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Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and a major
cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is intimately linked with other meta-
bolic disorders characterized by insulin resistance. Metabolic diseases are driven by chronic inflam-
matory processes, in which macrophages perform essential roles. The polarization status of
macrophages is itself influenced by metabolic stimuli such as fatty acids, which in turn affect the
progression of metabolic dysfunction at multiple disease stages and in various tissues. For instance,
adipose tissue macrophages respond to obesity, adipocyte stress and dietary factors by a specific
metabolic and inflammatory programme that stimulates disease progression locally and in the liver.
Kupffer cells and monocyte-derived macrophages represent ontologically distinct hepatic macro-
phage populations that perform a range ofmetabolic functions. Thesemacrophages integrate signals
from the gut-liver axis (related to dysbiosis, reduced intestinal barrier integrity, endotoxemia), from
overnutrition, from systemic low-grade inflammation and from the local environment of a steatotic
liver. This makes them central players in the progression of NAFLD to steatohepatitis (non-alcoholic
steatohepatitis or NASH) and fibrosis. Moreover, the particular involvement of Kupffer cells in lipid
metabolism, as well as the inflammatory activation of hepatic macrophages, may pathogenically link
NAFLD/NASH and cardiovascular disease. In this review, we highlight the polarization, classification
and function of macrophage subsets and their interaction with metabolic cues in the pathophysiol-
ogy of obesity and NAFLD. Evidence from animal and clinical studies suggests that macrophage tar-
geting may improve the course of NAFLD and related metabolic disorders.
© 2019 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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Introduction
In parallel to the obesity pandemic, non-alcoholic
fatty liver disease (NAFLD) has become the
most common cause of chronic liver disease world-
wide.1,2 NAFLD, particularly in its inflammatory
form of non-alcoholic steatohepatitis (NASH), can
progress to fibrosis, cirrhosis and NASH-induced
hepatocellular carcinoma. The prevalence of NAFLD
is projected to increase further over the next 10–15
years, with a higher proportion of patients devel-
oping fibrosis,3 the main determinant of both
liver-related and overall mortality.4,5 Tremendous
advances in basic and translational research have
provided insights into the pathogenic mechanisms
driving the progression of NAFLD, in which inflam-
matory processes that are controlled by macro-
phages, a key component of innate immunity,
play a major role.6 Historically, NAFLD has been
viewed as a consequence of insulin resistance and
the metabolic syndrome.7 In particular, depending
on selection criteria, the prevalence of NAFLD in
type 2 diabetic patients ranges from 30 to almost
100%.8–11 Nevertheless, NAFLD is not only a mani-
festation of, but can also precede the development
of other components of the metabolic syndrome,
which has sparked a debate over the direction of
the causal relations involved.12 Indeed, insulin
resistance and ectopic fat accumulation intercon-
nect NAFLD with other metabolic disorders such
as obesity, type 2 diabetes mellitus and athero-
sclerosis. While numerous pathways are involved
in this pathophysiological process, chronic inflam-
mation and macrophages have been implicated as
drivers of disease at multiple stages and in various
tissues during the development of metabolic
disease.13

Metabolic inflammation is critically different
from the paradigmatic acute inflammation seen in
bacterial infections, where a strong immune
response is followed by elimination of the patho-
gen and rapid resolution to baseline (if successful).
Instead, metabolic inflammation is characterized
by a persistent, low-grade, sterile inflammation,
often termed metaflammation. From this perspec-
tive, inflammatory mediators can be thought of as
metabolic hormones that regulate insulin
signalling.14

In the last decades, macrophages have emerged
as key regulators of inflammation-mediated
insulin resistance.15 The functional diversity of
macrophages is reflected by the concept of “inflam-
mation-promoting M1 macrophages” and “inflam-
mation-suppressing M2 macrophages”. Beyond
this rigid (and over-simplifying) M1 vs. M2
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Key points

Macrophages play a key role in the chronic inflammatory processes that drive NAFLD and
other metabolic diseases.

Crosstalk between macrophages and metabolic stimuli is crucial to the development of meta-
bolic dysfunction, inflammation and disease progression in NAFLD.

Kupffer cells and monocyte-derived macrophages integrate signals from the gut-liver axis,
overnutrition, systemic low-grade inflammation and steatosis, driving the progression of
NAFLD to NASH and fibrosis.

Increasing evidence from both animal and clinical studies suggests that macrophage targeting
may be an effective therapeutic strategy for NAFLD and related metabolic disorders.
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paradigm, macrophages can adapt and react to a
wide variety of stimuli, including metabolic
signals.16 Upon stimulation, macrophages undergo
a complex and context-dependent metabolic
reprogramming that determines their polarization
status. These findings have led to the emergence of
immunometabolism as a research field, which
investigates the crosstalk between metabolism
and immune cells.17,18

Further progress in our understanding of the
functional and tissue-specific heterogeneity of
macrophages, as well as their crosstalk with meta-
bolism could direct the development of therapies
for metabolic disorders. In this review, we describe
the relationship between inflammation (with a
focus on macrophages) and insulin resistance, as
well as the regulation of macrophage activation
by metabolic processes. We elaborate on their
contribution to the initiation and progression of
fatty liver disease, highlighting putative macro-
phage-mediated mechanisms that link NAFLD
and cardiovascular disease, and discussing the
potential of macrophages as therapeutic targets
in fatty liver disease.

