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Dedico esta tese a minha avó, a que mais senti saudades durante estes anos que estive 

fora, e aquela que me ensinou o verdadeiro sentido da palavra amor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

“If you think you are too small to make a difference, try spending the night with a 
mosquito.” – African Proverb  
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Resumo 

Estudo da atividade antimalárica de novos endoperóxidos: potenciais alvos parasitários e 

mecanismos de ação 

Lis Tavares Coelho Lobo 

A malária é uma das doenças parasitárias mais prevalentes no mundo, causando um 

grande impacto no desenvolvimento socioeconómico dos países afetados. Esta doença 

afeta principalmente a África Subsaariana, mas continua presente em 87 países de regiões 

tropicais e subtropicais da América do Sul e Sudeste da Ásia. O surgimento e propagação 

de resistências do Plasmodium falciparum à terapia combinada à base de artemisinina 

(ACT) no sudeste da Ásia acentuou a necessidade de desenvolver novos antimaláricos 

e/ou medicamentos baseados no farmacóforo endoperóxido. 

Neste contexto, uma biblioteca quimicamente diversa de endoperóxidos foi projetada e 

sintetizada. Foram analisados 36 compostos relativamente à atividade antimalárica in 

vitro e in vivo, utilizando, estirpes de P. falciparum e modelos murinos resistentes e 

sensíveis a antimaláricos. Foram explorados possíveis mecanismos de ação através de 

ensaios de ação específica do estágio do parasita, de alteração do potencial de membrana 

mitocondrial, e de medida de espécies reativas de oxigênio (ROS), contra estirpes de P. 

falciparum resistentes e sensíveis à artemisinina. A citotoxicidade foi avaliada em linhas 

celulares de mamífero V79 e HepG2 e a genotoxicidade foi avaliada em linhas celulares 

V79, utilizando o ensaio cometa. Também foram avaliadas a atividade gametocitocida e 

o risco de desenvolvimento de resistência dos novos endoperóxidos. 

O presente trabalho descreve a avaliação da atividade antimalárica dos 36 novos 

compostos endoperóxidos dos quais o farmacóforo é parte de uma porção trioxolano 

(ozonídeo) ou tetraoxano, flanqueados por um grupo adamantilo e um anel ciclohexilo 

substituído. Oito compostos exibiram atividade antimalárica sub-micromolar (IC50 < 71,1 

nM), ausência de resistência cruzada com artemisininas (ARTs)  ou antimaláricos de base 

quinolínica, mostrando citotoxicidade e genotoxicidade negligenciáveis em células de 

mamífero. Estes compostos evidenciaram um impacto relevante no potencial de 

membrana mitocondrial do parasita e induziram a formação de ROS. Destes, seis 

produziram sobrevida em estádio de anel <1% contra a estirpe resistente IPC5202 e três 
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deles suprimiram totalmente a parasitémia por P. berghei em ratinhos, após administração 

oral. Estes três compostos apresentaram também elevada atividade gametocitocida. 

Dentre os compostos investigados, os conjugados trioxolano-tetrazol LC131 e LC136 

emergiram como potenciais candidatos antimaláricos por apresentar: toxicidade 

negligenciável em relação às células de mamíferos, atividade sub-micromolar sobre 

estádios assexuados e gametócitos de P. falciparum, supressão total da parasitémia in 

vivo (modelo murino P. berghei) e baixo risco de seleção de parasitas resistentes. 

 

Palavras-chave (3-5): Plasmodium, Resistências, Endoperóxidos, Atividade antimalárica, 

Mecanismos de ação. 
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Abstract 

Study of antimalarial activity of new endoperoxides: potential parasite targets and 

mechanisms of action 

Lis Tavares Coelho Lobo 

Malaria is one of the most feared parasitic diseases in the world, causing a major impact 

on the socio-economic development of the affected countries. This disease affects mainly 

the sub-Saharan Africa but remains in 87 countries from tropical and subtropical regions 

of South America and Southeast Asia. The emergence and spread of Plasmodium 

falciparum resistance to artemisinin‐based combination therapy (ACT) in Southeast Asia 

prompted the need to develop new endoperoxide‐type drugs. 

A chemically diverse library of endoperoxides was designed and synthesized. 36 

compounds were screened for in vitro and in vivo antimalarial activity using, respectively, 

the SYBR Green I assay and a mouse model. Possible mechanisms of action were 

identified, by using parasite-stage specific action assays, investigating alterations of 

mitochondrial membrane potential with rhodamine 123 and measuring reactive oxygen 

species (ROS) with CM- H2DCFDA. The studies were conducted with artemisinin‐

resistant and artemisinin‐sensitive P. falciparum strains. Cytotoxicity was evaluated 

against mammalian cell lines V79 and HepG2, using the MTT assay, and genotoxicity 

was evaluated against V79 cell lines, using the comet assay. The gametocytocidal activity 

and the evaluation of risk for resistance were also evaluated. 

The synthesis and antimalarial activity of 36 new endoperoxide‐derived compounds is 

reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a 

tetraoxane moiety, flanked by adamantyl and a substituted cyclohexyl ring. Eight 

compounds exhibited sub‐micromolar antimalarial activity (IC50 0.3–71.1 nM), no cross‐

resistance with artemisinin or quinolone derivatives and negligible cytotoxicity and 

genotoxicity towards mammalian cells. These compounds had an impact on the 

mitochondrial membrane potential of the parasite and induced the formation of ROS. 

From these, six produced ring stage survival < 1% against the resistant strain IPC5202 

and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral 

administration. These three compounds have also shown high gametocytocidal activity. 
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From the compounds investigated, trioxolane–tetrazole conjugates LC131 and LC136 

emerged as potential antimalarial candidates; they show negligible toxicity towards 

mammalian cells while exhibiting ability to kill intraerythrocytic asexual and sexual 

stages of P. falciparum, low risk to developing resistance and capacity to totally suppress 

P. berghei parasitaemia in mice. 

 

Key words (3-5): Plasmodium, Resistance, Endoperoxides, Antimalarial activity, 

Mechanisms of action. 
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I.1 – Malaria 

Malaria is one of the most important parasitic diseases in the world, causing a major 

impact on the socio-economic development of the affected countries. This disease affects 

mainly sub-Saharan Africa but continues to be present in 91 countries from tropical and 

subtropical regions of South America and Southeast Asia. Due to global warming, there 

is a possibility of its resurgence in regions where it has been controlled or eliminated 

(WHO, 2017). 

Human malaria is caused by five species of parasites of the genus Plasmodium: 

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale (with two distinct 

subspecies, Plasmodium ovale curtisi and Plasmodium ovale wallikeri), Plasmodium 

malarie and Plasmodium knowlesi). However, a recent outbreak of human malaria caused 

by Plasmodium simium, originating from monkeys, occurred in the Atlantic Forest of 

South and Southeastern Brazil between the years 2015 and 2016 (Brasil et al., 2017). 

Human malaria is transmitted by the bite of an infected female mosquito of the genus 

Anopheles. There are about 400 different species of Anopheles mosquitoes, but only 30 

of these are vectors of major importance. P. falciparum and P. vivax malaria pose the 

greatest public health challenge (WHO, 2015). P. falciparum is the most prevalent species 

in sub-Saharan Africa and is responsible for more than 90% of malaria-related deaths 

(WHO, 2017), worldwide and in sub-Saharan Africa. Outside of Africa, P. vivax is the 

predominant parasite in the Americas, causing 64% of malaria cases, whereas in South-

East Asia and the Eastern Mediterranean regions it only accounts for 30% and 40% of 

malaria cases, respectively (WHO, 2017). 

Malaria symptoms include high fever, headache, chills, sweating, general malaise and 

vomiting, symptoms that usually appear between 7 and 15 days after the mosquito bite. 

P. falciparum is responsible for the most severe forms of the disease, including severe 

anemia, coma, and death (Idro, Jenkins and Newton, 2005). However, P. vivax infection 

is far from benign, recent studies have reported life-threatening consequences, including 

acute respiratory distress syndrome, cerebral malaria, multi-organ failure, 

dyserythropoiesis1 and anemia (Dayananda, Achur and Gowda, 2018). P. vivax and P. 

                                                
1 Dyserythropoiesis is the defective development of erythrocytes. 
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ovale may retain latent forms in the liver - hypnozoites, with the possibility of later 

recurrence of the disease, and therefore require specific treatment with tissue 

schizontocides such as primaquine, tafenoquine and atovaquone (Orjuela-Sánchez et al., 

2009; Maneeboonyang et al., 2011).  

P. vivax has a wider geographical distribution than P. falciparum. Although P. vivax can 

occur throughout Africa, the risk of infection with this species is quite low in the region 

because of the absence in many African populations of the Duffy gene, codding a protein 

necessary for invasion of red blood cells by P. vivax (Mendes et al., 2011; WHO, 2015). 

In addition to high mortality rates, malaria is also responsible for high levels of morbidity 

among affected populations and is closely associated with weakening of economic 

development in endemic countries (Sachs and Malaney, 2002). The main factors 

contributing to the difficulty of malaria control are related to: development of antimalarial 

drug resistance by Plasmodium spp., namely P. falciparum; limitations to the use of 

insecticides; and economic and social factors, which are also occurring with P. vivax 

(Hupalo et al., 2016; Dayananda, Achur and Gowda, 2018). 

 

I.1.1 – Global epidemiology of malaria 

Of the 91 countries and territories with malaria transmission in 2015, 40 are estimated to 

have achieved a reduction in incidence rates of 40% or more, between 2010 and 2015. 

Malaria mortality rates are estimated to have declined by 62% globally, between 2000 

and 2015, and by 29% between 2010 and 2015 (Figure I.1) (WHO, 2016). These 

reductions are mainly due to the control of the mosquito vector and the use of fast-acting 

artemisinin-based combination therapies (ACTs) (Haldar, Bhattacharjee and Safeukui, 

2018). 
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Figure I.1: Countries and territories with indigenous cases in 2000 and their status 
by 2016. Countries with zero indigenous cases over at least the past 3 consecutive years are eligible to 
request certification of malaria free status from World Health Organization (WHO). All countries in the 
WHO European Region reported zero indigenous cases in 2016. Kyrgyzstan and Sri Lanka were certified 
malaria free in 2016 (Adapted from (WHO, 2017)). 

 

Despite the overall reduction observed between 2014 and 2016, there was a substantial 

increase in the incidence of malaria cases in the American region, and marginally in the 

regions of Southeast Asia (namely the Western Pacific) and Africa. Factors that may have 

contributed to this increase include: worldwide economic downturn, climate change, 

difficulties in elimination of P. vivax malaria, development of pyrethroid resistance by 

anopheline mosquitoes, and the emergence of artemisinin (ART) resistance by P. 

falciparum in Southeast Asia (White et al., 2014; WHO, 2017; Woodrow and White, 

2017). 

In 2016, there were an estimated 445 000 deaths from malaria worldwide, compared to 

446 000 estimated deaths in 2015. 91% of these occurred in Africa, followed by the 

Southeast Asian region (6%). 80% of global malaria deaths in 2016 occurred mainly in 

sub-Saharan Africa, and marginally in India (WHO, 2017). 

Between 2010 and 2016, all regions recorded reductions in mortality, except the Eastern 

Mediterranean region, where mortality rates remained almost unchanged over the same 

period (WHO, 2017). 

FIG. 1.1.

Countries and territories with indigenous cases in 2000 and their status by 2016 Countries with zero 
indigenous cases over at least the past 3 consecutive years are eligible to request certification of 
malaria free status from WHO. All countries in the WHO European Region reported zero indigenous 
cases in 2016. Kyrgyzstan and Sri Lanka were certified malaria free in 2016. Source: WHO database

TABLE 1.1.

GTS: Global targets for 2030 and milestones for 2020 and 2025 (1) 

Vision – A world free of malaria

Pillars

Pillar 1 Ensure universal access to malaria prevention, diagnosis and treatment

Pillar 2 Accelerate efforts towards elimination and attainment of malaria free status

Pillar 3 Transform malaria surveillance into a core intervention

Goals
Milestones Targets

2020 2025 2030

1. Reduce malaria mortality rates 
globally compared with 2015 At least 40% At least 75% At least 90%

2. Reduce malaria case incidence 
globally compared with 2015 At least 40% At least 75% At least 90%

3. Eliminate malaria from countries in 
which malaria was transmitted in 2015 At least 10 countries At least 20 countries At least 35 countries

4. Prevent re-establishment of malaria 
in all countries that are malaria free

Re-establishment 
prevented

Re-establishment 
prevented

Re-establishment 
prevented

GTS, Global technical strategy for malaria 2016–2030

■  ≥1 cases
■  Zero cases in 2016
■  Zero cases (≥3 years)

■  Certified malaria free since year 2000
■  No malaria
■  Not applicable

WORLD MALARIA REPORT 2017 3
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Malaria was eradicated from Europe in the 1970s through a combination of insecticide 

spraying, drug therapy, and environmental engineering. Since then, it has been mostly 

imported into the continent by international travelers and immigrants from endemic 

regions (Piperaki and Daikos, 2016). However, after several decades of endemic malaria 

eradication, some European countries such as Italy, Germany, Spain, and France, have 

reported cases of autochthonous transmission (Alten, Kampen and Fontenille, 2007). 

More recently, in 2012, Greece faced its first outbreak of malaria in this century. 

Therefore, despite the absence of indigenous cases of transmission in 2015, the possibility 

of a resurgence of malaria outbreaks in Europe remains (Gomes et al., 2016; Salvi, 2016).  

In Portugal, the status of malaria before the 1950s is well documented in the studies that 

identified 6 malariologic regions. These regions revealed different levels of endemicity, 

which are largely associated with the suitability of the habitat to the mosquito vector  An. 

atroparvus (Cambournac, 1942; Capinha et al., 2009). In 1973, after an intensive work 

of the national authorities, the indigenous strains of malaria parasites were considered 

eradicated from Portugal by the WHO. Entomological studies on An. atroparvus, a widely 

dispersed native mosquito, has demonstrated that it has competence in transmitting 

imported strains of P. falciparum (Sousa, 2008). Moreover, due to strong historical and 

cultural affinities, Portugal has a close relationship with an important number of malaria-

endemic countries such as Angola, Mozambique or Brazil (Santos et al., 2012). Travelers 

arriving from these regions provide a regular number of imported infections, ultimately 

contributing to the risk of indigenous malaria transmission. 

 

I.1.2 – Plasmodium spp. life cycle 

Plasmodia are unicellular and haploid protozoans during most of their life cycle. The 

diploid phase occurs for a brief period of the cycle in the invertebrate host: the mosquito. 

The new taxonomic classification of Plasmodium genus places it in the Alveolate group, 

which joins a recently recognized group of unicellular eukaryotes, including different 

protists such as Dinoflagellates, Ciliates and Apicomplexa parasites, in which it is 

inserted (Adl et al., 2012). 
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The taxonomic classification of Plasmodium falciparum: Group: Alveolata, Subgroup: 

Apicomplexa, Class Hematozoa, Order Haemosporida, Family Plasmodiidae, Genus 

Plasmodium. 

Plasmodium spp. life cycle includes two phases: the sporogonic phase, with 

multiplication in the definitive host, invertebrate (genus Anopheles); and the schizogonic 

phase, with multiplication in the intermediate host, vertebrate (Homo sapiens) (White et 

al., 2014; Mahmoudi and Keshavarz, 2018). 

The cycle is initiated when an anopheline mosquito, taking its blood meal, injects 

Plasmodium sporozoites into the skin of the host. After minutes, sporozoites invade liver 

cells via the bloodstream, where they replicate and divide as merozoites inside the 

hepatocytes. At the end of their developmental process in the liver, Plasmodium parasites 

differentiate into merozoites, which are contained inside host cell-derived vesicles called 

merosomes that are transported away of the hepatocytes and eventually rupture in the 

lung microvasculature (Sturm et al., 2006; Silvie et al., 2008). The merozoites enter the 

bloodstream, where they invade the red blood cells and initiate the asexual stages as rings, 

trophozoites and schizonts (schizogony), which is the symptomatic stage of the disease. 

P. vivax and P. ovale may develop latent hepatic forms, the hypnozoites (Delves et al., 

2012; Mahmoudi and Keshavarz, 2018). The replication cycle of the merozoites within 

the red blood cells lasts between 24 to 72 hours, depending on the species. In the case of 

P. falciparum, it lasts for 38 to 48 hours. 

For the purpose of the present work, we will focus on P. falciparum. 

Merozoites released from red blood cells invade other red blood cells and, at some point, 

they differentiate into male or female gametocytes that are then taken up by female 

mosquitoes during a blood meal. Inside the mosquito midgut, female gametocytes mature 

into a macrogamete and male gametocytes undergo exflagellation2 to release the 

microgametes (Baker, 2010). The male and female gametocytes fuse, forming the diploid 

invasive zygote – ookinete, that traverses midgut epithelial cells and transforms into the 

                                                
2 Exflagelation is the extrusion of rapidly waving flagellum-like microgametes from microgametocytes; in 
human malaria parasites, this occurs in the blood meal taken by the anopheline vector within a few minutes 
after ingestion of the infected blood by the mosquito. 
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- oocyst. Sporozoites mature inside the oocysts, and move from the mosquito midgut to 

the salivary glands (Kori, Valecha and Anvikar, 2018). Thus, 10 to 14 days after the feed 

on blood containing gametocytes, the mosquito is, in theory, able to transmit malaria 

parasites to another human host (Figure I.2) (Josling and Llinás, 2015; Phillips et al., 

2017). 

 

 

Figure I.2: The Plasmodium spp. life cycle. (Adapted from (Josling and Llinás, 2015)). 

 

I.1.3 – Biological features of Plasmodium falciparum with implications in drug 

development 

a) Intraerythrocytic asexual stages 

When released into the blood, merozoites invade the erythrocytes. Invasion of the 

erythrocyte by merozoites occurs rapidly (≅ 2 min) (Weiss et al., 2015). Once inside the 
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erythrocyte, the parasite develops within the parasitophorous vacuole (PV), the 

membrane surrounding the merozoite that is originated from the erythrocyte and 

designated the parasitophorous vacuole membrane (PVM) (Cowman et al., 2016, 2017). 

Once inside the host erythrocyte, the parasite digests most of the erythrocyte’s cytoplasm 

(highly rich in hemoglobin) in the digestive vacuole (DV) (Figure I.3). The digestion 

process begins with the formation of the cytostome, an invagination of the PVM, forming 

vesicles of pinocytosis which carry the erythrocyte cytoplasm. These vesicles fuse with 

the DV, where they release their contents (mostly hemoglobin). In the DV, proteases 

degrade hemoglobin (Rosenthal and Meshnick, 1996). Hemoglobin consumption 

provides a source of amino acids, releases space for growth, and generates osmolytes that 

maintain osmotic pressure of the erythrocyte (Lew, Tiffert and Ginsburg, 2003; Bakar et 

al., 2010). Most of this proteolysis occurs during the trophozoite stage, when parasites 

ingest large quantities of hemoglobin from the erythrocyte into the acidic DV (Bakar et 

al., 2010; Rosenthal, 2011). However, hemoglobin degradation is a metabolic process 

that generates large amounts of ferroprotoporphyrin IX (FP) and reactive oxygen species 

(ROS) (Fu et al., 2010). 

 

 

Figure I.3: Structure of the merozoite inside the host erythrocyte. ER: endoplasmic 
reticulum; PV: parasitophorous vacuole; G: Golgi complex (Adapted from (Kappe et al., 2010)). 
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Normally, most of the released FP is polymerized into crystalline hemozoin (≌ 90%) 

(Egan et al., 2002), but a significant amount escapes polymerization and has to be 

detoxified in the cytoplasm (Zhang, Krugliak and Ginsburg, 1999). Free FP can interact 

with phospholipid membranes, causing structural defects due to the reactivity of its 

attached Fe3+ with unsaturated membrane lipids. This can lead to increased membrane 

permeability for ions, cell swelling, and lysis (Famin, Krugliak and Ginsburg, 1999; 

Zhang, Krugliak and Ginsburg, 1999). 

Once the erythrocyte infection is established, over the subsequent 48h cell division 

(schizogony) results in 16 to 32 merozoites that egress when mature, resulting in 

destruction of the erythrocyte membrane and explosive release of parasites to access 

new host cells for invasion (Figure I.4) (Cowman et al., 2016). 

 

 
 
Figure I.4: Intraerythrocytic asexual stages of P. falciparum. Parasites were stained with 
DAPI (4', 6-diamidino-2-phenylindole) and photographed under UV light by fluorescence microscopy 
(magnification 100X with immersion oil) (Adapted from (Nogueira and Rosário, 2010)). 
 



Introduction 

11 
 

b) Sexual stages - Gametocytes 

The gametocyte is the specialized cell in the transmission between the human host and 

the anopheline mosquito. For adaptation in such different environments, many changes 

occur in their cell biology, gene expression, metabolism, and protein synthesis (Talman 

et al., 2004). Within each replication cycle, a small proportion (0.1% – 5%) of asexual 

parasites develop into male and female sexual stages - gametocytes (Meibalan and Marti, 

2017). 

Gametocytogenesis and modulation of gametocyte production in a natural infection is 

influenced by host environmental factors, including stress induced by host immunity, 

high parasitaemia, antimalarial drug treatment, or anemia, as well as host genetic factors 

such as human hemoglobin variants, indicating that parasites may somehow sense their 

environment (Bousema and Drakeley, 2011). In addition, cell-to-cell communication is 

also known to increase production of gametocytes (Mantel et al., 2013). P. falciparum 

gametocytes take 8 to 10 days to mature into five morphologically distinct phases (stages 

I – V) (Meibalan and Marti, 2017) (Table I.1). P. falciparum stage I gametocytes are 

round compact forms containing hemozoin. Thus, microRNAs from sickle cell 

erythrocytes have been associated with increased gametocyte numbers (LaMonte et al., 

2012) while on the parasite side, genes such as P. falciparum gametocyte development 

gene 1 (Pfgdv1) have been implicated in the control of sexual differentiation (Eksi et al., 

2012). 
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Table I.1: Morphology of gametocytogenesis. (Adapted from (Talman et al., 2004)). 

 Stages 

 I II III IV V 

Time of appearance 

(days) 
0 – 2 1 – 4 2 – 8 6 – 10 9 – 23 

Shape (light 

microscopy) 

-Indistinguishable 

from the small round 

trophozoite 

-Larger round shape, 

distinguished by the 

granular distribution 

of pigment in food 

-Elongates within the 

erythrocyte 

-D shaped 

-D shaped, slightly 

distorted erythrocyte 

-The pink/blue 

distinction of the 

male/female 

-Elongated and thin 
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Immature P. falciparum gametocytes, stages I - IV (Figure I.5), are sequestered away 

from the bloodstream to the bone marrow (Joice et al., 2014). Once mature gametocytes 

are released into the bloodstream, stage V (Figure I.5),  they are accessible to mosquitoes 

through a blood meal (Bousema and Drakeley, 2011; Cowman et al., 2016). 

 

 

Figure I.5: Gametocytes of P. falciparum produced and maintained in culture. The 
panels show the morphology of gametocytes (stages I - V). Gametocytes were stained by Giemsa 
(magnification 100X with immersion oil). 

 

I.2 – P. falciparum antimalarial drug resistance: its origin and spread 

In general terms, drug resistance to antimalarials has been described for two species of 

Plasmodium that cause human malaria, P vivax and P. falciparum, and the last has 

demonstrated resistance to all antimalarials in use (Table I.2), including artemisinin-

based combination therapies (ACTs) (WHO, 2017b). 

Over the past five decades, the emergence of P. falciparum resistance to the successively 

introduced antimalarials (Table I.1) has substantial and significant implications for 

malaria control programs and global public health (Trape, 2001). The emergence and 

spread from Asia to Africa of chloroquine (CQ) resistance by P. falciparum, followed by 

anti-folate resistance, led to the loss of millions of lives (Lwin et al., 2015). 
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Table I.2: Dates of introduction and first reports of resistance of available 
antimalarials for the treatment of P. falciparum malaria. 

Antimalarial drug Introduced 

First 

reported 

resistance 

Half-life time 

(hours) 

Amodiaquine 1960 > 1960 216 – 432 

Artemisinins 1980 2008 < 1 – 11 

Chloroquine 1945 1960 720 – 1440 

Lumefantrine 1970 n.d. 72 – 144 

Mefloquine 1985 1992 336 – 504 

Piperaquine 1978 1990 336 – 672 

Primaquine 1950 n.d. 4 – 9 

Pyronaridine 1980 n.d. 288 – 336 

Quinine 1632 1910 16 

Sulphadoxine-

pyrimethamine 
1967 1967 72 – 240 

Adapted and updated from (Wongsrichanalai et al., 2002). 

n.d.- not determined. 

 

Historically, the Thailand-Cambodia border has been the geographical origin of 

resistance to most of the antimalarials: CQ, then sulfadoxine-pyrimethamine (SP), then 

mefloquine (MEF), and, more recently, ART (Wongsrichanalai et al., 2002; Dondorp et 

al., 2009; Noedl, Socheat and Satimai, 2009; Arjen M Dondorp et al., 2010). CQ 

resistance was first reported in the 1960s in the Thailand-Cambodia border (Eyles et al., 

1963; Young et al., 1963; Harinasuta, Suntharasamai and Viravan, 1965), and spread 

across South Asia, South America and to East Africa by 1978 (Hong et al., 2014), then  
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subsequently across the continent, leading to catastrophic increases in child morbidity 

and mortality in sub-Saharan Africa (WHO, 2013). 

In 1973 CQ was substituted by SP (Chin et al., 1973; Segal et al., 1975; Doberstyn et al., 

1976, 1979; Na-Bangchang and Congpuong, 2007), but by 1980 SP cure rate had dropped 

unacceptably (Hurwitz, Johnson and Campbell, 1981; Dixon et al., 1982; Pinichpongse 

et al., 1982). Eventually, SP became ineffective in Thailand (Johnson, Roendej and 

Williams, 1982; White, 1992; Na-Bangchang and Congpuong, 2007). MEF was 

introduced in 1985, but clinical resistance to it emerged soon after, in 1992 

(Wongsrichanalai et al., 2001). 

In 1995, an ACT consisting of artesunate (ATN) plus MEF was introduced as the first-

line treatment against uncomplicated P.falciparum malaria across Thailand (WHO, 

2010). ACTs provided a rapid, effective and well-tolerated antimalarial regimen, with 

sustained efficacy, and by 2006 WHO recommended ACTs as standard treatment for P. 

falciparum uncomplicated malaria worldwide (Thwing, Eisele and Steketee, 2011; WHO, 

2017b). 

Recently, there have been signs that the efficacy of ACTs and artesunate monotherapy 

have declined in western Cambodia (Alker et al., 2007; Noedl et al., 2008; Dondorp et 

al., 2009). 

 

I.2.1 – Multiresistance 

The designation of multiresistance to antimalarials refers to the phenotype of resistance 

to two or more drugs, a phenomenon that has been observed in P. falciparum. Resistance 

to several antimalarials simultaneously results from their frequent and simultaneous use, 

causing a selective pressure that culminates in the appearance of the phenomenon of 

multiresistance; the cross-resistance between antimalarials is related to the common 

aspects of their mechanisms of action, as well as the mechanisms of resistance associated 

with them (Le Bras and Durand, 2003). P. falciparum has developed resistance to 

virtually all antimalarials in use, including ACTs (WHO, 2017a). 
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I.3 – Available antimalarials for P. falciparum malaria treatment 

WHO recommends that all suspected cases of malaria should have a parasitological test 

(microscopy or rapid diagnostic test (RDT)) to confirm the diagnosis (WHO, 2015a). 

Since 2006, WHO recommends the use of artemisinin-based combination therapies 

(ACTs) (Table I.3), for 3 consecutive days, for the treatment of uncomplicated P. 

falciparum malaria. ART is a sesquiterpene lactone extracted from the Chinese medicinal 

herb Artemisia annua (White, 2008; Tilley, Straimer, Gnädig, et al., 2016) which, in 

combination with other antiplasmodial drugs, led to significant declines in malaria 

morbidity and mortality (Barnes and White, 2005; Arjen M. Dondorp et al., 2010; WHO, 

2016). 

