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Abstract

Pattern Recognition applications deal with ever increasing datasets, both in
size and complexity. In this work, we propose and analyze efficient algorithms
for the Optimum-Path Forest (OPF) supervised classifier. This classifier has
proven to provide results comparable to most well-know pattern recognition
techniques, but with a much faster training phase. However, there is still room
for improvement. The contribution of this work is the introduction of spatial
indexing and parallel algorithms on the training and classification phases of
the OPF supervised classifier.

First, we propose a simple parallelization approach for the training phase.
Following the traditional sequential training for the OPF, it maintains a pri-
ority queue to compute best samples at each iteration. Later on, we replace
this priority queue by an array and a linear search, in the aim of using a more
parallel-friendly data structure. We show that this approach leads to more
temporal and spatial locality than the former, providing better speedups. Ad-
ditionally, we show how the use of vectorization on distance calculations affects
the overall speedup and we provide directions on when to use it.

For the classification phase, we first aim to reduce the number of distance
calculations against the classifier samples and, then, we also introduce paral-
lelization. For this purpose, we elaborate a novel theory to index the OPF
classifier in a metric space. Then, we use it to build an efficient data structure
that allows us to reduce the number of comparison with classifier samples.
Finally, we propose its parallelization, leading to a very fast classification for
new samples.



Resumen

Las aplicaciones de Reconocimiento de Patrones manejan conjuntos de datos en
constante crecimiento, tanto en tamaño como en complejidad. En este trabajo,
proponemos y analizamos algoritmos para el clasificador supervisado basado
en Bosque de Caminos Óptimos (OPF, por sus siglas en inglés). Este clasifi-
cador ha probado ser capaz de proveer resultados comparables a técnicas de
reconocimiento de patrones más conocidas, pero con una fase de entrenamiento
mucho más rápida. Sin embargo, aun hay lugar para mejoras. La contribución
de este trabajo es la introducción de indexación espacial y algoritmos paralelos
en las fases de entrenamiento y clasificación del clasificador supervisado OPF.

En primer lugar, proponemos un abordaje simple de paralelización para
la fase de entrenamiento. Siguiendo el entrenamiento secuencial tradicional
del OPF, mantiene una cola de prioridad para calcular las mejores muestras
en cada iteración. Posteriormente, reemplazamos la cola de prioridad por un
arreglo y una búsqueda lineal, con el objetivo de usar una estructura de datos
más adecuada para el paralelismo. Mostramos que este abordaje lleva a una
mayor localidad temporal y espacial que el anterior, proveyendo mejores tiem-
pos de ejecución. Adicionalmente, mostramos cómo el uso de la vectorización
en el cálculo de distancias afecta el tiempo de ejecución y proveemos gúıas para
su uso adecuado.

Para la fase de clasificación, primero buscamos reducir el número de cál-
culos de distancia respecto a las muestras del clasificador y luego introducimos
un esquema de paralelización. Con este objetivo, desarrollamos una nueva
teoŕıa para indexar el clasificador OPF en un espacio métrico. Luego, la us-
amos para construir una estructura de datos eficiente que nos permite reducir
el número de cálculos de distancia con muestras del clasificador. Finalmente,
proponemos su paralelización, obteniendo una clasificación muy rápida para
muestras nuevas.
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Chapter 1

Introduction

1.1 Motivation and Context

Nowadays, datasets in real applications contain millions, if not billions, of elements where
each of them is a complex entity, requiring several features to be represented. Objects
can be of different nature depending on the domain, such as documents, images, sounds,
database records, etc. In order to simplify these enormous datasets and extract meaningful
information for decision making, patterns need to be found and elements need to be
classified.

Even with state of the art techniques in pattern recognition, in some cases we need
to wait days or even weeks to obtain results. For some industries or particular domains,
this can be acceptable. In general, however, we require results within a few minutes or
seconds. Techniques widely used are primarily based on Artificial Neural Network (ANN)
and Support Vector Machine (SVM).

Recently, a new framework to the design of graph-based classifiers, named Optimum
Path Forest (OPF) has been introduced to the scientific community. Such framework
comprises supervised, semi-supervised and unsupervised learning algorithms (J. P. Papa
& Falcão, 2008; J. P. Papa, Falcão, & Suzuki, 2009; J. P. Papa, Falcão, De Albuquerque,
& Tavares, 2012). OPF is parameterless and it can deal with non-separable data. It has
obtained recognition results comparable, or even more accurate, than those of the SVMs
and ANNs in a number of different applications, but usually with a much faster training
algorithm. However, it can still be time consuming for very large datasets. Also, the
classification time grows linearly with the size of the training dataset, thus being slower
than those of the SVM’s and ANN’s, in general.

On the other hand, processing power is increasing in the industry, the academia and
domestic computing. Companies and universities own computers equipped with multiple
processors. Desktop computers and cellphones now come bundled with processors of up
to 8 cores and graphic processing units with much higher concurrency levels. Several
implementations of the traditional pattern recognition techniques have been made to take
advantage of these computer resources. To the best of our knowledge, at the starting time
of our research, implementations of OPF have not made use of parallel techniques.

2 Universidad Católica San Pablo
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1.2 Problem Statement

Supervised Learning based on Optimum Path Forest (OPF classifier from now on) rep-
resents the dataset as a complete graph, where each element is a node and the weight
of the edge between them is equal to the distance in some feature space. The technique
comprises three algorithms (J. P. Papa et al., 2009):

• Training: Given a path-cost function, an Optimum Path Forest is built from a set
of training samples correctly labelled. A set of prototypes is chosen and optimum
paths are built in an incremental manner using the Image Foresting Transform (IFT)
algorithm.

• Learning: Initial testing is made by classifying a second set of correctly labelled
samples. Misclassified samples are interchanged with samples of the initial training
set and a second training is performed. This process is repeated until the accuracy
stabilizes.

• Classification: It is done by adding the testing sample to the graph and extending
the Optimum Path Forest to include it.

The training phase is in general much faster than those of the SVMs and ANNs,
but there is still room for improvement. The incremental construction of optimum paths
from the set of prototypes is independent for each node. Thus, the algorithm could be
efficiently performed in parallel if a proper data structure is used.

On the other hand, the classification is usually slower than those of the other tech-
niques. This is because the algorithm, in order to obtain the optimum path, calculates the
path cost from every node in the training set to the testing sample. By taking advantage
of the properties of some distance functions, an index can be built. As a result, some
nodes could be discarded earlier during classification, thus speeding up the algorithm.

1.3 General Objective

Design efficient algorithms to speed up the Optimum Path Forest Classifier.

1.4 Specific Objectives

• Design and implement parallel training algorithms for the OPF classifier.

• Compare the proposed training algorithms against the original training process of
the OPF classifier.

• Design and implement an index for the classification algorithm of the OPF classifier.

• Compare the proposed classification algorithms against the original classification
process of the OPF classifier.

Universidad Católica San Pablo 3
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1.5 Organization

The remaining chapters of this thesis is organized in five chapters.

Chapter 2 comprises a review of the theoretical foundations and related work. It
starts by covering the theory and original algorithms for the Optimum-Path Forest-based
Classifier. Then, it presents approaches that aim to speed up both its training and
classification algorithms.

In Chapter 3, we present our proposal of parallel algorithms targeting the training
phase of the OPF classifier, along with the observations that led us to their design.
Similarly, Chapter 4 presents the design of a new data structure for indexing the OPF
classifier and speed up the classification phase.

Experiments and comparisons among the proposed approaches and the original OPF
are presented in Chapter 5. The comparisons comprise number of operations and runtime
performance.

Finally, Chapter 6 contains our conclusions for this work.

4 Universidad Católica San Pablo
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Chapter 2

Theoretical Foundations and Related
Work

We start this chapter presenting the complete framework of the OPF classifier, which
comprises three phases: training, learning and classification. Then, we present and discuss
approaches related to this work that attempt to speed up the training and classification
algorithms.

2.1 The Optimum Path Forest Classifier

The Optimum-Path Forest-based (OPF) supervised learning is a relatively new pattern
recognition (Duda, Hart, & Stork, 2012) technique proposed by Papa et al. (J. P. Papa
et al., 2009; J. P. Papa, Cappabianco, & Falcão, 2010; J. P. Papa et al., 2012; Iwashita,
Papa, et al., 2014). The technique is fast, simple, multi-class, parameter independent and
it doesn’t make assumptions about the shape of classes in the feature space.

