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Abstract

Algebraic geometry is the study of systems of polynomial equations in one or

more variables. Thinking of polynomials as functions reveals a close connection between

affine varieties, which are geometric structures, and ideals, which are algebraic objects.

An affine variety is a collection of n- tuples that represents the solutions to a system of

equations. An ideal is a special subset of a ring and is what provides the tools to prove

geometric theorems algebraically. In this thesis, we establish that a variety depends on

the ideal generated by its defining equations. The ability to change the basis of an ideal

without changing the variety is a powerful tool in determining a variety. In general,

the quotient and remainder on division of polynomials in more than one variable are not

unique. One property of a Groebner basis is that it yields a unique remainder on division.

To prove geometric theorems algebraically, we first express the hypotheses and

conclusions as polynomials. Then, with the aid of a computer, apply the Groebner Basis

Algorithm to determine if the conclusion polynomial(s) vanish on the same variety as the

hypotheses.
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Chapter 1

Introduction

Algebra and geometry are often viewed as two distinct branches of mathemat-

ics. When we find connections between these and other branches of mathematics, our

understanding of mathematics is enriched. Algebraic geometry is the study of solutions

of systems of polynomials in one or more variables. The solution set is a collection of

ordered n-tuples, called an affine variety. Affine varieties are curves, surfaces and higher

dimensional objects defined by systems of polynomial equations. “The ability to regard

a polynomial as a function is what makes it possible to link algebra and geometry.”

[CLO15].

The goal of this thesis is to demonstrate how the hypotheses and conclusions of

theorems that describe characteristics of certain geometric structures can be translated

to a system of polynomial equations and how algebraic methods such as the Groebner

Basis Algorithm can be applied to determine if the theorem can be confirmed or rejected.

This will involve the study of polynomial rings over a field k and ideals. In particular we

will determine if a polynomial is an element of a particular ideal. Given a polynomial f ∈
k[x1, x2, . . . , xn] and an ideal generated by f1, f2, . . . , fs denoted by I = 〈f1, f2, . . . , fs〉,
we will explore how we can determine if f ∈ I. This is related to the geometric problem

of determining whether a variety V(f) lies on the variety V(f1, f2, . . . , fs). We will show

that solving a system of polynomial equations, that is, finding all common solutions in

kn of a system of polynomial equations

f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = · · · = fs(x1, x2, . . . , xn) = 0

is equivalent to finding the n-tuples in the affine variety V(f1, f2, . . . , fs).

The thesis begins with definitions and fundamental results of the relevant al-
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gebraic and geometric objects. Ideals give us the structure for computing with affine

varieties. We will study the correspondence between ideals and varieties. In particular,

we will explore the mappings from ideals to varieties and varieties to ideals and determine

which mappings represent bijections.

When working with multivariable polynomials, we encounter difficulties that

are not present when working with single variable polynomials. For example, different

orderings on monomials can yield different quotients and remainders when using a division

algorithm on polynomials. Deriving a convenient basis for an ideal is an important step

in proving geometric theorems algebraically. We will define and study the properties of

Groebner bases and demonstrate how strategic use of technology allows us to efficiently

verify theorems in Euclidean geometry. Several computer programs such as Mathematica

and Sage have applications that quickly perform algorithms including polynomial division

and computing a Groebner basis.

The thesis culminates with proving three theorems involving triangles in the

Euclidean plane using technology to implement the Groebner Basis Algorithm. The first

example we will demonstrate is the proof that the three medians of a triangle meet at a

single point. This point is called the centroid of the triangle. Next, we demonstrate the

proof that the three altitudes of a triangle meet at a single point, called the orthocenter

of the triangle. The final example demonstrates the proof that the centroid, orthocenter

and circumcenter of a triangle are collinear. This line is called the Euler Line.
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Chapter 2

Algebra and Geometry

Preliminaries

2.1 Polynomials and Affine Space

Using the Groebner Basis Algorithm involves solving a system of polynomial

equations with any degree and with any number of variables. The examples presented in

this thesis will contain more than two or three variables. The coefficients will be from

a field k. In this section, we define the polynomials to be studied. Since each term of a

polynomial is a monomial, we begin by defining a monomial.

Definition 2.1. [CLO15] A monomial in x1, x2, ..., xn is a product of the form

xα1
1 · x

α2
2 · · ·xαnn ,

where all of the exponents α1, . . . , αn are nonnegative integers. The total degree of the

monomial is the sum α1 + · · ·+ αn and is denoted |α|.

To make the definition of a polynomial in k [x1, x2, ..., xn] less cumbersome, we

simplify the notation for the monomials as follows. Let α = (α1, α2, ..., αn) be an n-tuple

of positive integers. Then we will express xα1
1 · x

α2
2 · · ·xαnn as xα. The total degree of the

monomial, as indicated above, is |α| = α1 + · · ·+αn. When a polynomial has fewer than

five variables, we will replace the x1, x2, x3, x4 with x, y, z, w.

Definition 2.2. [CLO15] A polynomial f in x1, x2, ..., xn with coefficients in k is a finite

linear combination (with coefficients in k) of monomials.
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We will express a polynomial f in the form

f =
∑
α
aαx

α, aα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, α2, ..., αn). The set of all

polynomials in x1, x2, ..., xn with coefficients in k is denoted k [x1, x2, ..., xn]. For example,

a familiar polynomial ring used in much of mathematics at the secondary level is R[x],

the ring of polynomials over the field of real numbers.

The basic terminology we will use when working with polynomials is given in

the following definition.

Definition 2.3. [CLO15] Let f =
∑
α
aαx

α be a polynomial in k[x1, x2, . . . , xn].

1. We call aα the coefficient of the monomial xα

2. If aα 6= 0, then we call aαx
α a term of f .

3. The total degree of f , denoted deg(f), is the maximum |α| such that the coefficient

aα is nonzero.

As an example, the polynomial f = 3x3y2z+ 5
6z

3− 7x4 + 9x2y4 has four terms.

The coefficients are 3, 5
6 , −7, and 9. Notice that f ∈ R[x, y, z]. The total degree of f

is 6. There are two terms of f , 3x3y2z and 9x2y4, that have a total degree of 6. This

presents a dilemma with ordering the terms of multivariable polynomials that is not an

issue with polynomials in one variable. Ordering the terms of multivariable polynomials

will be discussed further in Chapter 3.

Although the coefficients of the polynomial are from a field k the collection of

polynomials k[x1, x2, . . . , xn] is not a field, but is a ring called the polynomial ring over

the field k. We examine the difference in the definitions below.

Definition 2.4. [CLO15] A commutative ring with unity consists of a set k and two

binary operations denoted “+” and “·” defined on k such that for all a, b, c ∈ k the

following conditions are satisfied:

(i) (closure) a+ b ∈ k and a · b ∈ k.

(ii) (commutative) a+ b = b+ a and a · b = b · a. It is the commutativity of the second

binary operation “·” that allows us to identify the ring as a commutative ring.

(iii) (associative) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) .
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(iv) (distributive) a · (b+ c) = a · b+ a · c.

(v) (identities) There exist members 0, 1 ∈ k such that a + 0 = a and 1 · a = a. The

1 is referred to as the unit. It is with the inclusion of this element we have a ring

with unity.

(vi) (additive inverses) Given a ∈ k, there is b ∈ k such that a+ b = 0.

Definition 2.5. [Gal17] A field is a commutative ring with unity for which every nonzero

element a ∈ k, there is b ∈ k such that a · b = 1.

Consider two arbitrary polynomials f and g from k[x1, x2, . . . , xn]. Then f + g

and f ·g ∈ k[x1, x2, . . . , xn]. Furthermore, it can be shown that the commutative, associa-

tive, distributive, identity and additive inverse conditions are satisfied. However, it is not

possible to find a multiplicative inverse for every nonzero polynomial in k[x1, x2, . . . , xn].

For example, let f = x − y. Now f ∈ R[x, y]. Although we have g = 1
x−y such that

f · g = 1, g /∈ R[x, y] since g does not satisfy the definition of a polynomial (see Definition

2.2). In fact, the only polynomials that have multiplicative inverses in k[x1, x2, . . . , xn]

are the constant polynomials. We conclude that k[x1, x2, . . . , xn] is a commutative ring

with unity, not a field. We will refer to k[x1, x2, . . . , xn] as a polynomial ring.

The next topic to consider is affine space.

Definition 2.6. [CLO15] Given a field k and a positive integer n, we define the n-

dimensional affine space over k to be the set of n-tuples with elements in a field

kn = {(a1, . . . , an) | a1, . . . , an ∈ k}.

When the field is R we recognize the affine spaces R2 and R3 from secondary

mathematics courses in algebra, geometry and calculus.

Now we explore how polynomials relate to affine space. An important connection

is that a polynomial f =
∑
α
aαx

α ∈ k[x1, x2, . . . , xn] gives a function that maps the n-

tuple, an element of kn to an element of k. More specifically, the function

f : kn → k

is defined as follows: given (a1, a2, . . . , an) ∈ kn, replace every xi with ai in the ex-

pression for f . Since all of the coefficients, aα ∈ k, this operation yields an element

f(a1, a2, . . . , an) ∈ k.
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Example 1. A task in R2 presented in a secondary algebra class, for example, might

require one to find solutions to y = x2. Students would make a list of the ordered

pairs such as (0, 0), (1, 1), (2, 4) that satisfy the equation. They may also represent the

equation geometrically by sketching the parabolic curve that represents all solutions to

the equation. We can generalize this task by expressing the equation as f(x, y) = y− x2,
a function that maps ordered pairs to real numbers. For example, f(3, 17) = 17− 32 = 8.

The ordered pair (3, 17) is not a point on the parabola defined by y = x2. The only

ordered pairs that will be on the curve are those that are mapped to zero. Since f(2, 4) =

4 − 22 = 0, the point (2, 4) will be on the curve. The secondary school task is a special

case of this mapping in which we map n-tuples to the zero element of the field.

When we think of a polynomial as a function, the connection between algebra

and geometry becomes more detectable.

2.2 Affine Varieties

The study of algebraic geometry has at its core the solution set of a system

of polynomials. These solution sets are known as affine varieties. The definition and

examples are the topic of this section.

Definition 2.7. [CLO15] Let k be a field, and let f1, f2, . . . , fs be polynomials in

k[x1, x2, . . . , xn]. Then we set

V(f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ kn | fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s}.

We call V(f1, f2, . . . , fs) the affine variety defined by f1, f2, . . . , fs.

In other words, an affine variety is a collection of n-tuples representing the

solutions to a system of equations. We are specifically interested in the n-tuples that

satisfy f1(x1, x2, . . . , xn) = 0, f2(x1, x2, . . . , xn) = 0, . . . , fs(x1, x2, . . . , xn) = 0. When we

have a solution to f(x1, x2, . . . , xn) = 0 we say f vanishes at (x1, x2, . . . , xn).

We will continue to examine the task posed in Example 1 in the context of a

variety so that we may extend the understanding of the relationship between the algebraic

representation (the system of polynomials) and the geometric representation (the ordered

pairs in the Cartesian Plane).

Consider V(y − x2). We want to find the collection of ordered pairs (x, y) ∈ R2

such that y − x2 = 0. As shown above, this is the set of points on the standard parabola
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y = x2 that has its vertex at the origin and is sometimes called the parent graph of

parabolas. The variety contains infinitely many ordered pairs. This variety has only one

polynomial but we can include any finite number of polynomials. For more complicated

systems of equations, there are computer programs available to help us determine a

solution set which we can interpret as a variety. Technology can also help us represent

the variety geometrically, particularly if we are working in R2 or R3.

Example 2. Consider V(y−x2, y−x−2). We want the set of ordered pairs (x, y) ∈ R2

that satisfy both equations, y − x2 = 0 and y − x − 2 = 0. This system can be solved

using substitution and yields two solutions, (−1, 1) and (2, 4), representing the points

where the parabola and line intersect in the Cartesian Plane. So, V(y− x2, y− x− 2) =

{(−1, 1), (2, 4)}.

It is possible for a variety to be empty. In R2, we would have two curves that

never intersect. We might also want to know if there are other polynomials that could

be included in our variety from Example 2. In other words, are there other polynomials

that vanish at (−1, 1) and (2, 4)? Before considering this question, we will examine some

properties of affine varieties.

Lemma 2.8. [CLO15] If V, W ⊂ kn are affine varieties, then so are V ∩W and V ∪W .

Proof. Suppose V = V(f1, f2, . . . , fs) and W = V(g1, g2, . . . , gt). To show that the

intersection of affine varieties is an affine variety, we use double inclusion to show that

V ∩W = V(f1, . . . , fs, g1, . . . , gt).

First, we will show V ∩ W ⊆ V(f1, . . . , fs, g1, . . . , gt). Let’s assume (a1, a2, . . . , an) ∈
V ∩W . This means that (a1, a2, . . . , an) ∈ V and (a1, a2, . . . , an) ∈ W . In other words,

fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s and gj(a1, a2, . . . , an) = 0 for all 1 ≤ j ≤ t. So,

(a1, a2, . . . , an) ∈ V(f1, f2, . . . , fs, g1, g2, . . . , gt).

Now, we show V(f1, . . . , fs, g1, . . . , gt) ⊆ V ∩ W . Assume (a1, a2, . . . , an) ∈
V(f1, . . . , fs, g1, . . . , gt). This means fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s and

gj(a1, a2, . . . , an) = 0 for all 1 ≤ j ≤ t. In other words, the n-tuple (a1, a2, . . . , an) ∈ V
and (a1, a2, . . . , an) ∈ W . Thus (a1, a2, . . . , an) ∈ V ∩W . We have shown that V ∩W
= V(f1, . . . , fs, g1, . . . , gt) which implies V ∩W is an affine variety.

For the second part of the lemma, the union of affine varieties is an affine variety,

we will use double inclusion to show

V ∪W = V(figj | 1 ≤ i ≤ s, 1 ≤ j ≤ t).
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First we will show V ∪ W ⊆ V(figj). Let’s assume (a1, a2, . . . , an) ∈ V ∪ W . Then

(a1, a2, . . . , an) ∈ V or (a1, a2, . . . , an) ∈W . If (a1, a2, . . . , an) ∈ V ,

then fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s. So the product

figj(a1, a2, . . . , an) = fi(a1, a2, . . . , an)gj(a1, a2, . . . , an)

= 0 · gj(a1, a2, . . . , an)

= 0

for all 1 ≤ j ≤ t. So, (a1, a2, . . . , an) ∈ V(figj). On the other hand, if (a1, a2, . . . , an) ∈
W , then gj(a1, a2, . . . , an) = 0 for all 1 ≤ j ≤ t. So the product

figj(a1, a2, . . . , an) = fi(a1, a2, . . . , an)gj(a1, a2, . . . , an)

= fi(a1, a2, . . . , an) · 0

= 0

for all 1 ≤ i ≤ s. So, (a1, a2, . . . , an) ∈ V(figj).

Now we show V(figj) ⊆ V ∪ W . Assume (a1, a2, . . . , an) ∈ V(figj). Then

figj(a1, a2, . . . , an) = fi(a1, a2, . . . , an)gj(a1, a2, . . . , an) = 0 for all i and j. If

(a1, a2, . . . , an) ∈ V , then (a1, a2, . . . , an) ∈ V ∪ W and the proof is complete. If

(a1, a2, . . . , an) /∈ V then then exists some i0 ∈ {1, . . . , s} such that fi0(a1, a2, . . . , an) 6= 0.

But we have, for all j, fi0(a1, a2, . . . , an)gj(a1, a2, . . . , an) = fi0gj(a1, a2, . . . , an) = 0 since

(a1, a2, . . . , an) ∈ V(figj). Therefore, gj(a1, a2, . . . , an) = 0 for all j. In other words,

(a1, a2, . . . , an) ∈W , which means (a1, a2, . . . , an) ∈ V ∪W . Thus V(figj) ⊆ V ∪W and

V ∪W is an affine variety.

The previous lemma can be extended to state that finite intersections and finite

unions of affine varieties yield affine varieties. The proof would make use of the lemma

repeatedly and induction on the number of varieties. For example, suppose V, W, X ∈ kn

are affine varieties. Let Z = V ∪W . Then by Lemma 2.8, Z ∈ kn is an affine variety.

Likewise, Z ∪X is an affine variety, and so forth. Hence the finite union of affine varieties

is an affine variety.

Similarly, let Y = V ∩W . Then by Lemma 2.8, Y ∈ kn is an affine variety.

Likewise, Y ∩X is an affine variety, and so forth. Hence the finite intersection of affine

varieties is an affine variety. These properties will be useful when we determine a Groebner

basis for an affine variety.
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2.3 Ideals

The foundational algebraic object we need in our study of varieties is an ideal, a

special kind of subset that contains the zero element and is closed under addition. Ideals

are also closed under multiplication of an element in the ideal by an element in the ring.