 

Table I.3: ACTs recommended by the WHO for the treatment of uncomplicated P. 
falciparum malaria. (Adapted from(WHO, 2015a, 2018c)). 

ACTs 

Artemeter + Lumefantrine 

Artesunate + Amodiaquine 

Artesunate + Mefloquine 

Dihydroartemisinin + Piperaquine 

Artesunate + Sulfadoxine-pyrimethamine 

Artesunate + Pyronaridine3 

 

ACT is the combination of a fast-acting ART derivative with a longer acting partner drug 

(more slowly eliminated from the blood) (Figure I.6) (Ljolje et al., 2018). The ART 

component has a good safety profile, provides rapid and effective reduction of parasite 

biomass, including multidrug-resistant parasites, rapid resolution of fever and is also 

                                                
3 Artesunate-pyronaridine, has been given a positive scientific opinion by the European Medicines Agency 
under article 58 and is being considered by WHO in areas where other ACTs are failing. 
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active against the parasite's sexual stages (White, 2008). The longer-acting partner drug 

eliminates much more slowly the remaining parasites and prevents recrudescence, 

providing mutual augmentation of efficacy and protection against the development of 

resistance to the ART derivative. Partner drugs with longer elimination half-lives also 

provide a period of post-treatment prophylaxis (Chotivanich et al., 2014; WHO, 2015a). 

ART is poorly soluble in water as well as in oil and is rapidly reduced into 

dihydroartemisinin (DHA), the active metabolite of all ART derived compounds (Gunjan 

et al., 2018). In particular, ART derivatives have short plasma elimination half-lives, 

ranging from <1 to 3 hours for the water-soluble artesunate (ATN) and DHA, and from 3 

to 11 hours for the oil-soluble artemether (ATM) and arteether (AE) (Kavishe, 

Koenderink and Alifrangis, 2017). This contrasts with the partner drugs, chosen to have 

considerably slower elimination times, persisting over several days to several weeks; in 

particular, lumefantrine (LU) and sulfadoxine-pyrimethamine (SP) range from 3 to 8 days 

while mefloquine (MEF), piperaquine (PPQ) and pyronaridine (PYR) range from 2 to 3 

weeks (Figure I.6 and Table I.2). Hence, ACTs are the frontline therapies generally used 

by all malaria control programs around the world (Rocamora et al., 2018). 

 

 

Figure I.6: Schematic representation of malaria parasite killing following 
artemisinin combination therapy, typically administered in 3 daily doses. The 
theoretical plasma levels for the ART derivative (solid lines) and partner drug (dotted line) are shown 
(Adapted from (Taylor and Juliano, 2014)). 
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Currently, WHO recommends that in low-transmission areas a single dose of primaquine 

(PQ) should be given together with ACT to patients with P. falciparum malaria (except 

to pregnant women, infants aged < 6 months and women breastfeeding) to reduce 

transmission since PQ has excellent gametocytocidal activity against P. falciparum. 

Testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency is not required 

(Global Malaria Programme, 2015). 

For the treatment of severe malaria, it is recommended that adults and children (including 

infants, pregnant women in all quarters and infants) should be treated with injectable ATN 

or ATM for at least 24 hours and until they can tolerate oral medication, they must 

complete the 3-day treatment of ACT (plus a single dose of PQ in the low-transmission 

areas) (Global Malaria Programme, 2015; WHO, 2015a, 2018a). 

 

I.3.1 – P. falciparum drug resistance to ACTs 

Resistance to ACTs can involve ART derivatives resistance, partner drug resistance, or 

both (WHO, 2017a, 2018a). In 2008 the first reports of confirmed ART resistance came 

from the Mekong region (Dondorp et al., 2009; Noedl, Socheat and Satimai, 2009; Arjen 

M Dondorp et al., 2010), placing once again the Greater Mekong Sub-region (GMS), 

which encompasses Cambodia, China (Yunnan Province), Laos, Myanmar, Thailand and 

Vietnam, as the epicentre of ART resistance. Loci of resistance have been identified along 

the Thailand-Myanmar, Thailand-Cambodia, Vietnam-Cambodia, and Vietnam-Laos 

borders over the years (Figure I.7) (WHO, 2013; Dondorp et al., 2017). 
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Figure I.7: Numbers of ACTs failing in the Greater Mekong Sub-region. (Adapted from 
(WHO, 2018a)). 

 

There have been some reports conducted in Africa of delayed parasite clearance during 

routine therapeutic efficacy studies (TESs) of ACTs (Hong et al., 2014; WHO, 2018a), 

the emergence of indigenous ART-resistant P. falciparum (Lu et al., 2017) and an 

increasing resistance to multiple partner drugs also, including PPQ (Leang et al., 2015). 

Resistance to partner drugs of ACTs has historically manifested before that of ARTs, 

whose short half-lives result in the exposure of residual parasites to sub-therapeutic levels 

of the partner drug alone. Response to the partner drug is, therefore, a key component of 

overall ACT efficacy (Venkatesan et al., 2014; WHO, 2018a). 

Therapeutic failure to ACTs (as well as to other drugs) may or may not be due to drug-

resistant parasites. The WHO has a particular protocol to identify and classify a 

therapeutic failure to ACTs due to parasite resistance (WHO, 2017a). Regarding P. 

falciparum uncomplicated malaria treatment, ART resistance is defined as the delayed 

parasite clearance (after an adequate dose has been administered and the recommended 

plasma concentration has been attained) (WHO, 2017a). The reduced in vivo 

susceptibility to ART derivatives is manifested by the prolongation of parasite clearance 

times from patient's blood (Alker et al., 2007; Stepniewska et al., 2010), as reflected in 

Figure I.8. 
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Figure I.8: Dynamics of artemisinin activity to kill sensitive and resistant parasites. 
(Adapted from (White, 2011)). 

 

Currently, the WHO classifies ACTs drug resistance in two levels, suspected and 

confirmed, each including several parameters, as follows (WHO, 2017a): 

Suspected endemic ART resistance is defined as: 

1. ≥ 10% of patients with a half-life of the parasite clearance slope ≥ 5 hours after 

treatment with ACT or ATN monotherapy; or 

2. ≥ 5% of patients carrying K13 resistance-confirmed mutations (listed in Table 

III.4); or 

3. ≥ 10% of patients with persistent parasitaemia by microscopy at 72 hours (± 2 

hours; i.e., day 3). 

Confirmed endemic ART resistance is defined as: 

1. ≥ 5% of patients carrying K13 resistance-confirmed mutations, all of whom have 

been found to have either persistent parasitaemia by microscopy on day 3 or a half-life 

of the parasite clearance slope ≥ 5 hours after treatment. 

ART resistance in P. falciparum can be assessed by a range of phenotypic and genotypic 

parameters: a) Proportion of positive cases by microscopy on day 3 of follow-up; b) 
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Parasite clearance half-life; c) pfk13 mutations and d) Ring-stage survival rate 

(Chotivanich et al., 2014; WHO, 2015b, 2017a; Woodrow and White, 2017). 

 

I.3.2 – New parameters for evaluation of ARTs 

In a recent study, in 2014, Chotivanich et al. demonstrated that, despite obvious resistance 

in vivo, conventional 48h in vitro tests (IC50) had not shown corresponding reductions in 

in vitro susceptibility (Dondorp et al., 2009), and so they are not useful as an 

epidemiological tool for monitoring ART resistance. Thus, it was assumed that a 

reduction in susceptibility in the ring-stage, without a corresponding reduction in the 

susceptibility in the more mature parasite stages, could explain this apparent discrepancy. 

Therefore, a simple adaptation of the standard WHO in vitro 48h antimalarial drug 

susceptibility test was done, focusing on the ring-stage development of the parasite, in 

order to predict resistance to ART in vivo. 

 

a) Proportion of cases positive by microscopy on day 3 of follow-up 

The proportion of patients with parasitaemia (positive slide by microscopy) on day 3, is 

relatively easy to measure and is reported widely. Although influenced by starting 

parasitaemia (and partner drug), it still provides useful information (Stepniewska et al., 

2010; Bethell et al., 2011). If more than 10% of patients are parasitemic on day 3, 

resistance is present, hence further and more definitive clinical and laboratory studies are 

recommended (Stepniewska et al., 2010; WHO, 2017b). Day 3 positivity rate, is very 

useful and has been used to detect delayed parasite clearance at an early stage (White et 

al., 2015). 

 

b) Parasite clearance half-life 

Clinical efficacy surveys designed to dissect study of ART resistance in detail, with 

frequent quantitation of parasitaemia (Stepniewska et al., 2010; Fairhurst et al., 2012), 

confirmed that despite adequate drug levels in blood, parasite clearance rates were higher 
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in some Cambodian provinces than in the Thai–Myanmar border (Dondorp et al., 2009; 

Noedl et al., 2010; Amaratunga et al., 2012). Slow clearing infections were subsequently 

found to be common across the GMS (Hien et al., 2012; Kyaw et al., 2013; Ashley et al., 

2014). The slow parasite clearance, which is assessed from the slope of the log-linear 

phase of parasitaemia reduction or parasite clearance half-life (PC1/2) (Flegg et al., 2011, 

2013; White et al., 2015), reflects the known reduced ring stage susceptibility 

(Witkowski, Amaratunga, et al., 2013; Witkowski, Khim, et al., 2013; Fairhurst and 

Dondorp, 2016). PC1/2 is a reliable marker for the assessment of parasite clearance rate 

that takes into account differences in initial parasitaemia (Flegg et al., 2011), currently  

representing one of the parameters inscribed in the WHO definition of ACT drug 

resistance (WHO, 2017a). Even though, it requires starting parasitaemia >10000 

parasites/μl and parasitaemia measurements every 6 to 8h (Flegg et al., 2013). 

 

c) pfk13 mutations 

Part of the current WHO classification of drug resistance to ACTs (WHO, 2017a) is the 

presence of certain single nucleotide polymorphisms (SNPs) in the gene coding for the 

Kelch-like protein K13 – the pfK13, PF3D7_1343700 (Ariey et al., 2014; Straimer et al., 

2015, 2017; Ménard et al., 2016). In Cambodia, where these polymorphisms were first 

described, the presence of pfK13 mutations are correlated to in vitro parasite survival rates 

and in vivo parasite clearance rates. A series of genome-wide studies (GWS) confirmed 

that the slow parasite clearance observed in clinical efficacy studies was hereditary 

(Anderson et al., 2010; Amaratunga et al., 2012; Miotto et al., 2013; Takala-Harrison et 

al., 2013). The GWS allowed the detection of a region on P. falciparum chromosome 13 

strongly associated with slow parasite clearance and lead to the identification of pfk13 as 

a marker of drug resistance (Cheeseman et al., 2012; Takala-Harrison et al., 2013). 

The ART resistant phenotype is currently associated with pfk13 SNPs (Ariey et al., 2014; 

Li et al., 2016), which potentially serve as molecular markers, allowing rapid assessment 

of the presence of ART resistance, particularly in remote locations where phenotypic 

studies are challenging (Roper et al., 2014; Tun et al., 2015). 

However, not all pfk13 SNPs are associated with ART resistance, the ones identified and 
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those already validated (correlated with drug resistance) are described in Table I.4 (WHO, 

2018a). The most predominant and the best-characterized mutation is C580Y 

(Venkatesan et al., 2014). Its prevalence across all of Southeast Asia ranges from 26% to 

70%, being the highest on the border between Thailand and Myanmar (Imwong et al., 

2015; MalariaGEN Plasmodium falciparum Community Project, 2016; Ménard et al., 

2016). The R539T mutation (present in the IPC5202 strain) confers high levels of in vitro 

resistance and has been associated with delayed parasite clearance in patients; however, 

it is less prevalent than C580Y, with 3.5% of K13 mutations in Cambodia-Vietnam-Lao 

People’s Democratic Republic and 0.3% in Thailand-Myanmar-China (Ariey et al., 2014; 

Straimer et al., 2015, 2017; Takala-Harrison et al., 2015; Ménard et al., 2016). Similarly, 

the I543T mutation (present in IPC4912 strain) has been associated with an increased 

survival in vitro and a longer parasite clearance half-life in patients, but its prevalence 

was recently reported to reach only about 2% in Southeast Asia (MalariaGEN 

Plasmodium falciparum Community Project, 2016). 

 

Table I.4: Candidatea/associated and validatedb resistance mutations in the K13 
propeller domain. This list is updated regularly. (Adapted from (WHO, 2018a)). 

 

a Correlated with delayed parasite clearance 

b By in vivo and in vitro data 

 

Surveys have provided reassuring evidence that K13 mutations have not reached high 

prevalence outside Southeast Asia so far (Ménard et al., 2016). K13 mutations are found 

in Africa at low prevalence, consistent with background variation rather than selection 

(Kamau et al., 2015; Taylor et al., 2015; MalariaGEN Plasmodium falciparum 

Community Project, 2016; Ménard et al., 2016). 

3

as markers for artemisinin resistance has allowed for a more refined definition of 
partial artemisinin resistance that includes information on the genotype. 

Not all of the non-synonymous propeller-region K13 mutants reported indicate the 
emergence of artemisinin resistance; rather, such mutants can represent ‘passer-by’ 
genotypes in the absence of evidence for the selection of the mutant K13 genotype. 
In addition, different K13 mutations have varying effects on the clearance phenotype. 
The validation of a K13 mutation as a marker for artemisinin resistance requires that 
a) the mutation has been correlated with slow clearance in clinical studies, and b) the 
K13 mutation has been correlated with reduced in vitro drug sensitivity (e.g., ring-stage 
assay – RSA0-3h) using fresh isolates, or reduced in vitro sensitivity resulting from 
the insertion of the K13 mutant in transfection studies. If a K13 mutation has only been 
shown to be correlated with delayed parasite clearance during clinical trials but not 
validated by in vitro data, it is labelled a candidate/associated marker. A current list of 
candidate/associated and validated K13 propeller mutations can be found in Table 1 
(this list will be updated regularly).2

TABLE 1
Candidate and validated resistance mutations in the K13 BTB/POZ and propeller 
domain

VALIDATED CANDIDATES/ASSOCIATED
F446I P553L P441L G538V
N458Y R561H G449A V568G
M476I C580Y C469F P574L
Y493H A481V F673I
R539T P527H A675V
I543T N537I

Outside the propeller domain two mutations were reported frequently in clinical studies: 
K189T and E252Q. Though presence of E252Q is associated with delayed clearance 
transfection studies did not confirm in vitro resistance. For A578S please see below.

Other less frequent variants were reported to be associated with delayed clearance 
but without statistical significance due to the low number of cases: D452E, C469Y, 
K479I, R515K, S522C, N537D, R575K, M579I, D584V, P667T, H719N.

Consequences

Possible future consequences of slow parasite clearance, or partial resistance, include: 
a) the development of total artemisinin resistance; b) the loss of artemisinin as an 
effective treatment for severe malaria; and c) increased de novo resistance to the 
partner drug, particularly in patients with high parasitaemia at admission, and/or 
greater selection of partner drug resistance. If resistance to partner drugs increases, 
treatment failures are likely to increase in parallel. 

Nevertheless, for the time being, the majority of patients with delayed parasite 
clearance can still be cured using ACTs, as long as the partner drug remains effective. 
There is no evidence that higher levels of artemisinin resistance (full resistance) have 
emerged. To date, artemisinin partial resistance in the GMS has not been associated 
with increased morbidity or mortality. Finally, new evidence in the GMS shows that 
artemisinin did not facilitate the emergence of resistance to mefloquine or piperaquine.
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d) Ring-stage survival rate 

P. falciparum reduced susceptibility in vivo to ART is characterized by slow parasite 

clearance but does not correspond to reductions on conventional in vitro susceptibility 

testing, like the 50% inhibitory concentration (IC50) (Dondorp et al., 2009; Chotivanich 

et al., 2014; Hastings, Kay and Hodel, 2015). The IC50 is evaluated by exposing parasites 

in vitro to serial dilutions of drug (Smilkstein et al., 2004; Machado et al., 2016). The 

delayed parasite clearance phenotype is not associated with a substantial shift in ART 

IC50 (Dondorp et al., 2009; Chotivanich et al., 2014; Hastings, Kay and Hodel, 2015) but 

it is correlated with reduced ring-stage susceptibility (Witkowski, Amaratunga, et al., 

2013; Witkowski, Khim, et al., 2013; Fairhurst and Dondorp, 2016). Based on this, an 

alternative method for measuring ART sensitivity was developed  (Witkowski, 

Amaratunga, et al., 2013), the ring-stage susceptibility assay RSA0-3h (See session 

II.3.3.2). 

 

I.3.3 – The mechanisms of action of artemisinins  

Despite its wide use, the mechanisms by which ART and its derivatives (from this point 

onward, we will use ARTs to refer to ART and its derivatives collectively) exert their 

antimalarial action is not fully understood (O’Neill, Barton and Ward, 2010; Ding, Beck 

and Raso, 2011). ART, a natural product extracted from the plant Artemisia annua 

(White, 2008; Tilley, Straimer, Gnädig, et al., 2016), and its derivatives (Figure I.9) are 

central to all current first-line antimalarial treatments, the ACTs (Table I.3). ARTs belong 

to the class of sesquiterpene trioxane lactones, bearing an endoperoxide bridge which is 

essential for their antimalarial activity (Meshnick, 2002; O’Neill, Barton and Ward, 

2010). ARTs-mediated parasite death requires bioactivation of the peroxide structure (Li 

and Zhou, 2010). Inside the infected erythrocyte, ARTs undergo reductive cleavage of 

the endoperoxide bridge by Fe2+-heme (Krungkrai and Yuthavong, 1987; Maeno et al., 

1993; Stocks et al., 2007; Hartwig et al., 2009; J. Wang et al., 2015). The abundance of 

Fe2+-heme becomes accessible upon hemoglobin degradation inside the parasite DV 

(Bakar et al., 2010; Rosenthal, 2011). Unlike most other antimalarials, ARTs are active 

against all stages of the intra-erythrocytic cycle, highly active against trophozoites, in 
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which Hb catabolism reaches its peak (Klonis et al., 2013), and also active against early 

ring-stage parasites (Xie et al., 2016). Parasite endocytosis and host Hb degradation begin 

in very early ring-stages, hence providing a potential source of Fe2+-heme for ARTs 

activation (Klonis et al., 2013; Xie et al., 2016). The cleavage of the endoperoxide 

generates reactive oxygen species (ROS) that subsequently damage several cellular 

targets such as nucleic acids, lipids and key target proteins, killing the parasite (O’Neill, 

Barton and Ward, 2010; Tilley, Straimer, Gnadig, et al., 2016; Kavishe, Koenderink and 

Alifrangis, 2017). ROS also mediate depolarization of the membrane potential, both in 

the mitochondrial (Wang et al., 2010) and the plasma membrane (Antoine et al., 2014). 

Recent proteomic data suggests that there are probably numerous parasite targets for 

ARTs, therefore, parasite inactivation may be due to a generalized degeneration of 

cellular proteins (J. Wang et al., 2015; Ismail et al., 2016), the so-called proteopathy 

(Bhattacharjee et al., 2018; Haldar, Bhattacharjee and Safeukui, 2018). 

In cancer cells, the apoptosis has also been commonly reported as mechanism of ARTs 

cytotoxic action (Chen et al., 2009; Hamacher-Brady et al., 2011; Gao et al., 2013). 

Besides this, induction of autophagy (Wang et al., 2012), cell cycle arrest (Jiang et al., 

2012), ROS generation (Hamacher-Brady et al., 2011) and, involvement of iron (Singh 

and Lai, 2001; Handrick et al., 2010; Jiang et al., 2012) have also been demonstrated. 
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Figure I.9: Representation of the chemical structures of ART and derivatives used 
as antimalarial drugs. (Adapted from (Z. Li et al., 2016)). 

 

I.3.4 – Mechanisms of ARTs resistance 

Mathematical modeling of the prolonged parasite clearance rates predicted that ARTs 

resistance was a result of ring-stage parasites becoming insensitive to drug action 

(Saralamba et al., 2011). This correlates with RSA0-3h results from slow-clearing patient 

isolates, which are higher than those from drug-sensitive parasites (Witkowski, 

Amaratunga, et al., 2013). A whole-genome sequencing analysis (WGS) of normal- and 

slow-clearing patient isolates implicated the gene pfk13 (coding for the P. falciparum 

Kelch-like protein- PfK13) in the genetic basis for ARTs resistance (Ariey et al., 2014). 

Later, gene-editing and epidemiological studies established a strong association between 

slow-clearing infections (with parasite clearance half-lives of > 5 h) and SNPs in the 

correspondent K13 propeller domain of PfK13 (Ashley et al., 2014; Ghorbal et al., 2014; 

Miotto et al., 2015; Straimer et al., 2015; Takala-Harrison et al., 2015; MalariaGEN 

Plasmodium falciparum Community Project, 2016; Ménard et al., 2016; Phyo, Ashley, et 

al., 2016; Anderson et al., 2017; Imwong et al., 2017). In fact, certain pfk13 SNPs (See 

session I.4.2 - iii and Table I.4) are currently used as major ARTs-resistance molecular 
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markers (Ariey et al., 2014; Straimer et al., 2015, 2017; Ménard et al., 2016). 

Resistance to ARTs is due to mutations of the PfK13 propeller domain which confer an 

increased ability to enter a quiescent/dormant state during ring-stage (Hoshen et al., 2000; 

Witkowski et al., 2010; Daignan-Fornier and Sagot, 2011; Witkowski, Khim, et al., 2013; 

Ariey et al., 2014). 

ARTs toxicity is potentiated by Hb degradation inside the DV, generating heme and Fe(II) 

that react with ARTs and cause oxidative stress and irreversible damages (J. Wang et al., 

2015). Hb endocytosis and degradation begins in the mid-ring-stage and increases 

throughout the trophozoite-and schizont-stage. Hence, low levels of hemoglobin 

degradation in younger rings could explain their reduced sensitivity to ARTs on these 

stages (Hott et al., 2015). 

Accordingly, pfk13 mutations do not seem to protect trophozoite-stages against ARTs 

(Witkowski, Khim, et al., 2013). At trophozoite-stage, the higher potency of ARTs 

probably results from higher cellular levels of the heme activator, possibly overpowering 

the mutant K13-mediated defenses (Klonis et al., 2011; Dogovski et al., 2015). 

Apart from pfk13 mutations, the genetic background of the parasites seems to play an 

important role in ARTs tolerance. The introduction of the wild-type allele into resistant 

parasites produced a very low RSA0–3h survival rate (0.3 - 0.7 %). Conversely, the 

introduction of one resistant allele (C580Y) into wild-type ART-sensitive parasites 

conferred varying degrees of in vitro resistance, suggesting an additional contribution 

from the genetic background (Straimer et al., 2015). 

The enhanced P. falciparum quiescence capacity of ART-resistant parasites results from 

an increased ability to manage oxidative damage and an altered cell cycle gene regulation 

involving the unfolded protein response (UPR), the dysregulation of 

phosphatidylinositol-3-kinase (PfPI3K) pathway and other yet unidentified targets 

(Haldar, Bhattacharjee and Safeukui, 2018). 

PfKelch13, predictably a regulator of protein quality control (Gupta and Beggs, 2014), 

has mammalian orthologues that confer resistance to cancer drugs, inducing proteopathy 

(death from global abnormal protein-toxicity) (Nikesitch and Ling, 2016). There is 
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evidence that ARTs kill by targeting hundreds of proteins (J. Wang et al., 2015; Ismail et 

al., 2016; Bhattacharjee et al., 2018), suggesting that parasite death is caused by 

proteopathy. This supports the idea that the PfKelch13-mediated resistance may be linked 

to the capacity of restoring complex protein functions in the parasite - the so-called 

proteostasis (Bhattacharjee et al., 2018; Suresh and Haldar, 2018), hence, promoting its 

survival from ART-induced proteopathy. 

In P. falciparum, two major PfK13 effector mechanisms have been proposed to overcome 

ARTs-induced proteopathy and death. One involves the (i) upregulation of parasite 

oxidative stress response and protein damage pathways via the unfolded protein response 

(UPR) (Dogovski et al., 2015; Mok et al., 2015) and the other results from the (ii) 

elevation of parasite phosphatidylinositol-3-phosphate (PI3P) caused by proteostatic 

dysregulation of phosphatidylinositol-3-kinase (PfPI3K) (Mbengue et al., 2015). Both 

pathways are linked to PfK13. 

Bioactivation of the peroxide structure in the ARTs, leads to generation of reactive ROS, 

that rearrange to form carbon-centred radicals, which subsequently damage proteins, 

lipids and nucleic acids (Meshnick, 2002; O’Neill, Barton and Ward, 2010; 

Gopalakrishnan and Kumar, 2015), and alkylate heme (Robert, Coppel and Meunier, 

2002), hampering hemozoin polymerization (Pandey et al., 1999) and eventually killing 

the parasite. ARTs also induce the ROS-mediated depolarization of both the 

mitochondrial (Wang et al., 2010; Antoine et al., 2014) and plasma membranes (Antoine 

et al., 2014), leading to parasite death. Free radicals do not have a specific cell target (J. 

Wang et al., 2015; Ismail et al., 2016) but rather indiscriminately damage proteins, 

resulting in proteopathy (Nikesitch and Ling, 2016). 

Recovery from proteopathy requires multiple cellular functions that include removal of 

misfolded, aggregated toxic proteins and their replacement to return to proteostasis. ARTs 

resistant parasites show increased transcription of the reactive oxidative stress complex 

linked to the UPR. UPR is one of the multiple proteostasis mechanisms used to maintain 

quality control of protein folding in eukaryotes, responsible for triggering a 

transcriptional response to restore redox conditions. One of the downstream effector 

components of the UPR is the elongation initiation factor 2A (eIF2A), suggesting a 

mechanism of translational repression (as an adaptive response to misfolded proteins) that 
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transiently delays maturation and morphology of apparent cell cycle arrest of mutant ring-

stage parasites (Cheng, Kyle and Gatton, 2012; Zhang et al., 2012). 

Certain PfK13 SNPs in the Kelch domain, show reduced binding to and ubiquitination of 

PfPI3K, increasing the levels of the kinase itself and of its lipid product PI3P (Mbengue 

et al., 2015). Those mutations are expected to increase substrate levels, thus redox sensing 

by PfK13 is also expected to increase substrate levels and their associated mechanisms 

of resistance. 

PfK13 may act as an adapter of PfPI3K to control PfPI3K protein levels. Wild-type PfK13 

protein bound P. falciparum PfPI3K catalysed kinase ubiquitination and lowered 

production of the phospholipid signaling molecule PI3P (Mbengue et al., 2015), while 

PfK13 mutants failed to bind, increasing levels of PfPI3K and elevating its lipid product 

PI3P. PI3P is a phospholipid found in cell membranes that help to recruit proteins 

(Gillooly, Simonsen and Stenmark, 2001). It has been implicated in intracellular 

trafficking events, including protein export and hemoglobin endocytosis (Bhattacharjee, 

Stahelin and Haldar, 2012). Furthermore, elevation of PI3P alone efficiently conferred 

ART resistance (Mbengue et al., 2015). 

This suggests that a proteasome-engaging cell stress response is involved in protecting 

both sensitive and resistant parasites from the action of ARTs, which seems to be more 

effective in the K13 mutant parasites. 