Inflammation, macrophages and insulin
resistance
Overnutrition leads to a positive energy balance
and the accumulation of fat in the adipose tissue,
which evokes an immune response that evolutio-
narily constitutes a physiological attempt to
restore homeostasis. Nevertheless, in the long term
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this response is maladaptive and leads to insulin
resistance and the loss of metabolic flexibility.19

Initial evidence for the link between obesity,
inflammation and insulin resistance was provided
by seminal studies showing increased expression
and production of tumor necrosis factor-α (TNF-
α) in the adipose tissue of obese rodents and
patients.20,21 TNF-α was subsequently demon-
strated to derive mainly from adipose tissue
macrophages (ATMs). These cells represent the
predominant immune population in the adipose
tissue, accumulate further in obesity and are to a
large extent responsible for perpetuating adipose
tissue inflammation22,23 (Fig. 1).

The inflammatory process in obesity is affected
through a plethora of cytokines, receptors and sig-
nalling molecules. Apart from direct binding of
cytokines to their corresponding receptors, as in
the case of TNF-α, inflammation is often initiated
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by activation of pattern recognition receptors,
such as Toll-like receptors (TLRs), of which TLR4
is the most well-studied in this context.24 Further-
more, adipose tissue expansion in obesity often
exceeds the compensatory increase in oxygen
delivery through angiogenesis, causing adipose
tissue hypoxia and adipocyte cell death.25 Dying
cells release inflammatory cytokines and danger
signals, which aggravate inflammation and
activate ATMs. These various mediators then
converge on inflammatory signalling pathways
such as the activation of c-jun N-terminal kinase
(JNK) and IκB kinase β (IKK-β). These pathways
directly affect insulin signalling in adipocytes
by phosphorylating the insulin receptor and
insulin receptor substrates, and indirectly by
modulating metabolic genes and altering energy
homeostasis.26,27

This link between inflammation andmetabolism
is remarkably conserved between organisms. Eiger,
the drosophila TNF-α orthologue, is produced by
the specialized fat body and binds on its receptors
Wengen and Grindelwald to suppress insulin action
through JNK and IKK-β pathways.28,29 Notably,
knockdown of Grindelwald in the fat body
reversed the insulin resistance induced by a high-
sugar diet in these flies.28

Multiple macrophage-targeting approaches
have underscored their importance in the devel-
opment of insulin resistance.15 For instance,
knocking out JNK, IKK-β or TLR4 in macrophages
or hematopoietic cells improved glucose tolerance
and adipose tissue inflammation in mice.24,30,31

These approaches simultaneously ameliorated
hepatic inflammation and/or liver steatosis, corro-
borating the role of macrophages and adipose tis-
sue inflammation in the progression of NAFLD.
Furthermore, inhibiting ATM infiltration has
yielded promising results. Deleting the chemokine
macrophage chemoattractant protein-1 (MCP-1),
also known as CCL2, strongly reduced insulin
resistance,32 and inhibition of its receptor CCR2
in diet-induced obesity improved glucose toler-
ance as well.33–35 Similar results were obtained
upon inhibition of other effectors of macrophage
recruitment, such as the CCL5-CCR5 axis.36,37

Accordingly, ablation of pro-inflammatory CD11c+

macrophages38 or clodronate-mediated depletion
of ATMs39,40 improved glucose tolerance in obese
mice.

Metabolic reprogramming coordinates
macrophage polarization
The rapid response of macrophages to infection
and inflammation is an energy-intensive process.
Macrophages therefore undergo a reprogramming
of their own metabolism upon stimulation. This
metabolic switch is context-dependent and influ-
ences the outcome of the inflammatory response,
which also holds true in metabolic disease. The
relevance of these metabolic adaptations of
macrophages is corroborated by the fact that clas-
sical M1 or alternatively activated M2 macro-
phages show striking differences in their cellular
metabolism.
JHE
Early studies already indicated that classical
M1 macrophages, differentiated in vitro by lipopo-
lysaccharide (LPS) or interferon gamma (IFNγ)
stimulation, rely on aerobic glycolysis to satisfy
the increased need for ATP and metabolic
precursors.41 More recent reports have revealed a
much more complex interplay between metabolic
programming and polarization. Enhanced flux
through the pentose phosphate pathway further
secures building blocks for biosynthesis, while
mitochondrial oxidative phosphorylation and fatty
acid oxidation are repressed in LPS-stimulated
macrophages42–44 (Fig. 2A). This rewiring is in
essence identical to the Warburg effect observed
in proliferating tumour cells almost a century
ago.45

Hypoxia-inducible factor (HIF)-1α is a master
regulator of glycolysis in macrophages. Besides
linking hypoxia with macrophage activation, HIF-
1α is also activated through hypoxia-independent
mechanisms.46 For instance, the metabolic rewir-
ing induced by LPS and/or IFNγ generates elevated
levels of the citric acid cycle intermediate succi-
nate. Succinate inhibits the oxygen-sensing prolyl
hydroxylases, leading to HIF-1α stabilization and
a state of pseudo-hypoxia.43,47 Downstream, HIF-
1α increases the expression of the glucose trans-
porters GLUT1 and GLUT3, and stimulates the con-
version of pyruvate to and subsequent secretion of
lactate.48,49 The enzyme pyruvate dehydrogenase
kinase, the expression of which is also regulated
by HIF-1α, channels glucose metabolism away
from oxidative phosphorylation towards
glycolysis.42,50 Notably, inhibition of either glyco-
lysis or HIF-1α signalling suppresses pro-inflam-
matory gene production and impairs bacterial
killing by macrophages, demonstrating the func-
tional importance of metabolic rewiring.43,46,51,52