Ideals will give us the structure for computing with affine varieties.

Definition 2.9. [CLO15] A subset I ⊂ k[x1, x2, . . . , xn] is an ideal if it satisfies:

(i) 0 ∈ I.

(ii) If f, g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ k[x1, x2, . . . , xn], then hf ∈ I.

So, an ideal of a ring is a subring that “absorbs” elements of the ring. [Gal17]

Example 3. Consider the ring of integers Z and the subring of even integers 2Z. Since

0 ∈ 2Z, the sum of two even integers is even and the product of 2 and any integer is even,

we can say 2Z = 〈2〉 is an ideal of Z generated by the integer 2.

Next we define an ideal generated by a finite number of polynomials.

Definition 2.10. [CLO15] Let f1, f2, . . . , fs be polynomials in k[x1, x2, . . . , xn]. Then

we define

〈f1, f2, . . . , fs〉 =

{
s∑
i=1

hifi | h1, h2, . . . , hs ∈ k[x1, x2, . . . , xn]

}
.

We call 〈f1, f2, . . . , fs〉 the ideal generated by f1, f2, . . . , fs and the set of defining equa-

tions, {f1, f2, . . . , fs} is called the basis of the ideal. If the ideal is generated by a single

element, we call it a principal ideal. That is,

〈f〉 = {hf | h ∈ k[x1, x2, . . . , xn]}

is called the principal ideal generated by f .

Example 4. In R[x], the ring of polynomials with real coefficients, the ideal, 〈x〉 =

{h · x | h ∈ k[x1, x2, . . . , xn]} is the subset of polynomials with real coefficients whose

constant term is zero. The graph of these polynomials pass through the origin. Since this

ideal is generated by a single polynomial, it is a principal ideal.
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Example 5. Though the ring of integers is not a field, let’s consider the ring of polyno-

mials whose coefficients are integers. One ideal of this ring is the subring of polynomials

with constant terms that are even integers. That is, I = 〈x, 2〉 = {h1 ·x+h2 · 2 | h1, h2 ∈
Z[x1, x2, . . . , xn]}.

The proof of the following lemma justifies that we call 〈f1, f2, . . . , fs〉, defined

above, an ideal.

Lemma 2.11. [CLO15] If f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn], then 〈f1, f2, . . . , fs〉 is an

ideal of k[x1, x2, . . . , xn].

Proof. We will verify that 〈f1, f2, . . . , fs〉 =

{
s∑
i=1

hifi | h1, . . . , hs ∈ k[x1, x2, . . . , xn]

}
is

an ideal by showing it satisfies the conditions set forth in Definition 2.9. The first condition

is satisfied by noticing that 0 ∈ k[x1, x2, . . . , xn] and 0 =
s∑
i=1

0 ·fi. So, 0 ∈ 〈f1, f2, . . . , fs〉.

Now suppose f, g ∈ I and p1, p2, . . . , ps, q1, q2, . . . , qs ∈ k[x1, x2, . . . , xn] such that f =
s∑
i=1

pifi and g =

s∑
i=1

qifi. Then f + g =

s∑
i=1

pifi +

s∑
i=1

qifi =

s∑
i=1

(pi + qi)fi ∈ I. Finally,

for h ∈ k[x1, x2, . . . , xn], hf = h
s∑
i=1

pifi =
s∑
i=1

(hpi)fi ∈ I. Since all conditions are

satisfied, I = 〈f1, f2, . . . , fs〉 is an ideal.

The proof confirms that if a polynomial can be written as a linear combination

of f1, f2, . . . , fs, then it is a member of the ideal 〈f1, f2, . . . , fs〉. This relationship is

useful when comparing ideals. Let I be an ideal such that I ⊂ k[x1, x2, . . . , xn] and let

f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn]. Then the following statements are equivalent:

(i) f1, f2, . . . , fs ∈ I.

(ii) 〈f1, f2, . . . , fs〉 ⊂ I.

Suppose, for example, we want to show 〈x, y〉 = 〈x − y, x + y〉. We have

x = 1
2(x+y)+ 1

2(x−y) ∈ 〈x+y, x−y〉 and y = 1
2(x+y)− 1

2(x−y) ∈ 〈x+y, x−y〉. Thus,

〈x, y〉 ⊂ 〈x+y, x−y〉. Likewise, x+y = 1 ·x+1 ·y ∈ 〈x, y〉 and x−y = 1 ·x−1 ·y ∈ 〈x, y〉.
Thus 〈x+ y, x− y〉 ⊂ 〈x, y〉. So 〈x, y〉 = 〈x+ y, x− y〉.

We further explore the role of ideals with a proposition that states a variety

depends on the ideal generated by its defining equations.
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Proposition 2.12. [CLO15] If f1, f2, . . . , fs and g1, g2, . . . , gt are bases of the same ideal

in k[x1, x2, . . . , xn], so that 〈f1, f2, . . . , fs〉 = 〈g1, g2, . . . , gt〉, then V(f1, f2, . . . , fs) =

V(g1, g2, . . . , gt).

Proof. We have 〈f1, f2, . . . , fs〉 = 〈g1, g2, . . . , gt〉. We will show that V(f1, f2, . . . , fs) =

V(g1, g2, . . . , gt) by double inclusion. Let the n-tuple (a1, a2, . . . , an) ∈ V(f1, f2, . . . , fs).

Then f1(a1, a2, . . . , an) = 0, f2(a1, a2, . . . , an) = 0, . . . , fs(a1, a2, . . . , an) = 0. In other

words, for all 1 ≤ i ≤ s, fi vanishes at (a1, a2, . . . , an). Consider (h1f1 + h2f2 + · · · +
hsfs)(a1, a2, . . . , an) for some h1, h2, . . . , hs ∈ k[x1, x2, . . . , xn]. Since (a1, a2, . . . , an) is

a point where all fi vanish, (h1f1 + h2f2 + · · · + hsfs)(a1, a2, . . . , an) = 0. But since

〈f1, f2, . . . , fs〉 = 〈g1, g2, . . . , gt〉, there exist j1, j2, . . . , jt ∈ k[x1, x2, . . . , xn] such that

h1f1+h2f2+· · ·+hsfs = j1g1+j2g2+· · ·+jtgt. So (j1g1+j2g2+· · ·+jtgt)(a1, a2, . . . , an) =

0. Thus V(g1, g2, . . . , gt) ⊆ V(f1, f2, . . . , fs).

Similarly, let the n-tuple (b1, b2, . . . , bn) ∈ V(g1, g2, . . . , gt). Then for all 1 ≤ i ≤
t, gi vanishes at (b1, b2, . . . , bn). Consider (j1g1 + j2g2 + · · ·+ jtgt)(b1, b2, . . . , bn) for some

j1, j2, . . . , jt ∈ k[x1, x2, . . . , xn]. Since (b1, b2, . . . , bn) is a point where all gi vanish (j1g1 +

j2g2 + · · ·+ jtgt)(b1, b2, . . . , bn) = 0. But h1f1 +h2f2 + · · ·+hsfs = j1g1 + j2g2 + · · ·+ jtgt,

so (h1f1+h2f2+ · · ·+hsfs)(b1, b2, . . . , bn) = 0. Thus V(f1, f2, . . . , fs) ⊆ V(g1, g2, . . . , gt).

Hence, if 〈f1, f2, . . . , fs〉 = 〈g1, g2, . . . , gt〉, then V(f1, f2, . . . , fs) = V(g1, g2, . . . , gt).

The ability to change the basis of an ideal without affecting the variety is a

powerful tool in determining varieties.

Next we will study another class of ideals, ideals of varieties. The ideal of a

variety consists of all the polynomials that vanish on a given variety.

Definition 2.13. [CLO15] Let V ⊂ kn be an affine variety. Then we set

I(V ) = {f ∈ k[x1, x2, . . . , xn] | f(a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) ∈ V }.

The proof of the following lemma justifies that we call I(V ) an ideal.

Lemma 2.14. [CLO15] If V ⊂ kn is an affine variety, then I(V ) ⊂ k[x1, x2, . . . , xn] is

an ideal. We will call I(V ) the ideal of V .

Proof. We will show that I(V ) satisfies the three conditions set forth in the definition

of an ideal. The zero polynomial vanishes on all n-tuples, so in particular it vanishes

on V . Thus 0 ∈ I(V ). Let (a1, a2, . . . , an) be an arbitrary element of the variety V .
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Consider polynomials f, g ∈ I(V ). Then by Definition 2.13, f(a1, a2, . . . , an) = 0 and

g(a1, a2, . . . , an) = 0. So the sum,

(f + g)(a1, a2, . . . , an) = f(a1, a2, . . . , an) + g(a1, a2, . . . , an)

= 0 + 0

= 0

Hence, f + g ∈ I(V ). Finally, let f ∈ I(V ) and h ∈ k[x1, x2, . . . , xn]. Then the product

(hf)(a1, a2, . . . , an) = h(a1, a2, . . . , an)f(a1, a2, . . . , an)

= h(a1, a2, . . . , an) · 0

= 0.

Hence, hf ∈ I(V ). Since all conditions are satisfied, I(V ) is an ideal.

We see that we can construct an ideal by starting with a set of polynomials and

generating an ideal directly from them or we can consider the set of points on which the

polynomials vanish and construct an ideal of the variety. It is natural to ask if the ideal of

the variety is equivalent to the ideal generated by the polynomials. The following lemma

addresses this question.

Lemma 2.15. [CLO15] Let f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn]. Then 〈f1, f2, . . . , fs〉 ⊆
I(V(f1, f2, . . . , fs)), although equality need not occur.

Proof. Let f ∈ 〈f1, f2, . . . , fs〉. Let (a1, a2, . . . , an) be an arbitrary element of

V (f1, f2, . . . , fs). We will show f ∈ I(V). If f ∈ 〈f1, f2, . . . , fs〉 then f =
s∑
i=1

hifi for

some polynomials h1, h2, . . . , hs ∈ k[x1, x2, . . . , xn]. Then

f(a1, a2, . . . , an) = h1f1(a1, . . . , an) + h2f2(a1, . . . , an) + · · ·+ hsfs(a1, . . . , an)

= h1(a1, . . . , an)f1(a1, . . . , an) + h2(a1, . . . , an)f2(a1, . . . , an)

+ · · ·+ hs(a1, . . . , an)fs(a1, . . . , an)

= h1(a1, . . . , an) · 0 + h2(a1, . . . , an) · 0 + · · ·+ hs(a1, . . . , an) · 0

= 0.

So, f ∈ I(V) and 〈f1, f2, . . . , fs〉 ⊆ I(V(f1, f2, . . . , fs)). Now to show that equality

need not occur, we present an example for which 〈f1, f2, . . . , fs〉 ⊆ I(V(f1, f2, . . . , fs))
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but I(V(f1, f2, · · · , fs)) 6⊂ 〈f1, f2, . . . , fs〉. We use the first part of the proof. Consider

〈x2, y2〉 ⊆ I(V(x2, y2)). We can compute I(V(x2, y2)). Solving the equations x2 = 0 and

y2 = 0 implies V(x2, y2) = {(0, 0)}, which is the origin in k2. Then its ideal I({(0, 0)}) is

the set of polynomials that vanish at the origin, that is I(V(x2, y2)) = 〈x, y〉. We know

x /∈ 〈x2, y2〉 since any linear combination of x2 and y2 will consist of monomials having

total degree at least two. Hence 〈x, y〉 6⊂ 〈x2, y2〉 and so the ideals are not equal.
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Chapter 3

Groebner Bases

To apply algebraic methods to solve geometric theorems such as the ones that

will be presented in this thesis, we will express geometric structures as systems of poly-

nomials f1(x1, x2, . . . , xn) = 0, f2(x1, x2, . . . , xn) = 0, . . . , fs(x1, x2, . . . , xn) = 0 and

determine the solutions. This is restated geometrically as finding the n-tuples that are

elements of the affine variety V(f1, f2, . . . , fs). We showed in the last chapter that the

variety depends on the ideals generated by the defining polynomials. But we also showed

that there is more than one basis for an ideal. Deriving a convenient basis is the key to

solving our system. Groebner bases have the features we desire and in this chapter we

define and understand the need for Groebner bases.

3.1 Orderings on the Monomials in k[x1, x2, . . . , xn]

We have defined the polynomials we will employ in our task of solving geometric

theorems algebraically. We now turn to the dilemma mentioned in Section 2.1. When

working with polynomials in more than one variable, the terms may be arranged in many

ways. We define three commonly used lexicographic orderings in this section.

Definition 3.1. (Lex Order). [CLO15] Let α = (a1, . . . , an) and β = (b1, . . . , bn) ∈
Zn≥0. We say α >lex β if, in the vector difference α− β ∈ Zn, the leftmost nonzero entry

is positive. We will write xα >lex x
β if α >lex β.

Definition 3.2. (Graded Lex Order). [CLO15] Let α = (a1, a2, . . . , an) and β =

(b1, b2, . . . , bn) ∈ Zn≥0. We say α >grlex β if
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|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| and α >lex β.

Definition 3.3. (Graded Reverse Lex Order). [CLO15] Let α = (a1, a2, . . . , an) and

β = (b1, b2, . . . , bn) ∈ Zn≥0. We say α >grevlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| and the rightmost

nonzero entry of α− β ∈ Zn is negative.

We return to our polynomial example from Section 2.1, f(x, y, z) = 3x3y2z +
5
6z

3 − 7x4 + 9x2y4 to demonstrate the difference in these three monomial orderings. The

variables will have the order x > y > z. The orderings depend on the exponents of

the monomials so we first express the exponents of each term as an n-tuple. Let α =

(3, 2, 1) represent the term 3x3y2z. We calculate the total degree of this monomial,

|α| = 3 + 2 + 1 = 6. For the term 5
6z

3, we have β = (0, 0, 3) with |β| = 3. For the term

−7x4, we have γ = (4, 0, 0) and |γ| = 4. For the term 9x2y4, we have δ = (2, 4, 0) and

|δ| = 6.

To arrange the terms in lex order, we compare the differences between the or-

dered triples. We look to the leftmost nonzero entry and arrange the triples in descending

order based on these entries. Since the first entry in γ is larger than the first entry in

the other triples, we conclude that the term −7x4 will come first in the lex ordering.

We see that δ − α = (−1, 2,−1) but α − δ = (1,−2, 1). Comparing the leftmost entries

informs us that 3x3y2z is next. Since the leftmost entry of β is less than the leftmost

entry of the other triples, we list the term 5
6z

3 last. So, our polynomial in lex order is

f(x, y, z) = −7x4 + 3x3y2z + 9x2y4 + 5
6z

3. We see that in lex order, we do not consider

the total degree of the monomials. Our comparison is based only on the exponent of the

first variable that has different exponents. This is the ordering one would see in a typical

secondary algebra course.

In some cases, it may be advantageous to list the monomial with larger total

degree first. In grlex ordering, monomials are listed in descending order by total degree.

If two monomials have the same total degree, then we use lex ordering to decide which

of those monomials is listed first. With our example, since |α| = |δ| = 6 and this total

degree is greater than that of the other two monomials, we find the n-tuple differences to

determine which term will hold first and second positions. The leftmost entry in α− δ is

1 but the leftmost entry of δ − α is −1, thus α > δ in grlex ordering. Next is γ followed

by β. So, in grlex order, our polynomial is f(x, y, z) = 3x3y2z + 9x2y4 − 7x4 + 5
6z

3.
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Now we write our polynomial in grevlex order. As with grlex order, our first

comparison is with the total degrees. However, when two or more monomials have the

same total degree, we look at the rightmost nonzero entry of the n-tuple differences. As

above, we need to decide if 9x2y4 or 3x3y2z will be placed first. The rightmost entry in

α − δ is 1 and the rightmost entry of δ − α is −1. According to grevlex order, δ > α

and our polynomial is f(x, y, z) = 9x2y4 + 3x3y2z − 7x4 + 5
6z

3. Once we have selected a

monomial ordering, we can express a polynomial without ambiguity, which is especially

helpful in addressing the following terminology.

Definition 3.4. [CLO15] Let f =
∑
α

aαx
α be a nonzero polynomial in k[x1, x2, . . . , xn]

and let > be a monomial ordering.

1. The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0).

The maximum is taken with respect to the monomial ordering, >.

2. The leading coefficient of f is

LC(f) = amultideg(f) ∈ k.

3. The leading monomial of f is

LM(f) = xmultideg(f)

(with coefficient 1).

4. The leading term of f is

LT(f) = LC(f) · LM(f).

