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Fuzzy Virtual Reference Model Sensorless

Tracking Control for Linear Induction Motors
Cheng-Yao Hung, Peter Liu, Member, IEEE, and Kuang-Yow Lian, Member, IEEE,

Abstract

This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor

(LIM) speed sensorless tracking control. First, we represent the LIM as a T-S fuzzy model. Second, we estimate

the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control

into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving

a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential

convergence is guaranteed. The contributions of the approach in this paper are three folds: i) simplified approach –

speed tracking problem converted to stabilization problem; ii) omit need of actual reference model – fuzzy virtual

reference model generates internal desired states; and iii) unification of controller and observer design – control

objectives are formulated into LMI problem where powerful numerical toolboxes solve controller and observer gains.

Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient

response and robustness.

Index Terms

TS fuzzy model, linear induction motors, sensorless control

I. INTRODUCTION

Linear induction motors (LIMs) have characteristics such as high initial thrust force, alleviation of gear between

motor and the motion devices, reduced mechanical losses, relatively small physical size of motion devices, and low

audible noise, etc [1]–[4]. Due to these advantages, the LIM is widely used in many industrial applications, e.g.,

transportation systems, conveyor systems, and factory material handling.

The mathematical model of an LIM is similar to the conventional rotary induction motor. However, the LIMs

are more complicated since we must consider: i) end-effects, dependent on the speed of the mover, and ii) elec-

tromechanical coupling constants, which are larger than conventional rotary induction motors. The facts mentioned

above motivate us to improve the control for LIMs. In conventional induction motor control systems (both for
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rotary and linear), speed sensors, such as an encoder or resolver, is necessary for the feedback system to achieve

motion control. However, this necessity not only increases the cost, weight, and complexity of the overall system

but also degrades the robustness and reliability. Take note that sensors for linear movement measurement are very

expensive, often costing more than the standalone LIM. Therefore, the sensorless control problem is inevitable for

LIMs. In the works [5], a nonlinear observer is used to estimate the flux for a rotary induction motor. Nevertheless,

nonlinear observers are quite complex in structure. In the comparative study of sensorless approaches in [6]–[13],

including rotor-flux model reference adaptive model (MRAS) (e.g., see [14]), torque-current MRAS, and adaptive

nonlinear flux observer, rely on trial and error approaches to find suitable observer gains. In the studies [15], [16],

robust adaptive control for induction motors have been proposed considering parametric uncertainties and external

disturbance. In light of the above sensorless nonlinear-based control approaches of induction motors, a systematic

and unified observer/controller design utilizing powerful computational tools to find suitable controller/observer

gains would be advantageous.

Fuzzy representation of nonlinear systems is an important topic [17], [18]. Especially, nonlinear systems can be

represented by Takagi-Sugeno (T-S) fuzzy rules with consequent parts as linear subsystems [20]. The nonlinear

control problem is therefore decomposed to finding the corresponding local linear compensators (i.e., using parallel

distribute compensation (PDC) approach [21], [22]) for each subsystem to achieve the desired objectives. The

stability analysis is then carried out using Lyapunov direct method where the control problem is formulated

into a set of linear matrix inequality problems (note that we do not abbreviate to LMI to avoid confusion).

Corresponding observer/controller gains can be obtained by solving the linear matrix inequalities [23]–[26] using

powerful computational toolboxes (e.g., Matlab’s Linear Matrix Inequality Toolbox).

In this paper, we design a fuzzy observer to estimate the internal states using information of only the two-phase

current. This however imposes a problem, immeasurable premise variables arise in the fuzzy rules which couple

the estimation error dynamics with the tracking error dynamics. To solve this problem, the observer design forms

a vanishing perturbation when the membership functions satisfy a Lipschitz-like condition. The observer gain and

controller gain can then be separately designed based on a separation property. Note that the T-S fuzzy model of

the LIM is exactly equivalent to the original dynamic equations in the region of interest, i.e., no error exists in

fuzzy modeling. This implies the stability result is held in a large region which is better than typical methods based

on approximated models. In addition, we introduce a fuzzy virtual reference model (FVRM) controller synthesis.

Compared to the work [27], [28], where only the fuzzy observer gains are solved using linear matrix inequalities

while controller gains still rely on trial and error method, the combined FVRM and fuzzy observers approach

introduces two additional merits: i) rigorous proof carried out on the overall estimation and tracking stability of

the nonlinear system and ii) independent tuning of the decay rate for each state. In addition, we ensure exponential

convergence for both estimation and tracking errors. The overall contributions of the approach in this paper are three

folds: i) simplified approach – speed tracking problem converted to stabilization problem; ii) omit need of actual

reference model – fuzzy virtual reference model generates internal desired states; and iii) unification of controller

and observer design – control objectives are formulated into LMI problem where powerful numerical toolboxes
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solve controller and observer gains. To demonstrate the effectiveness of the proposed scheme, a practical voltage-fed

LIM system is used as an example to achieve speed tracking. The experiment results achieve good performance

even in low speeds.