In line with the hypoxia-induced adipose tissue
dysfunction during obesity,25 ATM HIF-1α is
involved in the development of insulin resistance.
Deletion of myeloid HIF-1α in obese mice reduced
adipose tissue inflammation and restored glucose
tolerance. Paradoxically, macrophage HIF-1α sup-
pressed adipose tissue angiogenesis, which in turn
stimulated hypoxia in a vicious circle.53 Further-
more, macrophage HIF-1α was increased in mice
and patients with NASH, inducing pro-inflamma-
tory cytokines and aggravating hepatic steatosis
and inflammation.54 In contrast, macrophage
HIF-2α was reported to ameliorate insulin resis-
tance and adipose tissue inflammation through
induction of M2 polarization.55

Alternatively activated M2 macrophages,
obtained in vitro after interleukin (IL)-4 stimula-
tion, rely on mitochondrial fatty acid oxidation
instead56,57 (Fig. 2B). The lysosomal breakdown
of exogenous triacylglycerol substrates is the main
fatty acid source supporting this metabolic pro-
gramme, with de novo fatty acid synthesis as a
complementary pathway.56 Importantly, inhibi-
tion of fatty acid oxidation has been shown to sup-
press M2 polarization.56,57 Moreover, in vitro
LPS+ IFNγ-stimulated macrophages inhibit fatty
acid phosphorylation, which confers resistance to
P Reports 2019 vol. 1 | 30–43 32



Fig. 2. Metabolic coordination of macrophage activation. (A) Inflammatory (M1) activation. LPS and/or IFNγ stimulation
increases glucose consumption, which is converted to lactate instead of entering the Krebs cycle as pyruvate. The pentose phos-
phate pathway and fatty acid synthesis are activated to generate biomolecules. These metabolic alterations depend in part on
HIF-1α, which stimulates glucose entry and conversion to lactate and directly promotes M1 gene expression. (B) M2 polariza-
tion depends on increased β-oxidation and oxidative phosphorylation of fatty acids. This is fuelled by the uptake and lysosomal
breakdown of TAGs and the de novo synthesis from glucose. PPARγ and PPARδ bind these intracellular lipids and are key effec-
tors of the metabolic and phenotype switch upon IL-4 stimulation. (C)Macrophages display a metabolically activated phenotype
upon stimulation with SFAs. In the adipose tissue, one mechanism of SFA uptake is through the digestion of dead adipocytes at
crown-like structures. Binding of LPS primes macrophages towards the pro-inflammatory effects of SFAs, leading to a distinct
macrophage phenotype that secretes inflammatory mediators such as IL-1β. PPARγ has a dual role in stimulating the clearance
and breakdown of dead adipocytes, and inhibiting the production of inflammatory cytokines. ER, endoplasmic reticulum; LPS,
lipopolysaccharide; PPP, pentose phosphate pathway; SFA, saturated fatty acid; TAGs, triacylglycerides; UFA, unsaturated fatty
acid.
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M2 repolarization,44 implying macrophage meta-
bolism at the centre of their functional plasticity.
Accordingly, transcription factors that modulate
lipid metabolism, such as peroxisome prolifera-
tor-activated receptors (PPARs), are key effector
molecules regulating this switch.

PPARs, members of the nuclear receptor super-
family, act as fatty acid sensors and modulate lipid
transport, storage and expenditure. PPARα is
mainly expressed in metabolically active tissues
such as the liver, skeletal muscle and brown adi-
pose tissue.58 In addition to their roles in other
cells, including adipocytes, PPARγ and PPARβ/δ
are expressed in macrophages in a stimulus- and
tissue-dependent manner.58,59 Although PPARγ
but not PPARδ was required for the metabolic
switch upon stimulation with IL-4,60 ablation of
either isoform has been shown to impair IL-4-sti-
mulated alternative macrophage activation.60–62

These findings are of translational significance
in the context of obesity and NAFLD. Both adipose
tissue and hepatic macrophages displayed an
impaired M2 polarization upon PPARγ or PPARδ
deletion in a high-fat diet mouse model, resulting
in insulin resistance and hepatic steatosis.60–63

Furthermore, the response to pioglitazone and
rosiglitazone, PPARγ agonists with well-known
therapeutic effects on insulin resistance and
NAFLD, was impaired following macrophage
PPARγ deletion.61,63

Fatty acids direct adipose tissue
macrophage polarization in obesity
Although most data on the interplay between
macrophage metabolism and polarization have
been obtained in M1 and M2 polarized macro-
phages, this classical paradigm is too simplistic
and cannot fully describe the many distinct phe-
notypes observed in tissue macrophages.64

Among other stimulants, metabolites can induce
unique activation states.16 One exemplar charac-
terized in recent years is the effect of fatty acids on
macrophage polarization. The plasticity of macro-
phages in tissues such as the liver or fat makes it
difficult to accurately capture their ontogeny, polar-
ization and function by characteristic markers,
although some phenotypic features have been con-
sistently reported in mouse models (Table 1).

In the healthy adipose tissue, ATMs display an
M2-like phenotype and produce anti-inflamma-
tory cytokines such as IL-10. The development of
obesity leads to a shift in polarization, which has
Table 1. Selected markers in mouse macrophage subsets.