We return again to our polynomial and illustrate the above terminology. With

respect to graded lex order, f(x, y, z) = 3x3y2z + 9x2y4 − 7x4 + 5
6z

3. Then

multideg(f) = (3, 2, 1),

LC(f) = 3,

LM(f) = x3y2z,

LT(f) = 3x3y2z.

Identifying the leading term of polynomials is necessary when we want to work

systematically with a system of polynomials.
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3.2 Division Algorithms

One systematic way we work with polynomials is to determine if one polynomial

can be expressed as a product of other polynomials. When working with polynomials of

one variable, we may use a division algorithm much like the division algorithm for integers

one learns in primary school. Here we present a formal theorem describing the Division

Algorithm for Integers from a Number Theory text.

Theorem 3.5. (Division Algorithm for Integers). [Bur11] Given integers a and b,

with b 6= 0, there exist unique integers q and r satisfying

a = q · b+ r 0 ≤ r < |b|.

The integers q and r are called, respectively, the quotient and remainder in the division

of a by b.

Consider, for example, the integers −47 and 5. We can write −47 = (−10)(5)+3.

We could also write 5 = (−47)(0) + 5. We typically take the integer with the smaller

absolute value as the divisor and take special notice of pairs of integers for which this

division algorithm results in a remainder of zero, such as with a = 32 and b = 8. We can

write 32 = 4 · 8 + 0. We say 4 and 8 are factors of 32 and 32 is a multiple of 4.

Now a division algorithm for polynomials in k[x] that is analogous to the algo-

rithm for integers is given by the following:

Theorem 3.6. (Division Algorithm for k[x]). [Gal17] Let k be a field and let f(x),

g(x) ∈ k[x] with g(x) 6= 0. Then there exist unique polynomials q(x) and r(x) in k[x]

such that f(x) = q(x) · g(x) + r(x) and either r(x) = 0 or the degree of r(x) is less than

the degree of g(x).

The polynomials q(x) and r(x) are called the quotient and remainder in the

division of f(x) by g(x). When the ring of coefficients of a polynomial ring is a field, we

can use the long division process to determine the quotient and remainder, as shown in

the examples below.

Example 6. Let f(x) = 3x4 + 2x3 − x2 − x − 6 and g(x) = x2 + 1 be polynomials in

R[x]. Then we can divide f(x) by g(x) as follows,
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3x2 + 2x− 4

x2 + 1
∣∣∣ 3x4 + 2x3 − x2 − x− 6

− 3x4 − 3x2

2x3 − 4x2 − x
− 2x3 − 2x

− 4x2 − 3x− 6

4x2 + 4

− 3x− 2

Now we have q(x) = 3x2 + 2x− 4 and r(x) = −3x− 2 so we can write

f(x) = 3x4 + 2x3 − x2 − x− 6 = (3x2 + 2x− 4)(x2 + 1) + (−3x− 2).

With polynomials in a single variable, we note that lex, grlex and grevlex all

result in the same ordering. As with integer division, we are interested in cases when

polynomial division yields a remainder of zero as in the next example.

Example 7. Consider f(x) = x3 − 8, g(x) = x− 2 ∈ R[x]. We can divide f(x) by g(x)

as follows,

x2 + 2x+ 4

x− 2
∣∣∣ x3 − 8

− x3 + 2x2

2x2

− 2x2 + 4x

4x− 8

− 4x+ 8

0

We can write x3 − 8 = (x2 + 2x+ 4)(x− 2) and say x2 + 2x+ 4 and x− 2 are

factors of x3 − 8. Furthermore, we can say x3 − 8 ∈ 〈x− 2〉, that is, x3 − 8 is in the ideal

generated by x− 2.

An important feature of division with polynomials with one variable is that

the quotient and remainder are unique. This is not generally true when we work with

multivariable polynomials. We notice in the next theorem that a monomial ordering must

be specified. We will see in the examples that follow that when we change monomial

ordering, we may get a different remainder. We can also generate different remainders by

changing the order of the divisors.
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Theorem 3.7. (Division Algorithm in k[x1, x2, . . . , xn]). [CLO15] Let > be a mono-

mial order on Zn≥0 and let F = (f1, f2, . . . , fs) be an ordered s-tuple of polynomials in

k[x1, x2, . . . , xn]. Then every f ∈ k[x1, x2, . . . , xn] can be written as

f = q1f1 + q2f2 + · · ·+ qsfs + r,

where qi, r ∈ k[x1, x2, . . . , xn] and either r = 0 or r is a linear combination with coeffi-

cients in k, of monomials, none of which is divisible by any of LT(f1),LT(f2), . . . ,LT(fs).

We call r a remainder on division by F. Furthermore, if qifi 6= 0 ,

multideg(f) ≥ multideg(qifi).

Example 8. [CLO15] In this example, posed as an exercise in the Cox, Little, O’Shea

text, we demonstrate the division algorithm for multivariable polynomials. We compute

the remainder on division of f = x7y2+x3y2−y+1 by the ordered set F = (xy2−x, x−y3).
These polynomials are in R[x, y]. We will use grlex order with x > y. Our polynomial f is

already in grlex order and our divisors in grlex order are f1 = xy2−x and f2 = −y3+x. We

will use the graphical representation presented in The Teaching of Mathematics Journal

[Zea13].

(x7y2 + x3y2 − y + 1) : (xy2 − x) = x6 + x2

−(x7y2 − x7 + x3y2 − x3)

(x7 + x3 − y + 1) : (−y3 + x) = 0

If either LT(f1) or LT(f2) divided x7, we would repeat the procedure. When a monomial

ordering is selected, the algorithm always terminates because the multidegree of f is

reduced in each iteration. In this case we obtain q1 = x6 + x2, q2 = 0 and the remainder,

r = x7 + x3− y+ 1 and we have f = (x6 + x2)(xy2− x) + 0(−y3 + x) + (x7 + x3− y+ 1).

Example 9. We will work with the same polynomial f and ordered set F from Example

8 but this time we will use lex order. The arrangement of the terms of f and f1 remain

f = x7y2+x3y2−y+1 and f1 = xy2−x but f2 changes to f2 = x−y3. We can anticipate

a change early in the division procedure since LT(f2) = x divides x7 so x7 will not

become part of the remainder. The procedure with the lex ordering required 14 iterations

completed by hand and resulted with q1 = x6 + x5y + x4 + x3y + x2y2 + 2x + 2y, q2 =

x6 + x5y + x4 + x3y + 2x+ 2y, and r = 2y4 − y + 1. When working with a large number



20

of variables and divisors, computer programs can efficiently produce the quotients and

remainders.

The significance of these examples is that when we change the orderings on the

monomials, the division algorithm yields different remainders. Moreover, if we reorder

the set F , we have the potential to yield different remainders. When using lex order and

using the ordered set F = (f2, f1) the procedure involved eleven iterations resulting in

eleven terms in q1 with remainder r = −y26 + y11 − y + 1 but using this arrangement on

the set F with grlex order, we obtain the same remainder as in Example 8.

Since none of our division procedures resulted in a remainder of zero, we may

be tempted to conclude f /∈ 〈f1, f2〉 but we have not exhausted all possible monomial

orderings. Our next example shows that despite one ordering resulting in a nonzero

remainder, we cannot conclude the polynomial is not a member of the ideal.

Example 10. [Zea13] We will calculate the remainder on division of f = x2y3 − 2xy2 ∈
R[x, y] by the ordered set F = (y3 + 4, x2y − 2x) ∈ R[x, y]. We will use lex order with

x > y as follows,

(x2y3 − 2xy2) : (y3 + 4) = x2

−(x2y3 + 4x2)

−2x2y − 4x2 : (x2y − 2x) = 0

So, we obtain x2y3 − 2xy2 = x2(y3 + 4) + 0(x2y − 2x) − 2xy2 − 4x2. Suppose, however,

we reorder the divisors and take F = (f2, f1). Then we have

(x2y3 − 2xy2) : (x2y − 2x) = y2

−(x2y3 − 2xy2)

0 : (y3 + 4) = 0

This time, we obtain x2y3−2xy2 = y2(x2y−2x)+0(y3+4)+0. We observe that

f, f1, f2 are unchanged regardless of which of the three monomial orderings we selected

but the two cases produced different remainders due to the change in ordering of the

divisors.
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Hence, we find that f ∈ 〈f1, f2〉 despite having a nonzero remainder when di-

viding f by the ordered set F = (f1, f2). The need for a uniquely defined remainder on

division is one of the motivations for the definition of the Groebner basis.

3.3 The Hilbert Basis Theorem and Groebner Bases

Deciding if a polynomial is in an ideal is referred to as the Ideal Membership

Problem. In polynomial rings in one variable, the division algorithm uniquely determines

the remainder and a remainder of zero tells us that a polynomial is a member of an

ideal. When working with multivariable polynomials, we may obtain a remainder of

zero with a particular monomial ordering or divisor order and that would be sufficient

to determine that the polynomial is a member of the ideal. The dilemma is there are

numerous orderings. The key, then, is to choose divisors which will be generators of

the ideal that uniquely determine the remainder, regardless of the order. Based on our

examples, it is reasonable to expect the leading terms to play a critical role in the selection

of such divisors. This set of divisors is called a Groebner basis.

Definition 3.8. [CLO15] An ideal I is a monomial ideal if there is a subset A ⊂ Zn≥0
such that I consists of all polynomials which are finite sums of the form

∑
α∈A

hαx
α, where

hα ∈ k[x1, x2, . . . , xn]. In this case, we write I = 〈xα | α ∈ A ⊂ Zn≥0〉.

In other words, a monomial ideal is an ideal generated by monomials. If a

monomial xβ lies in a monomial ideal I, then xβ must be divisible by xα for some α ∈ A.

If a polynomial f is a member of a monomial ideal I then each term of f lies in I and f

is a linear combination of the monomials in I. Another important feature of monomial

ideals in k[x1, x2, . . . , xn] is that they are finitely generated.

Lemma 3.9. (Dickson’s Lemma). [CLO15] A monomial ideal I = 〈xα | α ∈ A〉 ⊂
k[x1, x2, . . . , xn] can be written in the form I = 〈xα1 , xα2 , . . . , xαs〉, where α1, α2, . . . , αs ∈
A. In particular, I has a finite basis.

Definition 3.10. [CLO15] Let I ⊂ k[x1, x2, . . . , xn] be an ideal other than {0} and fix a

monomial ordering on the monomials of k[x1, x2, . . . , xn].

(i) We denote by LT(I) the set of leading terms of elements of I. Thus, LT(I) =

{cxα | there exists f ∈ I with LT(f) = cxα}.

(ii) We denote 〈LT(I)〉 the ideal generated by the elements of LT(I).



22

It is important to recognize that if the ideal I is generated by a finite set of

polynomials f1, f2, . . . , fs, then 〈LT(f1),LT(f2), . . . ,LT(fs)〉 does not necessarily equal

〈LT(I)〉. It follows from the definition that since LT(I) ⊆ 〈LT(I)〉 then

〈LT(f1),LT(f2), . . . ,LT(fs)〉 ⊆ 〈LT(I)〉. In the following example we will show that

〈LT(I)〉 6⊂ 〈LT(f1),LT(f2), . . . ,LT(fs)〉 by finding a member of 〈LT(I)〉 that is not a

member of 〈LT(f1),LT(f2), . . . ,LT(fs)〉.

Example 11. Suppose I = 〈f1, f2〉 ⊂ R[x, y] where f1 = 2xy2− x and f2 = 3x2y− y− 1

and use grlex ordering with x > y. Then

f3 = 3x(2xy2 − x)− 2y(3x2y − y − 1) = −3x3 + 2y2 + 2y.

So, f3 ∈ I and LT(f3) = −3x3 ∈ LT(I). However, since −3x3 is not divisible by either

2xy2 or 3x2y, the leading terms of f1 and f2, nor is it a linear combination of these

monomials, then −3x3 /∈ 〈LT(f1),LT(f2)〉.

Proposition 3.11. [CLO15] Let I ⊂ k[x1, x2, . . . , xn] be an ideal.

(i) 〈LT(I)〉 is a monomial ideal.

(ii) There are g1, g2, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LT(g1),LT(g2), . . . ,LT(gt)〉.

Proof. (i) By Definition 3.4, for polynomial f =
∑
α

aαx
α ∈ k[x1, x2, . . . , xn], LC(f) ∈

k ⊂ k[x1, x2, . . . , xn] and LT(f) = LC(f) · LM(f). By Definition 3.8, the collection of

leading monomials, LM(f) for f ∈ I \{0}, generate the monomial ideal

〈LM(f) | f ∈ I \{0}〉 and since LT(f) and LM(f) differ only by a nonzero constant,

〈LM(f) | f ∈ I \{0}〉 = 〈LT(f) | f ∈ I \{0}〉 which, by Definition 3.10 equals 〈LT(I)〉.
Thus, 〈LT(I)〉 is a monomial ideal.

(ii) By part (i), 〈LT(I)〉 is a monomial ideal generated by LM(f) for f ∈ I \{0}. Dickson’s

Lemma tells us that a monomial ideal has finitely many generators. That is, monomial

ideal I = 〈xα1 , xα2 , . . . , xαt〉, where α1, α2, . . . , αt ∈ A ⊂ Zn≥0. So, for g1, g2, . . . , gt ∈ I, we

can write 〈LT(I)〉 = 〈LM(g1),LM(g2), . . . ,LM(gt)〉 = 〈LT(g1),LT(g2), . . . ,LT(gt)〉.

We have shown that monomial ideals can be finitely generated. The next theo-

rem extends the feature to all ideals.

Theorem 3.12. (Hilbert Basis Theorem). [CLO15] Every ideal I ⊂ k[x1, x2, . . . , xn]

has a finite generating set. That is, I = 〈g1, g2, . . . , gt〉 for some g1, g2, . . . , gt ∈ I.
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Proof. If I = {0} the ideal is generated by the finite set {0}. If, however, I 6= {0}, we can

specify a monomial ordering on k[x1, x2, . . . , xn] and consider the ideal of leading terms

of I, 〈LT(I)〉. Then we can employ Proposition 3.11 to construct a finite generating set

g1, g2, . . . , gt ∈ I such that 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.
We have g1, g2, . . . , gt ∈ I such that 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉. We will

show that I = 〈g1, g2, . . . , gt〉 by double inclusion. Since gi ∈ I, 1 ≤ i ≤ t, 〈g1, g2, . . . , gt〉 ⊂
I. To show that I ⊂ 〈g1, g2, . . . , gt〉, we let f be any polynomial in the ideal and show that

f is in 〈g1, g2, . . . , gt〉. Since f ∈ I, we apply the Division Algorithm for multivariable

polynomials given in Theorem 3.7 and show that the remainder must be zero. Using the

selected monomial ordering, dividing f by the ordered set of divisors (g1, g2, . . . , gt) yields

f = a1g1 + a2g2 + · · ·+ atgt + r

where no term of r is divisible by any of LT(g1), LT(g2), . . ., LT(gt). Suppose r 6= 0. Our

result from the division algorithm can be written

r = f − a1g1 − a2g2 − · · · − atgt

which shows r is a linear combination of the members of I. So, r ∈ I which means

LT(r) ∈ 〈LT(I)〉. We have 〈LT(g1),LT(g2), . . . ,LT(gt)〉 = 〈LT(I)〉 which implies LT(r)

is divisible by some LT(gi). This contradicts the definition of a remainder found in our

division algorithm. We conclude that r = 0, thus

f = a1g1 + a2g2 + · · ·+ atgt.

This means f ∈ 〈g1, g2, . . . , gt〉 which shows that I ⊂ 〈g1, g2, . . . , gt〉. It follows that

I = 〈g1, g2, . . . , gt〉.

We saw in Example 11 that in general, for an ideal generated by a finite set of

polynomials g1, g2, . . . , gt, 〈LT(I)〉 need not equal 〈LT(g1),LT(g2), . . . ,LT(gt)〉. However,

in the proof of the Hilbert Basis Theorem, we constructed an ideal with this property.

The type of finite generating set, or basis, used is called a Groebner basis and is our next

topic.

Definition 3.13. [CLO15] Fix a monomial order. A finite subset G = {g1, g2, . . . , gt} of

an ideal I is said to be a Groebner Basis if

〈LT(g1),LT(g2), . . . ,LT(gt)〉 = 〈LT(I)〉.

The next corollary follows from applying the Hilbert Basis Theorem to 〈LT(I)〉.
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Corollary 3.14. [CLO15] Fix a monomial order. Then every ideal I ⊂ k[x1, x2, . . . , xn]

other than {0} has a Groebner basis. Furthermore, any Groebner basis for an ideal is a

basis of I.