The rest of the paper is organized as follows. In Sec. II, we introduce the full model of linear induction motor

and T-S fuzzy model representation. In Sec. III, we present the T-S fuzzy observer and controller design. In Sec.

IV, we address the FVRM design and implementation procedure along with the stability analysis. In Section V,

the experiments are carried out to illustrate the performance control scheme. Finally, some conclusions are made

in Sec. VI.

II. LIM DYNAMICAL MODEL

The fifth-order dynamic model of the LIM in a-b stationary reference frame as follows [29]–[31]:

i̇pa = − γ
σ ipa +

πnp

σℓ vmλsb +
Rs

σLs
λsa +

Ls

σLm
Vpa

i̇pb = − γ
σ ipb −

πnp

σℓ vmλsa +
Rs

σLs
λsb +

Ls

σLm
Vpb

λ̇sa = LmRs

Ls
ipa − πnp

ℓ vmλsb − Rs

Ls
λsa

λ̇sb = LmRs

Ls
ipb +

πnp

ℓ vmλsa − Rs

Ls
λsb

v̇m = F
M − Fl

M − D
M vm (1)

where γ =
(

LsRp

Lm
+ LmRs

Ls

)
, σ = LsLp/Lm − Lm, F = κ (ipbλsa − ipaλsb), κ = 3πnpLm/2ℓLs, and

ipa (ipb) a-axis and b-axis primary current

Vpa (Vpb) a-axis and b-axis primary voltage

λsa (λsb) a-axis and b-axis secondary flux

vm mover speed

Rp (Rs) primary (secondary) resistance

Lp (Ls) primary (secondary) inductance

Lm mutual inductance

ℓ pole pitch

M primary mass

D viscous friction

np number of pole pairs

Fl load disturbance

F electromechanical coupling force

κ force constant

Remark 1: The fundamental difference between an RIM and an LIM is the finite length of the magnetic and electric

circuit of the LIM along the direction of the traveling field. The open magnetic circuit causes an initiation of the
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so-called longitudinal end-effects. In an LIM, as the primary moves, the secondary flux continuously shifts along

the same moving direction. This linear shift will induce a resistance to a sudden increase in flux penetration at the

leading front since only a gradual build-up of the flux density in the air-gap is permitted. In details, as the primary

coil set of the LIM moves, a new field penetrates into the reaction rail in the entry area, whereas the existing field

disappears at the exit area of the primary coil as shown in Fig. 1.

Primary

Secondary

Air-gap average flux

Motor length

Fig. 1. Air-gap average flux distribution due to end-effect.

When the speed increases, the air-gap flux becomes more unbalanced. Since the mutual flux between the primary

and the secondary is decreased by the end-effect, we can see that the equivalence of the end-effect is a reduction

force as a function of speed. As we know that most functions can be described in Taylor’s series, we represent the

end-effect as an external force
∑∞

n=0 θ
′

nv
n
m, where it increases with the speed of the primary (cf. [33], [34]). As

a result, for an LIM, the end-effect plus the load force can be represented as a function of the speed vm, in the

following form:

Fl =
2∑

n=0

θ
′

nv
n
m + Ff

= θ
′

0 + θ
′

1vm + θ
′

2v
2
m + θf0 + θf1vm + θf2v

2
m (2)

In the following, we will truncate the series (2) with only the first three terms.

Fl = θ0 + θ1vm + θ2v
2
m. (3)

From the relationship 3, the end-effect increases with the speed of the primary. We can include the nominal part

of the load force as part of the damping force, whereas the remainder effects is taken as uncertainty in the system.

Conventional adaptive techniques to deal with the uncertainty lead to a complex controller design (i.e., encounter

the mixed problem of simultaneously identifying the parameters and estimating state variables). Here, we propose

an alternative approach to cope with this uncertainty by synthesizing a simplified robust controller where the error

system is exponentially stable. �
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To represent the LIM into a T-S fuzzy model, we further rewrite Eqs. (1) as follows:

ẋ (t) = A (x)x (t) +Bu+ bFl

y (t) = Cx (t) , (4)

where x (t) = [x1 x2 x3 x4 x5]
⊤ = [ipa ipb λsa λsb vm]⊤ are the overall states; y (t) = [ipa ipb]

⊤ are the

measurable outputs; u = [Vpa Vpb]
⊤ = [u1 u2]

⊤ is the control input; and the associated matrices and vector:

A (x) =



− γ
σ 0 Rs

σLs
0

πnp

σℓ λsb

0 − γ
σ 0 Rs

σLs
−πnp

σℓ λsa

LmRs

Ls
0 −Rs

Ls
−πnp

ℓ vm 0

0 LmRs

Ls

πnp

ℓ vm −Rs

Ls
0

− κ
M λsb

κ
M λsa 0 0 − D

M


,

B =



Ls

σLm
0

0 Ls

σLm

0 0

0 0

0 0


, b =



0

0

0

0

− 1
M


, C =



1 0

0 1

0 0

0 0

0 0



⊤

.