M1 macrophages M2 macrophages

CD80 Mannose receptor (C

CD11c CD301

Inducible NO synthase IL-4 receptor (CD124

TNF-α Arginase 1

S100A8/A9 (calprotectin)

Expression of the macrophage polarization markers is context-depend
macrophages; MoMFs, monocyte-derived macrophages.
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classically been described as a pro-inflammatory
M1 polarization that contributes to metabolic
dysregulation.65,66 However, an unbiased tran-
scriptomic analysis could not confirm a typical
M1 signature in obese adipose tissue.67 Specifi-
cally, ATMs from obese mice or humans were
shown to display a ‘metabolically activated’
(MMe) phenotype that is distinct from M1 or M2
macrophages (Fig. 2C). This phenotypic switch
can be reproduced in vitro using saturated fatty
acids (SFAs) such as palmitate.68 Genes involved
in lipid metabolism and lysosome biogenesis,
such as perilipin-2 (Plin2) and lysosome-asso-
ciated membrane protein 2 (Lamp2), were found
to be significantly upregulated in these macro-
phages.67,68 Glycolysis and oxidative phosphoryla-
tion are similarly activated after stimulation with
SFAs69, indicating a unique metabolic signature in
MMe macrophages.

This metabolic reprogramming of ATMs is clo-
sely linked to the increased production of pro-
inflammatory cytokines in obesity.69,70 SFAs pro-
mote the expression of inflammatory cytokines
and chemokines such as IL-1β, IL-6 and MCP-1,
whereas unsaturated fatty acids counteract
these effects.71–73 PPARγ promotes lipid metabo-
lismwhile negatively regulating pro-inflammatory
gene expression in MMe macrophages as well,68

suggesting the possibility of uncoupling these
key functions as a strategy to reduce insulin
resistance.

One source of SFA delivery to macrophages is
through digestion of dead adipocytes.74 Because
adipocytes are generally much larger than macro-
phages, classical phagocytosis is not possible.
Instead, ATMs form hydrolytic synapses with dead
adipocytes, in which they secrete lysosomal con-
tents, mostly at sites known as crown-like
structures.74 The resulting uptake of fatty acids
has been shown to reproduce the metabolically
activated ATM phenotype.70 Interestingly, these
data have been validated using a single-cell
sequencing approach. Hill et al.were able to distin-
guish between different ATM populations in high-
fat diet-induced obesity. CD9+ ATMs resided
within crown-like structures, were lipid-laden
and upregulated lysosomal metabolism and
inflammatory genes. Conversely, Ly6C+ ATMs
were dispersed throughout the adipose tissue
and were phenotypically distinct, expressing
genes involved in tissue organization and
angiogenesis.75
MMe ATMs Kupffer cells Liver MoMFs

D206) ABCA1 F4/80high CD11bhigh

PLIN2 CD11bint F4/80int/high

) LAMP2 Tim4+ Ly6C+/-

NPC1 Clec4f+ CCR2+

CD68+ CX3CR1+/-

ent and these should ideally be used in combination. MMe ATMs: metabolically activated adipose tissue
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Further evidence for the importance of cellular
metabolism in directing macrophage polarization
by fatty acids comes from a recent study showing
that, contrary to the accepted paradigm, SFAs do
not directly activate TLR4. Intriguingly however,
TLR4 activation by other signals resulted in an
altered intracellular lipid composition, which was
necessary for SFA-induced inflammation.76 In the
context of obesity, SFAs may thus act as a ‘second
hit’ in macrophages primed towards a pro-inflam-
matory response.

Adipose tissue macrophages fuel hepatic
lipid accumulation
Insulin resistance in adipose tissue and the subse-
quent inability to store the surplus energy as fatty
acids lead to ectopic lipid accumulation. Given the
impact of ATMs on insulin resistance, it is not sur-
prising that many of the macrophage-targeting
approaches to counteract insulin resistance cited
in previous sections, such as inhibition of macro-
phage infiltration or of pro-inflammatory signalling,
also ameliorated hepatic lipid accumulation.15

Beside their promotion of insulin resistance, pro-
inflammatory macrophages also directly stimulate
lipolysis, which is key in increasing lipid flux to the
skeletal muscle and liver.77 Mechanistically, pro-
inflammatory cytokines secreted by ATMs down-
regulate lipid droplet-associated peptides, thereby
decreasing lipid droplet stability and permitting
lipolysis.78,79 Indeed, adipose triglyceride lipase
inhibition was shown to simultaneously reduce
insulin resistance and hepatic steatosis.80 In mice,
transplanting visceral adipose tissue from obese
mice increased hepatic macrophage accumulation
and worsened steatohepatitis, compared with adi-
pose tissue transplanted from lean mice.81 This
effect was dependent on CD11c+ inflammatory
ATMs that secrete manifold cytokines including
chemotactic signals for neutrophils and
macrophages.81

Furthermore, inflammation can interfere with
beige adipogenesis, a process critical for energy dis-
sipation through thermogenesis and prevention of
ectopic lipid accumulation.82 Activated ATMs were
recently shown to express α4 integrin, which can
bind vascular cell adhesion molecule-1 (VCAM-1)
on adipocytes. These adhesive interactions down-
regulate uncoupling protein-1, a key mediator of
adipose tissue thermogenesis, whereas genetic or
pharmacological α4 inhibition reduced macro-
phage retention and improved insulin sensitivity.
Adipocyte VCAM-1 induction by ATMs and, con-
versely, ATM TNF-α induction by VCAM-1 binding
constitutes a self-sustaining pro-inflammatory
loop.83 The upregulation of VCAM-1 expression
in the adipose tissue of patients with NAFLD and
fibrosis compared to those without84 suggests this
mechanism may contribute to the link between
obesity, ATM activation and NAFLD progression.