Before describing additional properties of Groebner bases and describing how

to obtain Groebner bases, we note another consequence, a geometric consequence, of the

Hilbert Basis Theorem. We recall that affine varieties were described as solution sets of

systems of polynomial equations. Specifically, from Definition 2.7,

V(f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ kn | fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s}.
The following definition and proposition allow us to think about affine varieties in the

context of ideals.

Definition 3.15. [CLO15] Let I ⊂ k[x1, x2, . . . , xn] be an ideal. We will denote by V(I)

the set

V(I) = {(a1, a2, . . . , an) ∈ kn | f(a1, a2, . . . , an) = 0 for all f ∈ I}.

Proposition 3.16. [CLO15] V(I) is an affine variety. In particular, if I = 〈f1, . . . , fs〉,
then V(I) = V(f1, . . . , fs).

Proof. Let I be any ideal of k[x1, . . . , xn]. Then by the Hilbert Basis Theorem, I has a fi-

nite generating set. In other words, I = 〈f1, . . . , fs〉 for some fi ∈ I. We will show V(I) =

V(f1, f2, . . . , fs) by double inclusion. By Definition 3.15, V(I) is the collection of n-tuples

that satisfy the polynomial equations f = 0 for all f ∈ I and hence satisfies the polyno-

mial equations fi = 0 for 1 ≤ i ≤ s since f1, . . . , fs ∈ I . Let (a1, a2, . . . , an) be such an

n-tuple. Then f1(a1, a2, . . . , an) = 0, f2(a1, a2, . . . , an) = 0, . . . , fs(a1, a2, . . . , an) = 0.

Thus V(I) ⊂ V(f1, f2, . . . , fs). To show V(f1, f2, . . . , fs) ⊂ V(I), we let (a1, a2, . . . , an)

be any n-tuple in V(f1, f2, . . . , fs) and show that (a1, a2, . . . , an) ∈ V(I). For any f ∈ I,

f = h1f1 + h2f2 + · · ·+ hsfs where hi ∈ k[x1, x2, . . . , xn].

Since f1, f2, . . . , fs ∈ I, we have

f(a1, a2, . . . , an) = h1(a1, . . . , an)f1(a1, . . . , an) + · · ·+ hs(a1, . . . , an)fs(a1, . . . , an)

= h1(a1, . . . , an) · 0 + · · ·+ hs(a1, . . . , an) · 0

= 0.

Therefore, (a1, a2, . . . , an) ∈ V(I), which implies V(f1, f2, . . . , fs) ⊂ V(I). So we con-

clude V(I) = V(f1, f2, . . . , fs).
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Now we have established that varieties are determined by ideals of polynomial

rings. This is an important link between algebra and geometry.

3.4 Properties of Groebner Bases

We identified the need for uniquely determined remainders as a motivation for

the definition of Groebner bases in Section 3.2. Now we will explore how that definition

has the quality that the division of a polynomial f by a Groebner basis G yields the same

remainder regardless of the ordering on the members of the basis. We showed that every

nonzero ideal has a Groebner basis, so we will be able to determine if a polynomial is a

member of an ideal by dividing by a Groebner basis and checking to see if the remainder

is zero. We will not need to wonder if rearranging the divisors will give us a different

remainder.

Proposition 3.17. [CLO15] Let G = {g1, g2, . . . , gt} be a Groebner basis for an ideal I ⊂
k[x1, x2, . . . , xn] and let f ∈ k[x1, x2, . . . , xn]. Then there is a unique r ∈ k[x1, x2, . . . , xn]

with the following two properties:

(i) No term of r is divisible by any of LT(g1), . . . ,LT(gt).

(ii) There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how elements of G are

listed when using the division algorithm.

Proof. For the set of divisors, G = {g1, g2, . . . , gt} ⊆ k[x1, x2, . . . , xn], the Division Algo-

rithm in k[x1, x2, . . . , xn], states that a polynomial f ∈ k[x1, x2, . . . , xn], can be written

f = q1g1 + q2g2 + · · ·+ qtgt + r

with r having precisely the property listed in (i) and q1, q2, . . . , qt ∈ k[x1, x2, . . . , xn]. This

implies g = q1g1 + q2g2 + · · ·+ qtgt ∈ I which satisfies (ii). This proves the existence of r.

We prove that r is unique by contradiction. Suppose r and r′ both satisfy conditions (i)

and (ii). That is f = g+r = g′+r′. It follows that r−r′ = g′−g ∈ I which implies, as long

as r and r′ are different, LT(r − r′) ∈ 〈LT(r − r′)〉 = 〈LT(g1),LT(g2), . . . ,LT(gt)〉. This

means LT(r − r′) must be divisible by some member of 〈LT(I)〉. This is a contradiction.

Since r and r′ satisfy condition (i), no term of r or r′ is divisible by any of LT(gi), 1 ≤ i ≤ t.
Therefore, r and r′ are not different. In other words, the remainder on division of f by

G is unique.
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Although uniqueness of remainders is significant in our effort to determine if a

polynomial belongs in an ideal, the quotients produced by the division algorithm need

not be unique.

Example 12. [CLO15] This example is posed as an exercise in the Cox, Little, O’Shea

text. We are given G = {x + z, y − z} is a Groebner basis for I = 〈x + z, y − z〉, the

ideal generated by these polynomials using lex order with x > y > z. We divide the

polynomial f = xy by the ordered set of divisors G = (x+ z, y− z). Then we divide with

the order of the divisors reversed. First,

(xy) : (x+ z) = y

−(xy + yz)

−yz : (y − z) = −z

−(−yz + z2)

−z2

The remainder is −z2 so, we obtain xy = y(x+ z)− z(y − z)− z2.
Now reversing the order of the divisors,

(xy) : (y − z) = x

−(xy − xz)

xz : (x+ z) = z

−(xz + z2)

−z2

As expected, since we are dividing by a Groebner bases, the remainder here is also −z2.
However, the quotients were different producing xy = x(y − z) + z(x+ z)− z2.

Corollary 3.18. [CLO15] Let G = {g1, g2, . . . , gt} be a Groebner basis for an ideal

I ⊂ k[x1, x2, . . . , xn] and let f ∈ k[x1, x2, . . . , xn]. Then f ∈ I if and only if the remainder

on division of f by G is zero.

Proof. (⇒) If the remainder on division of f by G is zero, then the Division Algorithm

produces

f = q1g1 + q2g2 + · · ·+ qtgt + 0
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which means f is a linear combination of g1, g2, . . . , gt. Therefore, f ∈ I.

(⇐) If f ∈ I is given, then f = f + 0 satisfies the two conditions of Proposition 3.17 with

r = 0 the resulting remainder on the division of f by G.

This corollary leads us to an algorithm for solving the Ideal Membership Prob-

lem. In other words, when we satisfy the requirement of having a Groebner basis G for

the ideal I, we need only to compute a remainder on division by G to determine if f ∈ I.

We will determine how Groebner bases are derived in the next section. We will use the

following notation for the remainder.

Definition 3.19. [CLO15] We will write f
F

for the remainder on division of f by the

ordered s-tuple F = (f1, f2, . . . , fs). If F is a Groebner basis for 〈f1, f2, . . . , fs〉, then we

can regard F as a set (without any particular order) by Proposition 3.17.

Example 13. Using our new notation, we can express the remainder r = −z2 from

Example 12, xyG = −z2.

Definition 3.20. [Zea13] Let f, g ∈ k[x1, x2, . . . , xn] be nonzero polynomials.

(i) If multideg(f) = α and multideg(g) = β, then let γ = (γ1, γ2, . . . , γn), where γi =

max(αi, βi) for each i. We call xγ the least common multiple of LM(f) and LM(g),

written xγ = lcm(LM(f), LM(g)).

(ii) The S-polynomial (S stands for “syzygy”, from Latin syzygia “conjunction”, or

Greek, syzygos “yoke together”) of f and g is the combination

S(f, g) = xγ

LT(f) · f −
xγ

LT(g) · g.

Example 14. [Zea13] Let f = x4yz+x2y3z+xz and g = 2x2y2z+xy2 +xz3 in Q[x, y, z]

with lex ordering. We have α = (4, 1, 1) and β = (2, 2, 1) so γ = (4, 2, 1). We compute

the S -polynomial as follows:

S(f, g) =
x4y2z

x4yz
f − x4y2z

2x2y2z
g

= yf − 1

2
x2g

= −1

2
x3y2 − 1

2
x3z3 + x2y4z + xyz.
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The S -polynomial is constructed in such a way that the leading terms of the

two polynomials cancel each other. This is something the division algorithm did not

always produce. “Once a basis contains all the possible S -polynomials of polynomials

in the ideal generating set, there are no extra polynomials in 〈LT(I)〉 that are not in

〈LT(g1),LT(g2), . . . ,LT(gs)〉”. [Zea13] The use of S -polynomials helps develop a criterion

for determining if a basis is a Groebner basis, as described in the next theorem.

Theorem 3.21. (Buchberger’s Criterion). [CLO15] Let I be a polynomial ideal. Then

a basis G = {g1, g2, . . . , gt} for I is a Groebner basis for I if and only if for all pairs i 6= j,

the remainder on division of S(gi, gj) by G (listed in some order) is zero.

Example 15. We return to the set G = {x + z, y − z} given in Example 12 to be a

Groebner basis of I = 〈x + z, y − z〉 using lex ordering x > y > z. Now we will prove

the set is a Groebner basis using Buchberger’s Criterion. We begin by computing the

S -polynomial S(g1, g2). Let α = multideg(g1) = (1, 0, 0) and β = multideg(g2) = (0, 1, 0).

Then γ = (1, 1, 0) and xγ = lcm(g1, g2) = xy. Now the S -polynomial is

S(g1, g2) =
xy

x
(x+ z)− xy

y
(y − z)

= xy + yz − xy + xz

= xz + yz.

Now we use the division algorithm to determine if xz + yzG is zero.

(xz + yz) : (x+ z) = z

−(xz + z2)

yz − z2 : (y − z) = z

−(yz − z2)

0

The remainder on the division of S(g1, g2) by G is zero. Therefore, by Buch-

berger’s Criterion, we verify that G is a Groebner basis for the ideal.

This result may lead us to believe that a Groebner basis of an ideal is simply

the set of polynomials that generate that ideal. The following example demonstrates that

is not the case.
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Example 16. Consider the ideal I = 〈−x2 + y,−x3 + z〉 and use lex ordering x > y > z.

We will show that F = {−x2+y,−x3+z} is not a Groebner basis. We begin by computing

the S -polynomial S(f1, f2). Let α = multideg(f1) = (2, 0, 0) and β = multideg(f2) =

(3, 0, 0). Then γ = (3, 0, 0) and xγ = lcm(f1, f2) = x3. Now the S -polynomial is

S(f1, f2) =
x3

−x2
(−x2 + y)− x3

−x3
(−x3 + z)

= −x(−x2 + y) + (−x3 + z)

= x3 − xy − x3 + z

= −xy + z.

Now we use the division algorithm to determine if (−xy + z)
F

is zero.

(−xy + z) : (−x2 + y) = 0

−0

−xy + z : (−x3 + z) = 0

−0

−xy + z

The remainder on division of S(f1, f2) by F is not zero so we conclude that, with the

monomial ordering specified, F is not a Groebner basis for the ideal.

If F had been a Groebner basis, we know changing the order of the divisors

would not produce a different remainder. However, changing the monomial ordering on

the set F can produce a different remainder as shown in the next example.

Example 17. Using the same ideal and generating set as Example 16 but specifying lex

ordering y > z > x, we have G = {y − x2, z − x3} with α = (0, 1, 0) and β = (0, 0, 1).

Then γ = (0, 1, 1) and xγ = yz. Now the S -polynomial is

S(g1, g2) =
yz

y
(y − x2)− yz

z
(z − x3)

= z(y − x2)− y(z − x3)

= yx3 − zx2.

Now using the division algorithm,
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(yx3 − zx2) : (y − x2) = x3

−(yx3 − x5)

−zx2 + x5 : (z − x3) = −x2

−(−zx2 + x5)

0

Since yx3 − zx2G = 0, we conclude G is a Groebner basis for the ideal when using lex

y > z > x ordering.

Buchberger’s Criterion allows us to check a proposed generating set to determine

if it is a Groebner basis. What shall we do if it is not? Fortunately, we need not guess at

random. The bi-conditional nature of the criterion suggests a practical way to construct

a Groebner basis.

3.5 Buchberger’s Algorithm

Although we showed that every nonzero ideal has a Groebner basis, we cannot

simply take the generating set of an ideal and assume it is a Groebner basis. The divi-

sion algorithm terminates when none of the LT of the divisors can divide the LT of the

dividend. If we want to extend the process so the division algorithm terminates with a

remainder of zero, we need additional divisors. Bruno Buchberger, an Austrian math-

ematician, published an algorithm in 1960 that derives these additional divisors using

division on S-polynomials. Buchberger invented the name Groebner bases in honor of his

thesis advisor, Wolfgang Groebner.

Theorem 3.22. (Buchberger’s Algorithm). [CLO15] Let I = 〈f1, f2, . . . , fs〉 6= {0}
be a polynomial ideal. Then a Groebner basis for I can be constructed in a finite number

of steps by the following algorithm:

Begin with the set of polynomials defining the ideal, F = {f1, f2, . . . , fs} and specify a

monomial ordering. Then,

1) Compute the S-polynomial S(fi, fj) for each pair {fi, fj} in F, i 6= j.

2) Divide each nonzero S-polynomial by the generating set F .

3) If the remainder S(fi, fj)
F 6= 0, then adjoin S(fi, fj)

F
to the set F so
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F ′ = F ∪ {S(fi, fj)
F }. Whenever S = 0 there is nothing new to add to the basis.

Repeat steps 1 - 3 until the set F ′ = F .

Buchberger’s Algorithm is demonstrated in the next example.

Example 18. Consider the ideal I = 〈f1, f2〉 in k[x, y] where f1 = x2y2 + xy and f2 =

y4− y2. Using lex ordering with x > y, we compute a Groebner basis using Buchberger’s

Algorithm. To compute the S-polynomial S(f1, f2), we have α = (2, 2), β = (0, 4) so

that xγ = x2y4. Now,

S(f1, f2) =
x2y4

x2y2
(x2y2 + xy)− x2y4

y4
(y4 − y2)

= x2y4 + xy3 − x2y4 + x2y2

= x2y2 + xy3.

Next we divide,

(x2y2 + xy3) : (x2y2 + xy) = 1

−(x2y2 + xy)

xy3 − xy : (y4 − y2) = 0

−0

xy3 − xy → S(f1, f2)
F

Since S(f1, f2)
F 6= 0, we revise our basis to include this new polynomial. We’ll call it

f3 and notice the remainder on division of S(f1, f2) by the revised set F ′ = {f1, f2, f3}
is zero. But we now need to compute S(f1, f3) and S(f2, f3) to continue the algorithm.

First, for S(f1, f3) we have α = (2, 2), β = (1, 3). So xγ = x2y3 and

S(f1, f3) =
x2y3

x2y2
(x2y2 + xy)− x2y3

xy3
(xy3 − xy)

= x2y3 + xy2 − x2y3 + x2y

= x2y + xy2.
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Now, we divide,

(x2y + xy2) : (x2y2 + xy) = 0

−0

x2y + xy2 : (y4 − y2) = 0

−0

x2y + xy2 : (xy3 − xy) = 0

−0

x2y + xy2 → S(f1, f3)
F

Since S(f1, f3)
F 6= 0, we call it f4 and add it to our basis. We notice the remainder

on division of S(f1, f3) by F ′′ = {f1, f2, f3, f4} is zero. We continue the algorithm with

S(f2, f3) which gives us α = (0, 4) and β = (1, 3). So xγ = xy4 and

S(f2, f3) =
xy4

y4
(y4 − y2)− xy4

xy3
(xy3 − xy)

= xy4 − xy2 − xy4 + xy2

= 0.

Since S(f2, f3) = 0, we have nothing new to add to the basis. We still need to compute

S-polynomials pairing f4 = x2y+xy2 with each of f1 = x2y2+xy, f2 = y4−y2, and f3 =

xy3 − xy. First,

S(f1, f4) =
x2y2

x2y2
(x2y2 + xy)− x2y2

x2y
(x2y + xy2)

= −xy3 + xy.