According to [27], the T-S fuzzy model rules of (4) are:

Plant Rule i :

IF λsa is F1i and λsb is F2i and vm is F3i THEN

ẋ (t) = Aix (t) +Bu (t) + bFl

y (t) = Cx (t) , i = 1, · · · , 8, (5)

where λsa, λsb, and vm are immeasurable premise variables. The fuzzy sets Fji(j = 1, 2, 3) are set to F11 =

F12 = F13 = F14 = x3−d1

D1−d1
;F15 = F16 = F17 = F18 = D1−x3

D1−d1
; F21 = F22 = F25 = F26 = x4−d2

D2−d2
; F23 = F24 =

F27 = F28 = D2−x4

D2−d2
; F31 = F33 = F35 = F37 = x5−d3

D3−d3
; and F32 = F34 = F36 = F38 = D3−x5

D3−d3
. The system

matrices Ai of subsystem i are given by

Ai =



− γ
σ 0 Rs

σLs
0

πnp

σℓ δi

0 − γ
σ 0 Rs

σLs
−πnp

σℓ φi

LmRs

Ls
0 −Rs

Ls
−πnp

ℓ ϑi 0

0 LmRs

Ls

πnp

ℓ ϑi −Rs

Ls
0

− κ
M δi

κ
Mφi 0 0 − D

M


,

where φ1 = D1, δ1 = D2, ϑ1 = D3; φ2 = D1, δ2 = D2, ϑ2 = d3; φ3 = D1, δ3 = d2, ϑ3 = D3; φ4 = D1,

δ4 = d2, ϑ4 = d3; φ5 = d1, δ5 = D2, ϑ5 = D3; φ6 = d1, δ6 = D2, ϑ6 = d3; and φ7 = d1, δ7 = d2, ϑ7 = D3;

φ8 = d1, δ8 = d2, ϑ8 = d3. In these fuzzy rules, d1 and D1 are accordingly the lower bound and upper bound

of λsa; d2 and D2 are accordingly the lower bound and upper bound of λsb; d3 and D3 are accordingly the
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upper bound and lower bound of vm. Using the singleton fuzzifier, product fuzzy inference and weighted average

defuzzifier, the inferred output of the fuzzy system

ẋ (t) =
8∑

i=1

µi(x(t)) {Aix (t) +Bu (t) + bFl}

y (t) = Cx (t) , (6)

where µi(x(t)) = χi(x(t))/
∑8

i=1 χi(x(t)) with χi(x(t)) =
∏3

j=1 Fji(x(t)). Note that
∑8

i=1 µi(x(t)) = 1 for all

t, where µi (x (t)) ≥ 0 for all i = 1, · · · , 8. Based on Fji and Ai, we can verify that the inferred output is exactly

equivalent to the model of the LIM (4) in the region of interest.

Notice that the membership functions Fij (·) satisfy Fij (x (t))−Fij (x̂ (t)) = η⊤ij(x(t)− x̂(t)) for some bounded

function vector η⊤ij and any x, x̂ in the region of interest. We therefore conclude the following property which leads

to separate observer and controller design:

Property 1: The grade function error is proportional to the estimation error e = x− x̂, i.e.,

µi(x(t))− µi(x̂(t)) = η⊤1i(x− x̂)F2i (x)F3i (x) + F1i (x̂) η
⊤
2i(x− x̂)F3i (x) + F1i (x̂)F2i (x̂) η

⊤
3i(x− x̂)

= Λ⊤
i (x (t)− x̂ (t))

= Λ⊤
i e,

for some bounded function vector Λ⊤
i .

III. T-S FUZZY MODEL DESIGN OF LIM

Since the mover speed and secondary flux are immeasurable, we need to design a fuzzy observer to estimate

the internal states. As mentioned, the immeasurable premise variables of fuzzy rules couple the estimation error

dynamics and tracking error dynamics. This leads to failure in separate design of observer gains and control gains.

In addition, there exist residual estimation errors and tracking errors. Fortunately, the observer-based control design

yields a vanishing perturbation if the membership functions satisfy a Lipschitz-like condition (see Property 1) which

allows separately designing the observer gain and control gain.

A. Fuzzy Observer Design

We now design the fuzzy observer to estimate the immeasurable states. According to the fuzzy model (5), and

assuming the pair (Ai, C) is observable, the observer rules are as follows:

Observer Rule i :

IF λ̂sa is F1i and λ̂sb is F2i and v̂m is F3i THEN
.

x̂ (t) = Aix̂ (t) +Bu (t) + bFl + Li(y (t)− ŷ (t))

ŷ (t) = Cx̂ (t) , i = 1, · · · , 8
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where the premise variables λ̂sa, λ̂sb, and v̂m are accordingly the estimations of λsa, λsb, and vm; x̂ (t) and ŷ (t)

are accordingly the estimation of x (t) and y (t); and Li is an observer gain to be determined later. The inferred

output of the observer

.

