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ABSTRACT

Arrays of Si microwires doped n-type and terminated by methyl groups have been used, 

with or without deposition of a Pt electrocatalyst, to photoelectrochemically oxidize I�

(aq) to I3
�(aq) in 7.6 M HI(aq).  Under conditions of iodide oxidation, methyl-terminated 

n-Si microwire arrays exhibited stable short-circuit photocurrents over a timescale of 

days, albeit with low energy-conversion efficiencies.  In contrast, electrochemical 

deposition of Pt onto methyl-terminated n-Si microwire arrays consistently yielded 

energy-conversion efficiencies of ~2% for iodide oxidation, with an open-circuit 

photovoltage of ~400 mV and a short-circuit photocurrent density of ~10 mA cm-2 under 

100 mW cm-2 of simulated Air Mass 1.5G illumination.  Platinized electrodes were stable 

for > 200 h of continuous operation, with no discernable loss of Si or Pt.  Pt deposited 

using electron-beam evaporation also resulted in stable photoanodic operation of the 

methyl-terminated n-Si microwire arrays, but yielded substantially lower photovoltages 

than when Pt was deposited electrochemically.
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and product egress to/from the internal area of the morphologically structured light 

absorber, and provides a minimal path length for ionic conduction to and through a 

supporting membrane.25

Renewable energy storage in H2 from water or direct CO2 reduction from the 

atmosphere represent particularly interesting chemical storage options because they form 

simple high-energy-dense chemicals and/or are carbon neutral processes.  However, both 

of these reactions still present major challenges,26 in particular because both reactions 

utilize electrons and protons from water via its oxidation to O2 by a complex four-

electron, four-proton process to store > 1.0 V of potential.  This kinetically challenging 

process only has an ~40% roundtrip efficiency for H2 energy storage via water 

electrolysis and use in a polymer�electrolyte�membrane fuel cell.27,28 Moreover, the band 

gap of Si is 1.12 eV, and even state-of-the-art Si typically exhibits photovoltages at the 

maximum power point of only ~0.6 V under 1 Sun of illumination.29  Hence, Si by itself, 

either as an individual light absorber or in a tandem structure in which two Si light 

absorbers are arranged optically and electrically in series, cannot provide the 

photovoltage necessary to drive water electrolysis or sustainable CO2 reduction.30  Si is 

also unstable toward anodic oxidation in aqueous electrolytes, and thus benefits from 

kinetic stabilization strategies such as use of one-electron-transfer redox species in non-

aqueous solvents or protective coatings.31�34

Identification of simple alternative electron sources to water are timely research 

endeavors.  Halides in particular allow for ~90% roundtrip efficiency for H2 energy 

storage and use.28,35  Therefore, photoelectrolysis of HI(aq) to produce H2(g) and I3
�(aq) 

is one potential approach for solar energy storage using a Si light-absorber.  The 
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4

minimum voltage needed for the electrolysis reaction is only ~0.55 V under standard-

state conditions36 and is ~0.25 V in highly concentrated HI(aq),37 both of which can be 

provided in principle by single, non-tandem Si MW arrays.38�40  A demonstration of the 

utility of Si MW arrays for the unassisted electrolysis of HI(aq) would also provide a step 

along a pathway toward solar fuel production.  Such a system, however, requires a 

method to suppress the anodic oxidation and passivation of Si in aqueous solutions.  

Unassisted photoelectrolysis of HI(aq) has been demonstrated using membrane-

embedded p-type Si MW arrays in which the Si MWs served as the photocathode and 

iodide was oxidized at a back metal contact to the MWs.41  Moreover, planar single-

crystalline n-Si(111) photoanodes have been shown to be stable when in contact with 