The importance of ATMs in NAFLD was further
corroborated in humans, as both the adipose tissue
expression of pro-inflammatory genes as well as
the number of ATMswere associated with the pro-
gression of NAFLD to NASH and fibrosis.85,86
JHE
Hepatic macrophage subsets play distinct
roles in metabolism
The liver contains the largest proportion of macro-
phages in any solid organ.87 These hepatic macro-
phages are highly heterogeneous with respect to
cellular origin, functionality and interaction with
other liver cells. Specifically, the resident Kupffer
cells (KCs) can be distinguished from bone mar-
row-derived monocytes, which receive cues from
the local micro-environment that can prompt their
differentiation into infiltrating macrophages
(Table 1). KCs are self-renewing macrophages that
line the sinusoidal endothelium and scavenge cel-
lular debris, pathogens and gut-derived products.
In the healthy liver, they promote tolerance
towards these potential particulate antigens, in
part via an expansion of regulatory T-cells.88 KCs
originate from yolk-sac derived progenitor cells,
which then give rise to archetypical pre-macro-
phages that colonize the embryo during early
organogenesis and activate tissue-specific tran-
scriptional programmes, in this case under the
control of inhibitor of DNA binding 3 (ID3).89,90

Under homeostatic conditions, monocyte-
derived macrophages are present in relatively
low numbers, where they fulfil metabolic
functions.87 In reaction to any type of liver injury,
however, hepatocytes as well as non-parenchymal
cells secrete chemokines, which can induce a mas-
sive infiltration of monocytes, which, in mice,
express Ly6C. The phenotype of these macro-
phages is again highly plastic, with classical pro-
inflammatory and restorative macrophages at the
edges of a continuous spectrum.

Whereas KCs do not derive from monocytes in
the steady state, several reports have now shown
that upon their experimental depletion, mono-
cytes can differentiate into bona fide KCs (moKCs),
repopulating the now available KC niche.91,92

Notably, a similar process occurs in experimental
NASH, although these moKCS appeared to be
rather short-lived after recovery,93 and it is
unclear at this point if they are capable of self-
renewal.

While these subsets have been difficult to dis-
tinguish in vivo, transcriptomic approaches have
recently enabled the identification of selective
markers. Mouse KCs are characterized by C-type
lectin domain family 4 member F (Clec4f) and T-
cell immunoglobulin and mucin domain contain-
ing 4 (Tim4) surface expression.92,93 Infiltrating
macrophage marker expression is correlated with
their polarization status, with pro-inflammatory
monocyte-derived macrophages typically positive
for CCR2, while more restorative macrophages
upregulate CX3CR1.94 Although these subsets have
not been characterized to the same extent in
humans, markers such as CD14 and CD68 have
been proposed to distinguish these populations,
and this remains an area of active investigation.95

For instance, a recent report using single-cell RNA
sequencing of healthy human liver cells identified
2 CD68+ macrophage populations, of which one
displayed features of an inflammatory phenotype
(Lysozyme, S100A8/A9, CD74), while the other
P Reports 2019 vol. 1 | 30–43 35



population may represent a more regulatory sub-
set (Marco, CD5L, CD163).96

In keeping with their specialized scavenging
capacity, KCs perform accessory roles in lipid and
iron metabolism.97 Although lipid handling is a
function of macrophages in general, the KC
expression profile is particularly enriched for these
genes compared to other tissue-resident
macrophages.92 The liver X receptor α (LXRα), a
nuclear receptor critical for lipid metabolism, is
differentially expressed by KCs early on in
development.90 LXRα seems essential for the
maintenance of KC identity, as targeted deletion
leads to a selective loss of KCs and their replace-
ment by moKCs.98 In macrophages, LXRα regu-
lates cholesterol efflux and reverse cholesterol
transport from peripheral tissues to the liver via
high-density lipoprotein (HDL) particles. More-
over, LXRα provides another link between macro-
phage metabolism and inflammation, as its
activation reduces the production of pro-inflam-
matory mediators.99,100 LXRα modulation to sti-
mulate lipid export from vessels is therefore an
appealing pharmacological target in cardiovascu-
lar and metabolic disease. However, early LXRα
agonists simultaneously stimulated fatty acid
synthesis, resulting in hepatic steatosis and
hypercholesterolemia.101 New LXRα agonists have
recently been developed that do not exhibit these
side effects. Interestingly, they achieve this in part
by selectively activating LXRα in macrophages,
including KCs, while having almost no biological
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effect on hepatocytes, in contrast to the older
compounds.102

In addition, the liver plays a major role in
whole-body iron metabolism. KCs are well-posi-
tioned for this task and express multiple genes
involved in the uptake and processing of iron
under homeostatic conditions.92,103 In circum-
stances of increased iron delivery however, such
as haemolytic anaemia, monocyte-derived macro-
phages infiltrate the liver and differentiate to
express ferroportin-1. These macrophages protect
against the deleterious effects of iron deposition
in both the liver and other iron-sensitive organs
such as the kidney.104 Of note, NALFD and insulin
resistance are associated with serum and hepatic
iron overload in a subset of patients,105 which
has been termed the dysmetabolic iron overload
syndrome. Studies have suggested that iron accu-
mulation specifically in macrophages correlates
with increased cell death and fibrosis in NAFLD,
possibly mediated through oxidative stress,106,107