x̂ (t) =

8∑
i=1

µi(x̂(t)){Aix̂ (t) +Bu (t) + bFl + Li(y (t)− ŷ (t))}

ŷ (t) = Cx̂ (t) . (7)

Define the state estimation error e (t) = x (t)− x̂ (t). Subtracting (6) by (7), we have

ė (t) =
8∑

i=1

µi(x(t)) {Aix (t) +Bu (t)} −
8∑

i=1

µi(x̂(t)) {Aix̂ (t) +Bu (t) + Li(y (t)− ŷ (t))}

=

8∑
i=1

µi(x(t)) {(Ai − LiC)e}+ h1 (t) , (8)

where h1 (t) =
∑8

i=1 (µi (x)− µi (x̂)) {Aix̂+ LiCe} . The term h1 (t) in (8) is unknown due to immeasurable

premise variables λsa, λsb, and vm.

B. Observer-based Controller Design

According to the T-S fuzzy model (5), we introduce FVRM and denote xd = [x1d x2d x3d x4d x5d]
ᵀwhich is

tracked by state variable x. The control objective is for system output x5 to track the desired output x5d. Define

the tracking error x̃ (t) = x (t)− xd (t). The time derivative of tracking error

.
x̃ (t) = ẋ (t)− ẋd (t)

=
8∑

i=1

µi (x (t)) {Aix+Bu+ bFl} − ẋd

=
8∑

i=1

µi (x (t)) {Aix+Bu+ bFl} − ẋd +
(
A (x̂)xd +Ω

)
−

8∑
i=1

µi (x̂ (t))Aixd

=
8∑

i=1

µi (x (t))Aix̃ (t) +Bτ (t) + h̄2 (t) (9)

where

Bτ (t) = Bu (t) + bFl +A (x̂)xd (t)− ẋd (t) , (10)

and h̄2 (t) =
∑8

i=1 (µi (x (t))− µi (x̂ (t)))Aixd (t) +Ω. Note that the new control variable τ (t) is to be designed

later and Eq. (10) will be used for applying FVRM synthesis in the upcoming section. Define

A (x̂) =



− γ
σ 0 Rs

σLs
0

πnp

σℓ λ̂sb

0 − γ
σ 0 Rs

σLs
−πnp

σℓ λ̂sa

LmRs

Ls
0 −Rs

Ls
−πnp

ℓ v̂m 0

0 LmRs

Ls

πnp

ℓ v̂m −Rs

Ls
0

− κ
M x4d

κ
M x3d 0 0 − D

M


,
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and Ω = [0 0 0 0 κ
M (x1d (e4 − x̃4) + x2d(x̃3 − e3))]

⊤
with x̃3 = x3 − x3d, x̃4 = x4 − x4d, e3 = x3 − x̂3,

e4 = x4 − x̂4.

From the viewpoint of tracking error system (9), the design for τ (t) is similar to solving a stabilization problem.

In other words, the control objective is for x̃ (t) to be zero whereas the new fuzzy controller τ (t), according to

PDC, is as follows:
Control Rule i : IF λ̂sa is F1i and λ̂sb is F2i

and v̂m is F3i THEN

τ (t) = −Ki {x̂ (t)− xd (t)} ,

where Ki represent feedback gains. The inferred output τ (t) = −
∑8

i=1 µi (x̂ (t))Ki {x̂ (t)− xd (t)} . After

substituting the control input into (9), the tracking error system

·
x̃ (t) =

8∑
i=1

µi (x (t))Aix̃ (t) +Bτ (t) + h̄2 (t)

=
8∑

i=1

µi (x (t)) {Aix̃ (t)−BKi(x̂ (t)− xd (t)}}+ h2 (t)

=
8∑

i=1

µi (x (t)) {(Ai −BKi) x̃ (t) +BKie (t)}+ h2 (t) , (11)

where h2 (t) =
∑8

i=1 (µi (x (t))− µi (x̂ (t))) {Aixd (t) + BKi (x̂ (t)− xd (t))} + Ω. By combining (8) and (11),

an augmented error system

Ψ̇ (t) =
8∑

i=1

µi (x (t)) ÃiΨ(t) + h (t) , (12)

where

Ψ(t) =

 e (t)

x̃ (t)

 , Ãi =

 Ai − LiC 0

BKi Ai −BKi

 ,

h (t) =

 h1 (t)

h2 (t)


In (12), the term h (t) can be taken as disturbance in the augmented error system.

Remark 2: According to Property 1, the perturbation h1 (t) is bounded by the relationship

h⊤
1 h1 ≤ e⊤Θ⊤Θe

with a symmetric positive-definite matrix Θ. �
Remark 3: Suppose that xd (t) is bounded and Property 1 satisfied, the disturbance h2 (t) is therefore bounded by

the relationship

h⊤
2 h2 ≤ e⊤Υ⊤Υe+ x̃⊤Φ⊤Φx̃

with symmetric positive-definite matrices Υ and Φ. �
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u

Fuzzy VRM Part I 
（Flux and Angle）

dv

Fuzzy VRM Part II 
（Current）

3 4,  ,  d dx x ρ�

State tracking 
PDC Control Input

τ

dx

Fig. 2. The fuzzy VRM design procedure.