Fe(CN)6
3-/4-(aq) solutions for hours of continuous illumination, if the Si surface is 

terminated with methyl groups using a two-step chlorination/alkylation surface 

functionalization process.42  Methyl termination also introduces a surface dipole that 

shifts the band edges in contact with a variety of redox couples, producing increases in 

photovoltage for such functionalized photoanodes relative to the behavior of H-

terminated n-Si(111) photoelectrodes.43  We demonstrate herein the use of methyl-

terminated Si MWs, in conjunction with surface-bound Pt electrocatalysts for I� oxidation, 

to enhance the stability of n-Si MW array electrodes under photoanodic operation while 

effecting the solar-driven oxidation of I�(aq) to I3
�(aq) in 7.6 M HI(aq) at an ideal 

regenerative-cell energy-conversion efficiency,41 �IRC, of > 1% for > 200 h of continuous 

operation under simulated 1 Sun illumination (Figure 1).
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Figure 1.  Si microwire array photoanode that is the focus of this work and effects the 

stable light-driven oxidation of I�(aq) to I3
�(aq) in 7.6 M HI(aq).  The microwires are 

doped n-type, are surface-terminated with methyl groups, contain surface-bound Pt 

electrocatalysts, and contain an oxide boot to attenuate electrochemical shunts.

Crystalline Si MW arrays were grown by the vapor�liquid�solid growth method 

on patterned (111)-oriented Si substrates.41,44,45  The desired microwire diameter and 

spacing was produced by lithographically patterning 3 µm diameter circular holes, with a 

center-to-center pitch of 7 µm, into an oxide overlayer formed on a degenerately doped, 

non-photoactive Si(111) substrate.45  The holes in the oxide layer were subsequently 

filled with thermally evaporated Cu, which served as the Si growth catalyst.  The doping 

type and dopant density of the n-Si MWs was controlled by use of PH3 during growth, 

and the height of the microwires was controlled by the growth time as well as by the 

position of the substrate in the reactor.  After growth and cleaning, the n-Si MW arrays 

were functionalized with methyl groups by a two-step chlorination/alkylation reaction 

sequence.43,46�48  As needed, Pt was then deposited using electron-beam evaporation or by 

electrochemical deposition from 5 mM K2PtCl4(aq) by passing > 100 mC cm-2 of 

cathodic charge density at �1.0 V versus a saturated calomel electrode (SCE), with 

additional details available in the Supporting Information.
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6

Four-point probe measurements on single Si MWs yielded calculated resistivities, 

and therefore calculated dopant densities,15 that were not related linearly to the partial 

pressure of the PH3 dopant gas used during wire growth (Figure S1).  A series of 

measurements on the n-Si MWs that were etched by KOH(aq) suggested that the 

microwire shells were substantially more conductive than the cores.  The radial 

dependence of the dopant density is consistent with deposition of excess P by a vapor�

solid�solid growth mechanism.49,50  A high-temperature thermal oxide �booting� 

procedure was then applied to: (i) further distribute the dopants homogeneously 

throughout the radius of the microwire; and (ii) etch some of the excess high 

concentration dopants from the wire shell prior to thermal annealing.  This booting 

process was required to obtain high-quality MW arrays that exhibited current density 

versus potential (J�E) behavior (Figure S2) consistent with that previously reported in 

non-aqueous electrolytes containing a one-electron-transfer, outer-sphere ferrocene-based 

redox couple.45  The normal incidence spectral response under these conditions (Figure 

S3) exhibited behavior that was similar to that reported previously for p-type or intrinsic 

(i.e. unintentionally doped) Si MW arrays,51,52 but was n-type in character for these 

deliberately doped n-Si MW arrays.  Changing the orientation of the Si MW arrays with-

respect-to the direction of propagation of incoming light has been shown to result in 

increased external quantum yields, even beyond the limit imposed by ergodic ray-optic 

light trapping.51  In addition, improved light management techniques using for example 

arrays of microcones can yield high absorption over a large range of angles of the 

incident illumination.53  Consistently, in the dark the MW arrays exhibited current 
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rectification, evidenced by passing substantial cathodic currents at negative potentials in 

conjunction with small anodic currents at positive potentials (Figure S2 and S4).
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Figure 2.  Three-electrode current density versus potential data recorded under 100 mW 

cm-2 of simulated AM1.5 G solar illumination for planar, single-crystalline, n-type 

Si(111) electrodes immersed in Ar-purged ~7.6 M HI(aq) containing adventitious I3
� with 

or without (blue) various combinations of surface terminations and catalyst treatments: 

methylation (+CH3), electrochemical Pt deposition (+Pt), electron-beam evaporation of Pt 

(+Pt�).