OPF is in fact a framework to the design of graph-based classifiers. This means
that the user can design his/her own optimum-path forest-driven classifier by configuring
three main modules: (i) adjacency relation, (ii) methodology to estimate prototypes, and
(iii) path-cost function. Since OPF models the problem of pattern recognition as a graph
partition task, it requires an adjacency relation to connect nodes (i.e. feature vectors
extracted from dataset samples). Further, OPF rules a competition process among pro-
totype samples, which are the most representative samples from each class. Therefore, a
careful procedure to estimate them would be wise. Each prototype becomes a root of its
own optimum-path tree and attempts to add other samples to it – a process which we call
conquest – by offering them a reward. The reward is encoded by the path-cost function.
At the end, a set of optimum trees, according to the path-cost function and rooted at
each prototype, is obtained.

The original proposed implementation of OPF (J. P. Papa et al., 2009, 2012) employs
a fully connected graph, and a path-cost function that computes the maximum arc-weight
along a path. For the sake of clarity, we shall refer to this version as OPF only.

Universidad Católica San Pablo 5
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Figure 2.1: (a) Complete graph with Z1. (b) MST and set of prototypes. (c) OPF
annotated with costs and labels.

Let Z be a dataset whose correct labels are given by a function λ(x), for each sample
x ∈ Z. Thus, Z can be partitioned into a training (Z1), validation (Z2) and testing (Z3)
set. Also, we can derive a graph G1 = (V1,A1) from the training set, where A1 stands for
an adjacency relation known as complete graph, i.e. one that has a fully connected graph
where each pair of samples in Z1 is connected by an edge. Additionally, each node v1

i ∈ V1

concerns the feature vector extracted from sample x1
i ∈ Z1. All arcs are weighted by the

distance d : Z × Z → R among their corresponding graph nodes. A similar definition
can also be applied to the validation and test sets.

The OPF proposed by Papa et al. (J. P. Papa et al., 2009) comprises two distinct
phases: (i) training and (ii) testing. The former step is based upon Z1, meanwhile the
test phase aims at assessing the effectiveness of the classifier learned during the previous
phase over the testing set Z3. Additionally, a learning algorithm was proposed to improve
the quality of samples in Z1 by means of interchanging samples with an additional set Z2.

2.1.1 Training

The training step aims at building the optimum-path forest upon the graph G1 derived
from Z1 (Figure 2.1a). Essentially, the forest is the result of a competition process among
prototype samples that end up partitioning G1.

Let S ⊆ Z1 be a set of prototypes, which can be chosen at random or using some
other specific heuristic. In fact, Papa et al. (J. P. Papa et al., 2009) argued that a random
choice may not be a good idea, since it can directly influence the performance of the
classifier. They propose to find the set of prototypes that minimizes the classification
error over Z1, obtaining S∗ ⊆ Z1. Such set can be found by computing a Minimum
Spanning Tree (MST) M from G1, and then marking as prototypes each pair of samples
(x1, x2), adjacent in M, such that λ(x1) 6= λ(x2) (Figure 2.1b). Roughly speaking, the
main idea is to protect the boundary of the classes by placing prototypes there, since
these regions are more prone to classification errors.

Further, the competition process takes place in Z1, where prototype nodes in S∗
become the roots of their own tree and they compete to add to it the remaining samples
in Z1 \ S∗. We say that a node added to a prototype’s tree was conquered by it. The

6 Universidad Católica San Pablo
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competition is based on a reward-compensation procedure, where the prototype that offers
the minimum cost is the one that will conquer the sample, i.e. add it to its tree. The
reward is computed based on a path-cost function, which should be smooth, as defined by
Falcão et al. (Falcão, Stolfi, & de Alencar Lotufo, 2004). Therefore, Papa et. al. (J. P. Papa
et al., 2009) proposed to use fmax as the path-cost function, defined as follows:

fmax(〈s〉) =

{
0 if s ∈ S∗
+∞ otherwise,

fmax(πs · (s, t)) = max{fmax(πs), d(s, t)}, (2.1)

where πs · (s, t) stands for the concatenation between path πs and arc (s, t) ∈ A1. Also, a
path πs is a sequence of adjacent and distinct nodes in G1 with terminus at node s ∈ Z1.
Notice that a trivial path, i.e. a single-node path, is denoted by 〈s〉.

In short, by computing Equation 2.1 for every sample s ∈ Z1, we obtain a collection
of optimum-path trees (OPTs) rooted at S∗, the optimum-path forest. A sample that
belongs to a given OPT means it is more strongly connected to it than to any other in
G1 (Figure 2.1c). Note that more than one path can offer the same cost to a sample. As
a result, the OPF is not necessarily unique.

Input: A training set Z1 labelled by λ
Output: The Optimum-Path-Forest P1 as a predecessor map, a cost map C1, a

label map L1 and the order set Z ′1
1 Z ′1 ← ∅;
2 Calculate the set of prototypes S ⊂ Z1 from MST;
3 foreach s ∈ Z1 \ S do
4 assign C1(s)← +∞;
5 Priority queue Q← ∅;
6 foreach s ∈ S do
7 C1(s)← 0, P1(s)← nil, L1(s)← λ(s);
8 Insert s in Q;

9 while Q 6= ∅ do
10 Remove from Q sample s such that C1(s) is minimum;
11 Insert s in Z ′1;
12 foreach t ∈ Z1 such that t 6= s and C1(t) > C1(s) do
13 cst← max{C1(s), d(s, t)};
14 if cst < C1(t) then
15 If C1(t) 6= +∞, then remove t from Q;
16 P1(t)← s, L1(t)← L1(s), C1(t)← cst;
17 Insert t in Q;

18 return classifier [P1, C1, L1, Z
′
1];

Algorithm 1: Training Algorithm for OPF classifier

The training process is summarized in Algorithm 1 (J. P. Papa et al., 2009, 2012).
The ordered set Z ′1 was introduced in (J. P. Papa et al., 2010) to avoid comparisons
against all nodes during classification.

Universidad Católica San Pablo 7
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2.1.2 Testing

In the testing step, each sample t ∈ Z3 is classified individually as follows: t is connected
to all training nodes from the optimum-path forest learned in the training phase, and the
node s∗ ∈ Z1 that conquers t is obtained as the one that satisfies the following equation:

s∗ = arg min
s∈Z1

max{C(s), d(s, t)}. (2.2)

The classification step simply assigns the label of s∗ as the label of t and its cost
C(t).

C(t) = max{C(s∗), d(s, t)} (2.3)

As proposed in (J. P. Papa et al., 2010), if nodes are evaluated in order of Z ′1, the
process can finish before evaluating all nodes, as shown in Algorithm 2. The same process
is used to classify sets Z2 and Z3.

Input: Classifier [P1, C1, L1, Z
′
1], evaluation set Z2 (or testing set Z3)

Output: Labels L2 (or L3) and predecessor map P2 for Z2 (or Z3)
1 foreach t ∈ Z2 do
2 i← 1, mincost← max{C1(ki), d(ki, t)};
3 L2(t)← L1(k1) and P2(t)← ki;
4 while i < |Z ′1| y mincost > C1(ki+1) do
5 tmp← max{C1(ki+1, d(ki+1, t)};
6 if tmp < mincost then
7 mincost← tmp;
8 L2(t)← L(ki+1) and P2(t)← ki+1;

9 return [L2, Z2];
Algorithm 2: Classification Algorithm for OPF

2.1.3 Learning

The accuracy of the classifier can be improved by means of interchanging some samples
from training set Z1 with samples from validation set Z2 (J. P. Papa et al., 2009). For
this purpose, a first classifier is obtained from Z1 and then it used to classify samples
from Z2, for which we know their correct classes. Samples wrongly classified from Z2

are interchanged with non-prototype samples from Z1, and the training algorithm is run
again. The process is repeated until the accuracy of the classifier stabilizes. This learning
procedure is based on the assumption that the most informative samples are obtained
from errors.

To observe the improvement of the classifier, its precision needs to be quantified.
Let c be the number of classes and NZ2(i) for i = 1, 2, . . . , c the number of samples in Z2

with class i. We define the error E(i) for class i as:

8 Universidad Católica San Pablo
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E(i) =
FP (i)

|Z2| − |NZ2(i)|
+

FN(i)

|NZ2(i)|
, (2.4)

for i = 1, 2, . . . , c, where FP (i) and FN(i) is the number of false positives and false
negatives for class i, respectively. Then, the accuracy Acc of a classifier is defined by:

Acc =
2c−

∑c
i=1 E(i)

2c
= 1−

∑c
i=1E(i)

2c
. (2.5)

The importance of this measure is that it accounts not just for hits of the classifier,
but also for misclassifications. The learning procedure aims at improving this accuracy
for the OPF classifier.