We notice that S(f1, f4) = −f3 so S(f1, f4)
F

= 0 giving us nothing new to add to the

basis. Proceeding with the the next S-polynomial,

S(f2, f4) =
x2y4

y4
(y4 − y2)− x2y4

x2y
(x2y + xy2)

= −x2y2 − xy5.
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Now we divide S(f2, f4) by {f1, f2, f3, f4},

(−x2y2 − xy5) : (x2y2 + xy) = −1

−(−x2y2 − xy)

−xy5 + xy : (xy3 − xy) = −y2

−(−xy5 + xy3)

−xy3 + xy : (xy3 − xy) = −1

−(−xy3 + xy)

0

Since S(f2, f4)
F

= 0, there is nothing new to add to the basis. So we continue with

S(f3, f4) =
x2y3

xy3
(xy3 − xy)− x2y3

x2y
(x2y + xy2)

= −x2y − xy4.

Now we divide S(f3, f4) by {f1, f2, f3, f4},

(−x2y − xy4) : (x2y + xy2) = −1

−(−x2y − xy2)

−xy4 + xy2 : (xy3 − xy) = −y

−(−xy4 + xy2)

0

Since (f3, f4)
F

= 0, the set is unchanged and there are no more S-polynomials to compute.

Hence, Buchberger’s Algorithm renders the Groebner basis F = {x2y2+xy, y4−y2, xy3−
xy, x2y + xy2} for I = 〈x2y2 + xy, y4 − y2〉 on lex ordering with x > y.

Buchberger’s Algorithm may render a Groebner basis that has more polynomials

than necessary. These redundant generators can be eliminated and the reduced set will

still be a Groebner basis.

Lemma 3.23. [CLO15] Let G be a Groebner basis of I ⊆ k[x1, x2, . . . , xn]. Let p ∈ G be

a polynomial such that LT (p) ∈ 〈 LT (G \{p}) 〉. Then G \{p} is also a Groebner basis

for I.

Proof. Since G is a Groebner basis of I, we have 〈LT(G)〉 = 〈LT(I)〉. Also since LT(p) ∈
〈 LT(G \{p})〉 and is a monomial, we know LT(p) is divisible by LT(gi) for some
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gi ∈ G \{p}. So, by removing LT(p) from the set of generators, we still have a Groebner

basis for I. That is 〈LT(G \{p})〉 = 〈LT(G)〉 = 〈LT(I)〉.

The Groebner basis G \{p} will contain a minimal number of elements if all

polynomials p with LT(p) ∈ 〈LT(G \{p})〉 are removed from G. We can further simplify

the members gi of a Groebner basis by scaling by 1
LC(gi)

. Below, we define a minimal

Groebner basis.

Definition 3.24. [CLO15] Let G = {g1, . . . , gs} be a Groebner basis of an ideal I ⊂
k[x1, . . . , xn]. Then G is a minimal Groebner basis if and only if for each i = 1, 2, . . . , s,

the polynomial gi is monic and its leading monomial LM(gi) does not divide LM(gj) for

any i 6= j.

Example 19. We return to the ideal I studied in Example 18. I = 〈x2y2 + xy, y4− y2〉.
We produced a Groebner basis with four members,

g1 = x2y2 + xy

g2 = y4 − y2

g3 = xy3 − xy

g4 = x2y + xy2

The polynomials are all monic but we see that LT(g1) = y · LT(g4) so we can remove g1

from the basis to obtain a minimal Groebner basis. This definition considers only the

lead terms of the Groebner basis but we know the polynomials are linear combinations of

the monomials in 〈LT(I)〉 and so uniqueness of the minimal basis is not guaranteed. For

uniqueness, we impose an additional restriction on the Groebner basis described below.

Definition 3.25. [CLO15] A reduced Groebner basis for a polynomial ideal I is a Groeb-

ner basis G for I such that:

(i) LC(p) = 1 for all p ∈ G.

(ii) For all p ∈ G, no monomial of p lies in 〈LT(G \{p})〉.

So, a reduced Groebner basis verifies that the leading term of any polynomial

in the basis does not divide any term of another polynomial in the basis.

Example 20. We return once more to the ideal of Example 18 and the minimal Groebner

basis identified in Example 19, G = {y4 − y2, xy3 − xy, x2y + xy2}. We can verify that
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none of the leading terms y4, xy3, x2y divides any terms of the polynomials in G so we

call G the reduced Groebner basis for I.

The Ideal Membership Problem was previously mentioned. As we apply alge-

braic techniques to proving geometric theorems, we will be concerned with determining

if a polynomial is a member of an ideal. Suppose we are given two ideals in terms of their

generators. We can determine if they are distinct ideals or the same ideal by examining

the reduced Groebner basis. If the set of generators of the reduced Groebner basis for

each ideal is the same, then the ideals they generate are the same. This fact alleviates

ambiguity in our efforts.
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Chapter 4

Algebra-Geometry

Correspondence

Now that we have a method to make the study of ideals of polynomial rings

more manageable, we return to the task of correlating ideals and varieties. This will

enable the application of algebraic techniques to the proving of the geometric theorems

to be presented in this thesis.

4.1 Hilbert’s Nullstellenatz

An important relationship between ideals of polynomial rings and varieties was

discovered and proven by David Hilbert in 1900. Nullstellenatz is a German word mean-

ing theorem of zeros and will help us determine which ideals correspond to varieties.

In Section 2.3 we constructed a map from an affine variety V ⊂ kn to an

ideal I(V ) by defining I(V ) to be the set of polynomials that vanish for each n-tuple

in the variety. Conversely, if we have an ideal I ⊂ k[x1, x2, . . . , xn], the variety of the

ideal is the set of n-tuples that make all the polynomials in the ideal vanish. That

is, V(I) = {(a1, a2, . . . , an) ∈ kn | f(a1, a2, . . . , an) = 0 for all f ∈ I}. Furthermore,

Proposition 3.16 tells us that V(I) is an affine variety so we have a map from ideals of

polynomial rings to affine varieties. These two maps give us a correspondence between

ideals and varieties. It is natural to ask if the maps are one-to-one. We will show in the

next example that different ideals can give the same variety so the map I → V(I) is not

one-to one.

Example 21. Consider the ideals I = 〈x〉 and J = 〈x2〉 ∈ k[x]. Since x /∈ 〈x2〉,
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〈x〉 6= 〈x2〉. However, V(I) = V(J) = {0}.

In the discussion following Example 2, we noted that a variety with more than

one polynomial may be empty and that in R2 the graphical representation would be

curves with no points in common. Consider also V (y − x2 − 1) ∈ R2. The solutions to

y − x2 − 1 = 0 are (i, 0) and (−i, 0) but we would say V (y − x2 − 1) = ∅ since these

solutions are not in R2. In fact, the variety of any ideal generated by a polynomial with

real coefficients that has no real roots will be empty. Our dilemma stems from the fact

that we are not working in an algebraically closed field. In this section, we will study how

working in an algebraically closed field eliminates the problem of having different ideals

represent the empty variety. When working in an algebraically closed field, the only ideal

whose corresponding variety is empty is the ideal that generates the entire ring. We begin

with a lemma dealing with the one variable case when the ring is k[x].

Lemma 4.1. [CLO15] Let k be an algebraically closed field and let I ⊂ k[x] be an ideal.

Then V(I) = ∅ if and only if I = k[x].

Proof. Since k[x] is a principal ideal domain, any ideal in k[x] can be generated by a

single polynomial. That is, I = 〈f〉 for some polynomial f ∈ k[x]. The variety V(I) of

the ideal is the set of a ∈ k such that f(a) = 0. We are working with an algebraically

closed field so every polynomial, except the constant polynomials, has a solution a for

f(a) = 0. These solutions are called roots of the polynomial. Therefore, V(I) 6= ∅ unless

f is a nonzero constant. In the case where f is a nonzero constant, its multiplicative

inverse, g = 1
f is also in k and as a result, 1 = g · f ∈ I. This means p = p · 1 ∈ I for

all p ∈ k[x]. In other words, I = k[x]. Since every nonzero constant polynomial in the

ring is also in the ideal and we know that a nonzero constant polynomial has no roots,

the collection of polynomials in the ideal will not have a common root. So, when k is

algebraically closed I = k[x], the ideal that represents the entire ring, is the only ideal

that yields V(I) = ∅.

This property also applies to rings of polynomials in more than one variable.

As long as the coefficients come from an algebraically closed field, the only ideal of

k[x1, x2, . . . , xn] that yields an empty variety is the ideal that represents the entire ring.

This result is precisely stated in the next theorem.

Theorem 4.2. (The Weak Nullstellenatz). [CLO15] Let k be an algebraically closed

field and let I ⊂ k[x1, x2, . . . , xn] be an ideal. Then V(I) = ∅ if and only if I =

k[x1, x2, . . . , xn].
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The proof uses induction on the number of variables and uses the lemma above

as the base case. An important element of the proof is that 1 ∈ I if and only if I =

k[x1, x2, . . . , xn]. If 1 ∈ k[x1, x2, . . . , xn], then h = h · 1 ∈ I for all h ∈ k[x1, x2, . . . , xn].

It follows that I = k[x1, x2, . . . , xn]. On the other hand, if I = k[x1, x2, . . . , xn], then 1

∈ k[x1, x2, . . . , xn] = I. The remaining details of the proof are given on pages 177 - 178

of [CLO15].

To prove the geometric theorems in this thesis, we will need to show that the

variety on the hypotheses and conclusions of the theorems is not empty. The polynomials

that represent the hypotheses and conclusions will need to have a common zero. The Weak

Nullstellensatz tells us that a variety V(f1, f2, . . . , fs) = ∅ if and only if 1 ∈ 〈f1, f2, . . . , fs〉.
We saw in the last chapter that uniqueness is a feature of a reduced Groebner basis for

an ideal. So we can observe that for any monomial ordering, {1} is the only reduced

Groebner basis of the ideal 〈1〉 = k[x1, x2, . . . , xn].

Although the Weak Nullstellensatz helps us determine if a system of polynomials

with coefficients in an algebraically closed field has a solution, it does not guarantee that

if there is a solution, that solution results from a unique ideal. Consider again the ideals

given in Example 21. We saw that 〈x〉 6= 〈x2〉 but V(x) = V(x2) = {0}. Now 0 ∈ C
and the field of complex numbers is algebraically closed. Hence, the map I → V(I) is

not one-to one despite working with an algebraically closed field. We can expand on this

example to consider multivariable polynomials to better understand why the map is not

one-to-one. Consider the ideals 〈x, y〉 and 〈x2, y〉. Since (x, y) /∈ 〈x2, y〉, 〈x, y〉 6= 〈x2, y〉.
However, the variety on both these ideals is {(0, 0)} ∈ C2. In fact, if we consider any ideal

of the form 〈xm, yn〉 where m and n are integers greater than one, the variety will be the

same ordered pair. Thus a reason that the map fails to be one-to-one is that a power of a

polynomial vanishes at the same point(s) as the original polynomial. The next theorem

states that over an algebraically closed field, this is the only reason that the map fails to

be one-to-one. If a polynomial f vanishes at all the points of some variety V(I) then the

ideal must contain some power of the polynomial f .

Theorem 4.3. (Hilbert’s Nullstellensatz). [CLO15] Let k be an algebraically closed

field. If f1, f2, . . . , fs ∈ k[x1, x2, . . . , xn], then f ∈ I(V(f1, f2, . . . , fs)) if and only if

fm ∈ 〈f1, f2, . . . , fs〉

for some m ≥ 1.
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Plan for proof. The proof of this theorem is not as straightforward as some other proofs

we have examined. As such, we pause to engage in a problem solving strategy to help

give some direction to the proof. We consider what we are given and what we want to

show. We are given that a function is a member of an ideal. Specifically, the function

is a member of an ideal of a variety. This means the function has a common zero with

the other functions in the variety. We want to show that some power of the function is

in the ideal generated by the functions that are in the variety. To prove this theorem

we will need to introduce a power of the function f . Strategies learned in secondary

algebra include raising both sides of an equation to a power and multiplying both sides

of an equation by the desired power of f . To use either of these strategies, we need an

equation. We know that if f ∈ I we can write f as a linear combination of the functions

in the ideal and the functions in the ring. We also must consider that we are working

with the ideal of a variety and for f to be in the ideal, the variety must not be empty. We

could attempt to find a solution, an n-tuple in the variety, but this may be a cumbersome

process. Reflecting on the previous result, the Weak Nullstellensatz, brings to mind that

it may be easier to prove a variety is empty. Clearly, if f has a common zero with the

functions in the variety, 1 − f will not have a common zero with those functions. If we

introduce a new ideal adjoining the original functions with 1 − f , we could show that

the variety on the ideal is empty. The advantage here is that we could then express 1

as a linear combination of f and the original functions. So far, we have a plan to show

the variety is not empty but we have not found a way to introduce a power of f . We

noted that we could multiply both sides of an equation by a power of f and this seems

like a good approach since we can write an equation with 1 on one side of the equation.

However, the other side of the equation would not give us what we desire. We need to

have a linear combination that does not include f . Again we turn to secondary algebra

and recall that multiplying by the reciprocal allows us to “cancel” an algebraic object.

This leads us to introducing an extra variable that will be the multiplicative inverse of f .

To simplify the notation, a proof for the polynomial ring in two variables will

be shown. The general proof is given on pages 179 - 180 in [CLO15].

Proof. For an algebraically closed field k, if f1, f2, . . . , fs ∈ k[x1, x2], we want to show

that given a nonzero polynomial f that vanishes at every ordered pair (a1, a2) for which

f1, f2, . . . , fs vanish there exists an integer m ≥ 1 such that fm ∈ 〈f1, f2, . . . , fs〉. For

fm to be in the ideal, there must be polynomials A1, A2, . . . , As ∈ k[x1, x2] so that fm

is a linear combination of Ai and fi for 1 ≤ i ≤ s. As described in the plan above, we
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introduce a third variable x3 and a new ideal Ĩ = 〈f1, f2, . . . , fs, 1− x3f〉 ⊆ k[x1, x2, x3].

We will show Ĩ = k[x1, x2, x3]. When Ĩ is the entire ring, the variety V(Ĩ) is empty.

Let (a1, a2, a3) ∈ k3. There are two possibilities to consider. Either (a1, a2) is a common

zero of f1, f2, . . . , fs or it is not. We will show that in either case, V(Ĩ) = ∅. First,

if (a1, a2) is not a common zero of f1, f2, . . . , fs there is some fi with 1 ≤ i ≤ s, such

that fi(a1, a2) 6= 0. Evaluating fi at (a1, a2, a3) does not change this result and having

fi(a1, a2, a3) 6= 0 tells us (a1, a2, a3) /∈ V(Ĩ). Hence, in this case, V(Ĩ) = ∅.
Now, if (a1, a2) is a common zero of the polynomials f1, f2, . . . , fs and we assume

f ∈ I(V(f1, f2, . . . , fs)), then f(a1, a2) = 0. For this case, we will show V(Ĩ) = ∅ by con-

tradiction. Suppose (a1, a2, a3) ∈ V(Ĩ). Since 1−x3f ∈ Ĩ, we expect 1−x3f(a1, a2, a3) =

0. However, 1 − x3f(a1, a2, a3) = 1 − x3 · 0 = 1. Hence, (a1, a2, a3) /∈ V(Ĩ) and we con-

clude V(Ĩ) = ∅. Having V(Ĩ) = ∅ allows us to apply the Weak Nullstellensatz to state

1 ∈ Ĩ. Thus, we can write 1 as a linear combination of polynomials in Ĩ and polynomials

p1, p2, . . . , ps, p in the ring k[x1, x2, x3] as follows:

1 = p1(x1, x2, x3)f1(x1, x2) + p2(x1, x2, x3)f2(x1, x2) + · · ·+ ps(x1, x2, x3)fs(x1, x2)+

p(x1, x2, x3)(1− x3f(x1, x2)).

Recalling from the plan for our proof that the purpose of introducing a third

variable was to have the multiplicative inverse of our function, we let x3 = 1
f(x1,x2)

and

our equation is

1 = p1(x1, x2,
1
f )f1(x1, x2) + p2(x1, x2,

1
f )f2(x1, x2) + · · ·+ ps(x1, x2,

1
f )fs(x1, x2)+

p(x1, x2,
1
f )(1− 1

f · f(x1, x2)). Since 1− 1
f · f(x1, x2) = 0, we have

1 = p1(x1, x2,
1
f )f1(x1, x2) + p2(x1, x2,

1
f )f2(x1, x2) + · · ·+ ps(x1, x2,

1
f )fs(x1, x2).

Now we can multiply both sides of the equation by fm, where m is a positive

integer large enough to clear all the denominators on the right side of the equation which

gives us the desired result,

fm = A1f1 +A2f2 + · · ·+Asfs for polynomials Ai ∈ k[x1, x2].

The Nullstellensatz helps us express geometric objects with the precise language

of algebra. The symbolic and numeric manipulation of algebraic objects give practical

tools for applications such as the proofs included in this thesis.