 

I.3.5 – Partner drugs of artemisinins in ACTs 

a) Lumefantrine 

Lumefantrine (LU) belongs to the group of amino alcohols and is an antimalarial agent 

used to treat acute uncomplicated malaria (Figure I.10). It is administered in combination 

with artemether (ATM) for improved efficacy. The exact mechanism by which LU exerts 

its antimalarial effect is unknown. However, available data suggest that LU inhibits the 

formation of β-hematin by forming a complex with hemin and inhibits nucleic acid and 

protein synthesis, acting in blood stages (trophozoite and schizont) (Haldar, Bhattacharjee 

and Safeukui, 2018). 
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In Africa, ATM-LU (Coartem®), the most common ACT (Kavishe, Koenderink and 

Alifrangis, 2017), has demonstrated consistently high efficacy and safety for over a 

decade. Currently deployed as a first- or second-line treatment in most sub-Saharan 

African countries, its extensive use is endorsed by a lack of reported parasite resistance 

in Africa, to date (Ogbonna and Uneke, 2008; Hamed and Grueninger, 2012). 

Polymorphisms in the P. falciparum chloroquine resistance transporter (pfcrt) and P. 

falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased 

sensitivity to LU, but effects of these polymorphisms on therapeutic responses to ATM-

LU have not been clearly defined (Venkatesan et al., 2014). The pfmdr1 haplotypes of 

N86, F184 and D1246 (NFD) were selected in recrudescence samples after ATM-LU 

treatment, suggesting that this haplotype conferred a fitness advantage upon ATM-LU 

pressure (Happi et al., 2009; Mbaye et al., 2016). The introduction of ATM-LU in 

Tanzania and Mozambique led to an increasing trend in NFD prevalence, which supports 

the observed ATM-LU pressure. In addition, the pfmdr1 N86 and pfcrt K76 wild-type 

alleles are also selected by ATM-LU treatment (Menard et al., 2012). 

The Pfmdr1 protein located on the vacuolar membrane has the function to pump 

substrates into the DV. Thus, for drugs whose primary targets are in the DV, alterations 

that favor less accumulation of the drug in the DV may be favored (Cowman et al., 1991). 
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Figure I.10: Representation of the chemical structures of partner drugs of ARTs 
used for the artemisinin-based combination therapy of malaria (ACTs). (Adapted from 
(Krungkrai and Krungkrai, 2016)). 

 

b) Mefloquine 

Mefloquine (MEF) is a quinoline derivative (Figure I.10) belonging to the group of amino 

alcohols with antimalarial activity (Haldar, Bhattacharjee and Safeukui, 2018) that bind 

to FP and inhibit its polymerization into hemozoin, causing accumulation of the 

oxidatively toxic PF in the parasite’s DV (Foley and Tilley, 1997). MEF also binds to 

cysteine proteases, inducing apoptosis and ROS production (Gunjan et al., 2016) and 

acting in blood stages of the parasite (trophozoite and schizont) (Haldar, Bhattacharjee 

and Safeukui, 2018). 

MEF has been widely used previously in the treatment and prophylaxis of malaria and is 

currently administered in combination with artesunate (ATN-MEF). This combination is 

commonly associated with neuropsychiatric side effects and cardiotoxicity, attributed to 

MEF (Mawson, 2013; Jain, Nevin and Ahmed, 2016). 

ATN-MEF resistance is very high in most of East Asia, where this combination has been 

extensively used, and resistance against MEF monotherapy had reached alarming levels 
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before it was combined with ATN (Nosten et al., 2000; Kavishe, Koenderink and 

Alifrangis, 2017). This combination is rarely used in Africa (Ogbonna and Uneke, 2008). 

Mutations in and/or amplification of pfmdr1 confer resistance to partner drugs such as 

MEF and LU and thus limit effective treatment with ACTs (Price et al., 2004; Sidhu et 

al., 2006; Veiga et al., 2016). The pfmdr1 S1034C and N1042D mutations were reported 

to reduce or abolish resistance to MEF (Duah et al., 2013). 

In Southeast Asia, MEF will be added to DHA-PPQ to generate triple ACTs as an 

elimination strategy (WWARN, 2017). This needs careful monitoring because MEF can 

affect heart rhythms and has neurological side effects (Haldar, Bhattacharjee and 

Safeukui, 2018). 

 

c) Amodiaquine 

Amodiaquine (AQ) is a 4-aminoquinoline (Figure I.10) used in combination with ATN 

(ASAQ) that has remained effective against uncomplicated malaria even in areas where 

CQ resistance marker is very high (Shayo, Buza and Ishengoma, 2015). 

Like other quinolines, AQ acts by interfering with hemoglobin digestion in the blood 

stages of the malaria life cycle (Foley and Tilley, 1997). 

Some studies of AQ have reported reduced in vivo response and increased IC50 values in 

vitro, in association with the presence of pfmdr1 86Y and pfcrt 76T alleles (Venkatesan 

et al., 2014; Ljolje et al., 2018). Selection of these alleles in recurrent parasites, after 

treatment with AQ alone or in combination with ATN, has been observed in a number of 

studies (Humphreys et al., 2007). The pfmdr1 D1246Y and N86Y mutations predict 

resistance and recrudescence to AQ in Uganda (Nsobya et al., 2010). 

Resistance to partner drugs has also been linked to polymorphisms in certain genes: 

single-nucleotide polymorphisms (SNPs) in pfcrt and pfmdr1 for AQ. 

In Southeast Asia, AQ will be added to ATM-LU to generate triple ACTs as an 

elimination strategy (WWARN, 2017). 
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d) Piperaquine 

Piperaquine (PPQ), a bisquinone derivative of 4-aminoquinoline (Figure I.10), also 

inhibits hemozoin formation, leading to oxidative stress (Kavishe, Koenderink and 

Alifrangis, 2017). PPQ acts on trophozoites and schizonts (Haldar, Bhattacharjee and 

Safeukui, 2018). 

It was reported that the efficacy of the current first-line drug DHA-PPQ in Cambodia has 

decreased, leading to a drop of about 50% in cure rates in some parts of the country. An 

increased number of copies of the plasmepsin 2–plasmepsin 3 gene, associated with PPQ 

resistance, has been implicated. Amplification of Pfplasmepsin 2 and Pfplasmepsin 3 

almost invariably appears on parasites carrying the marker for ART resistance, 

PfKelch13, in particular the C580Y allele (Amato et al., 2016; Witkowski et al., 2017). 

The amplification of plasmepsin 2–3 encodes hemoglobin-digesting proteases, regardless 

of the location. It was discovered that the plasmepsin 2 gene copy amplification correlates 

to DHA-PPQ failure rates at day 42 of treatment follow-up, and this resistance is 

attributed to PPQ rather than DHA (Witkowski et al., 2017). The pfmdr1 N86Y mutation 

increases sensitivity to DHA-PPQ (Pillai et al., 2012) and the pfcrt gene is also associated 

with the PPQ resistance (Agrawal et al., 2017; Dhingra et al., 2017). 

It has been shown that the in vitro piperaquine survival assay (PSA) (Duru et al., 2015) 

with in vitro culture-adapted parasites and freshly collected ex vivo patient isolates, to 

detect PPQ resistance and treatment failure, is more reliable than classic dose-response 

assays. The in vitro PSA was therefore proposed as a reliable tool to identify molecular 

signatures associated with resistance SNPs and copy number variations (Witkowski et 

al., 2017). 

 

e) Sulfadoxine-pyrimethamine 

Sulfadoxine (S) is an ultra-long-lasting sulfonamide used in combination with 

pyrimethamine (P), a diaminopyrimidine, which belongs to the antifolates class (Figure 

I.10) and is used for the treatment of uncomplicated malaria. The combination SP 

(Fansidar®) presents low toxicity, acting in blood and liver schizonts and in the mosquito 
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stages (oocysts) (Haldar, Bhattacharjee and Safeukui, 2018), but is no longer used for the 

treatment of clinical malaria in Africa because of resistance emergence. However, it 

continues to be used as prophylaxis and is administered routinely as an intermittent 

preventive treatment (IPT) for malaria in pregnancy and in infants (See I.4.7) (Naidoo 

and Roper, 2013; WHO, 2017b). 

In Northeast India, ATN-SP became redundant due to high resistance to SP, which 

lowered the efficacy of ATN-SP to unacceptable levels (Mishra et al., 2014). The 

resistance to SP has been attributed to point mutations in the parasite genes encoding their 

target enzymes, dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr). 

These mutations accumulate at several sites in the dhfr and dhps genes (Roper et al., 

2003). The quintuple mutant, a combination of the dhfr triple mutant (51I + 59R + 108N) 

and the dhps double mutant (437G + 540E), is found throughout sub-Saharan Africa and 

is associated with SP treatment failure (Naidoo and Roper, 2013; Warsame et al., 2017). 

In Somalia, a treatment failure rate as high as 12% was recently reported for ATN-SP, 

with SP-resistance molecular markers (quintuple mutations) reported in the majority of 

patients (89%) (Warsame et al., 2017) 

 

f) Pyronaridine 

Pyronaridine (PYR) belongs to the family of 4-aminoquinolines (Figure I.10) and was 

developed in China as one of the earliest synthetic antimalarial drugs in the late 1970s 

(Zheng et al., 1982). It was initially used in a monotherapy regimen (Ringwald et al., 

1996) but is nowadays formulated as a fixed-dose with ATN (ATN-PYR) (Pyramax®), a 

new and highly effective ACT that has earned a positive scientific opinion from the 

European Medicines Agency under article 58 and is now being considered by the WHO 

for administration in areas where other ACTs are failing (WHO, 2018a). PYR acts in 

rings, trophozoites and schizont stages of malaria parasites (Haldar, Bhattacharjee and 

Safeukui, 2018) and has also been shown to possess an in vitro gametocytocidal effect 

in P. falciparum (Chavalitshewinkoon-Petmitr et al., 2000). 

The mechanism of action of PYR remains unclear but it has already been demonstrated 
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that PYR acts similarly to chloroquine with regard to the inhibition of hematin formation 

in vitro, through formation of a drug-hematin complex, inhibition of glutathione (GSH)-

dependent degradation of hematin, and enhancement of hematin-induced lysis of red 

blood cells (Auparakkitanon et al., 2006). 

In areas of low transmission, the WHO recommends that the combination ATN-PYR 

should be administered with primaquine (PQ) in P. falciparum malaria, to reduce the 

transmissibility of the treated infection, and also in Southeast Asia, to decrease the risk 

of spreading ART resistance (WHO, 2015a). 

However, P. falciparum reduced susceptibility to the PYR component was detected in 

western Cambodia. Notably, the parasite clearance rate was significantly extended with 

both ATN-PYR and ATN-MEF in Cambodia, versus other countries, suggestive of ART 

resistance despite high efficacy elsewhere in Asia and Africa (Rueangweerayut et al., 

2012; Leang et al., 2016). In a recent study in Africa, it was shown that ex vivo reduced 

susceptibility to PYR, i.e., IC50 > 60 nM, was associated with the K76T mutation in the 

pfcrt gene (Agrawal et al., 2017). 

 

I.3.6 – Other antimalarial drugs of interest 

a) Chloroquine 

Chloroquine (CQ) is a 4-aminoquinoline (Figure I.11) that has been extensively used in 

the prevention and treatment of malaria. The studies carried out in the different phases of 

the intra-erythrocyte life cycle of P. falciparum have indicated the DV (a lysosome-like 

organelle) as the site of action of this antimalarial (Ecker et al., 2012). CQ, as well as 

other chemically similar drugs, acts by accumulation at high concentrations (~85%) in 

the DV of the parasite, reaching concentrations many times higher than plasma 

concentration (Bray et al., 2006; Gligorijevic et al., 2006). CQ becomes toxic due to its 

binding to FP, helping to retain the drug at high concentrations within the parasite and 

making it impossible to detoxify the heme. In essence, the parasite is poisoned by its own 

waste (Roepe, 2009; Ecker et al., 2012). 

Mutations in the gene encoding the P. falciparum CQ resistance transporter (pfcrt), on 
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chromosome 7, are associated with chloroquine resistance (Fidock et al., 2000); a 

substitution from lysine to threonine at codon 76 in pfcrt predicts responses of parasites 

to CQ (Djimdé et al., 2001; Venkatesan et al., 2014). This mutation is the most reliable 

molecular marker of resistance to CQ among the several identified mutations (72, 74, 75, 

97, 152, 163, 220, 271, 326, 356 and 371 (Djimdé et al., 2001; Ibrahim et al., 2009). 

Mutations in the gene that encodes the P. falciparum multidrug resistance transporter 1 

(pfmdr1) on chromosome 5, linked to antimalarial drug resistance occur at codons 86, 

184, 1034, 1042 and 1246 (Foote et al., 1990; Reed et al., 2000; Venkatesan et al., 2014). 

However, the mutation that occurs as a result of the substitution of asparagine for tyrosine 

at position 86 is linked with CQ resistance (Wellems et al., 1990). Additionally, multiple 

pfmdr1 SNPs have been associated with susceptibility profiles of many antimalarial 

drugs. The Y184F, N1042D and D1246Y mutations are associated with the CQ resistance 

phenotype from samples in Africa, Asia and South America (Menard et al., 2006). 

The pfmdr1 gene expression levels have been considered in the etiology of the parasite 

resistance to some antimalarial drugs and it is being explored in epidemiological studies. 

Increase in pfmdr1 gene copy numbers has been linked to P. falciparum diminished 

susceptibility to antimalarial drugs, such as MEF, ATN-MEF, and ATM-LU 

combinations (Price et al., 2004). Although there is no reported correlation between 

pfmdr1 gene copy numbers and treatment failure, this marker is important for the 

prediction of recrudescence with the use of the antimalarials mentioned above. There is 

an assertion that pfmdr1 gene copy numbers rather than the SNPs, exert greater influence 

in mediating antimalarial drug resistance to some compounds. This was reported to be 

due to the fact that many transporter proteins mandate concerted complementary attention 

to copy number variations in mediating antimalarial activity (Duah et al., 2013). 

 



Introduction 

37 
 

 

Figure I.11: Representation of the chemical structures of other relevant quinoline-
based antimalarial drugs. 
 

b) Primaquine 

Primaquine (PQ), an important 8-aminoquinoline (Figure I.11), is metabolized into 5-

hydroxyprimaquine, which reacts to form ROS in erythrocytes, leading to cytoskeletal 

and membrane lipid peroxidation and hemolysis (Bowman et al., 2005; Bowman, Jollow 

and McMillan, 2005; Kavishe, Koenderink and Alifrangis, 2017). PQ is well known for 

its high ROS production, leading to rapid depletion of glutathione in erythrocytes; hence, 

it is contraindicated in patients with G6PD 

 deficiency (Beutler, 1994). 

PQ has been used as an antimalarial drug for more than 50 years. It has excellent 

gametocytocidal activity against P. falciparum, thus reducing transmission, and has 

hypnozoitocidal activity against P. vivax and P. ovale infections (Galappaththy, Tharyan 

and Kirubakaran, 2013). For these reasons, the WHO recommends the use of a single 

dose of PQ in combination with ACTs for P. falciparum malaria treatment (WHO, 

2015a). PQ is not suitable as a single drug for malaria chemotherapy because it is not 

effective against intra-erythrocytic forms of Plasmodia. Thus, PQ must be co-

administered with blood schizontocides (Baird and Hoffman, 2004). 

Currently, PQ is the only treatment available to prevent relapses of P. vivax malaria and 

is the only licensed drug that has proven gametocytocidal activity in vivo (Gebru, 

Mordmuller and Heldb, 2014). Because PQ has a half-life of 4 to 9 hours (Vale, Moreira 

and Gomes, 2009), the WHO recommends that it is administered once a day, for 14 days, 
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for the treatment of P. vivax malaria. It is difficult for patients to follow such a regimen, 

which leads to treatment withdrawal (MMV, 2018). 

The exact mechanism by which PQ so effectively eliminates Plasmodia hypnozoites and 

gametocytes is still under investigation but it has been proposed that PQ selectively 

destroys the inner structure of mitochondria, eventually by interference with the 

ubiquinone function, as an electron carrier in the respiratory chain (Pukrittayakamee et 

al., 2004; Vale, Moreira and Gomes, 2009; Leliévre et al., 2012). The biotransformation 

pathways important for PQ therapeutic and toxic effects are unclear, but recent evidence 

suggests that cytochrome CYP2D6 plays a crucial role in generating highly reactive 

intermediate metabolites that generate intracellular oxidative potentials, which provides 

the antimalarial activity of PQ (Vale, Moreira and Gomes, 2009). A key safety issue for 

PQ is its capacity to induce hemolysis in G6PD-deficient patients (Llanos-Cuentas et al., 

2014). 

Resistance to PQ by blood stages of Plasmodium parasites (Arnold, Alving and Clayman, 

1961) is of little clinical consequence. Resistance in tissue stages dominates public health 

concern, and the absence of such resistance after 50 years seems incredible.  The 

resistance to PQ is notably low and hardly noteworthy, a fact that is still not understood 

(Baird and Hoffman, 2004; Vale, Moreira and Gomes, 2009). 

 

c) Tafenoquine 

Tafenoquine, a 8-aminoquinoline and a synthetic analogue of PQ (Figure I.11), is a long-

acting antihypnozoite drug (Bousema and Drakeley, 2011), developed for P. vivax radical 

cure that must be co-administered with a blood schizontocide, either CQ or ACT (Green 

et al., 2016). Tafenoquine has a half-life of 2 to 3 weeks, raising the possibility of single-

dose treatment and directly observed therapy (Llanos-Cuentas et al., 2014). 

Tafenoquine (Krintafel®), developed by the pharmaceutical company GlaxoSmithKline 

(GSK), has completed phase III studies. In July 2018, GSK and Medicines for Malaria 

Venture (MMV) announced that: “the United States Food and Drug Administration 

(FDA) has approved, under Priority Review, single-dose Krintafel for the radical cure 
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(prevention of relapse) of Plasmodium vivax malaria in patients aged 16 years and older 

who are receiving appropriate antimalarial therapy for acute P. vivax infection” (MMV, 

2018). 

To reduce the risk of hemolysis, GSK is working on the development of a quantitative 

G6PD point-of-care diagnostic test, so that patients with G6PD status can be tested to 

determine if tafenoquine or PQ can be safely administered (MMV, 2017). 

The antimalarial drugs currently in use and the respective resistance markers are listed in 

Annex XI. 

 

I.3.7 – Chemoprophylaxis and chemoprevention with antimalarials 

The WHO recommends preventive therapies for vulnerable groups, such as: travelers 

during potential exposure to malaria; pregnant women, infants (< 12 months of age) and 

children (< 5 years of age) living in endemic areas. However, resistance has already 

developed against drugs approved for this indication (i.e., chloroquine and proguanil), in 

most endemic areas (WHO, 2017b). 

The chemoprophylaxis recommended for travelers during potential exposure to malaria 

depends on local patterns of susceptibility to antimalarials and on the likelihood of 

Plasmodial infection. Since 2016, 36 African countries have adopted a policy of 

providing three or more doses of intermittent preventive treatment in pregnancy (IPTp) 

with sulfadoxine-pyrimethamine (SP) to all pregnant women in endemic areas, to provide 

continuous preventive effects as part of antenatal care (WHO, 2017b). Resistance to SP 

is increasing in Africa, and therefore alternative drugs are being investigated for its use 

in preventive treatment during pregnancy (WHO, 2017b). In areas of moderate-to-high 

malaria transmission in Africa where SP is still effective, intermittent preventive 

treatment with SP should be provided to infants (< 12 months of age) (SP-IPTi) at the 

time of the second and third rounds of vaccination against diphtheria, tetanus and 

pertussis (DTP) and vaccination against measles (WHO, 2017b). Seasonal malaria 

chemoprevention (SMC) with SP + AMQ is recommended to children, but only in areas 

of highly seasonal transmission, across the Sahel subregion of Africa (WHO, 2017b, 
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2018b). 

 

I.4 – New endoperoxides as antimalarial candidates 

The widespread application of ART and its derivatives leads to difficulties in maintaining 

supply. The parent pharmacologically active compound, ART, is obtained by large-scale 

extraction from shrubs of Artemisia annua and ART derivatives are generated semi-

synthetically, with growth, harvest, and production processes taking about 18 months 

(Wells, Huijsduijnen and Voorhis, 2015). In addition to this limitation, recent findings of 

resistance to ACTs stimulated further efforts towards the development of the next 

generation of potent antimalarial endoperoxides, equally effective against ART-

susceptible and -resistant strains of P. falciparum, as well as safer and cheaper than ARTs. 

Thus, there is an urgent need for wholly synthetic endoperoxides that are as effective as 

the currently used ARTs but are cheaper and more easily available (Yang et al., 2016). 

The core structure of ARTs comprises a 1,2,4-trioxane incorporating an endoperoxide 

linkage that is essential for activity (Tang, Dong and Vennerstrom, 2004; O’Neill, Barton 

and Ward, 2010). The endoperoxide pharmacophore has stimulated the development of 

several different classes of synthetic endoperoxides including trioxolanes (Vennerstrom 

et al., 2004) and tetraoxanes (Vennerstrom et al., 1992; Fontaine et al., 2015), which are 

particularly promising in the context of antimalarial chemotherapy, exhibiting similar 

activity to the ARTs (O’Neill et al., 2017). 

The first synthetic ozonide developed for use as an antimalarial drug, OZ277 (arterolane 

maleate; also called RBx-11160), proved to be well tolerated by humans (Gautam et al., 

2011; Wells, Huijsduijnen and Voorhis, 2015) and a combination of OZ277 and PPQ, 

known as SynriamTM, was registered in India for use in antimalarial chemotherapy 

(Tilley, Straimer, Gnädig, et al., 2016). OZ277 has good activity against all asexual blood 

stages of P. falciparum; however, the half-life of OZ277 is only 2- to 3-fold longer than 

DHA (Gautam et al., 2011) and it is reported to have lower plasma exposure in malaria 

patients than in uninfected volunteers (Saha et al., 2014). 

OZ439 (artefenomel), the second synthetic ozonide that advanced to the stage of clinical 
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candidate selection, appears to be more promising, exhibiting a much longer in vivo 

elimination half-life (46 to 62 hours) (Moehrle et al., 2012; Phyo, Jittamala, et al., 2016). 

OZ439 is currently being assessed, either as monotherapy or as combination therapy, in 

Phase II human clinical trials (Wells, Huijsduijnen and Voorhis, 2015; Phyo, Jittamala, 

et al., 2016; Rosenthal, 2016). The extended exposure profile (Moehrle et al., 2012) raises 

the possibility that it might be effective, in combination with a second antiplasmodial 

agent, as a single-dose oral cure for malaria (Charman et al., 2011; Moehrle et al., 2012; 

Wells, Huijsduijnen and Voorhis, 2015; Phyo, Jittamala, et al., 2016; Yang et al., 2016) 

(Figure I.12). 

 

 

Figure I.12: Representation of the chemical structures of trioxolanes OZ277 and 
OZ439, advanced as antimalarial candidates. (Adapted from (Charman et al., 2011)). 

 

As proposed for the ARTs, the peroxide bond of the ozonides appears to be instrumental 

to the antimalarial activity (Tang, Dong and Vennerstrom, 2004; Fontaine et al., 2015), 

consistent with the observation that Fe 2+ availability is required for bioactivation and 

subsequent antimalarial activity. The involvement of carbon-centred radicals as the toxic 

species is supported by the observation that nitroxide radical spin trap compounds 

antagonize the activity of both ARTs and OZ277 (Fugi et al., 2010). 

Thus, the accessibility (relatively easy and inexpensive preparation) and stability of 1,2,4-

trioxolanes allows the synthesis of derivatives with various structures, extending the 
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possibility of developing potentially more effective drugs. The tolerance of the 1,2,4-

trioxolane moiety to various synthetic conditions allows the synthesis of a significant 

number of chemically diverse derivatives (Tang, Dong and Vennerstrom, 2004). 

1,2,4,5-tetraoxanes, which differ from the structure of ARTs, are readily prepared in two 

steps from substituted cyclohexanones, and have good antimalarial efficacy, exhibiting 

pronounced activity against both CQ-sensitive and CQ-resistant strains of P. falciparum, 

(Rudrapal and Chetia, 2016) even though some are less active than semi-synthetic ARTs 

(Dong et al., 2007). 

E209 and RKA182 (O’Neill et al., 2010) are known as the next-generation tetraoxane-

based antimalarial drugs. TDD E209 meets key requirements of MMV for drug candidate 

profile. It presented a potent nanomolar inhibitory activity against multiple strains of P. 

falciparum and P. vivax in vitro, was efficacious against P. falciparum in vivo in rodent 

models, produced parasite reduction ratios equivalent to DHA, and evidenced 

pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose 

cure. Therefore, it is currently under preclinical phase of development (Vennerstrom et 

al., 1992, 2000; Dong et al., 2007; Opsenica and Šolaja, 2009; Rudrapal and Chetia, 2016; 

O’Neill et al., 2017). 

 

 

Figure I.13: Representation of the chemical structures of tetraoxanes TDD E209 and 
RKA182, advanced as antimalarial candidates. (Adapted from (Rudrapal and Chetia, 2016). 
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In a recent study performed by us, three synthetic trioxolanes prepared by Cristiano’s 

group were tested in vitro and in vivo against a mouse model infected with ART-resistant 

(ART-R) parasites, and the compounds exhibited high efficacy in clearing the infection 

(Lobo et al., 2016). These results inspired the expansion of the library of compounds and 

further investigation of their efficacy against ART-R P. falciparum strains. This thesis 

reports the antimalarial activity in vitro and in vivo of a library of 36 endoperoxide-type 

compounds. From these, the synthesis and antimalarial activity of a library of 21 

compounds (trioxolanes and tetraoxanes) have already been disclosed (Lobo et al., 2018). 

 

I.5 - Oxidative stress in P. falciparum 

During the intra-erythrocytic part of the parasite’s life cycle, malaria parasites degrade 

~75% of the host hemoglobin in the DV(Bakar et al., 2010). This provides a necessary 

source of aminoacids, releases space for growth and maintains the osmotic balance of the 

infected erythrocyte (Lew, Tiffert and Ginsburg, 2003; Bakar et al., 2010). However, 

hemoglobin degradation is a metabolic process that generates large amounts of ROS, 

since it occurs in the presence of oxygen and Fe(II) or heme, the key prerequisite for the 

formation of ROS via the Fenton reaction4 (Fu et al., 2010). In fact, the main source of 

ROS in P. falciparum is the digestion of hemoglobin in the DV of the parasite (Lew, 

Tiffert and Ginsburg, 2003; Becker and Kirk, 2004), that produces high amounts of heme, 

a highly reactive molecule that generates ROS (Gluzman et al., 1994). Unlike mammals, 

which detoxify the heme groups by opening the ring enzymatically and by 

glucuronidation, the parasite uses an enzymatic mechanism of cell detoxification by 

polymerizing the heme groups, producing a crystalline non-toxic matrix, hemozoin, 

stored in parasite’s DV (Fu et al., 2010). 

In order to survive and develop in such environment, P. falciparum relies on a robust 

antioxidant system to minimize the damage caused by ROS and reactive nitrogen species 

(RNS) (Kavishe, Koenderink and Alifrangis, 2017; Sussmann et al., 2017). Several 

enzymes of the glutathione system have been described in Plasmodium species. These 

include glutathione synthase (Meierjohann, Walter and Müller, 2002) and glutathione 

                                                
4 O2

- + Fe3+ → O2 + Fe2+  / Fe2+ + H2O2 → Fe3+ + OH- + OH- 
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reductase (Farber et al., 1996), superoxide dismutase (Bécuwe et al., 1993), glutamate 

dehydrogenase (Krauth-Siegel et al., 1996), and G6PD. Additionally, the parasite has a 

functional thioredoxin system with thioredoxin reductase (Kanzok et al., 2000), 

thioredoxin (Krnajski et al., 2001), thioredoxin peroxidase (Krnajski, Walter and Müller, 

2001), 1 cys-peroxiredoxin (Kawazu et al., 2005), and α-tocopherol (Sussmann et al., 

2011). 