2.2 Related Work

Given the proven applicability of the OPF classifier to solve Pattern Recognition problems,
some attempts have been made to speed up each phase of the classifier. The approaches
include the exploitation of theoretical properties, reducing redundancy and the implemen-
tation on massively-parallel hardware.

In the following sections, we present and discuss the related work existent on the
training algorithm and the classification algorithm, respectively.

2.2.1 The Training Algorithm

Iwashita et. al. (Iwashita et al., 2012; Iwashita, Papa, et al., 2014) take advantage of the
relationship of the MST and the OPF to speed up the training algorithm. They propose
to calculate both simultaneously. Given the MST of the graph, an optimum path forest for
fmax is obtained by removing the edges between nodes of different classes, marking them as
prototypes and updating the cost and predecessor maps along the MST. Their experiments
show improvements on running time of up to 77.67%. The authors do not claim to obtain a
classifier (forest) with the same accuracy results, but similar. In comparison, our approach
guarantees that it calculates an OPF with the same characteristics and accuracy as the
original algorithm. Recall that the OPF is not unique.

During our research, a parallel algorithm for the OPF training emerged. Iwashita
et. al. (Iwashita, Romero, Baldassin, Costa, & Papa, 2014) presented a fine-grained
parallelization of the OPF training for Graphics Processing Unit (GPU), implemented in
Compute Unified Device Architecture (CUDA).

The approach establishes a similarity between the conquering process of samples
and a vector-matrix multiplication. A thread is allocated for each cell of a feature matrix
to perform a single multiplication, as part of the distance calculation between samples.
Then, new threads are allocated to merge the partial results. Thurst primitives (Hoberock
& Bell, 2010) are used to obtain a sample with minimal cost at each step of the algorithm.
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In datasets with considerable number of features, the approach obtained up to 14
times of speedup. However, the approach is slower than the serial training algorithm
for datasets with a small number of features, due to the throughput of data interchange
between CPU and GPU. Keeping the thread creation and synchronization to a minimum,
our coarse-grained parallel algorithm in CPU obtained speedups for any number of features
with different levels of parallelism.

2.2.2 The Classification Algorithm

One proposed approach for reducing the classification time involves the size reduction of
the OPF. It does so by removing irrelevant samples, i.e. samples containing redundant
information, from Z1 (J. P. Papa et al., 2012). After performing training and learning,
nodes from Z1 which were not used for classification of Z2 samples are marked as irrelevant
and moved to Z2. Then, training and learning is performed again. The process is repeated
while precision loss is above an specified threshold. Note that, by performing more training
calls, this approach increases the learning time of the classifier in exchange for a faster
classification.

Romero et. al. (Romero, Iwashita, Papa, Souza, & Papa, 2014) present a fine-
grained parallelization of the OPF classification targeting GPUs. They use the same
vector-matrix multiplication association as the GPU fine-grained training algorithm for
GPU discussed in the previous section (Iwashita, Romero, et al., 2014). As such, this
approach is not suited for datasets with an small number of features.

Diniz et. al. (Diniz, Fremont, Fantoni, & Nóbrega, 2017) present a SoC/FPGA
design and implementation of the OPF for embedded applications, presenting a hardware
converted classification algorithm. They obtain acceleration from 2.8 to 9 times compared
to an embedded processor software implementation. Algorithm 2 is implemented in an
Elementary Processor (EP) to perform the classification of a set of samples in a SIMD
fashion. Additionally, the distance calculation between samples is performed in a specific
hardware module.
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Chapter 3

Parallel Algorithms for the OPF
Training

In the construction of an OPF, we always deal with a complete graph. This observation
highly reduces the impact of unstructured problems that general graphs impose and gives
the opportunity to implement data partitioning by vertices.

In this chapter, we present two coarse-grained shared-memory parallel algorithms
for the OPF training, along with vectorized versions. One of these algorithms, the POPF,
has already been published in a conference (Culquicondor, Castelo-Fernandez, & Papa,
2016). We provide implementation details using the OpenMP API. Given its wide support
on different platforms and architectures, we guarantee the applicability of the algorithms
to a wide range of environments.

3.1 A First Parallelization

The sequential training algorithm for the OPF classifier can be parallelized by means
of three observations related to the independence of the conquest process of a node’s
neighbors, the completeness of the graph and the relationship between Prim’s algorithm
and OPF.

The first observation concerns the conquest process that takes place at each iteration
of the Algorithm 1 (lines 10 to 17). In each such iteration, an unvisited sample s ∈ Q with
minimum cost C(s) is taken, which then will attempt to conquer all its neighbors t. It is
important to notice is that the conquest of a neighbor t by s is independent of any other
neighbor. Thus, the computational load for conquering neighbors could be split among
threads. However, once a sample t is conquered, its cost C(t) needs to be updated, which
requires its priority in the priority queue Q to be updated as well (lines 15 to 17). LibOPF
(J. Papa, Falcão, & Suzuki, 2014) uses a binary heap as the priority queue data structure,
as suggested in (Falcão et al., 2004). This data structure is typically not prepared for
concurrent update, thus its update process is a critical section that needs to be protected
with a mutex in a concurrent environment. Furthermore, this data structure introduces
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a O(log(n)) overhead in each update, where n = |Z1|.

The second observation concerns the graph, which is fully connected, implying that,
for each node s, its neighbors are all t ∈ Z1 \ {s}. That is why the computation of the
OPF along with the cost map C takes θ(n)2 operations in total for n = |Z1|. However,
the completeness of the graph allows us to implement a simple data-partition scheme in
which each thread δi,∀i = 1, . . . ,m (where m is the number of threads), explores a subset
Z(1,i), such that Z1 = Z(1,1) ∪ · · · ∪ Z(1,m) and Z1,i ∩ Z1,j = ∅,∀i 6= j. All Z(1,i) should be
almost equally sized for the best workload distribution. Then, each thread updates the
costs of each t ∈ Z(1,i) \ {s} according to Equation 2.1 for fmax using arc (s, t).

The third observation is related to Prim’s algorithm, which is used to calculate the
Minimum Spanning Tree over Z1. As a matter of fact, we can use the very same OPF
algorithm with a different path-cost function – i.e., the sum of weights along the path –
to compute the MST (J. P. Papa et al., 2009). Therefore, the aforementioned ideas can
be applied to compute the MST as well, taking advantage of parallelism in all the steps
of the training process.

These observations lead us to Algorithm 3, which we call POPF-PQ, because it
maintains the priority queue from the serial algorithm. Note that even though paralleliza-
tion takes place only during the conquest process from s, it is better to start all threads
just once at the beginning of the algorithm.

The proposed approach was efficiently implemented using Open Multi Process-
ing (OpenMP) (Dagum & Enon, 1998), a well-known API for shared-memory parallel
programming. OpenMP pragmas used in the implementation are included as comments.

Note that the partitioning of the set of neighbors happens once per iteration. Launch-
ing threads is costly and, given that it would be needed O(n) times, the performance of
our algorithm would degrade. However, instead of launching the threads in each iteration,
we can do it only once at the beginning of the algorithm. The threads are synchronized
through barriers, shared variables and operations exclusive to the main thread. Then, the
threads are reused for the loop in lines 15-20 in Algorithm 3.

3.2 Removing the Priority Queue

As we have proposed in (Culquicondor et al., 2016), we can improve the running time
of the algorithm even further by noting that, during the pass through the neighbors of
sample s, we are indeed visiting all samples t ∈ Z1. Thus, we can take advantage of this
loop (line 12 in Algorithm 1) to calculate the sample s∗ – the sample with lowest cost – to
be used in the next iteration. We can also do this in separate threads by making each of
them compute the node with minimum cost s∗i ∈ Z(1,i). Afterwards, the main thread finds
the node s∗ with minimum cost among all s(∗,i),∀i = 1, · · · ,m, where m is the number of
threads. Such node s∗ has the same properties as the one that the priority queue would
provide if we were using it. Therefore, by using m threads, the overall time complexity of
the training algorithm is quantified by θ(n2/m).
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Input: A training set Z1 labelled by λ
Output: The Optimum-Path-Forest P1 as a predecessor map, a cost map C1, a

label map L1 and the order set Z ′1
1 Z ′1 ← ∅
2 Calculate the set of prototypes S ⊂ Z1 from MST
3 foreach s ∈ Z1 \ S do
4 assign C1(s)← +∞
5 Priority queue Q← ∅
6 foreach s ∈ S do
7 C1(s)← 0, P1(s)← nil, L1(s)← λ(s)
8 Insert s in Q

9 in parallel for threads i = 1, 2, . . . ,m # omp pragma: parallel

10 while Q 6= ∅ do
11 in main thread Remove from Q sample s with minimum C1(s)
12 in main thread Insert s in Z ′1 # omp pragma: master

13 synchronization barrier # omp pragma: barrier

14 split among threads, # omp pragma: for

15 foreach t ∈ Z1 such that t 6= s and C1(t) > C1(s) do
16 cst← max{C1(s), d(s, t)}
17 if cst < C1(t) then
18 If C1(t) 6= +∞
19 P1(t)← s, L1(t)← L1(s), C1(t)← cst
20 Insert or Update cost for t in Q # omp pragma: master

21 return classifier [P1, C1, L1, Z
′
1]

Algorithm 3: POPF-PQ Training Algorithm
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This last idea can be applied to Prim’s algorithm as well. Algorithm 4, which we refer
to as simply POPF, summarizes all these ideas. As in the previous algorithm, OpenMP
pragmas used in the implementation are included as comments. The same approach from
the previous algorithm, regarding launching of threads, was used.