although conflicting data exist.108

Inflammatory macrophages drive non-
alcoholic fatty liver disease progression
Although KCs induce tolerogenic responses under
homeostatic conditions, they express multiple pat-
tern recognition receptors and are capable of
immune stimulation upon infectious or sterile
liver injury88,95 (Fig. 3). KCs of mice fed a high-
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altered expression of genes involved in lipid
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-renewal or if they are short-lived. Selected drugs that target inflammatory pathways and which
h glycoprotein; KC, Kupffer cell; LPS, lipopolysaccharide; MDA, malonyldialdehyde; MMPs, matrix
, non-alcoholic steatohepatitis; TLR, Toll-like receptor.
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metabolism and the production of pro-inflamma-
tory mediators,109 similar to the mechanism in
ATMs discussed earlier. KC-mediated inflamma-
tion is also fuelled by increased binding of bacter-
ial products reaching the liver via the portal vein,
secondary to the gut dysbiosis and impaired
intestinal barrier observed in obesity.110 In addi-
tion, hepatocyte damage due to lipid overload
results in the release of danger signals. For exam-
ple, histidine-rich glycoprotein (HRG), produced
by hypoxic hepatocytes,111 induces macrophage
M1 polarization, whereas HRG knock-out mice
were protected from experimental
steatohepatitis.112 The formation of altered lipid
products such as malondialdehyde through oxida-
tive stress is another consequence of hepatic fat
accumulation which promotes macrophage
activation.113

KC-derived IL-1βwas shown to aggravate hepa-
tocyte triglyceride accumulation through downre-
gulation of PPARα, leading to reduced fatty acid
oxidation.114 Importantly, KC depletion decreased
steatosis and hepatic insulin resistance,114,115 pro-
viding direct evidence that KCs act as drivers of
early NAFLD.13

Bone marrow-derived pro-inflammatory Ly6C+

monocytes infiltrate the murine liver following
the initiation of injury, constituting a major patho-
physiological mechanism in NASH progression. In
analogy to the recruitment to dysfunctional adi-
pose tissue, various studies have identified the
MCP-1/CCR2 axis as the main effector of monocyte
homing to the liver.35,116,117 MCP-1 is secreted by
activated KCs, but also hepatocytes, stellate cells
and sinusoidal endothelial cells. The latter respond
to inflammation or lipid accumulation by upregu-
lating leukocyte adhesion molecules and facilitat-
ing VCAM-1/very late antigen-4 (VLA-4)-
dependent monocyte adhesion and migration.118

Nevertheless, other chemokine pathways have
been identified that also regulate myeloid cell
recruitment, including CCL25/CCR9 and CCL1/
CCR8.119,120

The recruitment of infiltrating monocyte-
derived macrophages is also observed in human
fatty liver disease, especially in patients with
more advanced stages of fibrosis, where these cells
accumulate mainly in clusters around the portal
areas.121,122 Indeed, both KCs and inflammatory
macrophages are profibrogenic during active
NASH. They promote the activation and differen-
tiation of hepatic stellate cells to myofibroblasts
by secreting mediators such as transforming
growth factor β.119,123 Furthermore, macrophage-
derived IL-1β and TNF-α promote stellate cell
survival.124 Nevertheless, infiltrating monocytes
and macrophages can mature and assume a
restorative phenotype characterized by reduced
Ly6C and increased CX3CR1 surface protein
expression (Ly6ClowCX3CR1high) and the expres-
sion of matrix degrading metalloproteinases.94,125

These fibrolytic macrophages accumulate prefer-
entially upon the cessation of injury by ingestion
of apoptotic material, although studies inhibiting
autophagy also suggest this mechanism to be
JHE
relevant to limit scar formation during active
fibrogenesis.125,126 Accordingly, the timing of
macrophage depletion influences the outcome of
the fibrotic process, as depletion of fibrolytic
macrophages during the recovery phase inhibits
the resolution of fibrosis.125

Related to this, the balance between macro-
phage polarization states is a crucial determinant
in the progression of steatohepatitis. Anti-inflam-
matory macrophages can affect IL-10-driven apop-
tosis of their M1 counterparts, which has been
linked to reduced disease severity in patients with
alcoholic and non-alcoholic fatty liver disease.127

Moreover, the beneficial effects of macrophage
IL-10 include stimulating lipid catabolism and
thereby limiting inflammation in hepatocytes.128

Interestingly, Arginase-2 knock-out mice lacked
M2 polarized macrophages and developed sponta-
neous steatohepatitis, which was again mitigated
by KC depletion.129 As discussed, this anti-inflam-
matory programme is under the transcriptional
control of PPARγ and δ,61,62 the former of which
was notably activated in fibrolytic Ly6Clow macro-
phages as well.125

NAFLD and atherosclerosis: a putative role
for macrophages in cardiovascular risk
elevation
A large body of evidence now indicates that NAFLD
increases the risk for fatal and non-fatal cardiovas-
cular events. Moreover, NAFLD correlates with
markers of (subclinical) atherosclerosis such as
endothelial dysfunction, coronary arterial calcifi-
cations and carotid artery intima-media thickness
(reviewed in 12). However, the underlying patho-
physiological mechanisms have not been fully elu-
cidated, despite a number of potential pathways
being put forward.130 Macrophage-mediated
inflammation is one plausible overarching
mechanism, given the crucial role of macrophages
in NAFLD progression as well as in atherosclerosis
development.