IV. FUZZY VRM IMPLEMENTATION

In this section, we further synthesize the VRMs−the virtual desired current (x1d, x2d) and virtual desired flux

(x3d, x4d). First, we specify the constant desired flux

c2 = x2
3d + x2

4d (13)

for the generation of an optimal force. Considering the constraint (10), we have the following expression:

Ls

σLm
(τ1 − u1) = − γ

σx1d +
Rs

σLs
x3d +

πnp

σℓ λ̂sbx5d − ẋ1d (14)

Ls

σLm
(τ2 − u2) = − γ

σx2d − πnp

σℓ λ̂sax5d +
Rs

σLs
x4d − ẋ2d (15)

0 = LmRs

Ls
x1d − Rs

Ls
x3d − πnp

ℓ v̂mx4d − ẋ3d (16)

0 = LmRs

Ls
x2d +

πnp

ℓ v̂mx3d − Rs

Ls
x4d − ẋ4d (17)

0 = κ
M x2dx3d − κ

M x1dx4d − D
M x5d − Fl

M − ẋ5d. (18)

The Eqs. (16) and (17) can be rewritten as ẋ3d

ẋ4d

 =
(

πnp

ℓ v̂mJ2 − Rs

Ls
I2

) x3d

x4d

+ LmRs

Ls

 x1d

x2d

 , (19)

where

I2 =

1 0

0 1

 , J2 =

0 −1

1 0

 .

For simplification (along with (13)), we set x3d

x4d

 =

 c cos (ρ (t))

c sin (ρ (t))

 , (20)
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where the variable ρ (t) is determined later. We therefore have ẋ3d

ẋ4d

 =

 −ρ̇x4d

ρ̇x3d

 = ρ̇J2

 x3d

x4d

 . (21)

Substituting (21) into (19), the desired state vector x1d

x2d

 =
{

Ls

LmRs

(
ρ̇− πnp

ℓ v̂m
)
J2 +

1
Lm

I2

} x3d

x4d

 . (22)

The time derivatives ẋ1d

ẋ2d

 = Ls

LmRs

(
DLmRs

κLsc2
ẋ5d +

MLmRs

κLsc2
ẍ5d

)
J2

 x3d

x4d

+
{

Ls

LmRs

(
ρ̇− πnp

ℓ v̂m
)
J2 +

1
Lm

I2

} ẋ3d

ẋ4d

 . (23)

From (18), the time derivative

ρ̇ (t) =
πnp

ℓ v̂m + DLmRs

κLsc2
x5d +

MLmRs

κLsc2
·
x5d +

LmRsFl

κLsc2
. (24)

Finally, from (14) and (15), the control law u1

u2

 = σLm

Ls

 ẋ1d

ẋ2d

+ γLm

Ls

 x1d

x2d

− LmRs

L2
s

 x3d

x4d

+
πnpLm

ℓLs
x5d

 −λ̂sb

λ̂sa

+

 τ1

τ2

 . (25)

We illustrate the FVRM design procedure in Fig. 2. Now, we discuss the boundedness of the states of the FVRM.

Remark 4: From (20), the states of the FVRM x3d and x4d are always with upper bound c. By substituting (24)

, ,  u v wV V V

Fuzzy VRM  Part II
Eq. (21)

Fuzzy VRM Part I
Eq. (17) and (22)

3 4, , d dx x ρ�dv ˆmv

dx
PWM

Inverter3φ
2φ

1 2, u u Linear encoder
PrimarySecondary

8

1

ˆ( )i i d
i

K x xµ
=

− −∑

Control input
Eq. (23) 

τ
x̂ˆ

saλ ˆ, sbλ

i

Fuzzy Observer
Eq. (5) 

i

Fig. 3. The overall structure of the T-S fuzzy model-based VRM control.
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into (22), we can find x1d and x2d depend only on x3d, x4d, and x5d. In turn, we have x1d, x2d ∈ L∞. All of the

states of the FVRM are therefore always bounded. In addition, from (24), if the estimation v̂m is bounded, then

the terms ρ̇, ẋ3d, and ẋ4d are bounded. In addition, from (23), the variables ẋ1d and ẋ2d are bounded when v̂m is

bounded. As a result, the control inputs u1 and u2 are bounded once x̂ belongs to L∞. Therefore, the stability of

the overall error dynamics (12) can be carried out in the next subsection. �
Remark 5: Here, note that u1 and u2 are somewhat complicated to compute due to the terms of ẋ1d and ẋ2d.

To simplify the implementation of u1 and u2, we use the approximation of ẋ1d and ẋ2d. We use the fact that

differentiation of a signal can be approximated and realized by a high pass filter. Here, the relationship
·
x̄1d+ x̄1d =

x1d in Laplace domain is x̄1d = ( 1
s+1 )x1d which means the variable x̄1d denotes the low pass signal of x1d.