Input: A λ-labeled training set Z1, and number m of threads.
Output: Optimum path forest P1, cost map C1, label map L1 and cost-ordered

set Z ′1
1 Z ′1 ← ∅
2 S∗ →SelectPrototypes(Z1)
3 foreach s ∈ Z1 \ S do
4 assign C1(s)← +∞
5 foreach s ∈ S do
6 C1(s)← 0, P1(s)← nil, L1(s)← λ(s)
7 s← any element from S∗
8 Insert s in Z ′1
9 in parallel for threads i = 1, 2, . . . ,m # omp pragma: parallel

10 while s 6= nil do
11 si ← nil
12 split among threads, # omp pragma: for

13 foreach t ∈ Z1 where t 6= s do
14 if C1(t) > C1(s) then
15 cst← max{C1(s), d(s, t)}
16 if cst < C1(t) then P1(t)← s, L1(t)← L1(s), C1(t)← cst

17 if si = nil or C1(t) < C1(si) then si ← t

18 in main thread s← arg minsi
C(si) in

19 in main thread Insert s in Z ′1 # omp pragma: master

20 synchronization barrier # omp pragma: barrier

21 return classifier [P1, C1, L1, Z
′
1]

Algorithm 4: POPF Training Algorithm

3.3 Vectorization of distance calculations

Recall that OPF uses as edge weights the distance between the feature vectors of the
objects. In general, distance calculations are expensive operations due to the use of
floating point operations. For instance, LibOPF (J. Papa et al., 2014) uses by default the
logarithm of the euclidean distance between the feature vectors, namely:

d(u, v) = D · log(1 + ||~u− ~v||2) = D · log

(
1 +

f∑
i=1

(ui − vi)2

)
, (3.1)

where D is a constant, f is the number of features and ui, vi are the i-th component
of vectors ~u and ~v, respectively. The summation at the end of Equation 3.1 is a vector
operation, meaning that it can be implemented with vector or SIMD instructions that
some processors provide.
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Thus, distance calculations during OPF training can take advantage of this tech-
nique. Even though we are focusing on this particular distance function, any distance
function usually has a component that can be vectorized as well.

Vectorization can be easily implemented with the Advanced Vector Extensions (AVX)
2 Instruction Set for x86 64 architectures.
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Chapter 4

Spatial Indexing for the OPF
Classification

When several samples need to be classified at the same time, a simple approach is to
classify all of them in parallel by partitioning the set of samples. The OPF classifier, once
built, can be accessed concurrently by Algorithm 2 in a read-only fashion. Thus, there
are no critical sections to concern about for implementing this approach.

Nevertheless, in this chapter we present new techniques to reduce the number of
distance calculations while classifying a sample. We effectively reduce the running time of
the classification for each sample by replacing the inner loop of Algorithm 2, as presented
in (J. P. Papa et al., 2010), with a query to a data structure built on top of the trained
optimum-path forest.

The following sections assume the use of fmax as path cost function for building the
OPF and classifying new samples.

4.1 Spatial Indexing of the OPF

Recall that, during classification, for each sample t we look for the node s∗ in the OPF
which offers the least C(t) to the new sample. Then, node t is assigned label L(s∗) as
calculated by the learning process. This is, for each new sample, we try to find a sample
in the OPF which offers the lowest path cost.

This process resembles the search for the closest neighbor for a feature vector in a
feature space, also known as proximity query. Several techniques have been proposed to
solve this problem (Gaede & Günther, 1998; Chávez, Navarro, Baeza-Yates, & Marroqúın,
2001; Indyk & Motwani, 1998), which involve the creation of a data structure or spatial
index. It is worth noting that, in fact, spatial indexes have being successfully used for
implementing k-Nearest Neighbor classifiers.

Metric Access Methods (Chávez et al., 2001) are particularly suited for proximity
queries when dealing with a metric space, i.e. a space for which a metric distance is
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defined. These methods exploit the properties of a metric distance, such as the triangle
inequality, to build an index and be able to discard elements quickly when doing a query.

Recall that edges in the OPF are weighted by the distance between their adjacent
nodes in the feature space. However, once the optimum-path forest is built, there is no
clear distance defined for two nodes in terms of the forest itself. If two nodes are not in the
same tree or have no ancestor-descendant relationship, a distance can not be established
for the path cost function.

4.1.1 OPF-distance

To overcome this issue, let’s define the function δ : Z × Z1 → R, which we name
OPF-distance, as:

δ(u,v) = max{d(u,v), C(v)} (4.1)

where u ∈ Z, v ∈ Z1, d is the distance defined for space Z and C is the cost map as
calculated by Algorithm 1. Note that the definition of δ implies:

d(u,v) ≤ δ(u,v) (4.2)

C(v) ≤ δ(u,v) (4.3)

Note that δ is not commutative and it is undefined if v 6∈ Z1. Also, observe that
Equation 2.3 can be rewritten as:

C(t) = δ(t, s∗) (4.4)

.

The classification of a sample can now be redefined as nearest neighbor search, but
using the OPF-distance δ instead of just the distance d. However, even for metric spaces
where d satisfies the triangle inequality, we can not guarantee that δ satisfies it too.

4.1.2 OPF Triangle Inequality

As we mentioned before, metric access methods use the triangle inequality of the metric
distance to safely discard candidates on a proximity query. The triangle inequality for a
distance d in a feature space X is defined as follows:

∀x,y, z ∈ X , d(x,y) ≤ d(x, z) + d(z,y) (4.5)

On the other hand, the OPF-distance δ introduced earlier is not a metric distance,
even if d is. As such, it does not satisfy the triangle inequality. However, it satisfies a
couple of inequalities, which we collectively name as OPF Triangle Inequalities.

Universidad Católica San Pablo 17



18 Computer Science Professional School

Lemma 1. Given p, q, t ∈ Z, the OPF-distance δ satisfies:

δ(p, q) ≤ d(p, t) + δ(t, q) (4.6)

Lemma 2. Given p, q, t ∈ Z, where C(p) ≤ C(q), the OPF-distance δ satisfies:

δ(x, p) ≤ δ(p, q) + δ(x, q) (4.7)

See Appendix A.1 for proofs of these lemmas.

4.1.3 The OPF Tree

Using the OPF Triangle Inequality (Lemas 1 and 2) and based on the Vantage-Point
Tree (VPT) (Uhlmann, 1991), we now present an index for the OPF, which we name the
OPF Tree. We chose to base the OPF Tree on the VPT for the following reasons:

• it has O(n log(n)) construction time,

• it occupies O(n) space,

• it is one of the simplest data structures designed for continuous distance functions
where set of elements do not change,

• it was designed for main memory.

The design of the OPF Tree comprises two algorithms, one for building and one for
querying, which we describe next.

OPF Tree Construction

The OPF tree is built recursively from Z1, as described in Algorithm 5. Any node s ∈ Z
with C(s) = 0 (i.e. a prototype) is chosen as the root. Then, the median M of the set of
all OPF-distances is obtained:

M = median{δ(s,u)/u ∈ Z1 \ {s}} (4.8)

Those elements u such that δ(p,u) ≤M are placed on the left subtree, while those
such that δ(p,u) > M are placed on the right subtree. This is illustrated in Figure 4.1a.
Then, for each subtree we chose as root any node s′ with least cost s′ = arg min{C(s′)}
and repeat the process until only one node is left. The node with least cost is needed to
fulfill the hypotheses for Lemma 2. This requirement leads to nodes always having a cost
greater than or equal to their parents’ cost.
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Figure 4.1: (a) Construction of an OPF Tree for the root p: nodes with distance δ(p,u ≤
M go to the left subtree and nodes with distance δ(p,u) > M go to the right subtree.
(b) Querying an OPF Tree with root p, query sample q and current radius r where no
subtrees can be discarded. (c) Querying an OPF Tree with root p, query sample q and
current radius r where the left subtree can be discarded.