The oxidative stress induced by antimalarial agents is known to interfere and disrupt the 

antioxidant-system balance and is important in malaria parasite clearance, both in 

quinoline-based antimalarial drugs and in endoperoxides: ARTs (Pandey et al., 1999; 

Kannan, Sahal and Chauhan, 2002; Cui and Su, 2009; Hartwig et al., 2009; Antoine et 

al., 2014; J. Wang et al., 2015); 4-aminoquinolines: chloroquine (Foley and Tilley, 1997; 

Ridley et al., 1997; Srivastava et al., 1999; Olafson et al., 2015), amodiaquine (Foley and 

Tilley, 1997; Ridley et al., 1997), piperaquine (Davis et al., 2005) and pyronaridine 

(Auparakkitanon et al., 2006; Kritsiriwuthinan et al., 2011); 8-aminoquinolines: 

primaquine (Beutler, 1994; Bowman et al., 2005; Bowman, Jollow and McMillan, 2005; 

Kavishe, Koenderink and Alifrangis, 2017); arylamino alcohols: mefloquine (Sullivan et 

al., 1998; Gunjan et al., 2016) and lumefantrine (Sullivan et al., 1998) (Kavishe, 

Koenderink and Alifrangis, 2017). 

 

I.6 - Effects of endoperoxides on mitochondria of P. falciparum  

The mitochondria of malaria parasites differ from that of other eukaryotic cells. They are 

present in all stages, including the ring stage, and share a close association with the 

apicoplast (Hopkins et al., 1999). The proximity of these organelles has been 

hypothesized as necessary for metabolic interaction (Aikawa, 1966; Hopkins et al., 1999). 

The parasite´s mitochondria is involved in several metabolic pathways, including 

pyrimidine biosynthesis, iron-sulfur cluster and heme biogenesis, the biosynthesis of 

ubiquinone, and tricarboxylic acid metabolism (Painter et al., 2007; Painter, Morrisey 

and Vaidya, 2010; Peatey et al., 2015). 

The electron transport chain (ETC) of intraerythrocytic malaria parasites is believed to 

contain five dehydrogenases, namely NADH: ubiquinone oxidoreductase (PfNDH2), 
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succinate: ubiquinone oxidoreductase (Complex II or SDH), glycerol-3-phosphate 

dehydrogenase, the malate quinone oxidoreductase (MQO) and dihydroorotate 

dehydrogenase (DHODH) (Nixon et al., 2013b). The ETC helps to maintain a proton 

gradient, an evolutionarily conserved prerequisite for protein and metabolite transport 

across the inner mitochondrial membrane (Eckers et al., 2012). However, the major 

function of the ETC in asexual blood-stage cultures of P. falciparum is to regenerate 

ubiquinone as the electron acceptor of the mitochondrial DHODH, which catalyzes a key 

step in pyrimidine biosynthesis (Painter, Morrisey and Vaidya, 2010; Ehrhardt et al., 

2013). 

Mitochondrial dysfunction can induce apoptotic pathways (Kataoka et al., 2005). The 

mitochondria control apoptosis acts at several levels, such as maintenance of ATP 

production and mitochondrial membrane potential (ΔΨm) and mitochondrial membrane 

permeability, to release certain apoptogenic factors from the intermembrane spaces into 

the cytosol (Ly, Grubb and Lawen, 2003). Thus, ΔΨm is a governing parameter of 

mitochondrial functions and cell health (Kataoka et al., 2005). Changes in ΔΨm are 

observed by staining with rhodamine 123 (Rh123), a permeant cationic fluorescencent 

dye that is selectively accumulated by the mitochondria of living cells. Mitochondria-

specific interaction of such molecules is apparently dependent on the high trans-

membrane potential (inside negative) maintained by functional mitochondria. Thus, the 

tests carried out in this work were performed using Rh123 to detect mitochondrial damage 

(Johnson et al., 1981; Divo et al., 1985). 
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I.7 – General objectives 

A library of new trioxolanes and tetraoxanes was proposed and synthesized at Centro de 

Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve under 

the guidance of Professor Maria de Lurdes Cristiano. The main goals were to i) identify 

newly synthesized trioxolanes and tetraoxanes with potent antimalarial activity and ii) 

elucidate their mechanisms of action. 

 

I.7.1 – Specific objectives 

1. Evaluation of the cytotoxicity of new endoperoxides against mammalian cells. 

2. Characterization of antimalarial activity of the new endoperoxides in vitro, against 

strains of P. falciparum with different susceptibilities to antimalarials. 

3. Determination of the antimalarial activity of new endoperoxides in vivo. 

4. Evaluation of the genotoxicity of new endoperoxides against mammalian cells. 

5. Exploration of the gametocytocidal activity of the new endoperoxides. 

6. Identification of stage-specific response of P. falciparum to new endoperoxides. 

7. Determination of the minimum inoculum for new endoperoxides resistance. 

8. Evaluation of mitochondrial membrane potential after treatment with the new 

endoperoxides. 

9. Evaluation of the new endoperoxides role on the increase of reactive oxygen 

species in P. falciparum. 
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In a recent study conducted by our groups, three synthetic trioxolanes were tested in vitro 

and in vivo against a mouse model infected with artemisinin-resistant parasites and the 

compounds showed high efficacy in clearing the infection (Lobo et al., 2016). These 

results inspired the expansion of the compounds library and further investigations of their 

efficacy against artemisinin-resistant P. falciparum strains.  

The research described in this thesis focused on 4 complementary lines of work. In the 

first line, a study was carried out to characterize cytotoxicity effects of the new 

endoperoxides against mammalian cells. In the second line, the antimalarial activity of 

endoperoxides was characterized in vitro in 4 strains of P. falciparum with different 

susceptibilities to antimalarials. In the third line of this investigation, the antimalarial 

activity against P. berghei was evaluated in vivo. Finally, in the fourth line we aimed at 

identifying possible mechanisms of action of these endoperoxides in P. falciparum. We 

evaluated these by performing ring and mature-stages assays, by investigating 

genotoxicity, gametocytocidal activity, stage-specificity, the effect on mitochondria 

membrane potential, generation of reactive oxygen species (ROS), and by evaluation of 

resistance. In Figure II.1 an overview of the studies carried out in this work is presented. 

Note: The Materials and Methods chapter is presented in sessions: 1) Biological material 

used in research; 2) description of the techniques, with laboratory details; 3) research 

methodology, completing point 2. 
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Figure II.1: Flowchart with an overview of the studies carried out in this work.
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II.1 – Biological Materials 

II.1.1 – Mammalian cells 

Two mammalian cell lines were used: (a) a malignant cell line, HepG2-A16; (b) a line 

of normal cells, V79-2 (Table II.1). 

1. HepG2-A16 cells were stored in the cryo-preserved collection of the UEI Malaria 

Laboratory/ IHMT; 

2. V79-2 cells were kindly provided by Professor António Sebastião Rodrigues; 

Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human 

Toxicology, Nova Medical School/ Faculdade de Ciências Médicas, Universidade 

Nova de Lisboa. 

 

Table II.1: Characteristics and origins of mammalian cell lines HepG2-A16 and 
V79. 

 HepG2-A16 V79-2 

Organism Homo sapiens, human 
Cricetulus griseus, Chinese 

hamster 

Tissue Liver Lung 

Morphology Epithelial Fibroblast 

Culture properties Adherent Adherent 

Disease 
Hepatocellular 

carcinoma 
Not associated 

Culture Medium Williams E (Annex I) 
Ham's F-10 Nutrient Mixture 

(Annex I) 
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II.1.2 – P. falciparum strains 

1. 3D7 (Rosario, 1981), sensitive to chloroquine and mefloquine; a cryo-preserved 

collection of the UEI Malaria Laboratory/ IHMT; 

 

2. Dd2 (Oduola et al., 1988), resistant to chloroquine and mefloquine; a cryo-

preserved collection of the UEI Malaria Laboratory/ IHMT; 

 

3. IPC5202 (MRA-1240, MR4, ATCCÒ Manassas Virginia); provided by Malaria 

Research and Reference Reagent Resource Center (MR4) for distribution by BEI 

Resources. It was isolated in 2011 from a human patient with malaria in Battambang 

province, western Cambodia. This strain has previously shown resistance to 

artemisinin and the presence of the R539T mutation in the K13 gene. When exposed 

to dihydroartemisinin (DHA), it demonstrated a ring-stage survival assay (RSA0-3h) 

value of 88.2%. Deposited by Didier Ménard, Institut Pasteur du Cambodge; 

 

4. IPC4912 (MRA-1241, MR4, ATCCÒ Manassas Virginia); provided by MR4 for 

distribution by BEI Resources. It was isolated in 2011 from the blood of a human 

patient with malaria in the Mondulkiri province, southeastern Cambodia. This strain 

has previously shown resistance to artemisinin and the presence of the I543T mutation 

in the K13 gene. When exposed to DHA, it demonstrated (RSA0- 3h) value of 49.3%. 

Deposited by Didier Ménard, Institut Pasteur du Cambodge; 

 

5. 3D7HT-GFP (MRA-1029, MR4, ATCCÒ Manassas Virginia); provided by 

MR4, for distribution by BEI Resources. It is a genetic recombinant constructed by 

integration of green fluorescent protein (GFP) under control of the EF1 promoter into 

the Pf47 gene. This strain constitutively expresses GFP throughout the parasite life 

cycle, including the mosquito stages. Gametocytes are competent for mosquito 

infection. Deposited by Andrew Talman and Robert Sinden. 
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II.1.3 – Plasmodium berghei strain 

1. Plasmodium berghei NK65 was kindly provided by Professor Valter Andrade 

Neto from Laboratório de Biologia da Malária e Toxoplasmose, Departamento de 

Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Brasil. 

This strain produces lethal infection, which causes high levels of parasitaemia and 

severe pathogenesis in mice. 
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II.2 – Description of techniques 

II.2.1 – In vitro cultures of V79 and HepG2 cells  

The mammalian cells were thawed from the liquid nitrogen, washed with phosphate 

buffered saline (PBS) (Annex II) and seeded into 75 cm2 tissue culture flasks. After this 

procedure, cells were allowed to adhere overnight and were subsequently observed under 

an inverted microscope. The culture media was changed daily until the cultures were 

confluent and the assays could be initiated. 

The HepG2-A16 cells were maintained in Williams medium, supplemented with fetal 

bovine serum (FBS) (10%), penicillin-streptomycin (1%) and NaHCO3 (0.2%), under a 

gas mixture containing 5% CO2, 5% O2, and 90% N2, at 37 ºC, in an incubator. 

Under the same conditions, the V79 cells were maintained in Ham's F-10 medium, 

supplemented with newborn calf serum (NBCS) (10%) and penicillin-streptomycin (1%) 

(Annex I). 

 

II.2.1.1 – Trypsinization of adherent mammalian cells 

Trypsinization was performed when cell cultures were confluent. The culture flask 

medium was removed and 5 ml of trypsin (1x) were added. After 5 minutes, the flask was 

shaken vigorously so that all the cells were detached from it. After this period, the cell 

solution was placed in a 15 ml falcon tube for further centrifugation (2500 rpm/ 5min). 

After centrifugation, the supernatant was removed and 5 ml of sterile PBS were added. 

Further centrifugation was performed under the same conditions and the supernatant was 

removed. Cells were then resuspended in 1 ml of sterile PBS. 20 µl of this cell solution 

were placed in a neubauer chamber for cell counting. After counting the cells, 200 μl of 

culture medium containing 1 × 106 cells/well were added into a flat bottomed 96 well 

plate and left overnight for adherence. Treatment with the compounds under investigation 

was started in the following day. 
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II.2.2 – In vitro culture of P. falciparum 

II.2.2.1 – Defrosting of Plasmodium spp. 

The cryogenic vials were withdrawn from the liquid nitrogen and maintained at 37° C 

until complete thawing. The ampoule volumes were measured and transferred to 15 ml 

falcons. To each falcon, containing 1 ml of culture, 0.2 ml of solution A were added and 

the mixture was incubated for 3 min. After this incubation, 10 ml of solution B were 

added. The falcon was centrifuged at 2500 rpm for 5 min. The supernatant was removed 

and 10 ml of solution C were added to the pellet (Annex I). The culture was centrifuged 

again, and the supernatant was removed. Finally, whole RPMI was added to the 

erythrocyte pellet, under the same culture maintenance conditions. 

 

II.2.2.2 – Cryopreservation of Plasmodium spp. 

Cultures were frozen in liquid nitrogen when they presented high parasitemia and were 

predominantly at the ring stage. For this, cultures were centrifuged at 2500 rpm for 3 min 

and the supernatants were discarded. The remaining pellets were resuspended in equal 

volumes of the cryopreservation solution (Annex I), and finally homogenized. The 

cultures were transferred to identified cryogenic vials and frozen at -80º C. 

 

II.2.2.3 – Preparation of non-parasitized erythrocytes 

In the clinical analysis laboratory of the IHMT, 20 ml of venous blood from healthy 

donors, preferably of the blood type 0+, were collected with a syringe. The blood was 

divided between three vacuum tubes containing ethylenediamine tetraacetic acid 

(EDTA). In the malaria culture laboratory, the blood was then divided into two 15 ml 

hawk tubes and centrifuged at 2500 rpm for 3 min, in order to remove the plasma and the 

fraction of white blood cells. 10 ml of sterile PBS were added to each tube. This procedure 

was repeated 5 times, until the white blood cells were completely withdrawn from our 

blood sample. Following the blood washing procedure, the same volume of complete 

sterile RPMI (Annex I) was added to the red blood cells fraction. This erythrocyte 
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suspension (50% hematocrit) was stored at 4° C and used within a period of up to 15 

days. The entire procedure was performed in a laminar flow chamber to maintain sterile 

conditions. 

 

II.2.2.4 – Culturing of P. falciparum 

In vitro cultures of P. falciparum were prepared and maintained, following methods 

previously described (Trager & Jensen, 1997), with some modifications. When necessary, 

P. falciparum was thawed from liquid nitrogen (-80ºC) and maintained in human 

erythrocytes (blood group O+) in RPMI 1640 supplemented with Hepes, AlbuMAXTM I, 

NaHCO3 and hypoxanthine (Annex I). Cultures were grown under a gas mixture 

containing 5% CO2, 5% O2, and 90% N2 at 37 ºC, in an incubator. The parasites were 

diluted with 9.5 ml of culture medium containing 0.5 ml of sufficient non-infected human 

erythrocytes to yield a final hematocrit of 5% and a parasitaemia of 0.5%, in 75 cm2 

flasks. 

Parasite development was evaluated daily by optical microscopy, using thin blood smears 

stained with 20% Giemsa. Standard in vitro cultures were maintained at a parasitaemia 

below 5%. 

 

II.2.2.5 – Parasitaemia determination 

Thin blood smears were prepared, air dried, methanol fixed, and stained with 20% Giemsa 

(Annex II).  4000 erythrocytes were counted per slide in order to determine the respective 

parasitaemia, using the following formula: 

(Nº of infected erythrocytes/ Nº total of erythrocytes counted) x 100. 
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II.2.2.6 – Sincronization of P. falciparum with D-sorbitol 

This method is based on the fact that erythrocytes infected with parasites with more than 

± 20 hours of intra-erythrocyte development have a higher osmotic fragility and are lysed 

due to the action of D-sorbitol (Lambros and Vandemberg, 1979). 

Cultures (> 8% parasitaemia) with predominance of ring stages were centrifuged (2500 

rpm/3 min). The culture medium was discarded, and 10 ml of 5% autoclaved D-sorbitol 

were then added to the pellet (Annex II). 

After 10 min incubation at 37°C, the culture was centrifuged and washed with sterile 

PBS. The erythrocytes recovered after washing were incubated under optimum culture 

conditions. 

 

II.2.2.7 – Sincronization of P. falciparum with Percoll® 

This method separates schizonts from trophozoites by a density gradient. The medium 

was removed from the cultures (> 10% parasitaemia) by centrifugation (2500 rpm/ 3 min) 

and the pellet was slowly added to 10 ml of 70% percoll® (Annex II) pre-heated at 37ºC. 

The culture was centrifuged at 2300 rpm for 11 min. The phase containing the ring and 

schizont stages was collected and transferred to a falcon with 40 ml of washing buffer 

(RPMI 1640 without AlbuMAX I), and then centrifuged at 1800 rpm for 6 min. The 

erythrocytes recovered after washing were placed under standard culture conditions for 

reinvasion to occur. 

 

II.2.2.8 – Gametocytes production  

P. falciparum 3D7-GFP cultures were used to seed gametocyte cultures at 1-2% 

parasitemia and 5% hematocrit. Two cultures of 10 ml were synchronized (initial 

parasitaemia > 10%) with 5% D-sorbitol. After 24 hours, the cultures were divided into 

four flasks of 10 ml and maintained for more 48 hours (37ºC, 5% O2, 5% CO2 and 90% 

N2) The percoll® synchronization was performed on day 0 to separate the schizonts, 

which were maintained for another 24 hours in culture. After this period, treatment with 
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endovenous heparin (20U/ml) was started for 2 consecutive days and the hematocrit was 

adjusted to 2.5%. The cultures were maintained for more 24 hours without heparin (Stage 

II) (Figure II.2) and, at this stage, the compounds toxicity test could be initiated. The 

RPMI medium was replaced daily (Onambele et al., 2015). 
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Figure II.2: Optimized protocol for gametocytes production and the gametocytes toxicity assay. 
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II.3 – Methodology 

II.3.1 – Synthesis of endoperoxides with potential antiplasmodial activity 

In line with the objectives of the investigation, a chemically diverse library of 

endoperoxides was designed and synthesized in the laboratory of Organic Reactivity and 

Medicinal Chemistry of the Centre of Marine Sciences (CCMar), located at the Faculty 

of Sciences and Technology of Universidade do Algarve, under the supervision of Maria 

de Lurdes Cristiano. The structures of the novel compounds were chosen keeping in mind 

the need to build a chemically coherent and diversified library, which would be submitted 

to evaluation of activity and safety, and from which a small selection of the best 

performing compounds, with potential broad range antimalarial activity, could be issued. 

The synthesis of the endoperoxides was carried out by the following researchers: Lília 

Lameirinhas Cabral (who prepared most of the compounds), Maria Inês Sena, and Bruno 

Guerreiro. After synthesis, purification and characterisation, the compounds were sent for 

biological evaluation at the Global Health and Tropical Medicine, Unidade de Ensino e 

Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, 

Universidade Nova de Lisboa. In total, 36 endoperoxides were tested for their 

cytotoxicities on mammalian cells V79 and HepG2 and screened against 3D7 and Dd2 P. 

falciparum strains. The compounds which exhibited undetected or neglectable 

cytotoxicity at the range of concentrations tested and showed sub-micromolar 

antimalarial activity were chosen to be part of the library under study. The references of 

all the endoperoxides studied are detailed in Annex III and their structures are presented 

in Figure II.3, Schemes 1 and 2. 

Some of the trioxolanes (compounds LC28, LC50, LC92, LC95, LC129, LC130, LC131, 

LC132, LC136, LC142, MIS13, MIS14, MIS15, and MIS16; Figure II.3, Scheme 1), and 

some of the tetraoxanes (compounds LC140 and LC163; Figure II.3, Scheme 2) were 

prepared using the synthetic approaches depicted in Figure II.3, Schemes 1 and 2. Some 

of the procedures for the preparation of the trioxolane and tetraoxane building blocks 

were adapted from the literature (Dong et al., 2006; Fugi et al., 2010). Generally, the 

endoperoxides LC50, LC67 and LC140 were used as intermediate building blocks for the 

preparation of other endoperoxide-based compounds, introducing chemical diversity 

through modification of the cyclohexyl functionality. The synthesis of the trioxolane-
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tetrazole, tetraoxane-tetrazole, and trioxolane-saccharyl conjugates were achieved using 

a convergent approach whereby the endoperoxide and tetrazole or saccharyl building 

blocks were separately prepared and then linked to form the desired endoperoxide-based 

targets. 

 

Figure II.3: Representation of the chemical structure of some trioxolanes and some 
tetraoxanes investigated in this work. Scheme 1: Representation of the synthetic routes to the 

trioxolanes prepared; reagents and conditions: (i) Pyridine, MeONH2, MeOH, r.t; (ii) 1,4-Cyclohexadione, 

O3, DCM/pentane, − 78 °C; (iii) LC133, O3, DCM/pentane, − 78 °C; (iv) Ethyl 4-

oxocyclohexanecarboxylate, O3, DCM/pentane, − 78 ºC; (v) LC64, AcOH, DCE, NaBH(OAc)3, r.t.; (vi) 

Trichloroacetic acid, DCM, H2O, r.t.; (vii) 5-Aminotetrazole, DCE, AcOH, NaBH(OAc)3, r.t.; (viii) LiBH4, 

Et2O, LiBH(Et)3, r.t.; (vi) KOH (3M), MeOH, 60 °C; (x) Phthalimide, Ph3P, DIAD, THF, 0 ºC; (xi) 

Hydrazine hydrate, chloroform/MeOH, 60 °C; (xii) 3-Chloro-1,2-benzisothiazole-1,1-dioxide, THF, 60 °C; 

(xiii) 3-Chloro-1,2-benzisothiazole-1,1-dioxide, TEA, toluene, 45 °C; (xiv) 2-Methyl-2H-tetrazole-5-

amine, TEA, mesyl chloride, THF, 60 ºC; (xv) 5-Chloro-1-phenyl-tetrazole, TEA, mesyl chloride, THF, 60 

°C; (xvi) tert-Butyl(4-aminobutyl)carbamate, EDC, HOBt, N-methylmorpholine, DCM, r.t.; (xvii) 

Trichloroacetic acid, DCM, H2O, r.t.; (xviii) Butylamine, EDC, HOBt, N-Methylmorpholine, DCM, r.t.; 

(ix) 1-Aminobutane, EDC, HOBt, N-Methylmorpholine, DCM, r.t.; Scheme 2: Representation of the 

synthetic route to tetraoxanes LC140 and LC163; reagents and conditions: (i) HCO2H, CH3CN, H2O2 50%, 

0 °C; (ii) 1,4-Cyclohexadione, DCM, HBF4, 0 °C; (iii) 5-Aminotetrazole, DCE, AcOH, NaBH(OAc)3, r.t. 

06/08/18, 13)1712936_2018_2281_Fig1_HTML.gif 785×615 pixels

Página 1 de 1https://media.springernature.com/full/springer-static/image/art%…6%2Fs12936-018-2281-x/MediaObjects/12936_2018_2281_Fig1_HTML.gif



Methodology 
 

 
 

 

 
65 

II.3.2 – Evaluation of the cytotoxicity against mammalian cells using the MTT assay 

Cytotoxicity of the compounds was assessed on the mammalian cell lines HepG2-A16 

and V79, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

(Sigma-Aldrich). For the cytotoxicity assays, 1 x 106 cells/well were seeded in a flat-

bottomed 96-well plate and allowed to adhere overnight. After removing the medium, the 

compound under study was added to the seeded cells. Tests were conducted for each 

compound at concentrations ranging from1 mM to 1.372 µM, in triplicate (concentration 

of DMSO < 1%). Three independent assays were performed per tested compound. A 

negative control was also included by adding drug-free medium with 1% of DMSO. V79 

and HepG2 cells were incubated for 24 h and 48 h, respectively (medium with drugs was 

changed at 24 h interval). After finishing the treatment, 20 µl of MTT (5 mg/mL in PBS) 

were added to each well and the plates were incubated for 3 h under standard culture 

conditions. Supernatant was then removed and 200 µl DMSO were added to each well. 

Absorbance was read at 570 nm on a multi-mode microplate reader (Triad, Dynex 

Technologies) to produce a log dose-dependence curve. The LD50, dose required to kill 

half of the cells, was estimated for each compound by non-linear interpolation of the dose-

dependence curve (GraphPad Software). 

 

II.3.3 – Evaluation of the in vitro antimalarial activity against erythrocyte stages 

II.3.3.1 – Half maximal inhibitory concentration (IC50) determination using whole 

cell SYBR Green I assay 

Antimalarial activity of the compounds was determined by using the SYBR Green I assay, 

as previously described (Machado et al., 2016). Early ring stage parasites (> 80% of rings, 

3% hematocrit and 1% parasitaemia) were tested in triplicate in a 96-well plate and 

incubated in standard culture conditions with the compounds for 48h. Parasite growth 

was assessed with SYBR Green I (100 µl of a solution 0.001% v/v in PBS to each well). 

Each compound was tested with concentrations ranging from 10000 nM to 0.169 nM and 

at least three independent tests were conducted for each concentration. Fluorescence 

intensity was measured (multimode microplate reader; Dynex Triad) with excitation and 

emission wavelengths of 485 and 535 nm, respectively, plotted to generate dose-response 
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curves and analysed by nonlinear regression using GraphPad Prism to determine IC50 

values. The IC50, half maximal inhibitory concentration, is a measure of the effectiveness 

of a compound in inhibiting parasites growth. 

 

II.3.3.2 – Adapted Ring-stage survival assay 

Parasite cultures were synchronized twice (6 h interval window) with 5% D-sorbitol (See 

II.2.3.6). Ring-stage survival assays (RSA) were carried out as described previously 

(Witkowski et al., 2013a), with some modifications. Ring-stage parasite cultures (<10 h 

post-reinvasion) contained in a 96-well plate with 1% parasitaemia and 2% hematocrit, 

were exposed during a 6 h pulse to 700 nM of dihydroartemisinin (DHA) or to each of 

the tested compounds at a concentration corresponding to @ 10x the respective IC50. 

Subsequently, plates were centrifuged, and the supernatant was replaced by drug free 

medium. After additional incubation (66 h), susceptibility was assessed microscopically 

on Giemsa stained thin blood smears by estimating the percentage of viable parasites that 

had developed into a second generation of rings (Figure II.4). 

These assays provide the first robust correlation between reduced clearance of clinically 

resistant parasites and reduced killing by DHA in vitro (Haldar, Bhattacharjee and 

Safeukui, 2018). 
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Figure II.4: Correlating a clinical phenotype and artemisinin-resistant proliferation 
in the laboratory. RSA, ring-stage survival assay. (Adapted from (Haldar, Bhattacharjee and Safeukui, 

2018)). 

 

II.3.3.3 – Adapted Mature-stage survival assay 

Parasite cultures were synchronized twice (6 h interval window) with 5% D-sorbitol (See 

II.2.3.6). Mature-stage survival assays (MSA) were carried out as described previously 

(Witkowski et al., 2013a), with some modifications. Mature-stage parasite cultures (>36h 

post-reinvasion), contained in a 96-well plate with 1% parasitaemia and 2% hematocrit 

were exposed during a 6 h pulse to 700 nM of DHA or to each of the tested compounds, 

at a concentrations corresponding to @ 10x the respective IC50. 

Subsequently, plates were centrifuged, and supernatant replaced by drug free media. 

After additional incubation (42 h), susceptibility was assessed microscopically on Giemsa 

stained thin blood smears by estimating the percentage of viable parasites that had 

developed into a second generation of schizonts. 

 

II.3.3.4 – Gametocytocidal activity of the new endoperoxides 

P. falciparum 3D7-GFP parasites were cultured at high parasitaemia to favor gametocyte 

formation, as described above (Figure II.2). Upon the appearance of stage II gametocytes, 

treatment with the compounds was initiated (Figure II.3). 

functions (so-called proteostasis) in the parasite to 
promote its survival from artemisinin- induced proteo-
pathy. Mechanistically, this is distinct from amplifica-
tion or mutation of a single target enzyme or pump 
causing resistance.