Therefore, the original signal x1d subtracted by the low pass filtered signal x̄1d results in the high pass filtered

signal which leads to ẋ1d ≈ x1d − x̄1d. This is also true for ẋ2d. From experimental results shown later, only

slight difference in transient response exist between using the complete practical control inputs and the approximate

ones. In order to make the experimental result consistent with the theoretical derivations, we use complete practical

control inputs (25) in our experiments. �
The overall structure of the T-S fuzzy observer and FVRM controller is illustrated in Fig. 3.

A. Stability Analysis

Now, we discuss the stability of the overall control system. Consider the Lyapunov function candidate V (Ψ (t)) =

Ψ⊤ (t)PΨ(t) with P is chosen in the following form: P = diag {P1, ϕP2}, where P1 and P2 are symmetric

positive-definite matrices and ϕ > 0. The time derivative

V̇ (Ψ (t)) = Ψ̇⊤ (t)PΨ(t) + Ψ⊤ (t)P Ψ̇ (t)

=

8∑
i=1

µi (x (t))Ψ
⊤ (t)

(
Ã⊤

i P + PÃi

)
Ψ(t) + h⊤PΨ+Ψ⊤Ph.

Note that

h⊤PΨ+Ψ⊤Ph ≤ h⊤
1 h1 + e⊤P1P1e+ ϕ

(
h⊤
2 h2 + x̃⊤P2P2x̃

)
≤ e⊤Θ⊤Θe+ e⊤P1P1e+ ϕ

(
e⊤Υ⊤Υe+ x̃⊤Φ⊤Φx̃+ x̃⊤P2P2x̃

)
,

where we use the definition of h(t); and apply Remarks 1, 2 (which is held by Remark 3). Hence, further derivations

lead to

V̇ (Ψ (t)) ≤
8∑

i=1

µi (x (t))Ψ
⊤

 Hi + ϕΥ⊤Υ ϕK⊤
i B⊤P2

ϕP2BKi ϕGi

Ψ−Ψ⊤

 R1P1R1 0

0 ϕ (R2P2R2)

Ψ

≤
8∑

i=1

µi (x (t))Ψ
⊤


Hi ϕK⊤

i B⊤P2

√
ϕΥ⊤

ϕP2BKi ϕGi 0
√
ϕΥ 0 −I

Ψ−Ψ⊤

 R1P1R1 0

0 ϕ (R2P2R2)

Ψ(26)

where Hi = A⊤
i P1+P1Ai−C⊤L⊤

i P1−P1LiC+Θ⊤Θ+P1P1+R1P1R1 and Gi = A⊤
i P2+P2Ai−K⊤

i B⊤P2−

P2BKi + Φ⊤Φ + P2P2 + R2P2R2 with R1 and R2 as prescribed decay rates of observer and tracking errors,
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respectively. Therefore, we separately design the observer gains Li and control gains Ki according to the following

theorem.

Theorem 1: Assume the desired speed satisfies x5d, ẋ5d, ẍ5d ∈ L∞. The augmented error system (12) is exponen-

tially stable if there exist common symmetric positive-definite matrices X and P1 such that the following linear

matrix inequalities:

Given R1, R2 > 0 A⊤
i P1 + P1Ai − C⊤N⊤

i −NiC +Θ⊤Θ+R1P1R1 P1

P1 −I

 < 0 (27)


XA⊤

i +AiX −M⊤
i B⊤ −BMi + I XΦ⊤ XR⊤

2

ΦX −I 0

R2X 0 −X

 < 0 (28)

are feasible for i = 1, · · · , 8, where Ni = P1Li, Mi = KiX , and X = P−1
2 .

Proof: Using Schur’s complement, the first matrix of Eq. (26) is negative definite if and only if the following

inequalities are held (i = 1, · · · , 8):

Hi < 0 (29)

Gi − ϕ (P2BKi)H
−1
i

(
K⊤

i B⊤P2

)
< 0. (30)

If the inequalities (29) and Gi < 0 are satisfied, there exists a small ϕ such that (30) is held. In other words, we

can reduce the stability condition to solve Hi < 0 and Gi < 0. As a result, we have

V̇ (Ψ) ≤ −Ψ⊤

 R1P1R1 0

0 ϕ (R2P2R2)

Ψ

if linear matrix inequalities (27) and (28) are feasible. Hence, the exponential stability for the augmented error

system is proven. �
The exponential stability of the augmented error system (12) ensures the exponential convergence of errors to

zero. In general cases, the residue of tracking error arises due to existence of h (t). Some methods (such as [35])

can be used to analyze the effect of h (t). However, due to the coupling of the observer gains and the control gains,

the dimensions of linear matrix inequalities are large, often leading to infeasibility. In contrast, we can separately

solve (27) and (28) to get the observer gains Li and control gains Ki from the proposed control design in this

paper.