OPF Tree Query

As described in Algorithm 6, to do a query with a sample t, we keep a record of the
minimal cost r we have probed for t along the progress of the query. r is set to ∞ at the
begining. We start with the root p and calculate ∆ = δ(t,p) and update r. If ∆−r ≤M ,
we explore the left subtree and ignore it otherwise. Simmilarly, if ∆ + r > M , we explore
the right subtree and ignore it otherwise. Next, we do the same process recursively for
each subtree or finish the search if no subtrees are left. Figure 4.1b illustrates an instance
where no subtree can be discarded and Figure 4.1c illustrates an instance where the left
subtree can be discarded for certain iteration.

At the end of the query algorithm, C(t) = r and its label λ(t) is set to the label of
the node s∗ for which r = δ(t, s∗). An additional observation is that we can also drop a
whole subtree if its root p has a cost C(p) greater than r, because the cost of its nodes
increase as we go further down in the tree.

The OPF Triangle Inequality ensures that we do not miss s∗. All the subtrees not
traversed contain elements q such that δ(t,q) > r. And because of Equation 4.4, s∗ 6= q.
The following lemmas support this claim (See Appendix A.2 for their proofs).

Lemma 3. Given p, q, t ∈ Z, where d(p, t) + r ≤M and δ(p, q) > M , then δ(t, q) > r.

Lemma 4. Given p, q, t ∈ Z, where C(p) ≤ C(q), δ(p, q) ≤ M and δ(t,p) − r > M ,
then δ(t, q) > r.

Depth-First and Priority Order

Recall that, during the algorithm, we keep track of the minimal cost r provided by the
visited nodes. It is easy to see that if r reduces quickly, then more branches of the tree
are likely to be discarded. Thus, we want to visit the nodes of the OPF Tree in an order
that makes this happen.

On the implementation presented on Algorithm 6 we visit the branches of the OPF
Tree as they are discovered, in a depth-first search fashion. Alternatively, we can prioritize
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the order in which the algorithm expands on a branch. Similarly to the approach seen in
Section 2.1.2, we can visit the nodes in the order of increasing cost. In the case of the
OPF Tree query algorithm, we use the cost of the root of the subtree. Therefore, when a
new subtree is discovered by the algorithm, it is queued with a priority value equal to its
root cost. At each point, we select for expansion the subtree with the least cost.

Note that the OPF Tree query with priority order guarantees that the number of
comparisons done is not greater than the number of comparisons of Algorithm 2.

Input: The trained OPF classifier, described by a cost map C1 and
cost-ordered set Z ′1

Output: The OPF Tree, rooted at root and with each node described by
relationships left child and right child, a median med and a pointer
snode to the OPF node.

1 Function BuildOPFTree(C1, Z ′1)
2 root← new Node;
3 BuildOPFTreeHelper(root, C1, Z

′
1)

4 return root

5 Function BuildOPFTreeHelper(node, C, Z)
6 node.snode← pop first(Z)
7 ∆← {}
8 foreach s ∈ Z do
9 ∆(s)← max{d(s, node.snode), C(node.snode)}

10 node.med← median{∆}
11 Zl ← ∅
12 Zr ← ∅
13 foreach s ∈ Z do
14 if ∆(s) <= node.med then
15 Insert s in Zl

16 else
17 Insert s in Zr

18 if Zl 6= ∅ then
19 node.left child← new Node
20 BuildOPFTreeHelper(node.left child, C, Zl)

21 if Zr 6= ∅ then
22 node.right child← new Node
23 BuildOPFTreeHelper(node.right child, C, Zr)

Algorithm 5: OPF Tree Construction Algorithm

Paralell Algorithms for the OPF Tree

Recall that, while POPF improves the OPF training, the OPF Tree improves the OPF
classification. However, both processes, training and classification, are repeatedly applied
one after another when performing the learning procedure (Section 2.1.3). Thus, the
performance of both algorithms can be compared in this phase. Given the parallel nature
of POPF, we also need to parallelize the OPF Tree construction and query in order to
take advantage of multithreading and compare both algorithms as the number of threads
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Input: A sample t, the trained OPF classifier, described by a cost map C1 and
label map L1, and the OPF Tree rooted at root

Output: The label for the sample t stored in map L2

1 Function QueryOPFTree(t, C1, L1, root)
2 QueryOPFTreeHelper(t, C1, L1, root,∞)
3 Function QueryOPFTreeHelper(t, C1, L1, node, r)
4 if C1(node.snode) >= r then
5 return
6 ∆← max{d(t, node), C1(node.snode)}
7 if ∆ < r then
8 r ← ∆
9 L2(t)← L1(node.snode)

10 if node.left child 6= nil and ∆− r < tnode.med then
11 QueryOPFTreeHelper(t, C1, L1, node.left child, r)
12 if node.right child 6= nil and ∆ + r > tnode.med then
13 QueryOPFTreeHelper(t, C1, L1, node.right child, r)

Algorithm 6: OPF Tree Query Algorithm

increase.

Parallel OPF Tree Query The OPF Tree query is inherently an iterative process.
Some parallelization could be applied when both branches of a particular subtree need
to be visited (lines 10-13 of Algorithm 6). However, this parallelization fits more in
the Fork-Join model where it is difficult to distribute the load evenly among the threads.
Basically, we can not know how many nodes of a branch are going to be visited beforehand.
Alternatively, to better fit the SIMD that we are already using for POPF, we can distribute
the load by partitioning the set of elements to be classified (Z2 or Z3). Then, each thread
can classify the samples in each partition.

Parallel OPF Tree Construction The OPF Tree construction has a similar structure
that also fits the Fork-Join model. In this case, it is more plausible to distribute the load
evenly, but we still need to manage some kind of nested forking. Instead, we look for an
oportunity to apply partitioning. The most appropriate candidate is the loop in lines 8-9
in Algorithm 5, which also happens to be the most expensive part of the algorithm due
to the O(n) distance calculations, whre n is the number of elements in the subtree. Thus,
we apply the partitioning on the set of nodes of each subtree formed during the OPF Tree
construction.

As an implementation detail, note that it would be needed to spin the threads once
for each subtree. This number is O(n), where n is the size of the classifier, and, given
that thread creation is costly, it is not appropriate. Instead, we decided to first make
the recursion iterative by adding a stack. Then, we can launch the threads only once at
the beginning of the algorithm and reuse them for each subtree’s distance calculations.
Only the main thread creates nodes in the OPF Tree. This approach to thread creation
is similar to the one used in both versions of POPF.
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Chapter 5

Results

In order to compare the efficiency of approaches proposed in Chapter 3 and Chapter 4, we
have conducted several experiments on three different architectures and using seven public
datasets with various sizes and number of features. We measured not only the overall
speedup, but also accounted for number of distance calculations, when appropriate.

5.1 Datasets

All datasets used in this work were taken from the UCI Machine Learning Repository
(Lichman, 2013). We intentionally chose datasets with numeric features (to avoid pre-
procesing, which is out of the scope of this work) and with sizes of different orders of
magnitude, in order to better describe the scalability of our approach.

Table 5.1 presents the datasets used, along with its sizes, number of classes and
number of features. Each dataset was split in the three groups Z1, Z2 and Z3, the
training, evaluation and testing sets, respectively. For almost all datasets, we chose a
partition of 20%, 40% and 40% of the elements for these subsets. The exception was the
dataset with biggest size: SkinSeg dataset, for which we used a partition of 10%, 20%
and 70%.

