cao et al. are also available in an H5AD object on the CaltechDATA 
accession and on Google Cloud Storage at gs://h5ad/2019-02-Cao-
et-al-Nature/cao_atlas.h5ad. A general tutorial on how to use the 
LDVAE model is available in the scVI GitHub repository at https://
github.com/YosefLab/scVI/blob/master/tests/notebooks/linear_
decoder.ipynb.

Discussion
Our results show that interpretable non-Gaussian factor models can 

be linked to variational autoencoders to enable interpretable analysis 
of data at massive scale. This is useful for the investigation of gene 
co-expression in large scRNA-seq datasets, and the approach we have 
outlined should be applicable in other settings where interpretability 
is paramount. The development of our approach utilized a well-
documented implementation of VAEs for single-cell RNA-seq in 
the scVI package (Lopez et al., 2018), and the development of the 
LDVAE model was greatly facilitated by the ability to build on the 
existing codebase of scVI; the methods we have described have been 
merged into the scVI code base. We believe that our work provides 
a useful example of the value of building on existing frameworks in 
bioinformatics, and specifically, in the case of single-cell RNA-seq, 
we believe that other extensions of the scVI VAE models could be 
similarly fruitful to explore.
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