Figure 2 displays representative photoelectrochemical J�E data of planar, single-

crystalline n-Si(111) electrodes in contact with Ar-purged ~7.6 M HI(aq) that by visual 

inspection contained adventitious I3
�(aq).  The surfaces were: H-Si(111) (blue); Pt 

deposited electrochemically on H-Si(111) (purple); CH3�terminated Si(111) (brown); Pt 

deposited electrochemically on CH3�terminated Si(111) (green); or Pt deposited using 

electron-beam evaporation on CH3-terminated Si(111) (red).  Even in highly concentrated 

~7.6 M I�(aq), the H-terminated n-Si(111) electrodes exhibited a large resistance near 

open-circuit conditions, low fill factors, and a rapid degradation of performance under 

illumination. This loss in performance is attributed to oxidation and passivation of the Si 

surface under photoanodic operation.  Deposition of Pt without prior methylation 
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8

provided enhanced rates of I� oxidation, yet resulted in similarly low stability to that 

observed for H-terminated Si(111).  CH3�termination alone resulted in an electrode that 

was stable on the timescale of days, but exhibited a very low fill factor, attributable to the 

slow interfacial charge-transfer rate constant for the oxidation of I� at Si surfaces.54,55  

Open-circuit voltages, Voc, for CH3�terminated n-Si(111) photoelectrodes were 

consistently larger than those observed for H-terminated n-Si(111) photoelectrodes, 

regardless of whether electrochemically deposited Pt was present.  This behavior is 

consistent with expectations in which an interfacial surface dipole arising from Si�CH3 

bonds produces a negative shift in the band-edge positions of CH3�Si(111) surfaces 

relative to H-Si(111) surfaces.43,56,57  In contrast to the other electrodes, CH3-termination 

in combination with electrochemical deposition of Pt produced high fill factors and 

resulted in planar n-Si photoanodes that exhibited reproducible, stable, and efficient 

photooxidation of HI(aq).37  Hence, through judicious choice of the Pt deposition 

protocol, large photovoltages can be obtained even though Pt typically forms interfacial 

silicides that limit the photovoltage to < 500 mV under 1 Sun illumination,58 which is 

similar to the behavior we observed for Pt deposited by electron-beam evaporation.

Figure 3 displays the representative photoelectrochemical J�E performance of a 

methylated n-Si MW array electrode in contact with ~7.6 M HI(aq), before and after 

electrochemical deposition of Pt.  Methylated n-Si MW arrays were not easily wetted by 

water or aqueous electrolytes, although repeated immersion of electrodes into either of 

these solutions (~10 times) ultimately resulted in contact to the microwire arrays so that 

they were suitable for measurements.  Methylated n-Si MW arrays that contained 

electrochemically deposited Pt consistently exhibited Voc ~ 400 mV, short-circuit current 
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9

densities, Jsc, of ~10 mA cm-2 at the Nernstian potential for oxidation of I� to I3
�, E(I3

�/I�), 

and an ideal regenerative-cell energy-conversion efficiency, �IRC, of ~2.0% under 1 Sun 

of simulated solar illumination.  Figure S4 shows the behavior of the best-performing 

sample measured during the course of this work.
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Figure 3.  Three-electrode current density versus potential data recorded in the dark 

(dashed) or under 100 mW cm-2 of simulated AM1.5 G solar illumination (solid lines) for 

a methylated n-type Si MW array electrode immersed in Ar-purged ~7.6 M HI(aq) 

electrolyte containing adventitious I3
� before (brown) or after (green) electrochemical 

deposition of Pt.