Table 5.1: Description of the datasets used in the experiments

Dataset instances features classes
Letter Recognition (Lichman, 2013) 20,000 16 26
Statlog (Shuttle) (Lichman, 2013) 43,500 9 7
Dataset for Sensorless Drive Diagnosis (Lichman, 2013) 58509 49 11
MiniBooNE Particle Identification (Lichman, 2013) 130,064 49 2
Skin Segmentation (Lichman, 2013) 245,057 3 2
Pen-Based Recognition of Handwritten Digits (Lichman, 2013) 7,494 16 10
MAGIC Gamma Telescope (Lichman, 2013) 19020 11 2
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Table 5.2: Machine/System configuration used in the experiments for the training algo-
rithms

Component Machine 1 Machine 2

Processor
Intel R© Xeon

TM

E5-2620 v3 @
2.4GHz

AMD R© Opteron
TM

Processor 6272
@ 2.1GHz

Sockets 2 4
Cores per socket 6 8
Threads per core 2 2
SIMD technology AVX2 AVX1
L1 instruction cache 32KiB 8-way set associative 64KiB 2-way set associative

(shared)
L1 data cache 32KiB 8-way set associative 16KiB 4-way set associative
L2 (unified) 256KiB 8-way set associative 8x2MiB 16-way set associative
L3 (unified+shared) 15MiB 20-way set associative 12MiB up to 64-way set associative

RAM
56GiB DDR4-1866, 3*16GiB +
1*8GiB DIMMS

64GiB DDR3-1066, 4*16GiB
DIMMS

Max bandwidth 59 GiB/s 51.2 GiB/s
Operating System Linux kernel 4.4.0 (64-bit) Linux kernel 4.9.1 (64-bit)
Compiler gcc (GCC) 5.2.1 gcc (GCC) 5.2.1
Optimization flag -O3 -O3

5.2 The Test Environments

For assessing the performance of our parallel training algorithms, we conducted our ex-
periments in two different machines with different levels of parallelism. These machines’
characteristics are shown in Table 5.2.

As one can observe, Machine 1 has a Xeon Intel processor whereas Machine 2 uses
an AMD Opteron. The access to memory in both machines is not uniform (NUMA), that
is, if a memory position accessed by a core in the first socket is present in the DRAM
slot assigned to the second socket, the latency will be higher than if the memory was
present in the first socket. The Linux kernel version, for both machines, automatically
deals with distributing and migrating memory pages around in order to reduce the NUMA
impact. This feature is commonly known as AutoNUMA (AutoNUMA: the other approach
to NUMA scheduling , 2012).

On the other hand, for assessing the performance of the spatial indexing for the OPF
classification, we used a commodity hardware machine with an Intel Core i7 processor.
This is because the focus of the technique is to reduce the number of distance calculations
performed, instead of the scalability of the algorithm when varying the number of threads.
This machine’s characteristics are listed in Table 5.3.

5.3 Methodology and Results for the Training Algo-

rithm

In Chapter 3 we presented two parallel algorithms for the OPF training, which we called
POPF-PQ (that preserves the priority queue from the serial algorithm) and POPF (that
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Table 5.3: Machine/System configuration used in the experiments for the classification
algorithms

Component Machine 3

Processor Intel R© Core
TM

i7-4510U @ 2.0GHz
Sockets 1
Cores per socket 2
Threads per core 2
SIMD technology AVX2
L3 cache 4MiB
RAM 12GiB DDR3
Operating System Linux kernel 4.13.12 (64-bit)
Compiler gcc (GCC) 7.2.0
Optimization flag -O3

uses an array and a linear search). Additionally, we discussed the use of vectorization to
speed up the distance calculations.

We now present comparisons among all versions of the training algorithm discussed.
Each experiment was executed 5 times, and the results discussed in the next sections
represent the averaged execution time (Section 5.3.1) and speedup (Section 5.3.2) for the
learning process. In all cases, the confidence interval (95%) was calculated and is shown
as error bars in the graphs reporting the execution time.

5.3.1 Execution time

In order to better present the results, the discussion is divided according to the effec-
tiveness of the vectorization technique. We start with the SIMD-friendly datasets, in
other words, those that were processed faster with the vectorized distance computation.
Next, we present those that did not benefit from the use of SIMD instructions (SIMD-
unfriendly). Finally, the results for the dataset oblivious to vectorization is discussed
(SIMD-oblivious).

SIMD-friendly

Figure 5.1 shows the execution time (y-axis) of both OPF implementations (POPF-PQ
and POPF) when processing SDD and MiniBooNE for each number of threads (x-axis).
Figure 5.1 also shows the results with the vectorized distance computation (POPF-PQ+SIMD
and POPF+SIMD). Figure 5.1(a) and 5.1(b) stand for the results considering the Xeon

TM

(Machine 1) and Opteron
TM

(Machine 2) machines, respectively.

One can observe that both POPF-PQ and POPF are able to run faster as the number
of threads increase. POPF was slightly faster than POPF-PQ, particularly on Machine 2 for
SDD. This result is due to the fact that the NUMA effect is stronger on Machine 2 than
Machine 1. By eliminating the shared priority queue, POPF exploits data locality since
each thread only changes a private section of the list were the samples are kept.

Figure 5.1 shows that the execution time is significantly reduced by vectorizing the
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Figure 5.1: Execution time for the training algorithms on the SIMD-friendly datasets

distance computation on both machines. Particularly, Figure 5.1 depicts the performance
gains with 1 thread are up to 26.7% on Machine 1 and 28.8% on Machine 2 for SDD.
Such good results were possible because both SDD and MiniBooNE have a number of
features that is a large multiple of both machine processor’s vector unit. The performance
gap between POPF-PQ and POPF is not greater due to the distance computation. Even
with vectorization, such procedure still dominates the learning time for both SDD and
MiniBooNE.

SIMD-unfriendly

Figure 5.2 shows the execution time results for SkinSeg and Statlog. As one can observe,
POPF-PQ and POPF are both able to run faster as the number of threads increase. However,
with a high thread count, the NUMA effects severely degenerates POPF-PQ performance.
Such degradation is not observed in POPF because it keeps data movement to a minimum by
storing each sample candidate in a thread-private location. Indeed, POPF-PQ takes almost
60% and 74% longer than POPF on Machine 1 for SkinSeg and Statlog, respectively,
with 24 threads. On Machine 2, the degeneration is even worse, since POPF-PQ is over 10
and 9 times slower than POPF when learning SkinSeg and Statlog, respectively, with 64
threads.

Figure 5.2 also shows that vectorizing the distance computation can negatively im-
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Figure 5.2: Execution time for the training algorithms on the SIMD-unfriendly datasets

26 Universidad Católica San Pablo
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Figure 5.3: Execution time for the training algorithms on the SIMD-oblivious datasets

pact performance. Indeed, both POPF-PQ+SIMD and POPF+SIMD performed worse than
their non-vectorized versions due to the overhead of moving small feature vectors to the
processors’ vector unit and sending them back to the scalar units.

SIMD-oblivious

As Figure 5.3 shows, vectorizing the distance computation leads to a negligible perfor-
mance impact in the learning time of the Letter dataset. The performance gains achieved
with the data parallelism of SIMD instructions are not enough to trade off the overhead of
moving data between the scalar and vector units but, in this case (a feature size of 16), it
did not degrade performance either. Similar to both SkinSeg and Statlog results, POPF
outperforms POPF-PQ considering the Letter dataset with higher thread counts on Ma-

chine 2 due to the minimization of the NUMA effect provided by that approach. Indeed,
POPF is over 2.3x faster than POPF-PQ on Machine 2 with 64 threads.

5.3.2 Speedup

When designing parallel programs, it is important to measure how much gain in speed
we are obtaining as we increase the number w of workers or threads. In this section, we
measure the speedup of our programs, as defined in (Pacheco, 2011):

S =
Tserial
Tparallel

, (5.1)

where Tserial is the serial running time and Tparallel is the parallel running time. Ideally,
we want the speedup would be S = w. However, due to the overhead produced by thread
creation, deletion and synchronization, it would become an smaller fraction of the ideal.

Figure 5.4 shows the speedup results (y-axis) for both parallel implementations of
OPF with (POPF-PQ+SIMD and POPF+SIMD) and without (POPF-PQ and POPF) vectorization.
For each dataset, the experiments were executed varying the number of threads (x-axis)
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Figure 5.4: Speedup results for the training algorithms on the Xeon
TM

(a) and Opteron
TM

(b) machines

between 1 and 24 on Machine 1, and between 1 and 64 on Machine 2. The cluster of
bars labeled geomean represents the geometric mean of the speedups achieved for each
dataset.

As Figure 5.4 shows, both implementations achieved their best speedup results with
SDD and MiniBooNE. Particularly, with the distance computation vectorized, both imple-
mentations were over 32% faster than their scalar counterparts on Machine 1 with 24
threads. In addition, POPF+SIMD performed over 14% better than POPF with SDD on Ma-

chine 2 with 64 threads. The use of SIMD instructions was not as effective on Machine

2 as on Machine 1 mainly because pairs of Opteron
TM

cores share the floating point unit,
so only one of them can use it at a time.