Remark 6: In solving linear matrix inequalities (27) and (28), the positive definite matrixes R1 and R2 are given

to prescribe the decay rates of observer error and tracking error, respectively. �

V. EXPERIMENTAL RESULTS

To further verify the validity of the proposed scheme, several experiments of sensorless speed control are described

in this section. The experimental setup is shown in Fig. 4. The controller is realized by a DSP-based control card
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feedback
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Computer
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encoder

Primary
Secondary

Fig. 4. The experimental setup.

TABLE I

SPECIFICATIONS AND PARAMETERS OF THE LINEAR INDUCTION MOTOR

Rated Specification

Pole Pair 2

Power 1 HP

Voltage 240 V

Current 5 A

Pole pitch 0.0465 m

Secondary length 0.82 m

Parameters

Rp 13.2 Ω

Rs 11.78 Ω

Lp 0.42 H

Ls 0.42 H

Lm 0.4 H

M 4.775 kg

D 53 kg/s

(Simu-Drive system), which takes the TMS320F2812 DSP (fixed-point 32-bit) as the main control core. The DSP

control card also provides multichannel of A/D and encoder interface circuits. Here, three-phase voltages and

currents are sampled by the A/D converters and fed into the DSP-based controller. The speed is measured by a

linear encoder with precision 20µm for one pulse. In addition, the block-building MATLAB Simulink Toolbox and

Real-Time Workshop are taken as an interface between software and hardware. When the build-up controller block

is established, the Real-Time Workshop plays a role of a compiler to transform the controller into a C code, which

is download to the DSP-based control card. The specifications and parameters of the LIM are listed in Table I.
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Here, choose c = 0.46. Assume the immeasurable premise variables λ̂sa ∈
[
D1 d1

]
=

[
0.8 −0.8

]
, λ̂sb ∈[

D2 d3

]
=

[
0.8 −0.8

]
, and v̂m ∈

[
D3 d3

]
=

[
4 −4

]
. According to LMIs (27) and (28), we let Φ =

diag {1.7, 1.5, 1.1, 0.1, 2.4}, Θ = diag {0.9, 0.5, 0.5, 0.4, 2.81}, R1 = diag{12, 1.9, 7, 7.3, 1.9}, and R2 =

diag {2.7, 3.9, 1.8, 1.7, 0.7}, then using the LMI toolbox of MATLAB to solve the accordingly the observer gains

and control gains:

Li =



−524.9 li1

li2 −599.4

217.9 li3

li4 217.9

li5 li6


,

Ki =

 −23.1 ki1 27.3 ki2 ki3

ki4 −22.6 ki5 27.1 ki6

 ,

where the entries of observer gains li = (li1, li2, li3, li4, li5, li6) are

l1 = (−358.2, 358.2, − 0.05, − 0.002, 968.2, − 968.2) ,

l2 = (195.9, − 195.9, 0.05, 0.007, 968.2, − 968.2) ,

l3 = (401.2, − 401.2, − 0.05, 0.02, − 968.2, − 968.2) ,

l4 = (735.8, − 735.8, 0.04, − 0.01, − 968.2, − 968.2) ,

l5 = (−126.7, 126.7, − 0.05, − 0.009, 968.2, 968.2) ,

l6 = (60.1, − 60.1, 0.05, 0.01, 968.2, 968.2) ,

l7 = (494.1, − 494.1, − 0.05, − 0.03, − 968.2, 968.2) ,

l8 = (−133.8, 133.8, 0.05, 0.01, − 968.2, 968.2) ;

and entries of control gains ki = (ki1, ki2, ki3, ki4, ki5, ki6) are

k1 = (25.7, 0.01, 306.6, − 15.3, − 0.02, − 307.5) ,

k2 = (−22.3, − 0.02, 306.6, 13.3, 0.02, − 307.5) ,

k3 = (−224.8, 0.1, − 306.6, 134, − 0.09, − 307.5) ,

k4 = (−13.7, − 0.02, − 306.6, 8.2, 0.02, − 307.5) ,

k5 = (700.9, − 0.3, 306.6, − 417.8, 0.1, 307.5) ,

k6 = (−193.5, 0.06, 306.6, 115.3, − 0.02, 307.5) ,

k7 = (−500.1, 0.2, − 306.6, 298.1, − 0.1, 307.5) ,

k8 = (−554.2, 0.2, − 306.6, 330.3, − 0.1, 307.5) .
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Based on this setting, the following speed control experiments are performed.

Experiment 1: Speed Regulation

Consider speed regulation with reference vd = 0.5m/sec. The desired and actual speed, actual and estimated

speed are shown in Figs. 5(a) and 5(b), respectively. The speed estimation error is shown in Fig. 5(c). The primary

voltage of u-phase Vu and primary current of u-phase iu are shown in Figs. 6(a) and 6(b), respectively. Furthermore,

the desired and estimated secondary flux of one phase are shown in Fig. 6(c).