Two major mechanisms of artemisinin resistance that 
have been independently proposed are the activation 
of the unfolded protein response (UPR)35 and proteo-
static dysregulation of P. falciparum phosphatidylinosi-
tol 3-kinase (PfPI3K), which leads to increased levels 

Box 1 | Conversion of clinical phenotypes into molecular and laboratory readouts of artemisinin resistance

Genome-wide association studies (GWAS) identified genetic variants that 
are associated with clinical artemisinin-resistant phenotypes and implicated 
two regions on chromosome 13 under high selection pressure in parasites 
from areas of southeast Asia22,58 (see the figure, part a). The gene encoding 
Plasmodium falciparum Kelch 13 (PfKelch13) was identified as a single 
genetic determinant of resistance; an African parasite strain, selected under 
high artemisinin pressure for several years, was shown to survive drug 
exposure in a newly developed resistant ring-stage survival assay (RSA). 
Whole-genome sequencing revealed the M476I mutation in the β-propeller 
domain of PfKelch13 (which is encoded by PF3D7_1343700). The major 
C580Y mutation of the PfKelch13 β-propeller was associated with ~80% of 
resistant strains in southeast Asia, with R539T and I543T mutations showing 
second and third place prevalence, respectively. Polymorphisms in pfkelch13 
were rapidly mapped throughout southeast Asia and Africa (and, to a very 
limited degree, in Bangladesh and India)19,21,61,64,65,115. GWAS23 also established 
the presence of several artemisinin-resistant founder populations in 
Cambodia and Vietnam. The C580Y mutation arose independently in three 
different Cambodian founders along with polymorphisms in ferredoxin 
(pffd), apicoplast ribosomal protein S10 (pfarps10), multidrug resistance 
protein 2 (pfmdr2) and chloroquine-resistance transporter (pfcrt), which 
suggests that unexpected genetic interactions affect levels of resistance, 
parasite fitness and/or potential for transmission to mosquitoes. Artemisinin 

resistance in P. falciparum was first established in the clinic as delayed 
clearance of ring-stage parasites in patients (see the figure, part b, left 
panel)69,70. The graph shows increased delay in parasite clearance as 
resistance emerged from 2004 to 2015. The RSA (see the figure, part b, 
middle panel) exposes rings to short pulses of pharmacologically relevant 
plasma concentrations (700 nM) of dihydroartemisinin (DHA; the active 
metabolite of all artemisinins) for 6 h, thereby mimicking characteristically 
short drug exposure in patients86. After removal of DHA, parasites are 
cultured for another 66 h and assessed for survival. Early young ring-stage 
parasites (after 0–3 h) manifest the highest levels of resistance and are 
therefore used in the RSA. The assay provided the first robust correlation 
between reduced clearance of clinically resistant parasites and reduced 
killing by DHA in vitro. Determination of the median percentage of viable 
parasites at 72 h from culture-adapted isolates from the artemisinin-resistant 
strain from the Pailin province of western Cambodia revealed significantly 
higher survival in the RSA for this strain than for artemisinin-sensitive 
parasites from the Ratanakiri province of eastern Cambodia86,116. The RSA 
can be modified to test the efficacy of new drugs that are being developed 
in the antimalarial pipeline against diverse artemisinin-resistant parasites at 
different drug concentrations (see the figure, part b, right panel). Part a from 
REF. 23, Macmillan Publishers Limited. Part b left panel adapted from REF. 79. 
Part b right panel adapted from REF. 112.
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1 ml of gametocyte culture was aliquoted (parasitemia 0.5 - 1% and 1% hematocrit) in 

duplicate on a 24-well plate and treated with the new endoperoxides, DHA and PQ, at 

their respective IC50s (to asexual and sexual stages), previously determined for 3D7 strain 

(Table III.1; Annex IV). An extra concentration, equivalent to 10x IC50 to sexual stages 

of the PQ was also used as a control (Table II.2) (Leliévre et al., 2012; Gebru, Mordmuller 

and Heldb, 2014). 

 

Table II.2: Respective IC50s of the new endoperoxides, DHA and PQ used in the 
gametocytocidal activity assay. 

Compounds Equivalent IC50 Concentrations 

PQ 1 x IC50 asexual stages 1 μM 

PQ 1 x IC50 sexual stages 20 μM 

PQ 10 x IC50 sexual stages 200 μM 

DHA 1 x IC50 asexual stages 4.7 nM 

DHA 1 x IC50 sexual stages 4.7 μM 

LC131 1 x IC50 asexual stages 2.9 nM 

LC131 1 x IC50 sexual stages 2.9 μM 

LC136 1 x IC50 asexual stages 2.8 nM 

LC136 1 x IC50 sexual stages 2.8 μM 

MIS13 1 x IC50 asexual stages 7.4 nM 

MIS13 1 x IC50 sexual stages 7.4 μM 

 

During the first 48 hours of the assay, the gametocytes were treated with the test 

compounds at their respective concentrations. After this incubation, the pre-warmed 

RPMI medium with no testing compounds was changed daily. After 6 days, Giemsa-

stained blood smears were prepared and the gametocytemia was evaluated by counting 
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the number of stage IV and V gametocytes (Table I.1) in a total number of 4000 

erythrocytes. The experiments were performed at least 2 times. 

 

II.3.4 – In vivo antimalarial activity 

In vivo tests were performed following the Guidelines for Ethical Conduct in The Care 

and Use of Animals of the Federal University of Rio Grande do Norte - Brazil 

(CEUA/UFRN/ 46/2013) (Annex X). 

The cryopreserved P. berghei NK65 strains were thawed and intraperitoneally (inoculum 

blind) inoculated immediately in swiss albino mice. After four days, the parasitemia for 

the standard inoculum preparation was checked for 1 x 106 parasitized erythrocytes/200 

μl for infection of each mice. 

Evaluation of antimalarial activity in vivo was carried out by using the Peters' 4-day 

suppressive test (Peters, 1965), with modifications, as previously described (Baptista et 

al., 2010; Carvalho et al., 1991). Briefly, adult swiss albino female mice weighing 20 ± 

2 g were injected intraperitoneally with infected blood containing 1 x 106 Plasmodium 

berghei in PBS (200 μl final volume). Mice were randomly allocated to groups of five 

animals per cage. The compounds were tested using the gavage technique. For oral 

treatment, compounds were diluted in DMSO solution with PBS (final concentration of 

DMSO < 1%), and 200 µl of the solution at the concentration of test was administrated 

orally to each animal in a dose of 50 mg/kg/day, for four consecutive days (Figure II.5). 

A 1% solution of DMSO in PBS was orally administered to each animal of the untreated 

control group. On days 5 (D5), 7 (D7) and 10 (D10), after parasite inoculation, tail blood 

smears were Giemsa stained and examined microscopically to estimate parasitaemia. 

Acute toxicity testing was carried out to determine adverse effects due to compounds 

administration (including weight loss, hair appearance, skin wounds and behavioural 

changes), and recorded daily (de Sena Pereira et al., 2016). 

 



Methodology 
 

 
 

 

 
70 

 

Figure II.5: Evaluation of antimalarial activity in vivo using the Peters' 4-day 
suppressive test, with modifications. 
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II.3.5 – Evaluation of the genotoxicity against mammalian cells using Comet assay 

or Single cell gel electrophoresis assay (SCGE) 

V79 cells were grown in 75 cm2 flasks (Corning) at a concentration of 106 cells per bottle 

and treated with different concentrations of the tested compounds (at different 

concentrations; 1, 10, 100, and 500 µM) and with doxorubicin (the positive control, at 20 

µM) for 3 h. After treatment, the cells were trypsinized and 30 µl of this cell pellet was 

homogenized with 150 µl of a low-melting-point agarose (0.5%), spread onto micro- 

scope slides pre-coated with a normal melting point agarose (1.5%) and covered with a 

coverslip. After 5 min at 4º C, the coverslip was removed and the slides were immersed 

in cold lysis solution for 2 h. After lysis, the slides were placed in an electrophoresis 

chamber and covered with freshly made electrophoresis buffer. The electrophoresis was 

run for 20 min (25 V). Afterwards, the slides were neutralized by spray neutralization 

buffer three times, and fixed in ethanol (50º - 70º - 100 ºC) for 5 min in each 

concentration. Staining of the slides was performed immediately before the analysis using 

GelRedTM (VWR). Slides were prepared in triplicate, and 1500 cells were screened per 

sample (500 cells from each slide) using a fluorescence microscope. The damage was 

quantified based on the size, intensity and the percentage of DNA in the comet’s tail, 

using the software Comet Score. 

 

II.3.6 – Characterizations of antimalarial activity 

II.3.6.1 – Stage-specificity analysis (susceptibility) 

Stage-specific compound treatment effects were elucidated using highly synchronized 

cultures of 3D7-GFP in 96-well plates with a starting parasitemia of 1% and a 2% 

hematocrit. Parasites were treated for 24 h with 10x IC50 concentrations of compounds 

LC92, LC129, LC130, LC131, LC132, LC136, MIS13, and LC163 which showed the 

best antimalarial activity in the in vitro and in vivo assays, or controls (DHA and 

atovaquone (ATQ)), during two distinct periods of the intraerythrocytic life cycle - rings 

and trophozoites (Le Manach et al., 2013; Sundriyal et al., 2014). After 24 h of treatment, 

one part of the parasites were washed with pre-heated RPMI 1640 medium and re-

cultured without the test compounds for reinvasion analysis (48 h). Another part of the 
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parasites were washed with RPMI 1640 medium, pre-heated and diluted 1:16 and allowed 

to grow without compound for another two cell cycles (96 h). Parasitaemias were always 

monitored at times 0, 48 and 96 hours by Giemsa-stained thin blood smears and by flow 

cytometry for the fluorescence measured with excitation wave 488 nm and emission 525 

nm (green) (CytoFLEX Blue-Red-Violet (B-R-V) (Beckman Coulter). 

 

II.3.6.2 – The minimum inoculum for compound resistance (MIR)  

Resistant parasites can be selected by applying drug pressure in vitro and in vivo. These 

approaches have successfully identified genes, and sometimes codons involved in 

naturally occurring resistance. 

The simplest approach is in vitro selection of resistant parasites, which can be applied on 

a large number of compounds earlier in drug discovery. P. falciparum intraerythrocytic 

cultures, with starting inocula ranging from 105 to 109 parasites, are exposed to a 

concentration of the compound nearing IC90 (@ 10x IC50) and monitored during 60 days 

for recrudescent parasites. 

The minimal inoculum for resistance (MIR) can be determined and is an indirect measure 

of the likelihood of a resistant genotype to occur and to be selected in vitro. In addition, 

the IC50 shift of the resistant mutants as compared to the parental sensitive strain is a 

measure of the resistance intensity. The MIR is a measure of the resistance selection 

frequency, while the IC50 fold increase measures the level of resistance (Ding, Ubben and 

Wells, 2012). 

Dd2 P. falciparum intraerythrocytic cultures have a known resistance profile, showing an 

increase in the number of copies of pfmdr1 gene and mutations at several codons. These 

changes influence sensitivity to multiple drugs, including mefloquine and artemisinin 

derivatives. 

Dd2 P. falciparum cultures were used in this study, with inoculum of 107 and 108 parasites 

and were exposed to a concentration of the compounds LC131, LC132, LC136, MIS13, 

and LC163 with the correspondent 10x IC50, and monitored during 60 consecutive days 

for recrudescence of the parasites (Figure II.6). 
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Figure II.6: In vitro resistance selection assessment. Initial inoculum of 107 and 108 parasites 

of Dd2 P. falciparum strain were pressured with a constant level of endoperoxides (10x IC50), for 60 days. 

 

II.3.6.3 – Effects of endoperoxides on mitochondrial membrane potential 

Rhodamine 123 (Rh123) (Sigma-Aldrich) was used to monitor the potential of the plasma 

membrane (∆yp) and mitochondrial membrane (∆ym) of malaria-infected red blood cells. 

Rh123 is cationic and reversibly accumulates inside energized membranes according to 

the Nernst equation. For experimentation, suspensions (1% parasitemia and 2% 

hematocrit) of two different cultures of P. falciparum 3D7 and IPC5202, not 

synchronized, were treated for 6 h with the new endoperoxides and DHA (10x IC50), ATQ 

(10 μM) (Biagini et al., 2006) or deoxy-dihydroartemisinin (Deoxy-DHA) (8 μM) (Wang 

et al., 2010) in 96-well black plate. Deoxy-DHA, which lacks the endoperoxide bridge, 

is ineffective in inhibiting malaria parasites and was used as a negative control (Wang et 

al., 2010). After treatment, the cultures were stained with Rh123, at 5 µM for 5 min, 

washed, and left for 30 min (37ºC, 5% CO2).  

For imaging, malaria parasite-infected erythrocytes were placed on 8-well chambered 

coverslips (Ibidi GmbH, Munich, Germany) and the membrane potential-dependent 

fluorescence responses were monitored in real time. The fluorescence signals from 

malaria-infected erythrocytes were collected on a Leica TCS SP5 (Leica Microsystems 

CMS GmbH, Mannheim, Germany) inverted confocal microscope (DMI6000) through a 

63x amplification apochromatic water immersion objective with NA=1.2. Excitation of 

Rh123 was performed using the 488 nm argon laser line (emission collected at 500 – 
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652nm). All images where collected using the same acquisition parameters. Dye 

photobleaching during image acquisition was also avoided by always keeping the power 

of each laser line to a minimum. The captured digital images were analyzed using ImageJ 

software to calculate the average Rh123 fluorescence intensity from a ROI encompassing 

each Rh123 labeled-malaria parasites (Sarmento et al., 2016). 

After fluorescence microscopy, the fluorescence intensity was measured with a 

multimode microplate reader (Dynex Triad), with excitation and emission wavelengths 

of 488 and 530 nm, respectively. 

After fluorescence reading, bafilomycin A1 (200 nM) was added to the cultures, treated 

for 5 min, washed, and left for 30 min (37 ºC, 5% CO2). At this stage, the fluorescence 

intensity was measured again, under the same conditions. Bafilomycin A1, a V-type H+ 

ATPase inhibitor, was used to inhibit the plasma membrane potential and to allow 

measurement of only the mitochondrial membrane potential (Biagini et al., 2006). 

After performing the measurements, cultures were fixed with 4% paraformaldehyde (PF) 

and 0.0075% glutaraldehyde (GLU) for further fluorescence microscopy visualization. 

Hochest 58 was also used to stain the DNA. 

ATQ, a hydroxynaphthoquinone, was used as a control because it is a known inhibitor of 

complex III (or bc1 complex) and the consequence of this inhibition is the collapse of 

mitochondrial membrane potential of the parasite. Thus, it was possible to compare the 

activity of our endoperoxides with ATQ (Antoine et al., 2014). 

 

II.3.6.4 – Reactive oxygen species measurement 

Membrane-permeant fluorescent probes such as the CM-H2DCFDA (Invitrogen™)  have 

been widely used to detect oxidative stress and to measure antioxidant capacity in the 

cytoplasm of different cell types (LeBel, Ischiropoulos and Bondy, 1992). When the 

reduced form of CM- H2DCFDA is added to cells, it diffuses freely across membranes 

and the diacetate groups are cleaved by intracellular esterases to give a deacetylated 

nonfluorescent form, 2´,7´- dichlorofluorescin (H2DCF) (Halliwell and Whiteman, 2014). 

The CM-H2DCFDA probe also contains a thiol-reactive chloromethyl group (CM-), 
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which forms covalent bonds with intracellular components, enhancing the retention of 

the probe. Oxidation of H2DCF by ROS yields highly fluorescent 2´,7´- 

dichlorofluorescein (DCF) which is trapped inside the cell, thus facilitating long-term 

studies (Fu et al., 2010). 

Furthermore, in this work, CM-H2DCFDA was used to assess oxidative stress in different 

stages of the intraerythrocytic development of P. falciparum in strains 3D7 and IPC5202. 

To quantify DCF fluorescence in parasite-infected RBCs within a mixed culture, we used 

the oxidative stress sensor in combination with a nucleic acid-binding dye that can 

distinguish infected erythrocytes in a flow cytometric format. 

The SYTOTM 61 (Invitrogen™), red cell fluorescent nucleic acid staining, was chosen to 

be used in combination with DCF (Fu et al., 2010). 

 

a) Labeling with Probes  

With the objective of analyzing the oxidative stress, trophozoite  or ring stage parasites 

or asynchronous culture (2% hematocrit, 5% parasitemia) were previously treated for 6 h 

with the controls CQ or DHA (1x IC50, 10x IC50 and 100x IC50) or endoperoxides (10x 

IC50). Deoxy-DHA (8 μM) was also used, as a negative control (Wang et al., 2010). CQ 

was used as a positive control due to its known mechanism of action as an inducer of 

oxidative stress (Vallières and Avery, 2017), by the inhibition of heme polymerization. 

The same procedure was run in parallel with uninfect and infected erythrocytes incubated 

with 0.5 µM H2O2 (positive control) (Sigma-Aldrich) (Sussmann et al., 2017), for 30 min, 

before the DCF and SYTOTM 61 addition. 

After the treatment, the cultures were washed with pre-warmed PBS and incubated with 

0.5 µM SYTOTM 61 for 45 min in the dark, at 37 ºC, and with 2,5 µM DCF for 30 min, 

in the same conditions, and then washed with PBS. The samples were then maintained at 

20 ºC and analyzed as quickly as possible (Klonis et al., 2011; Mohring, Jortzik and 

Becker, 2016). 
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b) Flow Cytometry 

Flow cytometric measurements were performed on a CytoFLEX Blue-Red-Violet (B-R-

V) Flow Cytometer (Beckman Coulter) equipped with 405 nm, 488 nm and 633 nm lasers. 

We used the following channels and probes: green (DCF; 492 - 495 nm excitation, 

emission 517 - 527 nm bandpass) and red (SYTOTM 61; 628 nm excitation, emission 645 

nm bandpass). Samples were diluted to 0.5 - 1% hematocrit and 10 000 events 

(encompassing uninfected and infected RBCs) were acquired based on the forward versus 

side scatter profiles. Detector gain settings varied between experiments to optimize 

signals but were kept constant within individual experiments and no compensation was 

applied to any of the channels. Analysis was performed using FlowJo Vx0.7. 
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Malaria is one of the most important parasitic diseases in the world, causing a major 

impact on the socio-economic development of the affected countries, with over 445 000 

deaths occurring mainly in children and pregnant women in sub-Saharan Africa (WHO, 

2017b). Over the past five decades, the emergence of P. falciparum resistance to the 

successively introduced antimalarials, including artemisinin-based combination therapies 

(ACTs) (WHO, 2017b), had substantial and significant implications for malaria control 

programs and for global public health (Lwin et al., 2015; WHO, 2017a). 

The recent findings of resistance to ACTs motivated further efforts towards the 

development of a next generation of potent antimalarial endoperoxides (Copple et al., 

2012), equally effective against ART-susceptible and -resistant strains of P. falciparum, 

as well as safer and cheaper than ARTs. (Yang et al., 2016). 

The core structure of ARTs comprises a 1,2,4-trioxane incorporating an endoperoxide 

linkage that is essential for activity (Tang, Dong and Vennerstrom, 2004; O’Neill, Barton 

and Ward, 2010). The identification of the endoperoxide as pharmacophore has 

stimulated the development of several different classes of synthetic endoperoxides, 

including trioxolanes (Vennerstrom et al., 2004) and tetraoxanes (Vennerstrom et al., 

1992; Fontaine et al., 2015), which are particularly promising in the context of 

antimalarial chemotherapy, exhibiting similar activity to the ARTs (O’Neill et al., 2017). 

The discovery of novel drugs leads with the potential to become usable medicines is an 

important component of the drug innovation cycle, but remains a major obstacle in the 

development of new drugs for infectious tropical diseases (Nwaka and Hudson, 2006). 

However, the feasibility of efficient medicines, whether synthetic or from natural 

products, requires investigation of their safety and efficacy prior to their production and 

release in the market, which refer to different paradigms in drug research and 

development and scientific controversies (Purves et al., 1995); fact that hinders its 

production. 

The identification of therapeutic and their toxicological effects must be evaluated 

(Aquino, Perazzo and Maistro, 2011), and serious biological side effects may result in 

cancellation of drug development or return to basic chemistry to modify structure and to 

reduce risks. Regulatory authorities around the world require data on the toxic potential 
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of new compounds as part of the safety assessment process (Jena, Kaul and Ramarao, 

2002; Rivera et al., 2014). 

Some desirable criteria for the development of new antimalarial drugs were created by 

the committee coordinated by the Global Fund for Health Innovation Technology (GHIT) 

(Katsuno et al., 2015) and were followed in this work. The in vitro criteria are as follows: 

Validated hit: 

• Cellular potency criteria: hits should have an effective concentration for half-

maximum response (IC50) <1 μM for sensitive and multiple resistant strains of 

Plasmodium spp. 

• Cytotoxicity criteria: hits require a greater than 10-fold selectivity between the 

half-maximal cytotoxic concentration (LD50) for the mammalian cell line and the IC50 

for Plasmodium spp. 

Early lead: 

• Cellular potency criteria: a lead requires IC50 <100 nM for sensitive and 

multidrug-resistant strains of Plasmodium spp. 

• Cytotoxicity criteria: a lead should have a greater than 100-fold selectivity 

between mammalian cell line LD50 and Plasmodium IC50. Frontrunners should be 

tested across the malaria life cycle and key mechanistic assays so as to ensure an 

understanding of the phenotype and target candidate profile potential of each series 

and novel mechanisms of action. 

Synthetic trioxolanes and tetraoxanes have shown promise as next-generation 

antimalarial drug candidates, particularly in terms of therapeutic efficacy and lack of 

synthetic constraints (Copple et al., 2012). Like this, in a recent study conducted by our 

group, three synthetic trioxolanes were tested in vitro and in vivo against a mouse model 

infected with artemisinin-resistant parasites and the compounds showed high efficacy in 

clearing the infection (Lobo et al., 2016). These results inspired the expansion of the 

compounds library and further investigation of efficacy against artemisinin- resistant P. 

falciparum strains. 
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The major objectives of this thesis were the characterization of antimalarial activity of 

newly synthesized trioxolanes and tetraoxanes and the identification of potential 

mechanisms of action. This research was carried out on 4 complementary lines of work 

(Figure II.1). In the first line, a study was carried out to characterize cytotoxicity effects 

of the new endoperoxides against mammalian cells. In the second line, the antimalarial 

activity of endoperoxides was characterized in vitro in 4 strains of P. falciparum with 

different susceptibilities to antimalarials. In the third line of this investigation, the 

antimalarial activity of selected endoperoxides against P. berghei was evaluated in vivo. 

And, finally, in the fourth line it was possible to identify possible mechanisms of action 

of the endoperoxides in P. falciparum were assessed, by evaluating the parasite-stage 

specific action (against rings and mature-stages), genotoxicity, gametocytocidal activity, 

effect on mitochondria membrane potential, generation of reactive oxygen species (ROS) 

and evaluation of potential for resistance development.  

The results are presented and discussed according to the proposed objectives. 

 

III.1 – Evaluation of the cytotoxicity of the endoperoxides against mammalian cells 

The endoperoxides were evaluated for their potential cytotoxicity against human 

hepatocellular carcinoma (HepG2) and hamster lung (V79) cell lines (See II.1.1) using 

an MTT assay (See II.3.2). Generally, all compounds have shown low or undetectable 

cytotoxicity in both cell lines (Annex III). Of the 36 compounds studied, only LC90 and 

LC139 presented in vitro cytotoxicity at the maximum concentration tested (1 mM), with 

viability reduction of @ 20% in V79 and HepG2 cells. The compounds MIS13 and MIS14 

also revealed some in vitro reduction of viability at a maximum concentration of 1mM, 

inducing a decrease in HepG2 survival of @ 30%. However, no decrease in viability for 

V79 was observed upon treatment with MIS13 or MIS14. 

In vitro studies using cancer cell lines suggested that ART and some of its derivatives 

have cytotoxic effects, by altering the cell cycle, inducing apoptosis (Hou et al., 2008; 

Zhang, Chen and Gerhard, 2010) and proliferation of these cells (Efferth et al., 2001). 

Genotoxic and cytotoxic effects of ATN in vitro in Chinese hamster ovary cells (CHO-

9) are also reported (Li et al., 2008; Aquino et al., 2013). 
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Our tested compounds exhibited low cytotoxicity when compared to the ART, which, at 

concentration of 0.11 mM, lead to a decrease in cell viability of 40% in both cell lines. 

Thus, from the viewpoint of safety, all of the 36 compounds evaluated performed better 

than ART showing lower toxicity (Annex III). 

Thus, as the endoperoxides have shown low or undetectable cytotoxicity to HepG2 and 

V79 cells, were further evaluated for antimalarial activity. 

 

III.2 – Evaluation of the in vitro antimalarial activity against asexual blood stages of 

P. falciparum 

III.2.1 – Determination of the IC50 and selectivity index to parasites in culture 

According to the criteria above, antimalarial activity tests were performed on several P. 

falciparum strains. 

The in vitro activity of the 36 newly synthesized endoperoxides was screened against 

chloroquine-susceptible (3D7) and multidrug-resistant (Dd2) P. falciparum strains, using 

the whole cell Sybr Green I assay (See II.3.3.1) to determine the IC50 values. The 

antimalarials ART, artesunate (ATN), dihydroartemisinin (DHA) and chloroquine (CQ) 

were used as reference drugs. The values of IC50 obtained for the new endoperoxides are 

available in Annex IV. 

Of the 36 compounds tested, 22 presented sub-micromolar activity (IC50 < 1 μM) (Fidock 

et al., 2004) against both 3D7 and Dd2 strains. From these, 9 exhibited IC50 < 100 nM 

(LC92, LC129, LC130, LC131, LC132, LC136, LC163, MIS13 and MIS14). These best 

performing 9 compounds were selected for further testing against two ART-resistant 

strains (ART-R), IPC5202 and IPC4912; 8 (LC92, LC129, LC130, LC131, LC132, 

LC136, MIS13 and LC163) exhibited IC50 < 100 nM (Katsuno et al., 2015) against these 

strains. In addition to sub-micromolar activity, these eight compounds also demonstrated 

a resistance index ranging from 0.1 to 2.4 (RI = IC50 resistant strain /IC50 susceptible 

strain). Thus, compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and 

LC163 were selected for further analysis. The RI provides a quantitative measure of the 

antiplasmodial activity against resistant strains and reveals promising drug discovery 
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leads. The higher the RI, the higher is the probability of cross resistance with antimalarials 

in use. Thus, no cross-resistance with quinolone-type antimalarials is foreseeable for our 

compounds, as RIs between the multidrug-resistant (Dd2) and the chloroquine-

susceptible (3D7) are @ 1 (Table III.1). Regarding the ART-R strains (IPC5202 and 

IPC4912), even though the RIs ranged from 0.1 to  2.4 the compounds still performed 

better, or in the same range, as ART and DHA. As shown in Table III.1, the eight selected 

compounds were exceptionally active across all four P. falciparum strains, with IC50 

ranging from 0.3 - 71.1 nM. Though LC136 presented RIs > 1 (0.9 - 2.4), the values fall 

within the range of those exhibited by ART derivatives for the same parasite strains (0.6 

- 8.4). 

It is generally accepted that, if SI >10, the observed pharmacological activity is not due 

to cytotoxicity (Weniger et al., 2001; Soh and Benoit-Vical, 2007; Katsuno et al., 2015). 

Since the SI values calculated for the compounds are considerably higher, then the 

activity exhibited by the compounds is unlikely due to general cellular toxicity, but rather 

due to specific antiplasmodial activity. 