The results for SkinSeg and Statlog show how severely NUMA impacts the per-
formance of algorithms with frequent synchronization needs (e.g. POPF-PQ). Figure 5.4
shows that POPF-PQ is up to 60% (SkinSeg) and 77% (Statlog) slower than POPF on
Machine 1 with 24 threads. The performance becomes worse on Machine 2 which has
more sockets. Indeed, POPF-PQ is over 10x (SkinSeg) and 9x (Statlog) slower than POPF

on Machine 2 with 64 threads. By comparing the average results on both machines it is
clear that, as the number of sockets increase, the more important it is to keep communi-
cation/synchronization to a minimum.
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5.4 Methodology and Results for the Classification

Algorithm

In Chapter 4 we presented the OPF Tree, a data structure that aims to reduce the number
of comparisons of new samples with OPF elements during classification. We now measure
the performance of the OPF Tree in comparison to the original classification algorithm.

Given the nature of the algorithms – which discard candidates from the OPF during
the classification of a sample – we measure not just the overall running time (Section
5.4.2), but also the number of distance calculations performed (Section 5.4.1).

5.4.1 Number of Distance Calculations

Originally, the OPF classification algorithm tried to extend paths from every node of the
classifier in the search for an optimum path for the new sample (J. P. Papa et al., 2009).
A later optimization allowed to discard some nodes by means of a sorted list of nodes
by cost (J. P. Papa et al., 2010). This is important because extending a path requires
a distance calculation, which is computationally intensive. Thus, the OPF tree aims to
discard a greater number of nodes by means of exploiting properties of metric distances.

In this section we compare the average number of distance calculations that are
performed for each algorithm when classifying a set of samples. This is shown not just
for the testing phase, but also for the learning phase. Recall that this process repeatedly
performs the classification of an evaluation set to improve the precision of the classifier.
The average numbers of distance calculations are presented as a percentage of the size of
the OPF classifier, which is also the size of the OPF Tree.

In Figures 5.5, 5.6 and 5.7 we denote the original classification algorithm by simply
OPF, and our techniques by OPF-tree and OPF-tree-ρ, respectively. The former refers to
the variant that runs in a depth-first order fashion and the later refers to the variant that
runs in priority order based on the cost C of the elements of the OPF. The x-axis represents
the iteration number for the learning algorithm (where classification is performed for Z2).
The latest iteration represents the testing phase (where classification is performed for Z3).

In order to better analyze the results, we have divided the datasets in three groups
according to how performant the OPF Tree was when compared to the original OPF classi-
fication algorithm. At the end of this section, we discuss the reason for these performance
differences.

Datasets where OPF Tree was highly performant

Figure 5.5 contains the datasets on which OPF-tree and OPF-tree-ρ greatly outperform
OPF in number of distances calculations. Examining only the testing phase, the OPF Tree
performed just 2% (for depth-first order) and 4.4% (for priority order) of the number of
comparisons of the original algorithm on the SkinSeg dataset. On the Statlog dataset,
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Figure 5.5: Number of Distance Calculations for the classification algorithms on Low
Intrinsic Dimensionality Datasets

the OPF Tree performed 7% (for depth-first order) and 7.5% (for priority order) of the
number of comparisons of the original algorithm. Finally, on the MiniBooNE dataset,
the OPF Tree performed 10% (for depth-first order) and 7.6% (for priority order) of the
number of comparissons of the original algorithm. However, in this case the OPF performed
a lower number of iterations in the learning phase.

As seen, OPF-tree performed better than OPF-tree-ρ on datasets SkinSeg and
Statlog, which happen to be the datasets with lower number of features. The OPF-

tree-ρ was the best technique for MiniBooNE dataset.
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Figure 5.6: Number of Distance Calculations for the classification algorithms on Medium
Intrinsic Dimensionality Datasets
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Figure 5.7: Number of Distance Calculations for the classification algorithms on High
Intrinsic Dimensionality Datasets

Datasets where OPF Tree was reasonably performant

Figure 5.6 contains the datasets on which OPF-tree and OPF-tree-ρ performed reason-
ably better than OPF regarding the number of distance calculations. Examining only the
testing phase, the OPF Tree perfomed 32% (for depth-first order) and 26% (for priority
order) of the number of comparisons of the original algorithm on the MAGIC dataset. On
the Digits dataset, the OPF Tree performed 68% (for depth-first order) and 52% (for
priority order) of the number of comparisons of the original algorithm.

In this case, OPF-tree-ρ performed better than OPF-tree on both datasets, which
have around the same number of number of features.

Datasets where OPF Tree was somewhat performant

Lastly, Figure 5.7 contains the datasets on which OPF-tree and OPF-tree-ρ performed
just slightly better than the original OPF. Examining only the testing phase, the OPF tree
did 73% (for depth-first order) and 67% (for priority order) of the number of comparisons
of the original algorithm on the Letter dataset. On the SDD dataset, the OPF tree did
86.3% (for depth-first order) and 85.6% (for priority order) of the number of comparisons
of the original algorithm.

In this last set of datasets, the OPF-tree-ρ also performed better than OPF-tree,
with a very small margin in the case of SDD dataset.

OPF Tree and the Intrinsic Dimensionality

In the past paragraphs, we have seen how the OPF Tree performed very differently with
different datasets. On a first attempt to explain this, one could relate the performance to
the number of features of the datasets. For instance, the dataset on which the OPF Tree
performed best was SkinSeg and the dataset on which it performed worst was MiniBooNE,
which happen to be the datasets with lowest number of features and highest number of
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Figure 5.8: Intrinsic dimensionality of datasets vs. the number of distance calculations
on classification algorithms

features, respectively. However, both MiniBooNE and SDD datasets have the same number
of features but the performance on them was very different.

Chavez et. al. relate the performance of the metric access methods to the so called
intrinsic dimensionality. Given a metric space X , the intrinsic dimensionality ρ is defined
as follows (Chávez et al., 2001):

ρ =
µ2

2σ6
(5.2)

where µ and ρ2 are, respectively, the mean and variance of the histogram of distances of
the space. They showed that as the intrinsic dimensionality of the space increases, the
performance of the multidimensional access methods degrades.

We decided to relate the performance of the OPF Tree to the intrinsic dimensionality,
too. Figure 5.8 shows the relationship between the intrinsic dimensionality of the datasets
and the performance of the classification algorithms (only testing phase considered). The
continuous graphs are a least square approximation of the data with functions of the form
1− exp (−c · x), where c is a constant and x is the intrinsic dimensionality.

This family of functions converge to 1 in the infinity, allowing us to express the fact
that, as the intrinsic dimensionality increases, no nodes can be skipped by the algorithms.
We see that both versions of the OPF Tree are comparable, but with the priority order
version skipping slightly more nodes than the depth-first order version. Both outperform
the original OPF algorithm.
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5.4.2 Execution Time

In Section 4.1.3 we also introduced the parallel version of the OPF Tree construction and
querying. We now assess its running time performance, including building and classifica-
tion, by comparing POPF-tree and POPF-tree-ρ against POPF (non-vectorized version).
Recall that POPF was our most performant parallel training algorithm, as we have seen
in Section 5.3. We compare both the learning (which repeatedly performs classifications)
and evaluation times. Note that the P in POPF-tree and POPF-tree-ρ stands for their
parallel nature.

Just like we did when discussing the number of distances calculations, we split the
datasets in three sets according to how well the OPF Tree performed on them. We
start with the OPF Tree-friendly datasets, on which the POPF-tree and POPF-tree-ρ
outperformed POPF. Next, we present the OPF Tree-unfriendly datasets, on which POPF

outperformed POPF-tree and POPF-tree-ρ. Lastly, we present the results for the OPF
Tree-oblivious datasets, on which the algorithms performed comparably. We used three
degrees of parallellism: 1, 2 and 4 threads. Each experiment was performed 5 times. In
all cases, the standard deviation was calculated and is shown as error bars in the graphs
reporting the execution time.

5.4.3 OPF Tree-friendly

Figure 5.9 shows the running times for the datasets where the POPF-tree and POPF-tree-

ρ vastly outperformed POPF. In particular, the best results were obtained for the SkinSeg

dataset where, for the greatest degree of parallelism, the POPF-tree was 41 times faster
and the POPF-tree-ρ was 21 times faster than POPF in the classification phase. For the
MiniBooNE dataset, which has the highest number of features, the OPF-tree was 7.1 times
faster and the OPF-tree-ρ was 5.7 times faster than POPF. Next, for the Statlog dataset,
the OPF-tree was 6.7 times faster and the POPF-tree-ρ was 2.7 times faster than POPF.
Lastly, for the MAGIC dataset, the POPF-tree was 2.3 times faster and the OPF-tree-ρ
was 1.9 times faster than POPF.

It is worth noticing that, in all cases the POPF-tree performed best. This is also true
for the datasets where the POPF-tree-ρ performs a lower amount of distance calculations.
This can be attributed to the internal costs of maintaining the priority queue.