4.2 Radical Ideals

As we continue to explore the connection between varieties and ideals, we con-

sider the kinds of ideals that can be recognized as the ideal of a variety. In other words,
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we want to identify those ideals that contain all the polynomials that vanish on some

variety V . The following lemma reveals an important feature of such ideals.

Lemma 4.4. [CLO15] Let V be a variety. If fm ∈ I(V ), then f ∈ I(V ).

Proof. Let V be a variety and a be an arbitrary n-tuple in V . We are assuming fm ∈ I(V ).

This means that (f(a))m = 0. But (f(a))m = 0 only when f(a) = 0. Since a is an

arbitrary n-tuple, then f vanishes for all a ∈ I(V ). This means f ∈ I(V ).

This lemma tells us that an ideal consisting of all the polynomials that vanish on

a particular variety V has the property that if some power of a polynomial is a member of

the ideal, then the polynomial itself is a member of the ideal. We call such ideals radical

ideals and provide the definition below.

Definition 4.5. [CLO15] An ideal I is a radical ideal if fm ∈ I for some integer m ≥ 1

implies that f ∈ I.

This definition allows us to restate Lemma 4.4 to classify ideals of varieties as

radical ideals. More precisely, for a given variety V, I(V ) is a radical ideal.

Definition 4.6. [CLO15] Let I ⊂ k[x1, x2, . . . , xn] be an ideal. The radical of I, denoted
√
I is the set {f | fm ∈ I for some integer m ≥ 1}.

Lemma 4.7. [CLO15] If I is an ideal in k[x1, x2, . . . , xn] then
√
I is an ideal in

k[x1, x2, . . . , xn] containing I. Furthermore
√
I is a radical ideal.

Proof. To show that I ⊆
√
I, consider any polynomial f ∈ I. Then f1 ∈ I and by

Definition 4.6, f ∈
√
I. Hence, I ⊆

√
I.

To verify that
√
I is an ideal, we need to show that

√
I satisfies the three

conditions of Definition 2.9. Since I is an ideal, 0 ∈ I and since I ⊆
√
I, 0 ∈

√
I. Now

suppose f, g ∈
√
I. Then by Definition 4.6, there exist positive integers m and n such

that fm, gn ∈ I. We need to show that f + g ∈
√
I. Consider the binomial expansion

(f + g)m+n−1. From secondary algebra, we have that each term of the expansion has a

factor f igj with i + j = m + n − 1. It follows that either i ≥ m or j ≥ n so that either

f i or gj is in I. This means f igj ∈ I so that each term of the expansion is in I. Hence,

(f + g)m+n−1 ∈ I and by Definition 4.6, f + g ∈
√
I. To satisfy the third condition,

suppose f ∈
√
I and h ∈ k[x1, x2, . . . , xn]. Then fm ∈ I and hm ∈ k[x1, x2, . . . , xn] for

some integer m ≥ 1. We need to show hf ∈
√
I. Since I is an ideal, (hf)m = hmfm ∈ I.

Hence, hf ∈
√
I. Since all conditions are satisfied,

√
I is an ideal.



42

Finally, to show
√
I is a radical ideal, suppose fm ∈

√
I. Then by Definition

4.6, there is some integer n ≥ 1 such that (fm)n = fmn ∈ I. This implies f ∈
√
I since

mn ≥ 1. Hence,
√
I is radical.

With the introduction of radical ideals, the relationship between algebraic and

geometric concepts can be more easily recognized in another form of Hilbert’s Nullstel-

lensatz.

Theorem 4.8. (The Strong Nullstellensatz). [CLO15] Let k be an algebraically closed

field. If I is an ideal in k[x1, x2, . . . , xn] , then

I(V(I)) =
√
I.

Proof. Let k be an algebraically closed field and I ⊆ k[x1, x2, . . . , xn] be an ideal. We will

show I(V(I)) =
√
I by double inclusion. First, let f ∈

√
I so that fm ∈ I for some integer

m ≥ 1. This means that fm vanishes on V(I). In other words, fm(a1, a2, . . . , an) = 0 for

all (a1, a2, . . . , an) ∈ V(I). But fm(a1, a2, . . . , an) = (f(a1, a2, . . . , an))m which equals

zero only when f(a1, a2, . . . , an) = 0. In other words, f vanishes on V(I) so f ∈ I(V(I))

and
√
I ⊆ I(V(I)).

Conversely, let f ∈ I(V(I)) so that f(a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) ∈
V(I). Since k is an algebraically closed field, we can apply Theorem 4.3 and conclude

there exists some integer m ≥ 1 such that fm ∈ I. Hence, f ∈
√
I and I(V(I)) ⊆

√
I.

Now we re-examine the maps between ideals and varieties.

Theorem 4.9. (The Ideal-Variety Correspondence). [CLO15] Let k be an arbitrary

field.

(i) The maps

affine varieties
I−→ ideals

and

ideals
V−→ affine varieties

are inclusion-reversing, i.e., if I1 ⊆ I2 are ideals, then V(I1) ⊇ V(I2) and, similarly,

if V1 ⊆ V2 are varieties, then I(V1) ⊇ I(V2).

(ii) For any variety V,
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V(I(V )) = V ,

so that I is always one-to-one. On the other hand, any ideal I satisfies

V(
√
I) = V(I).

(iii) If k is algebraically closed, and we restrict to radical ideals, then the maps

affine varieties
I−→ radical ideals

and

radical ideals
V−→ affine varieties

are inclusion reversing bijections which are inverses of each other.

Proof. (i) First, we will show that the map I is inclusion reversing. That is, for varieties V1

and V2, we will show V1 ⊆ V2 implies I(V2) ⊆ I(V1). Let f ∈ I(V2). Then f(a1, . . . , an) = 0

for all n-tuples (a1, a2, . . . , an) ∈ V2. Since V1 ⊆ V2, f(a1, a2, . . . , an) = 0 for all n-tuples

in V1. Hence, f ∈ I(V1) and I(V2) ⊆ I(V1).

Next we will show that the map V is inclusion reversing. For ideals I1 and I2 we

will show I1 ⊆ I2 implies V(I2) ⊆ V(I1). Consider the arbitrary n-tuple (a1, a2, . . . , an) ∈
V(I2). Then f(a1, a2, . . . , an) = 0 for all polynomials f ∈ I2. Since I1 ⊆ I2, the polyno-

mials in I1 are included in this collection of polynomials that vanish on (a1, a2, . . . , an).

Hence, (a1, a2, . . . , an) ∈ V(I1) and V(I2) ⊆ V(I1).

(ii) First we show that the map I is one-to-one by double inclusion. That is, we

will show for any variety V , V(I(V )) = V . Let V = V(f1, f2, . . . , fs) be an affine variety

and let (a1, a2, . . . , an) ∈ V . Then for all f ∈ I(V ), f(a1, a2, . . . , an) = 0. This means

the n-tuple (a1, a2, . . . , an) ∈ V(I(V )) and V ⊆ V(I(V )). To show the other inclusion,

we note that each of the polynomials f1, f2, . . . , fs ∈ I(V ) since V contains the n-tuples

that make these polynomials vanish. Consequently, the ideal 〈f1, f2, . . . , fs〉 ⊆ I(V ). In

part (i), we showed that the map V is inclusion reversing so when we apply the map to

these ideals, we have V(I(V )) ⊆ V(〈f1, f2, . . . , fs〉) = V . Hence, V(I(V )) = V and I is

one-to-one.

We will again use double inclusion to show V(
√
I) = V(I). We showed in the

proof of Lemma 4.7 that I ⊆
√
I and by part (i) above we know the map V is inclusion
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reversing so we have V(
√
I) ⊆ V(I). For the other inclusion, consider an arbitrary n-

tuple a ∈ V(I) and an arbitrary polynomial f ∈
√
I. Then fm ∈ I for some m ≥ 1. This

means fm(a) = (f(a))m = 0 which implies f(a) = 0. In other words, a ∈ V(
√
I) which

means V(I) ⊆ V(
√
I). Hence, V(

√
I) = V(I).

(iii) We want to show that when k is an algebraically closed field and I is a

radical ideal, V(I(V )) = V and I(V(I)) = I. With Lemma 4.7 and Definition 4.5, we

concluded that I(V ) is a radical ideal and we showed in part (ii) that V(I(V )) = V . We

know from the Strong Nullstellensatz I(V(I)) =
√
I so we need to show that when I is

radical,
√
I = I. We will use double inclusion to show the equality. Suppose I is radical.

We showed in the proof of Lemma 4.7 that I ⊆
√
I. To show the opposite inclusion,

suppose that f ∈
√
I. By Definition 4.5, there exists an integer m ≥ 1 such that fm ∈ I

and since I is radical, f ∈ I. Thus,
√
I ⊆ I. Consequently, when I is radical,

√
I = I

and by the Strong Nullstellensatz, for a radical ideal I, I(V(I)) = I. Hence the maps I

and V are inverses of each other and define bijections between radical ideals and affine

varieties.

This result is pivotal in our effort to use algebraic methods to prove geometric

theorems. We can now discuss varieties and radical ideals interchangeably when working

in an algebraically closed field. We will express the hypotheses and conclusion(s) as

polynomials. Then to determine if a conclusion polynomial vanishes on the same variety

as the hypotheses, we will check to see if the conclusion polynomial is in the radical ideal

generated by the set of hypothesis polynomials. The strategy used to prove Hilbert’s

Nullstellensatz is instrumental in checking for such membership as described in the next

proposition.

Proposition 4.10. (Radical Membership). [CLO15] Let k be an arbitrary field and

let I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn] be an ideal. Then g ∈
√
I if and only if the constant

polynomial 1 belongs to the ideal Ĩ = 〈f1, . . . , fs, 1− yg〉 ⊆ k[x1, . . . , xn, y], in which case

Ĩ = k[x1, . . . , xn, y].

Proof. Suppose g ∈
√
I. By definition, gm ∈ I for some integer m ≥ 1. Since I ⊆ Ĩ, we

have gm ∈ Ĩ. We also have 1−yg ∈ Ĩ. We want to show the polynomial 1 is a member of

Ĩ. Notice that 1 = ymgm + (1− ymgm) and by factoring the binomial 1− ymgm we have

1 = ymgm + (1− yg)(1 + yg + y2g2 + · · ·+ ym−1gm−1).



45

We already know ymgm ∈ Ĩ since gm ∈ Ĩ and ym is in the ring k[x1, x2, . . . , xn, y]. Also,

since 1− yg ∈ Ĩ and (1 + yg + y2g2 + · · ·+ ym−1gm−1) ∈ k[x1, x2, . . . , xn, y] we conclude

that 1− ymgm ∈ Ĩ. Hence, by closure, 1 ∈ Ĩ.

Conversely, suppose 1 ∈ Ĩ. The proof of Hilbert’s Nullstellensatz (Theorem

4.3) demonstrates that when 1 ∈ Ĩ , gm can be expressed as a linear combination of the

polynomials in I and polynomials in the ring k[x1, x2, . . . , xn]. This means gm ∈ I and

g ∈
√
I.

4.3 Operations on Ideals

Many natural operations on varieties correspond to natural operations on their

ideals. Since ideals are algebraic objects, operations on ideals lend themselves to algo-

rithms that can be efficiently completed with the aid of technology. This allows us to use

the convenience of computer programs to work with varieties. Our primary objective in

the geometric theorems to be presented in the next chapter is to determine if a conclu-

sion polynomial vanishes on the same variety as the collection of hypothesis polynomials.

The algorithm to determine radical membership plays a crucial role in our ability to use

technology to complete this task.

In this section we define sums and products of ideals and show that these are

also ideals. Then we show how these operations correspond to operations on varieties.

Definition 4.11. [CLO15] If I and J are ideals of the ring k[x1, x2, . . . , xn], then the

sum of I and J , denoted I + J , is the set

I + J = {f + g | f ∈ I and g ∈ J}.

Proposition 4.12. [CLO15] If I and J are ideals in k[x1, x2, . . . , xn], then I + J is also

an ideal in k[x1, x2, . . . , xn].

Proof. To verify that I + J is an ideal, we need to show that I + J satisfies the three

conditions of Definition 2.9. Since I and J are ideals, 0 ∈ I and 0 ∈ J so that 0 = 0 + 0 ∈
I + J . Now suppose h1, h2 ∈ I + J . Then there exist f1, f2 ∈ I and g1, g2 ∈ J such that

h1 = f1 + g1 and h2 = f2 + g2. Now h1 + h2 = f1 + g1 + f2 + g2 = (f1 + f2) + (g1 + g2).

Since I and J are ideals, f1 + f2 ∈ I and g1 + g2 ∈ J and by the definition of I + J ,

h1+h2 ∈ I+J . To satisfy the third condition, suppose h ∈ I+J and p ∈ k[x1, x2, . . . , xn].

Then, there exist f ∈ I and g ∈ J such that h = f + g. So, p ·h = p · (f + g) = p · f + p · g
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Since I and J are ideals, p ·f ∈ I and p ·g ∈ J and by the definition of I+J , p ·h ∈ I+J .

Since all conditions are satisfied, I + J is an ideal.

Proposition 4.13. [CLO15] Let I = 〈f1, f2, . . . , fr〉 and J = 〈g1, g2, . . . , gs〉. Then I+J

is the smallest ideal containing I and J . Furthermore, I + J = 〈f1, . . . , fr, g1, . . . , gs〉.

Proof. Suppose H is an ideal that contains I and J . Then H must contain all polynomials

f ∈ I and all polynomials g ∈ J . Since H is an ideal, all sums f + g ∈ H. In particular,

I + J ⊆ H. Therefore, every ideal containing I and J contains I + J and hence, I + J

must be the smallest ideal containing I and J .

We use double inclusion to show I + J = 〈f1, . . . , fr, g1, . . . , gs〉. Since I and J

are ideals, 0 ∈ I and 0 ∈ J so that 〈f1 + 0, f2 + 0, . . . , fr + 0, 0 + g1, 0 + g2, . . . , 0 + gs〉 =

〈f1, f2, . . . , fr, g1, g2, . . . , gs〉 ⊆ I + J . Now 〈f1, . . . , fr, g1, . . . , gs〉 is an ideal that contains

I and J so that I + J ⊆ 〈f1, . . . , fr, g1, . . . , gs〉. Thus, I + J = 〈f1, . . . , fr, g1, . . . , gs〉.

We can generalize the equality of Proposition 4.13 as the following corollary.

Corollary 4.14. [CLO15] If f1, f2, . . . , fr ∈ k[x1, x2, . . . , xn], then

〈f1, f2, . . . , fr〉 = 〈f1〉+ 〈f2〉+ · · ·+ 〈fr〉.

Next we consider the nature of the variety on the sum of ideals. Since the sum of

two ideals must contain both ideals, the variety on the sum must include all the n-tuples

where all polynomials in both ideals vanish. This collection is the intersection of the

varieties of the two ideals as stated in the next theorem.

Theorem 4.15. [CLO15] If I and J are ideals in k[x1, x2, . . . , xn], then

V(I + J) = V(I) ∩V(J).

Proof. We use double inclusion to prove the equality. First, suppose the arbitrary n-tuple

a = (a1, a2, . . . , an) is in V (I + J). Then a ∈ V(I) since I ⊆ I + J . Similarly, since

J ⊆ I + J , a ∈ V(J). Hence, a ∈ V(I) ∩V(J). Consequently, V(I + J) ⊆ V(I) ∩V(J).

Now, suppose a ∈ V(I) ∩ V(J). Then a ∈ V(I) and a ∈ V(J) so for all

f ∈ I, f(a) = 0 and for all g ∈ J, g(a) = 0. Let h be any polynomial in I + J . Then

there exist f ∈ I and g ∈ J such that h = f + g. Thus, h(a) = f(a) + g(a) = 0 + 0 = 0.

Hence, a ∈ V(I+J). Consequently,V(I)∩V(J) ⊆ V(I+J) and we conclude V(I+J) =

V(I) ∩V(J).
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Now we explore the product of ideals and show that they correspond to the

union of varieties.

Definition 4.16. [CLO15] If I and J are ideals of the ring k[x1, x2, . . . , xn], then the

product of I and J, denoted I · J , is the set

I · J = {f1g1 + · · ·+ frgr | f1, . . . , fr ∈ I and g1, . . . , gr ∈ J, r a positive integer}.

Proposition 4.17. If I and J are ideals in k[x1, x2, . . . , xn] then I · J is also an ideal in

k[x1, x2, . . . , xn].

Proof. To verify that I · J is an ideal, we need to show that I · J satisfies the three

conditions of Definition 2.9. Since I and J are ideals, 0 ∈ I and 0 ∈ J . So 0 = 0 · 0 ∈
I · J since we have a product of an element of I and an element of J . Now suppose

h1, h2 ∈ I · J . Then h1 = f1g1 + f2g2 + · · · + frgr where fi ∈ I and gi ∈ J , 1 ≤ i ≤ r.