Foam cells had been observed over a century
ago by Virchow, and were later identified as
macrophages that had accumulated cholesterol
esters.131 Classical scavenger receptors that pro-
mote lipid uptake, such as macrophage scavenger
receptor-1 (Msr1) and CD36, are implicated in
macrophage proliferation, inflammatory gene
expression and cell death in atherosclerosis,132

indicating a profound influence of lipid handling
on macrophage behaviour. Interestingly, haemato-
poietic deletion of Msr1 and/or CD36 has also been
shown to reduce the severity of inflammation and
fibrosis in experimental NASH, in part through
alterations in the intracellular fat distribution in
foamy macrophages.133,134

Related to this, plaque and hepatic macro-
phages are regulators of whole-body cholesterol
flux. The efflux of macrophage cholesterol to HDL
particles, mediated by LXRα, rather than the
absolute HDL concentration, inversely correlates
with the incidence of cardiovascular events in
patients.135 This efflux is counteracted by the
enzyme cholesterol ester transfer protein (CETP),
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which regulates the transport of cholesterol from
HDL to atherogenic very-low-density and low-
density lipoproteins. Circulating CETP derives
mainly from KCs, and depletion of KCs has been
shown to ameliorate the lipid profile in mice fed
a western diet.136

The risk of cardiovascular disease correlates
with the severity of the systemic inflammation
that is characteristic of metabolic disease.132 In
support of this concept, studies have demon-
strated an increased cardiovascular risk across a
range of chronic inflammatory disorders such as
rheumatoid arthritis.137 NAFLD, and especially
NASH, are associated with elevated circulating
levels of inflammatory markers secreted by acti-
vated KCs or monocyte-derived macrophages
and might therefore aggravate metabolic inflam-
mation. This has been confirmed in a number
of human studies, although the results for indivi-
dual cytokines are sometimes discordant. For
example, IL-6 serum levels have been reported as
elevated in NAFLD138 or selectively in patients
with NASH,139 whereas this was not confirmed in
another report.86 Multiple studies have suggested
elevations of TNF-α and IL-8 in NAFLD.86,138,140

Similar increases have been reported for the
Table 2. Selected compounds under investigation for NAFLD/N

Compound Molecular target Study popu

Phase III

Cenicriviroc
(AURORA)

CCR2/5 inhibitor Histological
F2-F3 fibros

Selonsertib
(STELLAR-3)

ASK-1 inhibitor Histological
F3 fibrosis

Selonsertib
(STELLAR-4)

ASK-1 inhibitor Histological

Phase II

Emricasan
(Encore-NF)

Caspase inhibitor Histological
F1-F3 fibros

Emricasan
(Encore-LF)

Caspase inhibitor NASH cirrh
variceal ble
moderate/s

Emricasan
(Encore-PH)

Caspase inhibitor NASH cirrh
HVPG >12

GR-MD-02
(NASH-CX)

Galectin-3 inhibitor Compensat
with HVPG

IMM-124E Polyclonal anti-LPS Histological

JKB-121 TLR4 antagonist Histological

SGM-1019 Inflammasome
inhibitor

Histological
F1-F3 fibros

Phase II trials with drug combinations

Cenicriviroc +
Tropifexor (TANDEM)

CCR2/5 inhibitor +
FXR agonist

Histological
F2-F3 fibros

Selonsertib +
GS-0976 +
GS-9674 (ATLAS)

ASK-1 inhibitor +
ACC inhibitor +
FXR agonist

Histological
F3-F4 fibros
stiffness va
ELF™ score

ALT, alanine aminotransferase; ELF, Enhanced Liver Fibrosis; HVPG, he
non-alcoholic steatohepatitis.

JHE
adhesion molecules intercellular adhesion mole-
cule-1 (ICAM-1) and VCAM-1, which mediate
leukocyte infiltration and serve as markers of
endothelial dysfunction.84,141 Moreover, the
macrophage marker soluble CD163 correlated
with the severity of histological fatty liver disease
in 2 independent cohorts and was predictive of
liver fibrosis.142

Taken together, these data suggest that NAFLD
contributes to a pro-atherogenic environment.
These data also highlight a shared interaction
between lipidmetabolism andmacrophage activa-
tion in NAFLD and atherosclerosis. Nevertheless, it
is inevitably difficult to establish the causality of
elevated inflammatory markers on the incidence
of cardiovascular events, and to assess the precise
hepatic contribution to systemic cytokine levels
in metabolic diseases.

Macrophages and innate immunity are
therapeutic targets in NAFLD
Macrophages, and innate immune responses in
general, represent attractive therapeutic targets
for the treatment of fatty liver disease, given
their role as drivers of hepatic steatosis, inflam-
mation and fibrosis, and their contribution to
ASH, acting on macrophages and innate immunity components.

lation Primary outcome Trial number Trial status/results

NASH with stage
is

Improvement in fibrosis
without worsening NASH

NCT03028740 Recruiting

NASH with stage Improvement in fibrosis
without worsening NASH

NCT03053050 Active, not recruiting

NASH cirrhosis Improvement in fibrosis
without worsening NASH

NCT03053063 Active, not recruiting

NASH with stage
is

Improvement in fibrosis
without worsening NASH

NCT02686762 Active, not recruiting

osis + history of
eding and/or
evere ascites

Event-free survival NCT03205345 Active, not recruiting

osis with
mm

Change in HVPG NCT02960204 Active, not recruiting

ed NASH cirrhosis
>6 mm

Improvement in HVPG NCT02462967 Completed

NASH Improvement in liver fat
content on MRI

NCT02316717 No significant changes
in liver fat content,
decreased serum ALT
and LPS

NASH Improvement in liver fat
content on MRI and/or
serum ALT

NCT02442687 No significant differences
compared to placebo

NASH with stage
is

Safety and tolerability NCT03676231 Recruiting

NASH with stage
is

Safety; improvement
in fibrosis

NCT03517540 Recruiting

NASH with stage
is or Fibroscan
lue ≥14.5 kPa or
≥9.8

Safety; improvement in
fibrosis without worsening
NASH

NCT03449446 Active, not recruiting

patic venous pressure gradient; LPS, lipopolysaccharide; NAFLD, non-alcoholic fatty liver disease; NASH,
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the metabolic syndrome. Several of the path-
ways involved can be targeted by novel or
repurposed drugs, and various compounds have
indeed advanced to clinical evaluation (Table 2;
Fig. 3).143