The selectivity index (SI = LD50 in mammalian cells/ IC50 P. falciparum) for the 36 

compounds determined in two mammalian cell lines, V79 and HepG2, is presented in 

Annex V. The eight best performing compounds (Table III.1) presented SI > 14064.7 ( > 

1400-fold selectivity between LD50 and IC50) (Katsuno et al., 2015). The calculated SI is 

considerably higher than 10 (Annex V).The eight endoperoxides selected from our library 

that met the criteria: SI > 100 and IC50 < 100 nM (Nwaka and Hudson, 2006; Katsuno et 

al., 2015) were evaluated for in vitro and in vivo efficacy, demonstrating IC50 values in 

the range of those exhibited by ARTs. Hence, the tested compounds can be considered to 

have negligible in vitro toxicity against mammalian cells while being highly selective 

against the parasite (Annex V). 
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Table III.1: Antiplasmodial activity in vitro against sensitive and resistant P. falciparum strains 

Compounds P. falciparum IC50 ± SD (nM) Resistance Index 

ID Structure Dd2 3D7 IPC5202 IPC4912 RIa RIb RIc 

LC92 
 

22.6 ± 2.6 26.7 ± 2.4 37.7 ± 9.9 34.9 ± 7.9 0.8 1.4 1.3 

LC129 
 

43.2 ± 0.8 42.9 ± 3.9 36.4 ± 0.6 33,7 ± 0.4 1.0 0.8 0.8 

LC130 
 

24.8 ± 17.2 23.3 ± 15.2 8.2 ± 1.9 2.4 ± 1.6 1.1 0.3 0.1 

LC131 
 

2.1 ± 1.9 2.9 ± 2.4 3.4 ± 2.1 4.8 ± 1.2 0.7 1.2 1.7 

LC132 
 

26.6 ± 15.9 24.2 ± 12.8 25.0 ± 7.4 19.7 ± 3.4 1.1 1.0 0.8 

LC136 
 

2.5 ± 1.3 2.8 ± 1.2 6.1 ± 1.9 6.8 ± 2.3 0.9 2.2 2.4 

MIS13 
 

3.4 ± 3.0 7.4 ± 6.5 1.7 ± 1.1 0.3 ± 0.3 0.5 0.2 0.0 
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LC163 
 

43.5 ± 3.0 63.0 ± 0.7 71.1 ± 1.1 18.6 ± 16.9 0.7 1.1 0.3 

ART 

 

2.5 ± 0.1 4.0 ± 0.1 33.3 ± 8.0 13.3 ± 2.2 0.6 8.4 3.3 

DHA 

 

4.2 ± 0.5 4.7 ± 1.5 6.2 ± 1.6 3.7 ± 2.0 0.9 1.3 

 

0.8 

 

ATN 

 

4.6 ± 1.4 5.1 ± 0.1 3.4 ± 0.1 3.9 ± 1.2 0.9 0.7 

 

0.8 

 

CQ 
 

 

340.1 ± 20.7 15.8 ± 0.8 n.d. n.d. 21.5 n.d. n.d. 

SD: standard deviation; 
n.d.- not determined; 
ART: artemisinin; DHA: dihydroartemisinin; ATN: artesunate; CQ: chloroquine; 
RIa: resistance index = IC50 (Dd2)/ IC50 (3D7); RIb: resistance index = IC50 (IPC5202)/ IC50 (3D7); RIc: resistance index = IC50 (IPC4912)/ IC50 (3D7); 
At least 3 independent assays were performed per compound and strain.
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III.2.2 – Determination of the ring and mature-stage survival rates 

Structural analogies between DHA, trioxolanes and tetraoxanes may accommodate 

similar modes of action, hence some level of cross resistance (Tang, Dong and 

Vennerstrom, 2004; Vennerstrom et al., 2004; J. Wang et al., 2015; Straimer et al., 2017). 

In the light of this, it was decided to investigate whether parasites expressing variant 

forms R539T (IPC5202) and I543T (IPC4912) of K13 are cross-resistant to the newly 

synthesized trioxolanes and tetraoxanes. 

The resistance phenotype to ART has been difficult to study and cannot be evidenced by 

the standard 48 hours in vitro (IC50) assay (Witkowski, Amaratunga, et al., 2013; Ismael 

et al., 2015; Yang et al., 2016; Straimer et al., 2017). Critical for the development of 

antimalarials is the evaluation of their activity against ART-R parasites, which has been 

defined as delayed parasite clearance in patients (Dondorp et al., 2009). Slow parasite 

clearance of P. falciparum malaria in patients results from reduced ring-stage 

susceptibility (Noedl et al., 2008; Dondorp et al., 2009; Amaratunga et al., 2012; 

Chotivanich et al., 2014), this increasing the need for new compounds with a low RSA. 

The mutation R539T (present in IPC5202) is one of the k13 mutations that confer high 

levels of DHA resistance in vitro (J. Wang et al., 2015; Straimer et al., 2015, 2017).  

Studies with in vitro cultured parasites have begun to shed light on the molecular 

mechanism underlying K13-mediated ART resistance. Assays with very early ring stage 

parasites (average age 1.2 hr post-invasion with a 1 hr synchronization window) found 

that the 50% lethal dose of DHA, when given as a 3 hr pulse, was ~70–fold higher in K13 

mutant compared to wild-type parasites (Dogovski et al., 2015). 

Thus, we explored the susceptibility of the IPC5202 ring and mature-stage parasites (RSA 

and MSA) to the best performing compounds. 

As depicted in Figures III.1 and III.2, the endoperoxides selected demonstrated higher 

activity than DHA, both against ring and mature stages. As expected, DHA exposure 

resulted in a higher survival rate of IPC5202 (up to 25%) than for 3D7 (Kite et al., 2016; 

Thuy-Nhien et al., 2017), though lower than in other reports (Chaorattanakawee et al., 

2016). A survival rate RSA < 1% is generally considered as susceptible behaviour. The 

tested trioxolanes were able to reduce ring survival to less than 1% in both resistant and 
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susceptible strains (IPC5202 and 3D7), hence no cross- resistance with DHA is apparent, 

even in parasites carrying the K13 mutation R539T. This notable observation indicates 

that our compounds have an improved range of activity, compared to other trioxolanes in 

use, namely the registered drug OZ277, which is compromised by K13 mutations 

(Straimer et al., 2017). Regarding the tetraoxane LC163, both the K13 wild type (3D7) 

and mutant (IPC5202) parasites presented RSA>1% (though not significantly different). 

These observations are in agreement with data recently published showing that a 

tetraoxane also allowed growth above 1% in RSA assay in a strain carrying K13 R539T 

mutation (O’Neill et al., 2017). The results indicate therefore that the antimalarial activity 

of the newly synthesized endoperoxides is not compromised by the K13 mutation R539T, 

a mutation that confers high levels of in vitro resistance and has been associated with 

delayed parasite clearance in patients (Takala-Harrison et al., 2013, 2015; Ariey et al., 

2014; Straimer et al., 2015; Ménard et al., 2016). 

 

 

 



Results and Discussion 
 

 
 

 

 
88 

 

Figure III.1: Ring‐stage survival assay. Rings were treated with a pulse of DHA (700 nM) or of 
new endoperoxides (10x IC50) in 3D7 and IPC5202 strains. The panel I shows the morphology of untreated 
parasites at time 0 hours and of untreated and treated parasites with DHA at time 72 hours. The panel II 
shows the ring-stage survival rate, expressed as the percentage of viable parasites at time 72 hours. The 
parasites were stained by Giemsa (magnification 100X with immersion oil). 

 

The mature-stage assay (MSA) evidenced nearly full susceptibility of the two strains to 

all of the eight compounds (Figure III.2). Thus, all compounds performed better than 

DHA. Typically, DHA allows a ≌ 1% of viable mature-stage (Witkowski, Amaratunga, 

et al., 2013; Yang et al., 2016). ARTs resistance phenotypes are associated with a 

decreased susceptibility of the ring stage to enter dormancy, a decreased sensitivity of 

mature-stage parasites and a faster recovery from dormancy (Teuscher et al., 2012; 

Witkowski, Khim, et al., 2013). Currently these parameters are being addressed in order 

to gather more information regarding the mode of action of the more promising 
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compounds. 

 

Figure III.2: Mature‐stage survival assay. Trophozoites were treated with a pulse of DHA (700 
nM) or of new endoperoxides (10x IC50) in 3D7 and IPC5202 strains. The panel I shows the morphology 
of untreated parasites at time 0 hours and of untreated and treated parasites with DHA at time 72 hours. 
The panel II shows the ring-stage survival rate, expressed as the percentage of viable parasites at time 72 
hours.  The parasites were stained by Giemsa (magnification 100X with immersion oil). 

 

As expected, no cross-resistance of the proposed compounds with quinolone-type anti-

malarials is foreseeable, as the calculated RIs for Dd2 and 3D7 were ≌ 1 (Table III.1), 

which is considerably lower than the RI determined for CQ (21.5) (Paulo et al., 2014; 

Machado et al., 2016). 

Mature-stages of both the ART-S and ART-R parasite strains exhibited full susceptibility 

to all the 8 endoperoxides, exciding DHA performance (Figure III.2). 



Results and Discussion 
 

 
 

 

 
90 

III.3 – Evaluation of in vivo antimalarial activity against P. berghei 

The 8 best performing compounds, given orally at 50 mg/kg/day, exhibited a high 

inhibition capacity, with parasitaemia ranging from: 0 to 0.19 ± 0.12% on day 5 post-

infection; 0 to 1.76 ± 1.36% on day 7 post-infection; and 0 to 1.32 ± 1.24% on day 10 

post-infection (Table III.2). The efficacy difference was very significant (p < 0.0002; 

Mann-Whitney test), compared to the vehicle-treated mice; the untreated control inhibited 

parasitaemia by 1.51% ± 0.22 on day 5 post-infection (Table III.2). On day 10 post-

infection, mice in the untreated control group had developed significant parasitaemia (5.6 

- 6.6%), whereas 5 of the tested compounds had led to an appreciable reduction of 

parasitaemia (0.2 ± 0.13 to 1.32 ± 1.24%) and the remaining 3 compounds had completely 

suppressed parasitaemia (Table III.2). In the group of mice treated with LC92, all 5 

animals developed parasitaemia from day 5 onwards, though at a low level. In the group 

treated with MIS13 only 1/5 mice presented parasitaemia on day 5, and by day 10 all five 

mice where cured. This increased activity probably arises from an improvement in 

pharmacokinetic properties due to: (i) a more substituted amino functionality that 

increases the overall hydrophilicity and favours protonation in acidic environments; and 

(ii) to the BOC-protection of the side chain that facilitates the transport of MIS13 through 

the cell membrane (compared to LC92) (Drag-Zalesińska et al., 2015). Even though 

MIS13 presented some cytotoxicity in vitro against HepG2 cells, the animals were 

monitored daily during the experimental procedure and no adverse effects were observed 

for any of the tested compounds. Appreciable in vivo antimalarial activity was observed 

for the two sacharyl substituted compounds (LC129, LC130). LC129 kept parasitaemia 

at a low level but failed to completely suppress it. On the other hand, LC130 was able to 

suppress parasitaemia until day 5 but recrudescence occurred on day 7 (2/5 mice were 

parasitemic) and by day 10 all animals presented parasitaemia (Table III.2), although 

significantly lower than in the control group (p = 0.017; Mann-Whitney test). In the group 

treated with LC132 and LC163 recrudescence also occurred on day 10. However, a strong 

in vivo antimalarial effect against P. berghei was observed with LC131 and LC136, with 

complete suppression of parasitaemia throughout the experiment (10 days), which may 

be due to the greater metabolic stability conferred by tetrazole (Singh et al., 1980; 

Arulmurugan and Kavitha, 2013; Tukulula et al., 2013; Chauhan et al., 2014) and could 

be improving pharmacological properties or increasing accumulation (due to the electron 
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withdrawal properties). This may produce a sufficient plasma concentration, indicating 

promising bioavailability and pharmacokinetic profile. In line with this, a better in vivo 

antimalarial profile for the tetrazole conjugates LC131, LC132, LC136 and LC163, was 

observed. 

Our results suggest that the compounds present a high therapeutic index (TI), that is a 

ratio that compares the lethal dose of a drug for 50 % of the population divided by the 

minimum effective dose for 50 % of the population (Tamargo, Heuzey and Mabo, 2015). 

No animal died or showed any adverse effects during the treatment and future studies 

should be performed at lower doses with the goal of further increasing TI. 

The results indicated that the compounds are very promising and safe since they have a 

high TI, low IC50s, high SIs, undetectable cytotoxicity, high in vivo activity and no 

adverse effects in animals. 
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Table III.2: Antimalarial activity of endoperoxides administered orally (per gavage). 

Compounds 
Dose 

(mg/Kg/day) 

Parasitaemia ± SD 

(% parasite suppressiona) 

  D5 D7 D10 

Untreated  1.51 ± 0.22 3.58 ± 0.81 5.65 ± 0.43 

LC92 50 0.02 ± 0.05 (98.34) 0.46 ± 0.60 (86.99) 0.77 ± 0.26 (86.27) 

LC129 50 0.19 ± 0.12 (87.60) 1.76 ± 1.36 (50.69) 1.32 ± 1.24 (76.67) 

LC130 50 0 (100) 1.4 ± 0.94 (60.83) 1.32 ± 0.24 (76.67) 

LC131 50 0 (100) 0 (100) 0 (100) 

LC132 50 0 (100) 0 (100) 0.31 ± 0.10 (94.46) 

LC136 50 0 (100) 0 (100) 0 (100) 

MIS13 50 0.11 ± 0.19 (92.56) 0.05 ±0.10 (98.60) 0 (100) 

LC163 50 0 (100) 0 (100) 0.2 ± 0.13 (96.46) 

a Parasitaemia suppression, compared to untreated control group; SD: Standard deviation.
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III.4 – Evaluation of genotoxicity against mammalian cells 

Genotoxicity was analysed for the novel endoperoxides LC131, LC132, LC136 and 

MIS13, that demonstrated > 90% parasitaemia suppression in vivo and RSA <1. Only one 

experiment was performed in duplicate, so the results are preliminary. 

In order to evaluate the genotoxicity of the endoperoxides, the comet assay was used, 

through which it is possible to quantify and distinguish different levels of DNA damage, 

since the evaluation of the scores (according to the tail size) for each experimental group 

is highly important (Aquino, Perazzo and Maistro, 2011). Cells were analysed by 

fluorescence microscopy and DNA damage – genotoxicity, was expressed as the % of 

DNA in the tail of the comets resulting from V79 cells treated with the new 

endoperoxides. Genotoxicity was estimated from the % of DNA in the comet’s tail and 

compared to the positive control doxorubicin (represents ≅ 50% of DNA damage) using 

the software Comet Score (Figure III.3). 

 

 

Figure III.3: Analysis of the comet assay using the software Comet Score. 
Representative images of comets resulted from 3h treatment of V79 cells with a) culture medium - untreated 

(negative control), shows only head after electrophoresis, without DNA damage and b) doxorubicin 20 µM 

(positive control), shows head and tail after electrophoresis, with DNA damage. Comets were stained with 

GelRedTM (magnification 40X). These colours are produced by the software Comet Score. 

 

Except for LC131, which showed a concentration-dependent effect ranging between 9 

and 43%, a constant % of DNA in the tail of the comets, ranging between 4 and 13%, was 

observed for all new endoperoxides evaluated, regardless of the increase in 

concentrations, showing no damage to the genetic material of V79 cells, indicating that 
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the compounds tested are quite safe (Table III.3; Figure III.4; Annex VI). 

Table III.3: DNA migration in the comet assay for the assessment of genotoxicity of 
new endoperoxides. 

  

% of DNA in comet’s tail 

(Mean ± SD) 

 Concentrations 

Compound 0 µM 1 µM 10 µM 20 µM 100 µM 500 µM 

Untreated 7.0 ± 0.4 n.d. n.d. n.d. n.d. n.d. 

LC131 n.d. 9.5 ± 0.7 25.3 ± 0.3 n.d. 29.8 ± 0.3 43.8 ± 2.3 

LC132 n.d. 7.2 ± 2.1 8.5 ± 2.9 n.d. 8.8 ± 2.3 10.0 ± 1.0 

LC136 n.d. 5.4 ± 0.8 4.9 ± 1.0 n.d. 5.7 ± 0.2 13.9 ± 0.1 

MIS13 n.d. 5.0 ± 0.5 6.0 ± 1.2 n.d. 6.8 ± 0.1 6.9 ± 0.5 

Doxorubicin n.d. n.d. n.d. 46.3 ± 1.2 n.d. n.d. 

n.d. - not determined; 

SD: Standard deviation. 

 

In Figure III.4 it is possible to visualize how the V79 cells react to the 3 h-treatment with 

the new endoperoxides and their respective lower and higher concentrations. Only the 

endoperoxide LC131, at the highest concentration, showed an increase of % DNA in the 

tail of the comets (around 43%), similar to the control doxorubicin (46%) (p = 0.3103, 

unpaired t test), at the concentration of 20 µM, demonstrating that this compound, in this 

concentration, can cause DNA damage. No significant DNA damage was observed in 

mammalian cells induced by pharmacologically relevant concentrations of the new tested 

endoperoxides. Though there is evidence, of ATN causing DNA damage in P. falciparum 

in a concentration- and time-dependent manner (Gopalakrishnan and Kumar, 2015), 

induced DNA damage, apoptosis and generated damage through direct or indirect 
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oxidative stress, resulting in DNA strand breakage in CHO-9 cells and V79 cells (Li et 

al., 2008). Like this, we chose to priorities our analysis and assess the DNA damage effect 

of our endoperoxides in a near future. 

Aquino et al., 2013 demonstrated that ART and ATN, at concentrations between 5 and 

35 µM, caused DNA damage in HepG2 cells. The new endoperoxides evaluated showed 

no damage in DNA of V79 cells at much higher concentrations (100 to 500 µM) in the 

same comet assay. Indicating that the compounds tested are quite safe, except for 

compound LC131 at the concentration of 500 µM. 
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Figure III.4: Comet images from V79 cells treated with the new endoperoxides and doxorubicin. Representative images of comets resulted 
from 3h treatment with culture media - Untreated (negative control), doxorubicin (positive control) and the new endoperoxides, at concentrations of 1 µM and 500 µM. 
Comets were stained with GelRedTM (magnification 40X). These colours are produced by the software Comet Score. 
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III.5 – Evaluation of gametocytocidal activity 

We investigated the effect of compounds which led to cure in the in vivo tests (LC131, 

LC136 and MIS13) on the development of gametocytes. PQ and DHA were also 

evaluated, as controls. Data from the gametocidal assay, expressed as % of healthy 

gametocytes and inhibition effect, is shown in Table III.4. The inhibition effect was 

determined in comparison to untreated control (Figure III.5). PQ has long been known to 

reduce the prevalence of circulating gametocytes and exflagellation of microgametes 

(Pukrittayakamee et al., 2004; Vale, Moreira and Gomes, 2009; Gebru, Mordmuller and 

Heldb, 2014; Cabrera and Cui, 2015b). PQ is the only licensed drug available that has 

proven gametocytocidal activity (stage I - V) in vivo (Pukrittayakamee et al., 2004; 

Gebru, Mordmuller and Heldb, 2014). However, PQ has a half-life of 4-9 hours (Vale, 

Moreira and Gomes, 2009) and causes haemolysis (Kavishe, Koenderink and Alifrangis, 

2017). For P. vivax malaria treatment, WHO recommends to P. vivax malaria treatment, 

that it be given once a day for 14 days, a regimen that is difficult for patients to follow, 

which leads to treatment withdrawal (MMV, 2018). Gametocytocidal activity of DHA 

against gametocytes stages I – III has also been described previously (Adjalley et al., 

2011; Gebru, Mordmuller and Heldb, 2014; Wang et al., 2014). Reference compounds, 

PQ and DHA (Table III.4), performed within the range normally expected for 

morphology-based assays and other gametocytocidal assays platforms (Adjalley et al., 

2011; Leliévre et al., 2012; Cabrera and Cui, 2015b). 

The gametocytes 3D7-GFP were treated with the new endoperoxides, DHA and PQ at 

their respective IC50s (to asexual and sexual stages), previously determined to 3D7 strain 

(Table III.1; Annex IV). An extra concentration, equivalent to 10x IC50 to sexual stages 

of the PQ was also used as control of the experiment (See Table II.2) (Leliévre et al., 

2012). Gametocytes reduction occurred in a concentration-dependent manner for all drug 

treatments, except for MIS13, that completely inhibited gametocyte growth in both 

concentrations. All new endoperoxides had gametocytocidal activity better than PQ at the 

concentration equivalent to 1x IC50 of the asexual stages (p < 0.05; Mann-Whitney test) 

and gametocytocidal activity similar to PQ at the concentration of 1x IC50 of the sexual 

stages (p > 0.05; Mann-Whitney test) (Annex VII). All new endoperoxides had better or 

equal performance than DHA, which ranged from 90% to 96% for the corresponding 
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concentrations (Table III.4; Annex VII). 

The results confirmed that micromolar concentration of PQ was able to inhibit the 

gametocytes maturation in the culture, which is in agreement with previous findings about 

its gametocytocidal activity on late-stage gametocytes (Cabrera and Cui, 2015) that may 

be related to its capacity to selectively destroy the inner structure of P. falciparum 

mitochondria (Leliévre et al., 2012). The new endoperoxides exhibited potent activity 

against gametocytes, the form transmitted to mosquitoes, as killing of the gametocytes is 

essential to limit the spread of malaria. With these good results, future studies must be 

conducted with the aim to evaluate transmission-blocking activities of the new 

endoperoxides in mice (Adjalley et al., 2011).Therefore, in the future, the use of new 

endoperoxides for the treatment of malaria could effectively reduce the gametocyte 

population and, consequently, lower transmission rates. 
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Table III.4: In vitro activity of the PQ, DHA and new endoperoxides against mature 
gametocytes of P. falciparum. 

Compounds Concentrations 
% Gametocytemia 

(Mean ± SD) 

% Gametocytemia 
Inhibitiona 

Untreated  2.07 ± 1.66 0 

PQ 

1 μMb 0.73 ± 0.09 64.44 

20 μM c 0.01 ± 0.01 99.51 

200 μMd 0 100 

DHA 
4.7 nMb 0.20 ± 0.19 90.33 

4.7 μMc 0.06 ± 0.12 96.82 

LC131 
2.9 nMb 0.01 ± 0.02 99.30 

2.9 μMc 0 100 

LC136 
2.8 nMb 0.10 ± 0.08 95.17 

2.8 μMc 0.06 ± 0.07 96.86 

MIS13 
7.4 nMb 0 100 

7.4 μMc
 0 100 

SD: Standard deviation; 

a Gametocytemia inhibition compared to untreated control group; 

b corresponds to 1x IC50 for asexual stages;  

c corresponds to 1x IC50 to sexual stages;  

d corresponds to 10x IC50 to sexual stages.  

The experiments were performed at least 2 times, in duplicate
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Figure III.5: Effect of PQ, DHA and tested new endoperoxides on gametocytes morphology. The panels show the morphology of a) untreated 

gametocytes (stage IV), b) untreated gametocytes (stage V), treated gametocytes with PQ (c and d), treated gametocytes with DHA (e and f), treated gametocytes with 

LC131 (g and h), treated gametocytes with LC136 (i and j) and treated gametocytes with MIS13 (k and l) at equivalent concentrations of 1x IC50 to sexual stages. The 

gametocytes were stained by Giemsa (magnification 100X with immersion oil).
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III.6 – Identification of the potential mode of action of the new endoperoxides 

The mechanism of action of ARTs is still not conclusively determined, but the role of 

heme, iron and ROS in the pharmacological and toxicological actions of ARTs has 

already been described (Copple et al., 2012). It is believed that ARTs are prodrugs that 

their endoperoxide bridge is cleaved through a mechanism that is thought to be catalyzed 

by free heme, forming O-centered radicals that self-arranges to form C-centered radicals 

(Cui and Su, 2009). It has been proposed that such radicals can further react with several 

cellular targets including proteins, among which are parasitic enzymes that perform 

crucial functions for parasites survival, and membrane lipids. In vitro experiments have 

shown that ART-heme adducts inhibit heme polymerization into hemozoin leading to the 

accumulation of the toxic ferroprotoporphyrin IX (FP) (J. Wang et al., 2015). In addition, 

ART derivatives have been found to accumulate in the parasite’s food vacuole, forming 

ART-FP adducts and increase reactive oxygen species (ROS) that induce membrane 

damage and, eventually, parasite death (Pandey et al., 1999; Kannan, Sahal and Chauhan, 

2002; Hartwig et al., 2009; Kavishe, Koenderink and Alifrangis, 2017).  

In a recent study, it was demonstrated that ART and its derivatives, DHA and ATN, act 

through rapid depolarization of membrane potential of the parasite at pharmacological 

concentrations and this depolarization was inhibited by ROS scavengers and iron (Fe3+) 

chelators (Antoine et al., 2014). ROS also mediated depolarization of membrane potential 

both in the mitochondrial (Wang et al., 2010) and plasma membrane (Antoine et al., 

2014). Recent proteomic data suggests that there are probably numerous parasite targets 

for ARTs, therefore, parasite inactivation may be due to a generalized degeneration of 

cellular proteins (J. Wang et al., 2015; Ismail et al., 2016), the so called proteopathy 

(Bhattacharjee et al., 2018; Haldar, Bhattacharjee and Safeukui, 2018). 

Structural analogies between DHA, trioxolanes and tetraoxanes may accommodate 

similar modes of action, hence some level of cross resistance (Tang, Dong and 

Vennerstrom, 2004; Vennerstrom et al., 2004; Z. Wang et al., 2015; Ismail et al., 2016; 

Jourdan et al., 2016; Straimer et al., 2017). As proposed for the ARTs, the peroxide bond 

of the ozonides appears to be instrumental to the antimalarial activity (Tang, Dong and 

Vennerstrom, 2004; Fontaine et al., 2015), consistent with the observation that a reducing 

iron source is required for bioactivation and subsequent antimalarial activity (Fugi et al., 
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2010). 

III.6.1 – Stage-dependent activity against P. falciparum 

We first examined the sensitivity of a tightly synchronized P. falciparum culture (3D7-

GFP) in rings or trophozoites to a 24 h drug pulse. Parasitaemias and the level of parasite 

development were verified by Giemsa-stained thin blood smears and by flow cytometry 

before the beginning of the assays (T0), to verify synchrony (Figure III.6; Annex VIII). 

 

 

Figure III.6: Synchrony analysis by microscopy and flow cytometry of P. falciparum 
3D7-GFP culture. Panel I: Rings at time 0 hours – a) and b) Giemsa stained, rings and morula, c) GFP-
fluorescence and d) DIC (differential interference contrast); Rings at time 48 and 96 hours – e) histograms 
obtained by flow cytometry. Panel II: Trophozoites at time 0 hours – a) and b) Giemsa stained, trophozoites, 
c) GFP-fluorescence and d) DIC; Trophozoites at time 48 and 96 hours – e) histograms obtained by flow 
cytometry. (magnification 100X with immersion oil). 
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After this verification, it was observed that the results of the optical microscopy are 

identical to those of flow cytometry (Annex VIII), thus validating flow cytometry to 

detect the stage-dependent activity of endoperoxides against P. falciparum. 

The stage-specificity assay was performed with rings and trophozoites, which were 

incubated during 24 h with 10x IC50 of each new endoperoxide and 1x, 10x and 100x 

their IC50 of the controls (DHA and ATQ) and analysed at 48 h and at 96 h (after 

incubation without compounds). The experiments were performed at least 3 times, in 

triplicate. 

For the control drugs atovaquone (ATQ) and DHA the activity against trophozoite-stages, 

was higher than against rings as expected (Figure III.7). This effect was more pronounced 

in the ATQ than DHA, consistent with ATQ being a slow acting drug (Manach et al., 

2013; Stickles et al., 2015). ATQ is a relatively slow acting drug compared with other 

antimalarials such as ARTs (Manach et al., 2013) possibly due to the drug acting on 

mitochondria (Antoine et al., 2014) and only on late trophozoites and not on the earlier 

ring-stages (Klonis et al., 2013; Tilley, Straimer, Gnadig, et al., 2016). 
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Figure III.7: Stage-dependent effect of ATQ and DHA on P. falciparum 3D7-GFP 
cultures. Cultures were exposed to 3 different concentrations of the compounds (1x, 10x and 100x their 
IC50) for 24 hours. After removal of the compounds, parasites were incubated for another 24 hours in the 
absence of compounds. Re-invasion (48 h) and 4-day outgrowth (96 h) was quantified by flow cytometry. 
Compound effect is expressed as the percentage of growth relative to untreated control. The experiments 
were performed at least 3 times, in triplicate, and data is expressed as mean values ± SD. 

 

Regarding DHA, our findings are in agreement with what is described in the literature. 