Also, h2 = f ′1g
′
1 + f ′2g

′
2 + · · · + f ′sg

′
s where f ′j ∈ I and g′j ∈ J , 1 ≤ j ≤ s. Now the sum

h1+h2 = f1g1+f2g2+· · ·+frgr+f ′1g
′
1+f ′2g

′
2+· · ·+f ′sg′s is comprised of terms that are the

product of an element of I and an element of J . Thus, h1+h2 ∈ I ·J . To satisfy the third

condition, suppose h ∈ I · J and p ∈ k[x1, x2, . . . , xn]. Then h = f1g1 + f2g2 + · · ·+ frgr

where fi ∈ I and gi ∈ J , 1 ≤ i ≤ r. So, the product

p · h = p(f1g1 + f2g2 + · · ·+ frgr)

= pf1g1 + pf2g2 + · · ·+ pfrgr

= (pf1)g1 + (pf2)g2 + · · · (pfr)gr.

For 1 ≤ i ≤ r, each product pfi ∈ I, since p ∈ k[x1, x2, . . . , xn] and fi ∈ I. Thus, each

term of the product p · h is a product of an element from I and an element from J so

that p · h ∈ I · J . Since all conditions are satisfied, I · J is an ideal.

The product of the ideals I and J is not simply the set of products with one

factor an element from I and the other factor an element from J . If we defined the product

this way, we would not have a set that was closed under addition and the product I · J
would not be an ideal. However, we can express the product I ·J in terms of its generators

when we are given the generators for both the ideals I and J .

Proposition 4.18. [CLO15] Let I = 〈f1, f2, . . . , fr〉 and J = 〈g1, g2, . . . , gs〉. Then I · J
is generated by the set of all products of generators of I and J:

I · J = 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.
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Proof. We use double inclusion to prove the equality. First, suppose h ∈ 〈figj | 1 ≤ i ≤
r, 1 ≤ j ≤ s〉. Then h =

∑
pijfigj where pij ∈ k[x1, x2, . . . , xn]. Since each fi is a

member of the ideal I and each pij is a member of the ring, then each pijfi ∈ I. Also,

each gj ∈ J so that each term of the sum is a product of an element from I and an

element from J which makes the sum an element of I · J . Consequently, 〈figj | 1 ≤ i ≤
r, 1 ≤ j ≤ s〉 ⊆ I ·J . Now to show the opposite inclusion, we recall that each polynomial

in I ·J is a sum of polynomials of the form f ·g with f ∈ I and g ∈ J . But we can express

f in terms of the generators f1, f2, . . . , fr and g in terms of the generators g1, g2, . . . , gs.

For polynomials a1, a2, . . . , ar, b1, b2, . . . , bs ∈ k[x1, x2, . . . , xn], we have

f = a1f1 + a2f2 + · · ·+ arfr and g = b1g1 + b2g2 + · · ·+ bsgs.

Thus, we can write products of the form f · g as

f · g = (a1f1 + a2f2 + · · ·+ arfr)(b1g1 + b2g2 + · · ·+ bsgs)

= a1f1b1g1 + a1f1b2g2 + · · ·+ a1f1bsgs + a2f2b1g1 + a2f2b2g2

+ · · ·+ a2f2bsgs + · · ·+ arfrbsgs

= (a1b1)f1g1 + (a1b2)f1g2 + · · ·+ (a1bs)f1gs + (a2b1)f2g1 + (a2b2)f2g2

+ · · ·+ (a2bs)f2gs + · · ·+ (arbs)frgs.

Notice that for 1 ≤ i ≤ r and 1 ≤ j ≤ s, aibj ∈ k[x1, x2, . . . , xn] so that the product

f · g is in the ideal generated by the polynomials figj for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

That is, products of the form f · g ∈ 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉. Consequently,

I · J ⊆ 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉. Thus, I · J = 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.

Next we consider the nature of the variety on the product of ideals. The next

theorem states that the variety on the product of ideals corresponds to the union of the

varieties.

Theorem 4.19. [CLO15] If I and J are ideals in k[x1, x2, . . . , xn], then

V(I · J) = V(I) ∪V(J).

Proof. We use double inclusion to prove the equality. First, suppose a = (a1, a2, . . . , an)

is an arbitrary n-tuple in V(I · J). Then for all f ∈ I and for all g ∈ J , f(a)g(a) = 0.

We consider two possibilities, either f(a) = 0 for all f ∈ I or f(a) 6= 0 for some f ∈ I. If

f(a) = 0 for all f ∈ I, then a ∈ V(I). If f(a) 6= 0, for some f ∈ I, then we must have

g(a) = 0 for all g ∈ J , in which case a ∈ V(J). In either case, a ∈ V(I) ∪ V(J) and
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V(I · J) ⊆ V(I)∪V(J). Conversely, suppose a ∈ V(I)∪V(J). Then either f(a) = 0 for

all f ∈ I or g(a) = 0 for all g ∈ J . Thus, f(a)g(a) = 0 for all f ∈ I and for all g ∈ J . So,

for all h ∈ I · J , h(a) = 0. This means a ∈ V(I · J) and V(I) ∪V(J) ⊆ V(I · J). Thus,

V(I · J) = V(I) ∪V(J).

4.4 Irreducible Varieties and Prime Ideals

We continue to explore the relationship between algebraic and geometric objects

by considering one of the most fundamental topics studied in secondary algebra: how to

know if an algebraic expression is in simplest form and if it is not, how to simplify it.

This notion of simplifying is learned early in mathematics education. Children in pri-

mary school learning to make sense of numbers and quantities practice with money and

are taught the simplest way to make change. They group types of coins and denomina-

tions of dollars so that they manage the fewest number of items. Students learn how to

determine if fractions are in simplest form by checking for common factors in the numer-

ator and denominator. This is extended to rational expressions where the numerators

and denominators are polynomials that may need to be factored.

Simplifying algebraic objects is a familiar concept. In secondary geometry, we

describe points, lines and planes as “undefined” objects but we need to determine what

it means to simplify geometric objects. We need to know how to recognize when a

geometric object is in simplest form. Specifically, we need to know how to recognize an

irreducible variety. We begin this section with a definition and then take advantage of

the correspondence between varieties and ideals to aid in this endeavor.

Definition 4.20. [CLO15] An affine variety V ⊆ kn is irreducible if whenever V is

written in the form V = V1 ∪ V2, where V1 and V2 are affine varieties, then either V1 = V

or V2 = V .

We notice that this definition depends on a variety being expressed as a union of

two varieties. We showed in Section 2.2 that the finite union of affine varieties is an affine

variety but we still do not have a clear method for decomposing a variety and proving

that a variety is irreducible. Working with ideals allows us to take advantage of algebraic

operations so we next explore which types of ideals correspond to irreducible varieties.

Definition 4.21. [CLO15] An ideal I ⊆ k[x1, x2, . . . , xn] is prime if whenever f, g ∈
k[x1, x2, . . . , xn] and fg ∈ I then either f ∈ I or g ∈ I.
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Proposition 4.22. [CLO15] Let V ⊆ kn be an affine variety. Then V is irreducible if

and only if I(V ) is a prime ideal.

Proof. First, assume V is an irreducible variety and let fg ∈ I(V ). We will show that

I(V ) is a prime ideal. Let V1 = V ∩ V (f) and V2 = V ∩ V (g). We showed in Section

2.2 that the intersection of two affine varieties is an affine variety so V1 and V2 are affine

varieties. Since fg ∈ I(V ), we can write V = V1 ∪ V2. Since V is irreducible, either

V = V1 or V = V2. Considering the first possibility, we would have V = V1 = V ∩ V (f)

which implies f vanishes on V . This means f ∈ I(V ). If instead, V = V2, we have

V = V ∩ V (g) which implies g vanishes on V and g ∈ I(V ). In either case, the definition

of a prime ideal is satisfied.

Conversely, assume I(V ) is a prime ideal and let V = V1 ∪ V2. We will show

the V is an irreducible variety. Without loss of generality, suppose V 6= V1. We will

use double inclusion to show I(V ) = I(V2) so that we can conclude V = V2 and satisfy

the definition of an irreducible variety. Since V = V1 ∪ V2, it must be true that V2 ⊆ V

and by the Ideal-Variety Correspondence in Section 4.2, I(V ) ⊆ I(V2). For the opposite

inclusion, we recall V = V1 ∪ V2 but that V 6= V1. Hence, it must be true that V1 ( V

and by the Ideal-Variety Correspondence, I(V ) ( I(V1). This means there must be some

polynomial f such that f ∈ I(V1) but f /∈ I(V ). Now let g be any polynomial in I(V2)

so that g vanishes on V2. As a result, fg vanishes on V2 and since V = V1 ∪ V2, we

can conclude fg vanishes on V . This means fg ∈ I(V ). Our assumption is that I(V )

is prime and according to the definition, either f ∈ I(V ) or g ∈ I(V ). But we chose a

polynomial f that was not in I(V ) which means g ∈ I(V ). Hence, I(V2) ⊂ I(V ). This

proves I(V ) = I(V2) and since the map I is one-to-one, V = V2. We have shown that

if V = V1 ∪ V2 and V 6= V1, then V = V2 so we can conclude that V is an irreducible

variety.

We now have a way to verify that a variety is irreducible by examining the

corresponding ideal. In the examples presented in this thesis, we will work with radical

ideals so the following result will make the approach more direct.

Proposition 4.23. Every prime ideal is radical.

Proof. Let I be a prime ideal and assume fm ∈ I for some m ≥ 1. We want to show that

f ∈ I which would make I a radical ideal. Suppose, on the contrary, that fm ∈ I but

m > 1 so that f /∈ I. Pick the smallest such m. We have f · fm−1 = fm ∈ I and since I
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is a prime ideal, either f ∈ I or fm−1 ∈ I. But f /∈ I and by our choice of m, fm−1 /∈ I.

This contradiction proves that m = 1, so that f ∈ I. Hence, I is a radical ideal.

Finally, we can combine the Ideal-Variety Correspondence between radical ideals

and varieties to get the following corollary to Proposition 4.22.

Corollary 4.24. [CLO15] When k is algebraically closed, the functions I and V in-

duce a one-to-one correspondence between irreducible varieties in kn and prime ideals in

k[x1, x2, . . . , xn].
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Chapter 5

Proofs of Geometric Theorems

using Algebraic Techniques

Our objective in this thesis is to demonstrate the proving of geometric theorems

using algebraic methods. We will introduce Cartesian coordinates in the Euclidean plane.

We can then write polynomial equations relating the coordinates of a collection of points

specified in the hypotheses and conclusions of these theorems. When working with large

systems of equations, having algebraic structure to represent geometric theorems enables

the use of technology to efficiently verify conclusions of theorems. To use technology,

however, we must have appropriate inputs and we must know how to interpret the results.

A computer program can quickly perform algorithms but cannot do the planning. If we

don’t know what result we want, we won’t know if the theorem is verified.

5.1 From Geometric Theorems to Polynomial Equations

The properties of geometric figures such lines, angles, polygons and circles are

unchanged under translation and rotation in the Euclidean plane so when we introduce

Cartesian coordinates, we may place the object of our theorem in any convenient location.

The coordinates of some of the points will be arbitrary and others will be dependent on

the arbitrary ones. It is common practice to use variables ui to represent arbitrary values

and xi to represent coordinates determined by the arbitrary ones.

The following proposition lists the geometric statements we will use in the ex-

amples presented in this chapter.

Proposition 5.1. Let A, B, C, D be distinct points in the plane. Then each statement
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can be expressed by one or more polynomial equations.

(i) A, B, C are collinear.

(ii) AB is perpendicular to CD.

(iii) The distance from A to B is equal to the distance from C to D: AB = CD

(iv) C is the midpoint of AB.

Proof. Let A = (a1, a2), B = (b1, b2), C = (c1, c2) and D = (d1, d2) be distinct points in

the plane.

(i) The points A,B and C are collinear if the slopes of AB and BC are equal. Using

the slope formula, we have

a2−b2
a1−b1 = b2−c2

b1−c1

From this, we can obtain the polynomial equation

p1 = (a2 − b2)(b1 − c1)− (a1 − b1)(b2 − c2) = 0.

(ii) To show AB ⊥ CD, we express AB as the vector (b1 − a1, b2 − a2) and CD as the

vector (d1 − c1, d2 − c2). Then AB ⊥ CD means the vectors are orthogonal. In

other words, the dot product is zero. So we have

(b1 − a1, b2 − a2) · (d1 − c1, d2 − c2) = 0

which gives the polynomial equation

p2 = (b1 − a1)(d1 − c1) + (b2 − a2)(d2 − c2) = 0.

(iii) To show AB = CD, we use the distance formula to show AB2 = CD2.

AB2 = (b1 − a1)2 + (b2 − a2)2

CD2 = (d1 − c1)2 + (d2 − c2)2

Now AB2 = CD2 yields the polynomial equation

p3 = (b1 − a1)2 + (b2 − a2)2 − (d1 − c1)2 − (d2 − c2)2 = 0
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(iv) If C is the midpoint of AB then A,B and C are collinear and AC = BC so we have

the polynomial equations from statements (i) and (iii).

Other common geometric statements such as two lines are parallel, a point is on

a circle, a line is tangent to a circle and a line bisects an angle can also be expressed as

polynomials equations.

5.2 Example 1: The Centroid of a Triangle

In this example we will demonstrate how the Groebner Basis Algorithm can be

used to prove a geometric theorem that is taken as given in many secondary geometry

courses. It is expressed as a definition - that the centroid of a triangle is the point of

concurrency of the three medians of the triangle.

Theorem 5.2. Let ∆ABC be a triangle in the plane. If we let M1 be the midpoint of BC,

M2 be the midpoint of AC and M3 be the midpoint of AB, then the segments AM1, BM2

and CM3 meet at a single point M , called the centroid of the triangle.

First we will express the hypotheses and conclusion as polynomial equations.

This system of equations is not unique and not all systems yield the desired results. The

equations listed below are the culmination of multiple attempts and some commentary

regarding why these equations are favorable is included.

The theorem is illustrated in the following figure.

Figure 5.1: ∆ABC with Medians

For convenience, we place A at the origin and align the line AB along the hori-

zontal coordinate axis so A = (0, 0) and B = (u1, 0). Let C = (u2, u3). The coordinates

of the midpoints of each side of the triangle are determined by the coordinates of the
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endpoints. We have M1 = (x1, x2), M2 = (x3, x4), M3 = (x5, x6). The coordinates of

the centroid are also completely determined so we write M = (x7, x8). It is tempting to

express the midpoints in terms of ui as one might in a typical coordinate proof. This

would not produce a complete system of polynomials needed to generate the ideal. One

practical guideline in constructing the system of polynomial equations is to write a poly-

nomial equation for each dependent coordinate. Now we can obtain polynomial equations

from the hypotheses: Using the midpoint formula,

M1 is the midpoint of BC: x1 = u1+u2
2 and x2 = u3

2

produces

h1 = 2x1 − u1 − u2 = 0

h2 = 2x2 − u3 = 0.

Similarly,

M2 is the midpoint of AC: x3 = u2
2 and x4 = u3

2 and

M3 is the midpoint of AB: x5 = u1
2 and x6 = 0

produces

h3 = 2x3 − u2 = 0

h4 = 2x4 − u3 = 0

h5 = 2x5 − u1 = 0

h6 = x6 = 0.

We now describe the position of M as being the point where two of the medians intersect.

Our conclusion will be that the third median also contains M . Using Proposition 5.1, we

can write equations to show M is on medians AM1 and BM2 as follows:

A,M,M1 collinear: x8
x7

= x2
x1

B,M,M2 collinear: x8
x7−u1 = x4

x3−u1 .

Clearing the denominators we obtain two more hypothesis polynomials

h7 = x1x8 − x2x7 = 0

h8 = x4(x7 − u1)− x8(x3 − u1) = 0.
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It is typical that when a hypothesis is properly translated to polynomial equations, the

number of dependent variables and the number of equations is the same. We now translate

our conclusion to a polynomial equation:

C,M,M3 collinear: x8−u3
x7−u2 = x6−u3

x5−u2

produces

g = (x5 − u2)(x8 − u3)− (x6 − u3)(x7 − u2) = 0.