Inhibiting the chemokine-regulated infiltration
of blood monocytes is one therapeutic strategy
supported by preclinical studies. For instance,
pharmacological inhibition of MCP-1 with the
RNA aptamer mNOX-E36 attenuated murine
steatohepatitis.116 Regarding this mode of action,
the dual chemokine receptor CCR2/CCR5 inhibitor
cenicriviroc has been studied in most depth so far.
Cenicriviroc was able to reduce hepatic monocyte
infiltration and fibrosis in mouse steatohepatitis
models.122,144 Results from the CENTAUR phase II
trial showed that although cenicriviroc did
not lead to resolution of NASH, it doubled the per-
centage of patients in whom fibrosis was
improved by at least 1 stage after 1 year, compared
with placebo.145 Based on these results, a phase III
trial is currently underway. Other chemokine-axis
inhibitors are under development for the treat-
ment of diabetes or related disorders, and trials
evaluating these compounds in NAFLD are eagerly
awaited.95

Macrophages, especially KCs, readily phago-
cytose circulating nanoparticles such as lipo-
somes. Liposomal delivery of dexamethasone, a
derivative of corticosterone, reduced experi-
mental liver fibrosis. The tailored delivery of
nanoparticles to macrophages is therefore an
interesting possibility, although practical issues
such as the most effective drug delivery systems,
active compounds and dosing regimen have not
been established.146

Galectin-3 is a protein secreted by macro-
phages which stimulates fibrogenesis in the lung,
kidney and liver.147 It functions as a mitogen for
fibroblasts and stimulates the formation of lipid
oxidation products which serve as danger
molecules.147,148 Galectin-3 ablation attenuated
experimental steatohepatitis,148 and inhibitors
are being tested in clinical trials for their potential
to reduce fibrosis and its complications.

Macrophage activation entails the activation of
intracellular effector pathways such as the inflam-
masome, which regulates the production of IL-1β
and IL-18 and contributes to insulin resistance.149

A clinical trial including over 10,000 patients
found that targeting subclinical inflammation with
the IL-1β antagonist canakinumab reduced the
number of cardiovascular events in secondary
prevention.150 This clinical benefit correlated
strongly with the magnitude of initial reduction
in C-reactive protein levels. However, despite
these anti-inflammatory effects, there was no
reduction in incident diabetes.151

Inflammasome activation is also involved in
chronic liver disease, forming the rationale for
the clinical evaluation of the inflammasome inhi-
bitor SGM-1019 in NAFLD. Caspase inhibitors are
of particular interest as they could prevent both
hepatocyte cell death and caspase 1-mediated
inflammasome activation.152 The pan-caspase
JHE
inhibitor emricasan decreased serum alanine ami-
notransferase and apoptotic fragments after 28
days in an exploratory trial in patients with
NAFLD,153 and it is currently being investigated
in multiple phase II trials. Similarly, inhibition of
apoptosis signal-regulating kinase 1 (ASK1), an
upstream mediator of inflammation in both hepa-
tocytes andmacrophages, is a promising approach.
Selonsertib, a small molecule ASK1 inhibitor
improved liver fibrosis but not histological inflam-
mation or ballooning in a 24-week proof-of-con-
cept study,154 and is now being evaluated in 2
phase III trials, enrolling patients with NASH and
advanced fibrosis or cirrhosis. Given the shared
activation of these inflammatory pathways in var-
ious macrophage subsets in the liver and adipose
tissue, these drugs presumably have pleiotropic
effects in various stages of the pathogenesis of
metabolic disease.

Of note, many of the drugs currently under-
going clinical evaluation for the treatment of NASH
have direct and/or indirect effects onmacrophages
and innate immune responses, such as farnesoid X
receptor or PPAR agonists, that not only impact
hepatocyte metabolism but also inflammatory
processes.143 It is currently unclear, yet a subject
of intense investigation, to what extent combining
different modes of action would act synergistically
to improve metabolic disorders and halt NAFLD
progression.

Conclusion
Obesity and metabolic diseases can be charac-
terized as low-grade inflammatory disorders, in
which pro-inflammatory molecules can function
as metabolic hormones and impact on insulin
signalling. Macrophages integrate metabolic
cues to adapt their phenotype to the local envir-
onment, which is especially relevant in tissues
sensitive to nutrient changes, such as adipose
tissue and the liver. Indeed, fatty acids induce a
unique polarization status in macrophages,
which contribute to ectopic lipid accumulation
as well as local and systemic inflammation. KCs
and monocyte-derived macrophages represent
ontologically distinct phagocyte populations in
the liver that perform a range of metabolic func-
tions in homeostasis and disease. Hepatic
macrophages are central players in the progres-
sion of NAFLD and may link this condition with
cardiovascular disease.

Thus, macrophage targeting holds promise as
a therapeutic strategy in metabolic disease.
Recent advances in this field, as described in this
review, might guide the development of new
treatment options to counter these increasingly
prevalent diseases. Various approaches, such as
inhibiting monocyte infiltration or influencing
their polarization, are already advancing from
preclinical to clinical trials. Studies combining
innovative approaches, such as single-cell
sequencing and mouse lines targeting specific
macrophage subsets, will further help unravel
the complex pathophysiology of NAFLD and the
roles of macrophages therein.
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