ART derivatives are known to be more active against trophozoites and less active against 

ring-stage parasites (Klonis et al., 2013; Tilley, Straimer, Gnadig, et al., 2016; Xie et al., 
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2016), consistent with the lower hemoglobin digestion at ring-stage (Tilley, Straimer, 

Gnadig, et al., 2016). Nevertheless, ARTs are considered fast acting drugs, capable of 

killing very young ring-stage parasites, just after erythrocyte invasion (Klonis et al., 2013; 

Xie et al., 2016). This is probably due to the ability of early ring-stages to import and 

digest host hemoglobin, even before formation of the digestive vacuole where most of 

the hemoglobin is degraded during the trophozoite stage (Xie et al., 2016; Tilley et al., 

2016). 

Stage specificity experiments, indicate that at time 48 h, all the new endoperoxides were 

more active against trophozoites than ring-stage parasites (p < 0.05, unpaired t test) 

(Figure III.8; Table III.5). In Table III. 5 it is possible to compare the antiparasitic activity, 

expressed as the percentage of growth relative to an untreated control, of each compound 

against ring and trophozoite-stages. At 48 h, the percentage of growth of the parasites 

treated during the ring stage ranged between 17 and 51%, while they varied between 6 

and 23% for the trophozoite stage. Moreover, against trophozoites, LC92, LC129 and 

LC130 performed better than ATQ and within the range of DHA. This was not evident 

in ring-stages, since all new endoperoxides where significantly less active than DHA 

(Figure III.8; Table III.5). 

Parasite growth was also determined after two cycles of re-invasion without compounds 

(96 h outgrowth). At T96 h, only ATQ and two of the new endoperoxides (LC136 and 

LC163) allowed parasite growth above 10%, in both ring- and trophozoite-stage (Figure 

III.8; Table III.5). 
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Figure III.8: Stage-dependent antimalarial activity of the new endoperoxides. P. 
falciparum 3D7-GFP cultures were exposed to the new endoperoxides (10x IC50) for 24 hours. After 
removal of the compounds, parasites were incubated for another 24 h in the absence of compounds. Re-
invasion (48 h) and 4-day outgrowth (96 h) were quantified by flow cytometry. Compound effects are 
expressed as the percentage of growth of the respective development stage relative to an untreated control. 
The experiments were performed at least 3 times, in triplicate, and data is expressed as mean values ± SD. 
* p < 0.05 (compared with DHA - dotted line, with unpaired t test). 

 

This might indicate a more cytocidal mode of action of the remaining 6 compounds 

(LC92, LC129, LC130, LC131, LC132 and MIS13). On the other hand LC136 and 

LC163 might require more time of contact with the parasite for activity. Hence indicating 

a more cytostatic mode of action. Although they present relatively low IC50 (2.8 nM and 

63.0 nM respectively); low IC50 can, but does not always, indicate potent cytocidal 

activity of antimalarials (Roepe, 2014). 
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Table III.5: Stage-dependent antimalarial activity of the new endoperoxides against 
P. falciparum. The parasites were treated with ATQ, DHA and new endoperoxides (10x IC50) for 24 h. 
After removal of the compounds, parasites were incubated for another 24 h in the absence of compounds. 
Re-invasion (48 h) and 4-day outgrowth (96 h) were quantified by flow cytometry. Compound effects are 
expressed as the percentage of growth of the respective development stage relative to an untreated control. 
The experiments were performed at least 3 times, in triplicate and data expressed as mean values ± SD. 

  48 h 96 h 

 Stages Rings Trophozoites Rings Trophozoites 

C
om

po
un

ds
 

ATQ 39.7 ± 4.5 24.3 ± 3.2 23.8 ± 2.9 10.8 ± 1.7 

DHA 7.7 ± 2.5 5.0 ± 3.0 4.7 ± 0.6 3.0 ± 0.7 

LC92 22.2 ± 5.7 6.8 ± 1.0 4.6 ± 1.3 3.5 ± 0.7 

LC129 23.0 ± 2.6 8.3 ± 0.9 4.6 ± 1.4 3.0 ± 0.6 

LC130 18.8 ± 2.7 8.9 ± 0.6 3.7 ± 0.6 3.2 ± 0.8 

LC131 17.8 ± 1.9 10.6 ± 1.3 5.0 ± 1.0 3.4 ± 1.6 

LC132 27.3 ± 2.0 11.0 ± 1.7 5.5 ± 0.5 6.0 ± 3.5 

LC136 47.0 ± 1.7 21.2 ± 0.7 50.3 ± 3.5 21.6 ± 2.0 

MIS13 25.8 ± 5.0 10.7 ± 0.6 3.7 ± 0.4 2.9 ± 1.2 

LC163 51.0 ± 3.6 23.3 ± 2.2 55.3 ± 5.5 27.3 ± 2.0 

 

III.6.2 – Assessment of the minimum inoculum for compounds resistance (MIR) 

Resistant parasites can be selected by applying drug pressure in vitro and/or in vivo. These 

approaches have successfully identified genes, and sometimes codons involved in 

naturally occurring resistance (Witkowski, Berry and Benoit-Vical, 2009). The simplest 

approach is in vitro selection of resistant parasites, which can be applied on a large 

number of compounds earlier in drug discovery. P. falciparum intraerythrocytic cultures, 

with starting inoculum ranging from 105 to 109 parasites, are exposed to a concentration 

of the compound nearing IC90 and monitored during 60 days for recrudescent parasites. 
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MIR can be determined and is an indirect measure of the likelihood of a resistant genotype 

to occur and to be selected in vitro. In addition, the IC50 shift of the selected resistant 

mutants as compared to the parental sensitive strain is a measure of the resistance intensity 

(Eastman et al., 2011). 

So, the compounds LC131, LC132, LC136, MIS13 and LC163 were tested against Dd2 

P. falciparum cultures, which have a known multidrug resistant profile due to an increase 

in pfmdr1 gene copy number and point mutations at several codons (Ding, Ubben and 

Wells, 2012). These changes were shown to influence sensitivity to multiple drugs, 

including MEF and ARTs derivatives (O’Neill et al., 2005; Ding, Beck and Raso, 2011). 

MIR can be used to identify compounds at high risk of selecting resistance. MIR equal to 

or below 105 parasites, represents a major risk, as it suggests that, only a single nucleotide 

mutation is sufficient to produce resistant parasite certain compound. A MIR of 107 would 

also represent a high risk, if combined with a > 20-fold shift in the IC50 (Ding, Ubben and 

Wells, 2012). 

The tested compounds showed a MIR > 108 in Dd2; recrudescence was not apparent after 

60 days of treatment with the respective IC90 (≅ 10x IC50) (Annex IX). Plus, the IC50 

values for Dd2 and 3D7 (sensitive strain) were identical (RIs < 1.1) (Table III.1). These 

data indicate that these new endoperoxides do not evidence a high risk of selecting 

resistant parasites. Nor they show indications of using the same resistance mechanism as 

the antimalarials CQ or MEF. 

 

III.6.3 – Mitochondrial membrane potential (∆ym) evaluation 

Mitochondrial depolarization contributes at least partly to the inhibitory effects of ARTs 

against malaria (Wang et al., 2010; Xie et al., 2016). 

Rh123 is a cell-permeant, cationic, green-fluorescent dye that is selectively accumulated 

by the mitochondria of living cells, and dependent on the transmembrane potential (∆ym) 

(Johnson et al., 1981; Divo et al., 1985). Thus, this test was performed to detect 

mitochondrial membrane potential integrity in presence of the tested compounds. 

Parasites treated with control drugs and tested endoperoxides and loaded with Rh123 are 
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presented in Figure III.9. In control untreated infected RBCs, Rh123 is accumulated 

within the slender branched mitochondria of P. falciparum (Figure III.9) as reported 

previously (Divo et al., 1985; Biagini et al., 2006; Antoine et al., 2014; Peatey et al., 

2015). The confocal micrographs of parasites loaded with Rh123, presented a strong 

fluorescence signal coming from the active mitochondria and a diffuse signal from the 

whole cytosol. Green fluorescence was absent from the digestive vacuole, where 

hemozoin can be observed (magenta in Figure III.9). 

Total fluorescence was set up so that untreated parasites, loaded with Rh123, 

corresponded to 100% fluorescence. Figure III.10 and Table III.6 summarize the effect 

of new endoperoxides on the ∆ym in 3D7 and IPC5202 P. falciparum strains.  

The fluorescence upon treatment with ATQ was 73.9%, thus decreasing the Δψm by 

26.1% in 3D7 P. falciparum parasites (Figure III.10; Table III.6), consistent with previous 

observations of the mitochondrial contribution to Rh123 fluorescence in this strain 

(Biagini et al., 2006; Antoine et al., 2014). There was no difference in the Δψm, between 

the resistant and susceptible strain when treated with ATQ (Figure III.10; Table III.6; p 

= 0.1585, Mann-Whitney test). Both strains (3D7 susceptible and IPC5202 ART-

resistant) behaved in the same manner when challenged with ATQ. 

As expected, Deoxy-DHA did not have a significant effect in the Δψm on either strain. 

This result is in line with previous studies (Kaiser et al., 2007; Wang et al., 2010) and 

argues in favor of the importance of the endoperoxide bond in mediating antimalarial 

activity. On the other hand DHA, induced a significant decrease in Δψm, both in the 

susceptible and resistant strain (20.2% and 38.4%, respectively) (Figure III.10). Although 

a higher impact was observed in the susceptible strain, it was not statistically significant.
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Figure III.9: Effect of ATQ, DHA, LC131, LC136 and MIS13 on fluorescent mitochondria from P. falciparum trophozoites. Rh123 

fluorescence images of infected erythrocytes after 6 h of treatment with 10 μM of ATQ and 10xIC50 of DHA, LC131, LC136 and MIS13 were collected on an inverted 

confocal microscope. Higher fluorescence intensity of stained iRBCs indicates higher (∆ym). The green (Rh123) and magenta (hemozoin) in these images are 

pseudocolours. ‘M’ indicates mitochondrion and ‘DV’ indicates the digestive vacuole of the parasite.
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Generally, both strains presented similar variation of ∆ym, when challenged with the 

different new endoperoxides; between 48% – 75% for the sensitive strain and 50% –79% 

for the resistant IPC5202. When compared with ATQ, only LC129 in 3D7, presented a 

significantly lower ∆ym (p =0.0192). The remaining 7 behaved within the range of ATQ 

(Figure III.10; Table III.6). With the exception of LC129, all new endoperoxides induced 

∆ym within the range of that for DHA (Figure III.10; Table III.6). 

 

 

Figure III.10: Effect of Deoxy-DHA, ATQ, DHA and new endoperoxides on 
mitochondrial membrane potential (Δψm) of P. falciparum. ∆ym was assessed by 
measuring the fluorescence of Rh123 after the incubation with Deoxy-DHA (8 μM), ATQ (10 μM), DHA 
and new endoperoxides (10x IC50) for 6 h. The fluorescence intensity was measured with a microplate 
reader. Untreated Rh123-loaded parasites were considered as 100% fluorescence. The experiments were 
performed at least 5 times, in triplicate, and data is expressed as mean % of fluorescence ± SD. * p < 0.05 
(Mann-Whitney test); Dotted line - % of fluorescence after treatment with DHA. 

 

In a close observation of the confocal micrographs in Figure III.9, the diffuse signal 

coming from the cytosol, might be due to the transmembrane potential across the plasma 

membrane of the parasite (Δψp). Hence the V-type H+ ATPase5 inhibitor bafilomycin A16 

                                                
5 The V-type H+ ATPase is responsible for the generation of an inside-negative plasma membrane potential. 
Inhibition of this pump is therefore likely to result in depolarize the plasma membrane potential and disrupt 
the physiology of the parasite, leading to its death. 
6 Bafilomycin A1, is an inhibitor of the V-type H+ ATPase and has been demonstrated to depolarize the 
plasma membrane potential and disrupt the physiology of the parasite (van Schalkwyk et al., 2010). 
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was used in order to isolate this effect (See II.3.6.3). 

Figure III.11 and Table III.6 summarize the results for the effect of new endoperoxides 

on the ∆yp and ∆ym in the presence of bafilomycin A1. In the untreated parasites, upon 

addition of bafilomycin A1 (200 nM), the total fluorescence intensity decreased ≌ 75% 

in both strains, leaving a strong signal from the parasite mitochondrion. In the presence 

of bafilomycin A1, the observed fluorescence of ATQ was 28.4% and 12.7% in the 3D7 

and IPC5202, respectively (Figure III.11; Table III.6). These results are in agreement with 

previous studies (Antoine et al., 2014) on the action of endoperoxides and of the ATQ, 

which demonstrated a reduction of fluorescence associated with the ∆ym around 50 and 

60%. 

 

 

Figure III.11: Effect of Deoxy-DHA, ATQ, DHA and new endoperoxides on 
mitochondrial membrane potential (Δψm) of P. falciparum in the presence of 
bafilomycin A1. Parasites of 3D7 and IPC5202 strains were incubated with Deoxy-DHA (8 μM), ATQ 
(10 μM), DHA and new endoperoxides (10x IC50) for 6h and, after this time, incubated with Rh123 and 
bafilomycin A1.The fluorescence was assessed by measuring the fluorescence of Rh123 and the new 
endoperoxides treatment resulted in reduction of fluorescence (∆ym). Untreated Rh123-loaded parasites, 
without bafilomycin, were regarded as 100% fluorescence. The experiments were performed at least 5 
times, in triplicate, and data expressed as mean values ± SD. * p < 0.05 (Mann-Whitney test); Dotted line 
- % of fluorescence after treatment with DHA. 
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In 3D7, the tested new endoperoxides, induced a ∆ym identical to DHA (20.6%), between 

18% – 25%. A slightly different behaviour was observed for the ART-resistant strain, 

which presented lower levels of fluorescence between 12% - 16%, similar to DHA 

(19.0%) (p > 0.05; Mann-Whitney test) (Figure III.11; Table III.6).  

With this experiments, it was possible to determine that for all tested endoperoxides, ∆ym 

was depolarized (Figure III.11; Table III.6). These data are in line with the findings by 

Wang et al. 2010, who reported depolarization of the membrane potential of isolated 

parasite mitochondria by ARTs, and those of Crespo et al. 2008 that reported 

mitochondrial dysfunction following exposure to ART, after 8h (but not after 4h), 

interpreting this as a downstream effect. 

The rapid onset of ∆yp depolarization exposed to pharmacologically relevant 

concentrations of endoperoxides indicates that this is probably a primary event leading to 

parasite death and is consistent with in vitro (Sanz et al., 2012) and in vivo (White, 1997; 

Pukrittayakamee et al., 2000) studies reporting the rapid killing rate of the endoperoxides. 

The rapid onset of ∆yp depolarization by endoperoxides is also consistent with studies 

demonstrating that short pulses of ARTs (1-6 h) are sufficient for parasite kill, though 

with stage-dependent differences (Makanga et al., 2005; Klonis et al., 2013). 

Fluorescence quantification was also performed using real-time confocal imaging, 

following exposure to pharmacologically relevant concentrations of the endoperoxides 

and control drugs . However, only 1 experiment was performed, only for 3D7 strain and 

no addition of bafilomycin A1, thus the results are preliminary (Figure III.9; Table III.6). 

Although preliminary, confocal results are consistent with those obtained by fluorimetry 

(Table III.6). 

Exposure of both 3D7 (susceptible) and IPC5202 (resistant)-infected erythrocytes to a 

relevant concentration of the new endoperoxides resulted in a loss of membrane potential-

dependent accumulation of Rh123 either ∆yp or ∆ym. Using identical methodology, other 

endoperoxides such as, ART derivatives and (the closely related to our newly synthesized 

compounds) - the ozonides, also showed interference with mitochondria membrane 

potential and parasite growth (Wang et al., 2010; Nixon et al., 2013a; Antoine et al., 

2014). This effect was further observed in isolated mitochondria from plasmodium and 
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yeast (Wang et al., 2010) 

Depolarization of ∆ym by DHA is unlikely to be through the inhibition of mitochondrial 

electron transport chain (ETC) components, due to the lack of direct inhibition on the 

isolated components (Wang et al., 2010; Antoine et al., 2014). Morphological change in 

mitochondria, has been found to be one of the earliest changes in artemisinin-treated 

parasites (DS et al., 1985; JB et al., 1985; Kawai, Kano and Suzuki, 1993; Maeno et al., 

1993; Wang et al., 2010), although some authors (Crespo et al., 2008) suggested that 

disruption of the mitochondrial membrane potential might occur as a downstream effect 

of artemisinin-induced cell death. The loss of membrane potential, a marker of affected 

mitochondrial functions, is probably not due to the reduction of the ETC activity. 

Nevertheless, ARTs have been shown to target the mitochondria, resulting in impaired 

mitochondrial functions and ROS-dependent depolarization of plasma and mitochondrial 

membranes (Wang et al., 2010; Antoine et al., 2014). 

Parasite exposure to the new endoperoxides resulted in a significant loss of parasite Δψm 

and Δψp potential comparable to that of the ARTs. Hence, our data argue in favour of the 

mitochondria as a possible site of action of our newly synthesized endoperoxides. 
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Table III.6: Effect of deoxy-DHA, ATQ, DHA and the new endoperoxides on the 
membrane potential of P. falciparum 3D7 and IPC5202 strains. The % of total 
fluorescence was assessed by measuring the fluorescence of Rh123 after addition of deoxy-DHA (8 μM), 
ATQ (10 μM), DHA and new endoperoxides (10x IC50) for 6 h and after addition of bafilomycin A1. The 
fluorescence quantification was performed in a fluorimeter and in a confocal microscope. The experiments 
were performed at least 5 times, in triplicate, with the exception of confocal experiment, that was performed 
once and only for the 3D7 strain. The data is expressed as mean values. 

% Fluorescence 

 
Fluorimeter Confocal 

Rh123 Rh123 + bafilomycin A1 Rh123 

Compounds 3D7 IPC5202  3D7 IPC5202 3D7 

Deoxy-DHA 98.2 98.4 42.6 40.5 n.d. 

ATQ 73.9 72.2 28.4 12.6 89.6 

DHA 79.8 61.4 20.6 19.0 90.9 

LC92 71.1 50.0 18.8 12.7 n.d. 

LC129 48.9 56.7 18.5 14.7 n.d. 

LC130 74.1 50.0 19.2 13.9 n.d. 

LC131 68.4 74.4 18.3 16.0 82.6 

LC132 66.6 73.2 21.9 14.5 n.d. 

LC136 63.5 68.0 24.9 15.8 69.9 

MIS13 75.9 79.4 18.7 14.4 77.1 

LC163 74.2 71.9 23.1 14.9 n.d. 

n.d.- not determined; 

Confocal – confocal microscopy. 
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III.6.4 – The role of ROS in the new endoperoxides-mediated damage of P. 

falciparum 

The exact mechanism of action of ARTs is not well understood (O’Neill, Barton and 

Ward, 2010; Ding, Beck and Raso, 2011). Nevertheless, several studies have proposed 

multiple cellular targets of ARTs with the involvement of ROS, leading to a rapid 

destruction of several specific systems within the parasite (Kavishe, Koenderink and 

Alifrangis, 2017). Among which are cellular membranes, the redox systems and the 

mitochondrial ETC. This may explain the rapid clearance of parasites by ARTs (Cui and 

Su, 2009; Hartwig et al., 2009; Antoine et al., 2014; J. Wang et al., 2015). 

P. falciparum is sensitive to oxidative stress in vitro, and drugs such as ARTs and CQ 

interfere with parasite’s redox equilibrium (Kavishe, Koenderink and Alifrangis, 2017). 

CM-H2DCFDA is a marker for oxidative stress. It reacts with nitric oxide and hydrogen 

peroxide, leading to oxidation of H2DCF and to fluorescent DCF. As a probe, CM-

H2DCFDA has been used in flow cytometry approaches to analyse P. falciparum 

oxidative stress variations. 

In the present work, CM-H2DCFDA was used to assess variations in oxidative stress 

levels during the different stages of the intraerythrocytic development of P. falciparum. 

Two P. falciparum strains were used: 3D7 and IPC5202 (See II.3.6.4). A flow cytometry 

approach was used in order to quantify DCF fluorescencent parasites in P. falciparum 

cultures (iRBCs). To discriminate iRBCs from uninfected RBCs (uRBCs) within a mixed 

culture, CM-H2DCFDA was used in combination with the nucleic acid-binding dye 

SYTOTM 61, that fluoresces in the far-red part of the spectrum. 

 

III.6.4.1 – Stage-dependent ROS levels in P. falciparum  

SYTO 61 is a DCF-compatible dye with minimum cross talk into the fluorescein (green) 

channel. The cellular distribution of SYTO 61 and DCF in iRBCs is presented in Figure 

III.12. Ring stage parasites emitted little or undetectable green fluorescence in 

comparison to the trophozoites, where a strong signal can be observed (Figure III.12, 

panel I and II). Similarly, there is negligible green signal from uRBCs and from the host 
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cell compartment of iRBCs (Figure III.12, panel I and II, black arrows). Hence, the DCF 

(green) signal measured by flow cytometry originates exclusively from the probe in the 

parasite’s cytoplasm. SYTO 61 (red) fluorescence can also be observed exclusively in 

parasites (Figure III.12). 

 

 

Figure III.12: DCF and SYTOTM 61 labeled iRBCs with rings and trophozoites-
stages of P. falciparum. Panel I: Ring infected RBCs and Panel II: Trophozoite infected RBCs DIC: 
differential interference contrast; DCF: DCF green fluorescence; SYTO 61: SYTO 61 red fluorescence; 
Black arrow: erythrocyte; white arrow: parasite (magnification 100X with immersion oil). 

 

To establish basal levels of ROS in untreated parasites, an asynchronous culture 

(containing approximately 3% rings and 2% trophozoites and schizont stage parasites) 

was labeled with CM-H2DCFDA + SYTO 61 and analysed by flow cytometry (Figure 

III.13). Three populations could be observed, corresponding to rings, trophozoites and 

schizonts-stage parasites. Rings exhibit a green signal that is similar to uRBCs, whereas 

trophozoites and schizonts exhibit a higher green signal (Figure III.13). In uRBCs labeled 

with CM-H2DCFDA + SYTO 61, red and green signals were undetectable (Figure III.13, 

a). These is expects as ring stage parasites have a single nucleus. RNA and DNA levels 
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increase as the parasite undergoes nuclear division, eventually producing several daughter 

merozoites. Hence, the amount of nucleic acids increases during the intraerythrocytic 

cycle, resulting in an increase of red fluorescence (SYTO 61) detectable by cytometry 

(Figure III.13, b). Accordingly, and as observed in Figure III.12, Ic and IIc, rings display 

lower red fluorescence than trophozoites. When compared with uRBCs, rings showed a 

~20 fold increase in DCF fluorescence, whereas trophozoite and schizont stages displayed 

> 400 fold increase. This data is consistent with the current knowledge that trophozoite 

and schizont-stage parasites are more sensitive to oxidative stress variations than ring 

stages (Fu et al., 2010; Sussmann et al., 2011), hence validating our experimental 

conditions to detect variations in ROS levels induced by the tested endoperoxides. 

 

 

Figure III.13: Flow cytometry analysis of DCF and SYTO 61 signals from an 
asynchronous culture of P. falciparum 3D7 strain. a) Zebra-plot of uRBCs, b and c) 
Zebra-plot and histogram of an asynchronous culture. 

 

III.6.4.2 – Effect of the new endoperoxides on ROS levels in P. falciparum 

Using the parameters validated above, we analysed by flow cytometry (See II.3.6.4) 

trophozoite-stage synchronized iRBCs treated with the controls drugs (deoxy-DHA, 

H2O2, DHA and CQ) and the new endoperoxides. Results are presented in Figures III.14 

and Figure III.15. As expected (Sussmann et al., 2017), ~ 40% and ~ 1% increase in ROS 
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was detected in the pro-oxidant H2O2 and in the deoxy-DHA treated cultures, 

respectively. This could be observed for both the ART-susceptible (3D7) and ART-

resistant (IPC5202) parasites (Figure III.14, d and e). When challenged with CQ and DHA 

at 1x, 10x and 100x the correspondent IC50, a concentration dependent increase in ROS 

levels could be detected (Figure III.14, d and e). For the 3D7, there was no difference in 

DCF fluorescence (Mann-Whitney test) between cultures treated with 10x IC50 and 100x 

IC50 of DHA and CQ (Figure III.14, d). On the other hand a concentration response could 

be detected in the IPC5202 treated with 10x and 100x IC50 of DHA (Figure III.14, e). 

Nevertheless, because no concentration response effect could be observed for 3D7, with 

to test the new endoperoxides, we decided to challenged parasites with 10x the 

correspondent IC50. The results are summarized in Figure III.15 and Table III.7. 

 

 

Figure III.14: Effect of the new endoperoxides on oxidative stress in P. falciparum. 
a), b) and c) histograms showing DCF signal of 3D7 iRBCs, treated with H2O2, DHA (10x IC50) and CQ 
(10x IC50). Black: uRBCs; Dark gray with solid line: untreated iRBCs; White with dotted line: treated 
iRBCs. d) and e) % increase of ROS level compared to untreated iRBCs. H2O2 (0.5µM) and deoxy-DHA 
(8 μM). Data from at least 3 experiments expressed as mean values ± SD. *p < 0.05, Mann-Whitney test. 
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Generally, 3D7 presented higher levels of ROS than IPC5202 (Figure III.15). In Table 

III. 7 it is possible to simultaneously compare the ability of the compounds to increase 

the levels of ROS in both susceptible and resistant strains. Both strains behave similarly, 

when challenged with LC92, LC129, LC131, LC136, MIS13 and CQ. On the other hand 

DHA, LC130, LC132 and LC163 evidenced a significantly different behaviour (p < 0.05; 

Mann-Whitney test). 

Regarding DHA challenge, IPC5202 (resistant) presented significantly lower levels of 

ROS than the susceptible 3D7 (p = 0.0009; Mann-Whitney test) (Figure III.15; Table 

III.7). Except for LC130 in 3D7, the new endoperoxides induced lower or identical levels 

of ROS when compared to DHA. On the other hand, they induced higher levels of ROS 

in the IPC5202 (Figure III.15). 

 

 

Figure III.15: Effect of new endoperoxides on oxidative stress in trophozoite stage 
of P. falciparum 3D7-sensitive and IPC5202 ART-resistant parasites, analyzed by 
flow cytometry. Bar graphs are showing percent increase of ROS level in drug treated parasites, as 
compared to untreated. The experiments were performed at least 3 times and data is expressed as mean 
values ± SD. *p < 0.05 (compared to DHA - dotted line, with Mann-Whitney test). 
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Table III.7: % Increase in ROS levels in treated parasites with Deoxy-DHA, H2O2, 
DHA, CQ and new endoperoxides in 3D7 and IPC5202 strains of P. falciparum. The 
parasites were treated with Deoxy-DHA (8 µM), H2O2 (0.5 µM), DHA (1x, 10x and 100x IC50), CQ (1x, 
10x and 100x IC50) and new endoperoxides (10x IC50) and compared to untreated control. The experiments 
were performed at least 3 times and data is expressed as mean values. 

  
 

% Increase in ROS levels 

Compounds Concentrations 3D7 IPC5202 

Deoxy-DHA 8 µM 1.5 1.8 

H2O2 0.5 µM 43.6 39.2 

DHA 

1x IC50 20.1 7.4 

10x IC50 33.3 16.5 

100x IC50 33.3 28.3 

CQ 

1x IC50 15.8 14.0 

10x IC50 36.8 31.6 

100x IC50 38.0 34.1 

LC92 10x IC50 25.4 24.3 

LC129 10x IC50 35.5 26.9 

LC130 10x IC50 45.1 29.4 

LC131 10x IC50 24.9 28.7 

LC132 10x IC50 34.3 25.9 

LC136 10x IC50 21.8 22.9 

MIS13 10x IC50 27.8 27.2 

LC163 10x IC50 34.4 26.4 
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Its described that the cleavage of the endoperoxide generates ROS that subsequently 

damage several cellular targets such as nucleic acids, lipids and key target proteins, killing 

the parasite (O’Neill, Barton and Ward, 2010; Tilley, Straimer, Gnadig, et al., 2016; 

Kavishe, Koenderink and Alifrangis, 2017). ROS also mediate depolarization of the 

membrane potential, both in the mitochondrial (Wang et al., 2010) and the plasma 

membrane (Antoine et al., 2014). Recent proteomic data suggests that there are probably 

numerous parasite targets for ARTs, therefore, parasite inactivation may be due to a 

generalized degeneration of cellular proteins (J. Wang et al., 2015; Ismail et al., 2016). 