For all of the cases, the learning phase did not take longer for the POPF-tree and
POPF-tree-ρ when compared to POPF. The best representative was the MiniBooNE dataset
where the OPF-tree was 1.8 times faster and POPF-tree-ρ was 1.7 times faster than POPF

when using 4 threads. In the case of SkinSeg dataset, OPF-tree performed roughly
equally to POPF.

5.4.4 OPF Tree-unfriendly

On the SDD dataset, the OPF Tree did not perform well, as can be seen in Figure 5.10. The
POPF performed 1.2 times faster than POPF-tree and 1.5 times faster than POPF-tree-ρ
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Figure 5.9: Execution times for the classification algorithms on the OPF Tree-friendly
datasets
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Figure 5.10: Execution times for the classification algorithms on the OPF Tree-unfriendly
datasets

on the evaluation phase. On the learning phase, POPF performed equally to POPF-tree

and 1.4 times faster than POPF-tree-ρ.

In this case, the lesser number of distance calculations was not enough to account
for the OPF Tree building time, for both learning and testing phases.

5.4.5 OPF Tree-oblivious

There were two datasets on which the OPF Tree time performance did not have a sig-
nificant difference from that of the POPF. The graphs can be seen in Figure 5.11. In the
Digits dataset, POPF-tree was 1.2 faster than POPF, but POPF was 1.8 times faster than
POPF-tree-ρ. In the Letter dataset, the POPF performed equally to POPF-tree and 2.6
times faster than POPF-tree-ρ.

Regarding the learning phase, for the Digits dataset, the POPF performed equally
to POPF-tree and 1.4 times faster than POPF-tree-ρ. In the Letter dataset, the POPF

also performed equally to POPF-tree and 1.9 times faster than POPF-tree-ρ.

The OPF Tree with priority order was the clear loser on these datasets, both in the
learning and training phase. On the other hand, the difference in performance between
the OPF Tree with depth-first order and POPF was not significant.
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Figure 5.11: Execution times for the classification algorithms on the OPF Tree-oblivious
datasets
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Chapter 6

Conclusions

This work has two main contributions for the OPF supervised classifier: a coarse-grained
parallelization for the OPF training and a new classification algorithm based on a novel
spatial index data structure. Both techniques have been proved to effectively improve the
running time of all phases of the OPF classifier.

We presented two variants of a parallel OPF training and we demonstrated their
efficiency concerning classification tasks. The POPF algorithms, as we named them, are
based on three important observations: (i) the optimum-path computation process for
each training sample is independent to each other; (ii) the fully connected training graph
allows us to perform a data-partition scheme for the nodes of the graph; and (iii) the com-
putation of the MST during the training phase can also be performed in parallel. We also
used the second observation to replace the priority queue from the serial algorithm with
a parallel linear search on an array without introducing more computational complexity.
Our parallel algorithms scaled well as the number of threads increased.

We have also seen that most of the burden of the algorithms is in the distance
calculations. We noted that they can be speed up by means of vectorized operations
that some processors provide. This allowed us to obtain speedups that doubled the un-
vectorized versions of the algorithms.

We also introduced the OPF Tree, an spatial data structure that indexes the OPF
for faster classifications. For building the OPF Tree, we defined the OPF distance and the
OPF triangle inequality, similar to the metric distance and triangle inequality, respectively.
These mathematical tools allow the construction of spatial indexes for proximity queries.
Similarly, we used the OPF distance and the OPF triangle inequality to build a novel
data structure for obtaining the optimum path on the OPF for a query sample.

The performance of the OPF Tree varied for our testing datasets. We were able
to establish a relationship between the intrinsic dimensionality of the dataset and the
performance of the data structure for classifying it. As a result, we were able to classify
samples up to 41 times faster than POPF. On the cases where the OPF tree did not
perform as good, it was at least as fast as POPF.

We presented two versions of the OPF Tree query, which vary on the order in which
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the nodes of the tree are visited. A priority-based ordering obtained better theoretical
results, on which a lesser number of distance calculations are performed. However, on
practice, the depth-first order had a better running time, because it does not have the
burden of maintaining a priority queue.

Thus, POPF and the OPF Tree allow to perform classification of very large datasets
when timing restrictions are present, and they bring closer the possibility of performing
nearly real-time classification for reasonable sized-datasets even on a single computer or
mobile device.
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Appendix A

Proofs for the OPF Spatial Indexing

A.1 OPF Triangle Inequality

Lemma 1. Given p, q, t ∈ Z, the OPF-distance δ satisfies:

δ(p, q) ≤ d(p, t) + δ(t, q) (A.1)

Proof. We proof for each of the 2 cases of Equation 4.1:

For case 1, where δ(p,q) = d(p,q).

From 4.2:

d(t,q) ≤δ(t,q) (A.2)

d(p, t) + d(t,q) ≤d(p, t) + δ(t,q) (A.3)

From triangle inequality 4.5:

d(p,q) ≤d(p, t) + d(t,q) (A.4)

Hence, from A.3 and A.4:

d(p,q) ≤d(p, t) + δ(t,q) (A.5)

δ(p,q) ≤d(p, t) + δ(t,q) (A.6)

For case 2, where δ(p,q) = C(q).

From 4.3:

C(q) ≤δ(t,q) (A.7)

Recalling that distances are non-negative:

0 ≤d(p,q) (A.8)

δ(t, q) ≤d(p,q) + δ(t,q) (A.9)
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Hence, from A.7 and A.9:

C(q) ≤d(p, t) + δ(t,q) (A.10)

δ(p,q) ≤d(p, t) + δ(t,q) (A.11)

Lemma 2. Given p, q, t ∈ Z, where C(p) ≤ C(q), the OPF-distance δ satisfies:

δ(x, p) ≤ δ(p, q) + δ(x, q) (A.12)

Proof. Again, we proof for each of the 2 cases of Equation 4.1:

For case 1, where δ(p,q) = d(p,q).

From 4.2:

d(p,q) ≤δ(p,q) (A.13)

and d(t,q) ≤δ(t,q) (A.14)

d(p,q) + d(t,q) ≤δ(p,q) + δ(t,q) (A.15)

From triangle inequality 4.5:

d(t,p) ≤d(t,q) + d(q,p) (A.16)

Alternatively, given that distance d is symmetric

d(t,p) ≤d(p,q) + d(t,q) (A.17)

Hence, from A.15 and A.17:

d(t,p) ≤δ(p,q) + δ(t,q) (A.18)

δ(t,p) ≤d(p, t) + δ(t,q) (A.19)

For case 2, where δ(t,p) = C(p).

From 4.3:

C(q) ≤δ(p,q) (A.20)

and C(q) ≤δ(t,q) (A.21)

C(q) ≤ 2 · C(q) ≤δ(p,q) + δ(t,q) (A.22)

By hypothesis:

C(p) ≤C(q) (A.23)

Hence, from A.22 and A.23:

C(p) ≤δ(p,q) + δ(t,q) (A.24)

δ(t,p) ≤δ(p,q) + δ(t,q) (A.25)
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A.2 The OPF Tree

Lemma 3. Given p, q, t ∈ Z, where d(p, t) + r ≤M and δ(p, q) > M , then δ(t, q) > r.

Proof.

From OPF Triangle Inequality (Lema 1):

δ(p,q) ≤d(p, t) + δ(t,q) (A.26)

δ(p,q)− d(p, t) ≤δ(t,q) (A.27)

From hypotheses:

d(p, t) + r ≤M (A.28)

r ≤M − d(p, t) (A.29)

and δ(p,q) >M (A.30)

0 <δ(p,q)−M (A.31)

Adding A.29 and A.31:

r < δ(p,q)− d(p, t) (A.32)

Thus, from A.27 and A.32:

r < δ(t,q) (A.33)

Lemma 4. Given p, q, t ∈ Z, where C(p) ≤ C(q), δ(p, q) ≤ M and δ(t,p) − r > M ,
then δ(t, q) > r.

Proof.

From OPF Triangle Inequality (Lema 2):

δ(t,p) ≤δ(p,q) + δ(t,q) (A.34)

δ(t,p)− δ(p,q) ≤δ(t,q) (A.35)

From hypotheses:

δ(p,q) ≤M (A.36)

−δ(p,q) ≥−M (A.37)

and δ(t,p)− r >M (A.38)

δ(t,p) >M + r (A.39)

Adding A.37 and A.39:

δ(t,p)− δ(p,q) > r (A.40)

Thus, from A.35 and A.40:

r < δ(t,q) (A.41)
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