Prior studies reported that methyl-termination of planar, single-crystalline n-

Si(111) surfaces followed by Pt deposition resulted in efficient and stable photocurrent 

for the photooxidation of aqueous iodide or bromide.17,37,59 Photocurrents for I� oxidation 

using H-terminated n-Si nanowires with surface-deposited Pt, but in the absence of 

surface methylation, were shown to exhibit modest stability on the timescale of days.37  

However, the platinized n-Si MW arrays investigated herein that did not contain �CH3 

groups consistently exhibited poor stability for I�(aq) oxidation.  In contrast, the n-Si MW 

arrays that had been platinized after CH3�termination showed stable photocurrents for > 
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10

200 h of near-continuous I�(aq) photo-oxidation, with Jsc decreasing by < 15% after 200 h 

of continuous cyclic voltammetric sweeping (Figure 4). This small decrease in Jsc over 

time is consistent with our observation of light attenuation by photogenerated I3
� 

measured using a calibrated silicon photodiode.  However, the small change in the shape 

of the J�E behavior to one that is consistent with increased shunting suggests that at a 

minimum oxidation of the surface of the microwire surfaces was likely, which is not 

surprising given expected imperfect methylation of the non-Si(111) facets on the 

sidewalls of the microwires due to varied bonding environments and sterics.60  A CH3�

terminated n-Si MW array that did not contain Pt exhibited stable, but modest, efficiency 

under the same conditions (Figure S5). This observation is consistent with expectations 

of stable but attenuated performance for CH3-terminated planar, single-crystalline n-

Si(111) electrodes in the absence of Pt catalysts (Figure 2).
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Figure 4.  (a) Three-electrode current density versus potential data recorded in the dark 

(dashed; black initially and orange after 200 h) or under 100 mW cm-2 of simulated 

AM1.5 G solar illumination every 50 h, and at 200 h of near-continuous illumination, for 

the methylated n-type Si MW array electrode with electrochemically deposited Pt of 

Figure 3 immersed in Ar-purged ~7.6 M HI(aq) containing adventitious I3
�.  (b) Three-

electrode chronoamperometry data recorded at a potentiostatic bias of 0 V versus the 

Nernstian potential of the solution over 200 h of 100 mW cm-2 of simulated AM1.5 G 

solar illumination, which totalled 207.5 h to compensate for the instances when the ELH-
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11

type W-halogen lamp burnt out and was replaced with a new source.

To assess the feasibility of performing the overall photoelectrolysis of aqueous 

hydriodic acid, in which the concentration of I3
� will increase substantially over time, as 

well as to assess the quantum yield of I3
� formation, J�E data under potentiostatic control 

were obtained over 21 h for a platinized, CH3-terminated n-Si MW array sample in 7.6 M 

HI(aq) that initially contained adventitious I3
�.  These data were obtained in a three-

electrode setup in an H-cell configuration in which the working electrode was separated 

from the Pt counter electrode by a Nafion membrane (Figure 5a). Ex situ spectroscopic 

detection indicated near unity Faradaic yield for formation of I3
�(aq) (Figure 5b).  

Consistently, the total anodic charge passed directly correlated with the cathodic limiting 

current densities ascribable to reduction of I3
� at the Si MW array photoelectrode.  The 

number of turnovers per Si atom was ~900 (see Supporting Information for calculation), 

implying that a > 200-fold excess in charge was passed relative to the amount of charge 

required to fully oxidize each Si atom via a four-hole process.  No discernible loss of Si 

was observed via scanning-electron microscopy (SEM) before and after the evaluation 

period of 21 h (Figure S6), further supporting the conclusion that Si etching and/or loss of 

Pt was not responsible for the relatively small decrease in photoanodic current density as 

a function of operating time.  A calibrated Si photodiode that was placed in the cell after 

the electrolysis exhibited ~85% of its initial response before the electrolysis, consistent 

with the observed decrease in photocurrent from the Si MW photoanode and indicating 

that the decay can be consistently ascribed to parasitic light absorption due to the 

formation of I3
� in the cell during the electrolysis.  Moreover, the photoactivity was 

exclusively due to the microwires and not the substrate, because physical removal of the 
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12

microwires yielded planar n-Si electrodes that exhibited essentially no anodic 

photocurrent under the same conditions, as expected for a degenerately doped n-Si(111) 