The oxidative stress induced by antimalarial agents is known to interfere and disrupt the 

antioxidant-system balance and is important in malaria parasite clearance, both in 

quinoline-besed antimalarial drugs and in endoperoxides (Cui and Su, 2009; Hartwig et 

al., 2009; Antoine et al., 2014; J. Wang et al., 2015). Our endoperoxides induced different 

levels of ROS in both strains when compared to DHA and CQ, used as positive controls. 

Parasite exposure to the new endoperoxides resulted in a significant increase in ROS 

levels, similar to DHA and CQ, which are known as inducers of oxidative stress (Tilley, 

Straimer, Gnadig, et al., 2016; Kavishe, Koenderink and Alifrangis, 2017). Hence, our 

data argue in favour of the ROS as a possible mechanism of action of our newly 

synthesized endoperoxides. 

The compounds LC131, LC136 and MIS13 demonstrated to be the most promising; they 

showed nanomolar activity against ART-resistant P. falciparum parasites, negligible 

toxicity towards mammalian cells, totally suppressed P. berghei parasitaemia in mice, 

showed no cross resistance with CQ and ARTs, did not present genotoxicity, showed 

gametocytocidal activity, were more active on the trophozoite stages, induced alteration 

of mitochondrial membrane potential and finally induced increase in ROS levels. 

These compounds can be easily prepared from relatively cheap starting materials. On the 

other hand, ART- derivatives are obtained from the expensive natural product ART 

through semi-synthesis. Thus, besides the excellent pharmacologic properties, an anti-

malarial peroxide-type formulation based on trioxolanes LC131, LC136 and MIS13 could 

be cheaper than those based on current ART-derivatives, while offering a comparable, or 

even better, antimalarial profile. 
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1. Generally, all compounds have shown low or undetectable cytotoxicity in both 

cell lines and had low cytotoxicity when compared to the ART. 

 

2. Compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and LC163 

were exceptionally active across all four P. falciparum strains and showed no cross-

resistance with quinolone-type and ART-type antimalarials is foreseeable. 

 

3. In vivo, compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and 

LC163 were very effective against P. berghei. Compounds LC131, LC136 and MIS13 

demonstrated to be the most promising; they totally suppressed parasitaemia in mice, 

presenting curative effect. 

 

4. Generally, compounds LC131, LC132, LC136 and MIS13 have shown 

undetectable genotoxicity, showing no damage to the DNA of V79 cell line. LC131 

revealed some in vitro genotoxicity at a maximum concentration tested. 

 

5. The tested compounds LC131, LC136 and MIS13, showed gametocytocidal 

activity better than or equal to that of PQ and DHA. 

 

6. In RSA, compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and 

LC163 presented higher activity than DHA against the ART-R strain (IPC5202). 

Already at MSA of both the ART-S and ART-R parasite strains, exhibited full 

susceptibility to all the 8 endoperoxides, exciding DHA performance. In stage-specific 

assay, the tested compounds were more active against the trophozoite-stage. With 

exception of LC136 and LC163, the % of recrudescence is low, indicating a more 

cytocidal mode of action of these compounds. 
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7. Compounds LC131, LC132, LC136, MIS13 and LC163 do not evidence a high 

risk of selecting resistant parasites. 

 

8. Compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and LC163 

induced alteration in the mitochondrial membrane potential (∆ym) of the treated 

parasites. 

 

9. The compounds LC92, LC129, LC130, LC131, LC132, LC136, MIS13 and 

LC163 induced increase in ROS levels of the treated parasites. 
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ANNEX I 

Culture medium for maintenance of cell cultures and plasmodium cultures: 

Complete Williams E medium for HepG2-A16 

Williams E medium (Sigma-Aldrich) 10.83 g 

Penicillin-Streptomycin (Sigma) 1% 

Fetal bovine serum (FBS) (Gibco) 10% 

NaHCO3 (Sigma) 3.7 g 

Milli-Q H20 1l 

 

Complete F-10 medium for V79-2 

Ham's F-10 Nutrient Mixture (Sigma-Aldrich) 72 ml 

Newborn calf serum (Sigma-Aldrich) 8 ml 

Penicillin-Streptomycin (Sigma) 1% 

 

Complete RPMI medium for Plasmodium falciparum 

RPMI 1640 (Gibco) 10.44 g 

HEPES (Sigma) 5.94 g 

AlbuMAXTM I (Gibco) 5 g 

Hypoxanthine (Sigma) 0.1 g 
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NaHCO3 (Sigma) 2 g 

Milli-Q H20 1l 

 

Solutions for defrosting of P. falciparum 

Solution A: 12% NaCl in sterile Milli-Q H20; 

Solution B: 1.6% NaCl in sterile Milli-Q H20 

Solution C: 0.2% dextrose + 0.9% NaCl in sterile Milli-Q H20. 

 

Solution for cryopreservation of mammalian cells and P. falciparum 

28% of glycerol 

4.2% of D-sorbitol 

0.65% of NaCl 

100 ml Milli-Q H20 

Sterilized by filtration
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ANNEX II 

Solutions and buffers used in this work: 

Buffered water 

1 pastille (Sigma) 

1l of Milli-Q H20 

 

Giemsa 20% 

20 ml of Giemsa (VWR) 

80 ml of buffered water (Sigma) 

Filtrate in filter paper and store in 4ºC 

 

Phosphate buffered saline (PBS) 

1 pastille (VWR) 

200 µl of Milli-Q H20 

Autoclave 

 

D-Sorbitol 5% 

25g of D-Sorbitol (Sigma) 

500 ml of Milli-Q H20 

Autoclave 
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Percoll® 70% (For 142.86 ml) 

PBS 10X 10 ml 

Percoll (Ge Healthcare) 90 ml 

RPMI incomplete 42.86 ml 

 

Lysis solution 

NaCl 2.5 M 

EDTA 100 mM 

Tris 10 mM 

Triton-X 1% 

pH = 10 

 

Electrophoresis buffer 

NaOH 10 mM 

EDTA 200 mM 

pH ≧ 13 

 

Neutralization buffer 

Tris 0.4 M 

pH = 7.59 
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Cytometer cleaning solution (100 ml) 

Sodium Azide 50g 

Milli-Q H20 autoclaved 100 ml 

Add 1 ml of this solution to 1 l of autoclaved Milli-Q H20.
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ANNEX III 

Compounds and their respective lethal doses (LD50) in V79 and HepG2 cells. 

Compounds ID LD50 V79 (nM) LD50 HepG2 (nM) 

LC28 
 

1000000 1000000 

LC32 
 

1000000 1000000 

LC50  1000000 1000000 

LC60 
 

1000000 1000000 

LC64 
 

1000000 1000000 

LC90 
 

210000 200000 

LC92 
 

1000000 1000000 

LC95 
 

1000000 1000000 

LC126II 
 

1000000 1000000 

LC129 
 

1000000 1000000 

LC130 
 

1000000 1000000 
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LC131 
 

1000000 1000000 

LC132 
 

1000000 1000000 

LC133 
 

1000000 1000000 

LC136 
 

1000000 1000000 

LC137 
 

1000000 1000000 

LC138 
 

1000000 1000000 

LC139 
 

228011 200000 

LC140 
 

1000000 1000000 

LC141 
 

1000000 1000000 

LC142 
 

1000000 1000000 

LC146 
 

1000000 1000000 

LC154 
 

1000000 1000000 

LC155 
 

1000000 1000000 
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LC157 
 

1000000 1000000 

MIS13 
 

1000000 330000 

MIS14 
 

1000000 330000 

MIS15 
 

1000000 1000000 

MIS16 
 

1000000 1000000 

LC163 
 

1000000 1000000 

LC165 
 

1000000 1000000 

LC176 
 

1000000 1000000 

LC177 
 

1000000 1000000 

LC179 
 

1000000 1000000 

LC182 
 

1000000 1000000 

LCTET 
 

1000000 1000000 

ART 

 

416233 400000 
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DHA 

 

1000000 1000000 

CQ 
 

244412 220000 

 

ART: artemisinin; DHA: dihydroartemisinin; CQ: chloroquine
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 ANNEX IV 

Antiplasmodial activity in vitro (IC50) against sensitive and resistant P. falciparum 
strains. 

 P. falciparum IC50 ± SD (nM) Resistance Index 

Compounds Dd2 3D7 IPC5202 IPC4912 RIa RIb RIc 

LC28 1127.0 ± 188.3 
3659.0 ± 

1488.2 
n.d. n.d. 0.3 n.d. n.d. 

LC32 987.1 ± 214.7 854.5 ± 107.6 n.d. n.d. 1.2 n.d. n.d. 

LC60 > 10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC64 > 10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC90 159.3 ± 10.6 135.47 ± 28.5 n.d. n.d. 1.2 n.d. n.d. 

LC92 22.6 ± 2.6 26.7 ± 2.4 37.7 ± 9.9 34.9 ± 7.9 0.8 1.4 1.3 

LC95 560.3 ± 1.0 290.55 ± 5.2 n.d. n.d. 1.9 n.d. n.d. 

LC126II >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC129 43.2 ± 0.8 42.9 ± 3.9 
36.36 ± 

1.2 
29.3 ± 0.7 1.0 0.8 0.8 

LC130 24.8 ± 17.2 23.3 ± 15.2 8.2 ± 1.9 2.4 ± 1.6 1.0 0.3 0.1 

LC131 2.1 ± 1.9 2.9 ± 2.4 3.4 ± 2.1 4.8 ± 1.2 0.7 1.2 1.7 

LC132 26.6 ± 15.9 24.2 ± 12.8 25.0 ± 7.4 19.7 ± 3.4 1.1 1.0 0.8 

LC133 >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC136 2.5 ± 1.3 2.8 ± 1.2 6.1 ± 1.9 6.8 ± 2.3 0.9 2.2 2.4 

LC137 617.2 ± 58.6 120.8 ± 26.5 n.d. n.d. 5.1 n.d. n.d. 
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LC138 611.7 ± 14.5 578.1 ± 27.2 n.d. n.d. 1.0 n.d. n.d. 

LC139 >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC140 625.6 ± 45.9 515.4 ± 109.8 n.d. n.d. 1.2 n.d. n.d. 

LC141 >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC142 106.9 ± 45.4 116.7 ± 33.2 n.d. n.d. 0.9 n.d. n.d. 

LC146 374.1 ± 50.7 210.4 ± 24.8 n.d. n.d. 1.8 n.d. n.d. 

LC154 >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC155 >10000 >10000 n.d. n.d. n.d. n.d. n.d. 

LC157 179.7 ± 8.4 137.05 ± 33.0 n.d. n.d. 1.3 n.d. n.d. 

MIS13 3.4 ± 3.0 7.4 ± 6.5 1.7 ± 1.1 0.3 ± 0.3 0.5 0.2 0.0 

MIS14 44.6 ± 32.8 39.1 ± 12.5 
413.1 ± 

20.2 

389.5 ± 

17.8 
1.1 10.6 

10.

0 

MIS15 ¨ ¨ ¨ ¨ n.d. n.d. n.d. 

MIS16 ¨ ¨ ¨ ¨ n.d. n.d. n.d. 

LC163 43.5 ± 3.0 63.0 ± 0.7 71.1 ± 1.1 
18.6 ± 

16.9 
0.7 1.1 0.3 

LC165 372.3 ± 18.8 357.7 ± 53.5 n.d. n.d. 1.0 n.d. n.d. 

LC176 692.4 ± 74.5 734.7 ± 32.7 n.d. n.d. 0.9 n.d. n.d. 

LC177 
2461.6 ± 

1111.5 
2388.6 ± 217.5 n.d. n.d. 1.0 n.d. n.d. 

LC179 1831.0 ± 363.6 4186.6 ± 146.6 n.d. n.d. 0.4 n.d. n.d. 

LC182 357.5 ± 18.7 359.3 ± 34.0 n.d. n.d. 1.0 n.d. n.d. 
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LCTET 570.0 ± 21.3 361.4 ± 8.9 n.d. n.d. 1.6 n.d. n.d. 

ART 2.47 ± 0.1 3.97 ± 0.1 33.3 ± 8.0 13.3 ± 2.2 0.6 8.4 3.3 

ATN 4.6 ± 1.4 5.1 ± 0.1 3.4 ± 0.1 3.9 ± 1.2 0.9 0.7 0.8 

ATQ n.d. 4.9 ± 2.3 10.4 ± 6.2 n.d. n.d. 2.1 n.d. 

Deoxy-DHA n.d. > 10000.0 n.d. n.d. n.d. n.d. n.d. 

DHA 4.2 ± 0.5 4.7 ± 1.5 6.2 ± 1.6 3.7 ± 2.0 0.9 1.3 0.8 

CQ 340.0 ± 20.7 15.8 ± 0.8 
54.5 ± 

3.8* 

63.0 ± 

4.4* 

21.

5 
3.4 4.0 

PQ n.d. 1000.0 ± 180.0 n.d. n.d. n.d. n.d. n.d. 

¨ Low solubility;  

SD: standard deviation; 

n.d. - not determined; 

* (https://www.beiresources.org, 2017); 

RIa: resistance index = IC50 (Dd2)/ IC50 (3D7);  

RIb: resistance index = IC50 (IPC5202)/ IC50 (3D7);  

RIc: resistance index = IC50 (IPC4912)/ IC50 (3D7); 

ART: Artemisinin; ATN: Artesunate; ATQ: Atovaquone; CQ: Chloroquine; Deoxy-DHA: Deoxy-
dihydroartemisinin; DHA: Dihydroartemisinin; PQ: Primaquine. 
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ANNEX V 

Selectivity index for compounds in V79 e HepG2 cell lines. 

 SIa V79 SIb HepG2 

Compound LD50 (mM) Dd2 3D7 IPC5202 IPC4912 
LD50 

(mM) 
Dd2 3D7 IPC5202 IPC4912 

LC28 1.0 887.3 273.3 n.d. n.d. 1.0 887.3 273.3 n.d. n.d. 

LC32 1.0 1013.1 1170.3 n.d. n.d. 1.0 1013.1 1170.3 n.d. n.d. 

LC50 1.0 42372.8 71428.6 n.d. n.d. 1.0 42372.8 71428.6 n.d. n.d. 

LC60 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC64 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC90 0.2 1318.3 1550.1 n.d. n.d. 0.2 1255.5 1476.3 n.d. n.d. 

LC92 1.0 44247.8 37453.1 26525.2 28653.3 1.0 44247.8 37453.1 26525.2 28653.3 

LC95 1.0 1784.7 3441.7 n.d. n.d. 1.0 1784.7 3441.7 n.d. n.d. 
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LC126II 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC129 1.0 23148.1 23310.0 27502.7 29673.5 1.0 23148.1 23310.0 27502.7 29673.5 

LC130 1.0 40322.6 42918.4 121951.2 416666.6 1.0 40322.6 42918.4 121951.2 416666.6 

LC131 1.0 476190.5 344827.5 294117.6 208333.3 1.0 476190.5 344827.5 294117.6 208333.3 

LC132 1.0 37596.9 41322.3 40000.0 50761.4 1.0 37596.9 41322.3 40000.0 5076.4 

LC133 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC136 1.0 400000.0 357142.8 163934.4 147058.8 1.0 400000.0 357142.8 163934.4 147058.8 

LC137 1.0 1620.2 8278.1 n.d. n.d. 1.0 1620.2 8278.1 n.d. n.d. 

LC138 1.0 1634.8 1729.8 n.d. n.d. 1.0 1634.8 1729.8 n.d. n.d. 

LC139 0.2 ¨ ¨ n.d. n.d. 0.2 ¨ ¨ n.d. n.d. 

LC140 1.0 1598.5 1940.2 n.d. n.d. 1.0 1598.5 1940.2 n.d. n.d. 

LC141 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 
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LC142 1.0 9354.5 8568.9 n.d. n.d. 1.0 9354.5 8568.9 n.d. n.d. 

LC146 1.0 2673.1 4752.8 n.d. n.d. 1.0 2673.1 4752.8 n.d. n.d. 

LC154 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC155 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC157 1.0 5564.8 7296.6 n.d. n.d. 1.0 5564.8 7296.6 n.d. n.d. 

MIS13 1.0 294117.6 135135.1 588235.2 3333333.3 0.3 97058.8 44594.6 194117.6 1100000.0 

MIS14 1.0 22421.5 25575.4 2420.7 2567.4 0.3 7399.1 8439.9 798.8 847.2 

MIS15 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

MIS16 1.0 ¨ ¨ n.d. n.d. 1.0 ¨ ¨ n.d. n.d. 

LC163 1.0 22988.5 15873.0 14064.7 53763.4 1.0 22988.5 15873.0 14064.7 53763.4 

LC165 1.0 2686.0 2795.6 n.d. n.d. 1.0 2686.0 2795.6 n.d. n.d. 

LC176 1.0 1444.2 1361.1 n.d. n.d. 1.0 1444.2 1361.1 n.d. n.d. 
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LC177 1.0 406.2 418.6 n.d. n.d. 1.0 406.2 418.6 n.d. n.d. 

LC179 1.0 546.1 238.8 n.d. n.d. 1.0 546.1 238.8 n.d. n.d. 

LC182 1.0 2792.2 2783.2 n.d. n.d. 1.0 2792.2 2783.2 n.d. n.d. 

LCTET 1.0 1754.4 2677.0 n.d. n.d. 1.0 1754.4 2677.0 n.d. n.d. 

ART 0.4 168515.4 104844.6 12499.5 31295.7 0.4 168515.4 104844.6 12499.5 31295.7 

DHA 1.0 238095.2 212765.9 166666.7 270270.3 1.0 238095.2 212765.9 166666.7 270270.3 

CQ 0.2 507.3 15469.1 n.d. n.d. 0.2 507.3 15469.1 n.d. n.d. 

¨ Low solubility; 

n.d. - not determined; 

ART: Artemisinin; DHA: Dihydroartemisinin; CQ: Chloroquine; 

a SI (Selectivity index) = LD50 (V79)/ IC50 (Dd2, 3D7, IPC5202 and IPC4912); 

b SI (Selectivity index) = LD50 (HepG2)/ IC50 (Dd2, 3D7, IPC5202 and IPC4912).
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ANNEX VI 

% of DNA in the comet’s tail for the assessment of genotoxicity of new 
endoperoxides LC131, LC132, LC136 and MIS13 in V79 cells (after 3h treatment). 

 

The experiment was performed 1 time, in duplicate, and data is expressed as mean values ± SD. * p > 0.05 

(compared with doxorubicin, with unpaired t test). SD: Standard deviation. 
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ANNEX VII 

Gametocytocidal activity of the new endoperoxides, PQ and DHA. The gametocytes 3D7-

GFP were treated at their respective IC50s (to asexual and sexual stages). And an extra dose, equivalent to 

10 x IC50 to sexual stages of the PQ was also used. 

 

* p < 0.05 (Compared with PQ at the lower doses, with Mann-Whitney test).
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ANNEX VIII 

% Mean of parasitaemias obtained by light microscopy and by flow cytometry in 
the stage-specific assay. 

% Parasitaemia 

 Rings Trophozoites 

 Microscopy Cytometry Microscopy Cytometry 

0 hours 1.03 0.99 2.01 1.90 

48 hours 7.80 7.59 5,82 5.70 

96 hours 8.32 8.23 7.25 7.03 
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ANNEX IX 

Frequency of recrudescence in Dd2- pressured P. falciparum strain after 60 days. 
Two different initial inoculums were used, and the parasites were treated with new endoperoxides at the 

doses corresponding to IC90 (10x IC50). The experiments were performed at least 2 times, in triplicate. 

Compounds 

Selection pressure 

(IC90) 

Initial inoculum 
Number of positive 

flasks (day positive) 

LC131 21 nM 2 x 10
7
 0 of 3 

LC131 21 nM 2 x 10
8
 0 of 3 

LC132 266 nM 2 x 10
7
 0 of 3 

LC132 266 nM 2 x 10
8
 0 of 3 

LC136 25 nM 2 x 10
7
 0 of 3 

LC136 25 nM 2 x 10
8
 0 of 3 

MIS13 34 nM 2 x 10
7
 0 of 3 

MIS13 34 nM 2 x 10
8
 0 of 3 

LC163 435 nM 2 x 10
7
 0 of 3 

LC163 435 nM 2 x 10
8
 0 of 3 
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ANNEX X 

 
 

UFRN – Campus Universitário – Centro de Biociências       
Av. Salgado Filho, S/N – CEP: 59072-970 – Natal/RN   e-mail: ceua@reitoria.ufrn.br 

Universidade Federal do Rio Grande do Norte 
COMISSÃO DE ÉTICA NO USO DE ANIMAIS - CEUA 

 
 
 
 

PROTOCOLO N.º 046/2013 
Professor/Pesquisador: VALTER FERREIRA DE ANDRADE NETO 

 
 
 
 
 

Natal (RN), 31 de janeiro de 2014. 
 

Prezado Professor/Pesquisador, 

 
Vimos, através deste documento, informar que o projeto “BIOLOGIA E 

EPIDEMIOLOGIA MOLECULAR, TRIAGEM DE NOVOS FÁRMACOS PARA PLASMODIUM 

SPP. E TOXOPLASMA GONDII”, protocolo n° 046/2013, após análise das adequações, foi 

considerado APROVADO por esta Comissão. 

Informamos ainda que, segundo o Cap. 2, Art. 13 do Regimento, é função do 

professor/pesquisador responsável pelo projeto a elaboração de relatório(s) de 

acompanhamento que deverá(ão) ser entregue(s) dentro do(s) prazo(s) estabelecido(s) 

abaixo: 

- Relatório Final: OUTUBRO 2017 (30 dias após a conclusão do projeto). 

Agradecemos a sua atenção e nos colocamos a disposição para eventuais 

esclarecimentos. 

 
Cordialmente, 

 
 
 

John Fontenele Araujo 
Coordenador da CEUA 
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ANNEX XI 

Current antimalarial drugs and associated resistance markers. (Adapted from (Haldar, 

Bhattacharjee and Safeukui, 2018)). 

 

 

 

 

 

 

Endoperoxide
A peroxide group (O–O) that 
bridges two atoms of a larger 
molecule and whose cleavage 
gives rise to reactive free 
radicals that can oxidize and 
aggregate proteins (as well as 
DNA and lipids).

Proteopathy
A disease state where proteins 
become structurally abnormal 
and disrupt cellular function.

Resistance has emerged to all known antimalarials 
(FIG. 1b; TABLE 1), and therefore, tracking drug sensitivities 
of clinical infections is critical to inform treatment strat-
egy as well as strategies of mass drug administration that 
aim to eliminate malaria. The detection of drug-resistant 
parasites and their spread was greatly facilitated by the 
discovery of molecular resistance markers17–21. Genome-
wide association studies (GWAS) of parasites obtained 
directly from infected individuals can be powerful in 
identifying chromosomal regions and their associated 
genes under high selective pressure20,22,23. However, to 
establish a causal marker requires the ability to repro-
duce the proliferation of resistant pathogens in the lab-
oratory and in genetic studies. This was readily achieved 
using standard assays for parasites that are resistant to all 
antimalarials24, except for artemisinins, for which estab-
lishing resistance in the laboratory took almost 5 years 
from their first identification in the field (BOX 1).

Although the identification of genetic resistance 
markers advances detection, understanding the mech-
anisms of resistance enables the development of rational 

strategies for containment and treatment to eliminate 
malaria. Amplification of and/or SNPs in target cata-
lytic enzymes or efflux pumps are known to confer 
resistance to many antimalarials25–28. The inhibitory 
activity of artemisinins depends on the cleavage of their 
endoperoxide bridge, which yields free radicals, suggest-
ing that these drugs alkylate key target proteins to kill 
parasites. However, recent proteomic studies reveal 
that there are probably hundreds of targets, and thus, 
killing may be due to more generalized degeneration of 
the protein milieu ( proteopathy)29,30. The gene encoding 
P. falciparum Kelch 13 (PfKelch13), which is located 
on chromosome 13, was shown to be the major caus-
ative artemisinin-resistance marker18,31,32. PfKelch13 is 
predicted to be a regulator of protein quality control. 
It belongs to a eukaryotic evolutionary gene family of 
~60 members33. Mammalian orthologues of PfKelch13 
confer resistance to cancer drugs that kill tumours by 
inducing proteopathy34. This supports the idea that 
PfKelch13-mediated atemisinin resistance may also 
have a role in restoring complex systems of protein 

Table 1 | Current antimalarial drugs and associated resistance markers

Chemical class Common name Targeted parasite stage Genetic marker for drug resistance

Plasmodium falciparum Plasmodium 
vivax

Sesquiterpene 
lactone 
endoperoxides

Artemisinin* All parasite stages pfkelch13 (REF. 18) Unknown

Artesunate*‡ All parasite stages pfkelch13 (REF. 18) Unknown

Artemether*‡ All parasite stages pfkelch13 (REF. 18) Unknown

i o e i inin ‡ All parasite stages pfkelch13 (REF. 18) Unknown

4-Aminoquinolines Chloroquine‡§ Blood stages (trophozoite and schizont) pfcrt17,26 pvmdr1 (REF. 81)

Amodiaquine*‡ Blood stages (trophozoite and schizont) pfcrt, pfmdr1 (REF. 129) Unknown

Piperaquine*‡ Blood stages (trophozoite and schizont) pfplm2 (REFS 37,38), pfcrt55,130 Unknown

Pyronaridine Blood stages (ring, trophozoite and schizont) pfcrt131 Unknown

Naphthoquine* Blood stages (trophozoite and schizont) Unknown Unknown

Amino alcohols Quinine§ Blood stages (trophozoite and stages I to III 
gametocytes)

pfcrt, pfmdr1 (REFS 51,132) Unknown

Mefloquine* Blood stages (trophozoite and schizont) pfmdr1 (REFS 133–135) pvmdr1 
(REFS 81,82)

Lumefantrine*‡ Blood stages (trophozoite and schizont) pfcrt, pfmdr1 (REFS 132,136) Unknown

Halofantrine§ Blood stages (trophozoite and schizont) pfcrt, pfmdr1 (REF. 133) Unknown

8-Aminoquinoline Primaquine*‡ Blood (gametocyte) and liver (schizont) forms Unknown Unknown

Antifolates Pyrimethamine* Blood and liver schizont and mosquito stage (oocysts) pfdhfr137 pvdhfr83

Sulfadoxine* Blood and liver schizont pfdhps137 pvdhps83,138

Proguanil* Blood stages (schizont and gametocyte) and liver 
schizont

pfdhfr139 Unknown

Naphthoquinone Atovaquone§ Blood stages (schizont and gametocyte) and liver 
schizont

pfcytb140 Unknown

Antibiotics Clindamycin§ Blood stages Apicoplast target57 Unknown

o ine§ Blood stages Apicoplast target57 Unknown

Tetracycline§ Blood stages Apicoplast target57 Unknown

crt, chloroquine-resistance transporter; cytb o o e b; dhfr, dihydrofolate reductase; dhps, dihydropteroate synthase; mdr1, multidrug resistance protein; 
pf Plasmodium falciparum gene; pv, Plasmodium vivax gene; pfkelch13, P. falciparum Kelch 13; plm2 e in u u e in e i inin e o in ion
therapy. ‡Antimalarial drug used alone or in combination for the treatment of P. vivax malaria. §Antimalarial drug used alone or in combination with molecules other 
than artemisinin derivatives.
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