Consider speed regulation with reference vd = 0.3m/ sec with an abrupt external load variation. To generate such

external force in this experiment, a 1kg load is placed gently on the moving table during operating. The external

force is added at t = 0.7 sec and removed at t = 1.4 sec. The experimental results for the desired and actual speed

is shown in Fig. 7(a) and actual and estimated speed is shown in Fig. 7(b). The speed estimation error is shown in

Fig. 7(c). The primary voltage of u-phase Vu and primary current of u-phase iu are shown in Figs. 8(a) and 8(b),

respectively.

Experiment 2: Sinusoidal Speed Tracking

Consider the speed tacking for a sinusoidal reference vd = 0.5 sinπt m/ sec. The desired and actual speed is

shown in Fig. 9(a) and actual and estimated speed in Fig. 9(b). The speed estimation error is shown in Fig. 9(c). The

primary voltage of u-phase Vu and primary current of u-phase iu are shown in Figs. 10(a) and 10(b), respectively.

Furthermore, the desired and estimation secondary flux of one phase are shown in Fig. 10(c).

In order to investigate the robustness of the proposed control scheme, the primary and secondary resistance

variations are considered here, i.e., assuming the actual Rs and Rp to be Rs ∗ 1.2 and Rp ∗ 1.4, respectively. Then,

experimental results for the desired and actual speed, actual and estimated speed, speed estimation error are shown

in Figs. 11(a), 11(b), and 11(c), respectively. The primary voltage of u-phase Vu and primary current of u-phase

iu are shown in Figs. 12(a) and 12(b), respectively.

Experiment 3: Triangular Speed Tracking

Consider a triangular speed reference illustrated in Fig. 13(a). The desired and actual speed is shown in Figs.

13(a) and actual and estimated speed in Fig. 13(b). The speed estimation error is shown in Fig. 13(c). The primary

voltage of u-phase Vu and primary current of u-phase iu are shown in Figs. 14(a) and 14(b), respectively. Moreover,

the error between the desired flux and the estimated flux tends to zero through time, whereas they are not shown

due to space consideration.

Experiment 4: Low Speed Regulation

Consider a speed regulation with reference vd = 5cm/ sec. The desired and actual speed is shown in Figs. 15(a)

and actual and estimated speed in Fig. 15(b). The speed estimation error is shown in Fig. 15(c). The primary voltage

of u-phase Vu and primary current of u-phase iu are shown in Figs. 16(a) and 16(b), respectively.

From these figures, we can find that the estimation errors and the tracking errors have fast convergence rate.

Furthermore, the primary current response, primary voltage, and the states of the FVRM evolve in a reasonable

region. The satisfactory performance has been illustrated even in the situations of load uncertainties, parametric

uncertainties and low speed control.
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Fig. 5. Speed regulation, (a) desired speed (−−) and actual speed (—), (b) estimated speed (−−) and actual speed (—), (c) speed estimation

error.

VI. CONCLUSIONS

This paper has presented a sensorless speed control scheme for LIM via the FVRM design. For sensorless speed

control, we use a fuzzy observer to estimate the mover speed and secondary flux of a LIM. Besides, the fuzzy

observer and the fuzzy controller are independently constructed where the overall fuzzy controller is designed via

FVRM synthesis, such that the control input steers the state variables toward the virtual desired signals. Moreover,

the observer gains and control gains are obtained by independently solving linear matrix inequalities. The estimated

speed rapidly converges to the actual speed after the initial transient time, and the tracking errors approximate to

zero. One more thing that deserves to be mentioned is that the stability discussed in this paper is exponentially

stable. This means that the system under our proposed control method is very robust and tolerate uncertainty. Finally,

the experimental results not only illustrate satisfactory performance, but also indicate that the proposed scheme is

suitable to practical applications.
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Fig. 6. Speed regulation, (a) primary current for one phase, (b) primary voltage for one phase (c) estimated (−−) and desired (—) secondary

fluxes λsa.
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Fig. 10. Sinusoidal speed tracking, (a) primary current for one phase, (b) primary voltage for one phase (c) estimated (−−) and desired (—)

secondary fluxes λsa.
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Fig. 11. Sinusoidal speed tracking with parameter uncertainty, (a) desired speed (−−) and actual speed (—), (b) estimated speed (−−) and

actual speed (—), (c) speed estimation error.
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Fig. 12. Sinusoidal speed tracking with parameter uncertainty, (a) primary current for one phase, (b) primary voltage for one phase.
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Fig. 13. Triangular speed tracking, (a) desired speed (−−) and actual speed (—), (b) estimated speed (−−) and actual speed (—), (c) speed

estimation error.
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Fig. 14. Triangular speed tracking, (a) primary current for one phase, (b) primary voltage for one phase.
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Fig. 15. Low speed regulation, (a) desired speed (−−) and actual speed (—), (b) estimated speed (−−) and actual speed (—), (c) speed

estimation error.
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Fig. 16. Low speed regulation, (a) primary current for one phase, (b) primary voltage for one phase.