substrate acting as the electrode.
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Figure 5.  (a) Three-electrode current density versus potential data in an H-cell 

configuration with the working and counter electrodes separated by a Nafion membrane 

recorded continuously at a scan rate of 10 mV s-1 under 100 mW cm-2 of simulated 

AM1.5 G solar illumination for an n-Si�CH3/Pt MW array electrode immersed in Ar-

purged ~7.6 M HI(aq) that initially contained adventitious I3
� over ~21 h of continuous 

operation. (b) Integrated current data from panel a reported for several times during the 

measurement (orange) and the scaled limiting cathodic current near -0.55 V, which is 

proportional to the amount of I3
� in solution.  For reference, also shown is the end point 

concentration of I3
� determined using ultraviolet�visible (UV�Vis) electronic absorption 

spectroscopy in conjunction with the Beer�Lambert law.

Methylation, and in general surface functionalization via solution chemistry, is 

one of several approaches to protect underlying semiconductors from deleterious surface 

reactions.61  Other protection schemes include physical deposition of materials by, for 

example, atomic-layer deposition (ALD), sputtering, evaporation, or conversion of the 

surface by bombardment with atoms or molecules (e.g. nitridation62), or use of single-

layer coatings including graphene.63  Introduction of surface functionality using solution 

chemistry can provide a conformal coating, for which electron-transfer across the 
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interface is either mediated by this layer or requires tunnelling through insulating 

molecules,64�66 such as for the methyl functionality utilized herein.  However, even thin 

conformal layers of metals and metal-oxide materials can absorb and/or reflect a 

substantial amount of incoming light.67  Moreover, coating high-surface-area substrates 

such as MW arrays and mesoporous thin films is challenging using most physical 

deposition techniques.  Use of both surface chemistry and metal electrocatalysts resulted 

herein in a large Voc due to the n-Si-CH3 surface dipole as well as rapid catalysis from the 

Pt, resulting simultaneously in a large fill factor for iodide oxidation.  Methylation 

additionally protected the Si surface from extensive oxidation.

The standard electrochemical potential required to oxidize I�(aq) to I3
�(aq) at 

unity activity for each species (reaction 1, Eo(I3
�/I�)) is ~ +0.55 V versus the normal 

hydrogen electrode (NHE).36  Hence, based on observed values of Voc, the n-Si�CH3�Pt 

MW array electrodes reported herein did not generate sufficient photovoltage under 

normal-incidence simulated 1 Sun Air Mass (AM) 1.5 G illumination to simultaneously 

drive half-reaction 1 in conjunction with the reduction of protons to molecular hydrogen, 

half-reaction 2, each at standard state:

3I� � I3
� + 2e� (1)

2H+ + 2e� � H2 (2)

However, the Voc values do allow for spontaneous, unassisted splitting of 7.6 M HI(aq), 

whose non-standard-state concentration results in E(I3
�/I�) ~ +0.25 V.37

The combination of enhanced stability, catalysis, and large Voc values is a key step 

toward use of MW arrays for integrated reversible storage of intermittent photon energy 

as H2 using a variety of electron sources, such as other hydrohalic acids (e.g. HBr(aq)) or 

H2O.  The benefits of using hydrohalic acid fuel precursors are: (i) some are abundant; 
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(ii) the thermodynamics required for these reactions can be supplied by a single light-

absorber material used in efficient and commercial photovoltaics, hence the light-

absorber materials have decades of proven research and development successes; and (iii) 

the electron-transfer chemistry between most materials and halides is extremely rapid 

meaning little energy is lost during photoelectrochemical oxidation and subsequent 

reduction in a redox flow battery.  These facts have led photoelectrochemical redox flow 

batteries to be an active area of promising research.68�73  Toward this, inexpensive 

carbon-based materials could be deposited on Si MW arrays as electrodeposited organic 

polymers or high surface area graphitic materials, therefore enabling small overpotentials 

for the hydrohalic redox reactions and enabling a better match between the available 

current from unconcentrated sunlight and the load from the electrochemical reactions, 

catalysts, and electrolyte.32
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