In this example, there is only one conclusion. If the conclusion(s) require more than

one polynomial, we would make sure each conclusion polynomial gi follows from the set

of hypotheses. Our next step is to show that the conclusion g = 0 holds when the

hypotheses hi = 0 hold. The polynomial equations in the eleven variables that repre-

sent the hypotheses hi(u1, u2, u3, x1, x2, x3, x4, x5, x6, x7, x8) are equations that define a

variety V = V(h1, h2, h3, h4, h5, h6, h7, h8) ⊆ R11. We want to show that g vanishes

whenever h1, h2, . . . , h8 vanish. Let I = 〈h1, h2, h3, h4, h5, h6, h7, h8〉. According the

the Groebner Basis technique, we can use the radical membership test to determine

if g ∈
√
〈h1, h2, h3, h4, h5, h6, h7, h8〉. The conclusion will follow from the hypotheses if

1 ∈ Ĩ = 〈h1, h2, h3, h4, h5, h6, h7, h8, 1− yg〉. Unfortunately, computing a Groebner basis

using Sage did not render a basis of {1}. To understand why our technique was not

successful, we consider a definition.

Definition 5.3. [CLO15] Let V = V(h1, . . . , hn). The conclusion g follows strictly from

the hypotheses h1, . . . , hn if g ∈ I(V) ⊆ R[u1, . . . , um, x1, . . . , xn].

Many geometric theorems have degenerate cases that Definition 5.3 does not

take into account. For instance, in Theorem 5.2, the centroid example, we cannot allow

vertex C to be collinear with A and B. Another drawback of this definition is that

because we are working over R, we do not have an effective method for determining I(V ).

We will proceed with a useful way to check to see if a conclusion follows strictly from a

set of hypotheses before discussing a criterion that is not as strong.

Proposition 5.4. [CLO15] If g ∈
√
〈h1, . . . , hn〉, then g follows strictly from h1, . . . , hn.

Proof. We are given g ∈
√
〈h1, . . . , hn〉. This means gs ∈ 〈h1, . . . , hn〉 for some s. Thus

gs is some linear combination
∑
hiAi, where polynomials Ai are in the ring

R[u1, . . . , um, x1, . . . , xn]. This means gs and, consequently, g vanish whenever h1, . . . , hn

vanish.
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When a conclusion does not follow strictly from a set of hypotheses, possibly due

to degenerate cases, we will need to decompose the variety into a finite union of irreducible

varieties, as described in Chapter 4, to determine where the degenerate cases conflict with

the coordinates that were designed to be arbitrary. That is, we will express the variety

V = V1 ∪V2 ∪ · · · ∪Vk. This task can be simplified by recomputing the Groebner basis at

each stage but it still has the potential to be rather lengthy. Furthermore, throughout the

process, one must examine each polynomial to determine if its appearance in a variety

conflicts with the construction of the hypotheses and the assumption that we do not have

a degenerate case. We need to update our strategy so that our method determines the

validity of a theorem taking into account degenerate cases that may need to be excluded.

When a polynomial equation involving one of the arbitrary coordinates ui alone

is a member of an irreducible component of the variety, this means that the function

hi = ui = 0. In other words, one of the arbitrary coordinates is determined to be zero.

In this case, we will exclude those components from the union since our intent was for

those coordinates to be independent. Often this situation reveals a degenerate case. To

help remedy this concern, we introduce another definition.

Definition 5.5. [CLO15] Let W be an irreducible variety in the affine space Rn+m with

coordinates u1, . . . , um, x1, . . . , xn. We say that the functions u1, . . . , um are algebraically

independent on W if no nonzero polynomial in the ui alone vanishes identically on W .

Another way to state the definition is u1, . . . , um are algebraically independent

on W if I(W )∩R[u1, . . . , um] = {0}. This allows us to strategically regroup the irreducible

components of the variety so that the degenerate cases are easily identified. We express

the variety as follows:

V = W1 ∪ · · · ∪Wp ∪ U1 ∪ · · · ∪ Uq,

where u1, . . . , um are algebraically independent on the components Wi and are not alge-

braically independent on the components of Uj . Thus, Uj represent degenerate cases of

the hypotheses of the theorem. So, to guarantee the coordinates ui are indeed arbitrary

in the geometric configuration being studied, we will only consider the subvariety

V ′ = W1 ∪ · · · ∪Wp ⊆ V .

Since we do not want to consider how a conclusion g behaves in the degenerate cases, we

adjust our definition of what it means for a conclusion to follow a set of hypotheses so

that it is not as strict.
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Definition 5.6. [CLO15] The conclusion g follows generically from the hypotheses

h1, . . . , hn if g ∈ I(V ′) ⊆ R[u1, . . . , um, x1, . . . , xn], where V ′ ⊆ Rm+n is the union of

the components of the variety V = V(h1, . . . , hn) on which the ui are algebraically inde-

pendent.

It seems that we have simplified our task to develop a criterion that determines

whether g vanishes V ′. However, we will still need to decompose the original variety V

which was the task we hoped to avoid. Moreover, if we successfully decomposed V into a

union of irreducible varieties and identified the desired subvariety V ′, we would still face

the challenge of computing I(V ).

The next proposition suggests that we can determine if a conclusion follows

generically from a set of hypotheses without knowing the nature of the decomposition

the variety.

Proposition 5.7. [CLO15] A conclusion g follows generically from h1, . . . , hn whenever

there is some nonzero polynomial c(u1, . . . , um) ∈ R[u1, . . . , um] such that

c · g ∈
√
H,

where H is the ideal generated by the hypotheses hi in R[u1, . . . , um, x1, . . . , xn].

Proof. Let Vj be one of the irreducible components of V ′. We are taking as given that

c · g ∈
√
H. This means that c · g vanishes on V and thus, c · g vanishes on Vj . It follows

that c · g is in the ideal I(Vj). Since Vj is irreducible, the ideal I(Vj) is a prime ideal so

that c · g ∈ I(Vj) implies either c ∈ I(Vj) or g ∈ I(Vj). No nonzero polynomial in ui alone

vanishes in Vj so we know c /∈ I(Vj). We conclude that g ∈ I(Vj), satisfying the definition

of what it means for g to follow generically from h1, . . . , hn.

Now we have reduced our task to determining if there is a nonzero polynomial

c with c · g ∈
√
H. By the definition of the radical, we have c · g ∈

√
H if and only if

(c · g)s =

n∑
j=1

Ajhj

for some Aj ∈ R[u1, . . . , um, x1, . . . , xn] and s ≥ 1. Since c is nonzero, we can divide both

sides of the equation by cs. This yields

gs =

n∑
j=1

Aj
cs
hj ,



59

which demonstrates that g is in the ideal H̃ generated by h1, . . . , hn over the ring

R(u1, . . . , um)[x1, . . . , xn]. In this ring, denominators depend only on the ui. Making

ui invertible by augmenting our field of coefficients to R(u1, . . . , um) in effect removes the

degenerate cases so that the conclusion follows generically from the hypotheses. On the

other hand, if g ∈
√
H̃, then

gs =

n∑
j=1

Bjhj ,

where the coefficients of the Bj are in our augmented field R(u1, . . . , um). If we clear the

denominators by multiplying both sides by cs where c is a least common denominator for

all the terms in all the Bj , we obtain

(c · g)s =

n∑
j=1

B′jhj ,

where B′j ∈ R[u1, . . . , um, x1, . . . , xn] and c depends only on the ui. Consequently, c · g ∈
√
H. We now have multiple ways to determine the validity of the conclusion of a theorem.

The following corollary to Proposition 5.7 lists them.

Corollary 5.8. [CLO15] The following are equivalent:

(i) There is a nonzero polynomial c ∈ R[u1, . . . , um] such that c · g ∈
√
H.

(ii) g ∈
√
H̃ where H̃ is the ideal generated by the hj ∈ R(u1, . . . , um)[x1, . . . , xn].

(iii) {1} is the reduced Groebner basis of the ideal

〈h1, . . . , hn, 1− yg〉 ⊆ R(u1, . . . , um)[x1, . . . , xn, y].

We return now to Theorem 5.2, our example that states the three medians

of a triangle are concurrent. We will apply part (iii) of Corollary 5.8 to show that

g = (x5 − u2)(x8 − u3)− (x6 − u3)(x7 − u2) = 0 follows generically from

h1 = 2x1 − u1 − u2 = 0

h2 = 2x2 − u3 = 0

h3 = 2x3 − u2 = 0

h4 = 2x4 − u3 = 0

h5 = 2x5 − u1 = 0
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h6 = x6 = 0

h7 = x1x8 − x2x7 = 0

h8 = x4(x7 − u1)− x8(x3 − u1) = 0.

We use lex order and work in the ring R(u1, u2, u3)[x1, x2, x3, x4, x5, x6, x7, x8, y]. Using

the computer program Sage to compute the Groebner basis for the ideal 〈h1, . . . h8, 1−yg〉
renders the desired result {1}. Therefore, g ∈ 〈h1, . . . , h8〉. This validates the conclusion

that the polynomial g represented, the point M defined as the intersection of medians

AM1 and BM2, is also on the median CM3.

Once we refined our strategy to compensate for the degenerate cases, the tech-

nology did all the tedious division work for us. Not all theorems are suitable for the

proving using the techniques described above. We typically will need to be able to in-

troduce a coordinate system. There will be some number of arbitrary coordinates, or

independent variables in our construction and a collection of dependent variables. Listed

below is a summary of the steps involved in the Groebner Basis Algorithm for proving

suitable geometric theorems:

• Sketch the geometric object(s) involved in the theorem. Label all vertices, intersec-

tions, and other relevant points. Distinguish arbitrary coordinates using indepen-

dent variables ui from dependent variables xi.

• Determine the polynomial equations that represent the hypotheses hi and conclu-

sions gi. Expect one hypothesis equation for each dependent variable.

• With the assistance of a computer, determine if each conclusion follows strictly

from the set of hypotheses by computing the reduced Groebner basis of the ideal

〈h1, . . . , hn, 1− yg〉 ⊂ R[u1, . . . , um, x1, . . . , xn, y]. If the reduced Groebner basis is

{1} then it follows from the Radical Membership Test that g ∈
√
〈h1, . . . , hn〉.

• If the reduced Groebner basis rendered is something other than {1}, make the

independent variables part of the field of coefficients and compute the reduced

Groebner basis on the ideal 〈h1, . . . , hn, 1− yg〉 ⊂ R(u1, . . . , um)[x1, . . . , xn, y].

5.3 Example 2: The Orthocenter of a Triangle

We have described how to express a geometric theorem as a system of polynomial

equations so that a computer may be utilized to validate the theorem. In this example,
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and the next one, the only part of the proof that requires human reasoning is deriving

the system of polynomial equations.

In secondary geometry courses, the orthocenter of a triangle is defined to be the

point at which the three altitudes of a triangle intersect. Consideration is given to the

seemingly contradictory notion that the center of a triangle might actually be outside of

the triangle or, in the case of a right triangle, be one of the vertices, but the idea that

such a point of concurrency exists is taken as given. Here we will prove that all three

altitudes of a triangle are concurrent.

Theorem 5.9. Let ∆ABC be a triangle in the plane. Then the lines containing the

altitudes of the triangle meet at a single point, called the orthocenter of the triangle.

The altitude from vertex A is the line segment from Ameeting the line containing

the opposite side BC at a right angle. As shown in the figure below, we will call this

meeting point D and notice that side BC was extended so the intersection point can

be identified. The altitude from vertex B is the line segment from B meeting the line

containing the opposite side AC at a right angle. In the figure below, this intersection

point is labeled E. The altitude from vertex C is the line segment from C meeting

the opposite side AB at a right angle. As shown below, side AB is extended and the

intersection point is labeled F .

Figure 5.2: ∆ABC with Altitudes

We will again place A at the origin and align AB along the horizontal coordinate

axis so A = (0, 0) and B = (u1, 0). Let C = (u2, u3). The coordinates of the foot of the

altitude from each vertex to the line containing the opposite side of each side of the

triangle are completely determined by the vertices. We have D = (x1, x2), E = (x3, x4),
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F = (x5, x6). The coordinates of the orthocenter are also completely determined so we

write H = (x7, x8). Now using Proposition 5.1, we can obtain polynomial equations from

the hypotheses:

B,D,C collinear: x2
x1−u1 = u3

u2−u1

produces

h1 = x2(u2 − u1)− u3(x1 − u1) = 0.

Expressing the line segments as vectors, we have

AD ⊥ BC: AD ·BC = (x1, x2) · (u2 − u1, u3) = 0

which produces

h2 = x2u3 + x1(u2 − u1) = 0.

Likewise,

A,E,C collinear : h3 = x4u2 − x3u3 = 0

BE ⊥ AC : h4 = x4u3 + u2(x3 − u1) = 0

A,B, F collinear : h5 = x6 = 0

AB ⊥ CF : h6 = u2 − x5 = 0

Now we identify H as the point where two of the altitudes, AD and BE intersect giving

two more hypothesis polynomials:

A,D,H collinear : h7 = x2x7 − x1x8 = 0

B,E,H collinear : h8 = x4(x7 − u1)− x8(x3 − u1) = 0

The conclusion, H is also on the altitude CF is translated

C,F,H collinear: g = (x6 − u3)(x7 − u2)− (x5 − u2)(x8 − u3) = 0

The reduced Groebner basis for the ideal

〈h1, h2, h3, h4, h5, h6, h7, h8, 1− yg〉 ⊂ R(u1, u2, u3)[x1, . . . , x8, y]

rendered by Sage using lex ordering is {1} as desired so we conclude g vanishes on

V (h1, h2, h2, h4, h5, h6, h7, h8) which validates the conclusion that the point H is on alti-

tude CF .
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5.4 Example 3: Euler’s Line

We showed in Example 1 and Example 2 that the medians of a triangle are

concurrent at a point we call the centroid of the triangle and the altitudes of a triangle

all meet at a point we call the orthocenter of the triangle. There is another “center” of a

triangle. We know that three noncollinear points always lie on a circle. These noncollinear

points form a non-degenerate triangle. The center of the circle that circumscribes the

triangle is called the circumcenter of the triangle. It is a famous theorem of Leonard Euler

(1707-1783), a prolific contributor to many branches of mathematics, that the centroid,

orthocenter and circumcenter of a triangle are collinear. The line containing the three

“centers” of a triangle is called the Euler line of the triangle. We state the theorem below

and demonstrate how encoding the hypotheses and conclusion as polynomial equations

allows us to prove this geometric theorem using the Groebner Basis Algorithm.

Theorem 5.10. Let ∆ABC be a triangle in the plane. Then the circumcenter, centroid

and orthocenter of the triangle are collinear.

We begin with a sketch that uses the same points as in Examples 1 and 2.

Figure 5.3: ∆ABC with Euler’s Line

As in the previous examples, we place A at the origin and align AB along the

horizontal axis. So we have A = (0, 0), B = (u1, 0), C = (u2, u3). Notice that the
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coordinates of A, B, and C completely determine the coordinates of the other points.

The coordinates of the midpoints are as in Example 1, M1 = (x1, x2), M2 = (x3, x4),

M3 = (x5, x6). The coordinates of the centroid are M = (x7, x8). Now in Example 2,

we re-used coordinates x1, x2, . . . , x8 so we will need to reassign variables the the points

D, E, F, and H. Let D = (x9, x10), E = (x11, x12), F = (x13, x14). The coordinates of

the orthocenter are H = (x15, x16). The only new point in our figure is the center O of the

circle that circumscribes ∆ABC. Its coordinates are also dependent on the locations of

the vertices so we assign it coordinates O = (x17, x18). We already have the 16 hypothesis

polynomial equations from Examples 1 and 2. We will use the distance formula to show

OA = OB and OA = OC making O is the circumcenter of ∆ABC as follows:

OA2 = OB2 : x217 + x218 = (x17 − u1)2 + x218

OA2 = OC2 : x217 + x218 = (x17 − u2)2 + (x18 − u3)2.

The polynomial equations produced are

h17 = u21 − 2x17u1 = 0

h18 = u22 + u23 − 2x17u2 − 2x18u3 = 0.

The conclusion that M, H, and O are collinear is converted to a polynomial equation by

showing the slopes between pairs of points are equal as follows:

M,H,O collinear: x18−x16
x17−x15 = x18−x8

x17−x7 .

The polynomial equation for the conclusion is

g = (x18 − x16)(x17 − x7)− (x18 − x8)(x17 − x15) = 0.
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A complete list of the polynomial equations for the hypotheses is

h1 = 2x1 − u1 − u2 = 0

h2 = 2x2 − u3 = 0

h3 = 2x3 − u2 = 0

h4 = 2x4 − u3 = 0

h5 = 2x5 − u1 = 0

h6 = x6 = 0

h7 = x1x8 − x2x7 = 0

h8 = x4(x7 − u1)− x8(x3 − u1) = 0

h9 = x10(u2 − u1)− u3(x9 − u1) = 0

h10 = x10u3 + x9(u2 − u1) = 0

h11 = x12u2 − x11u3 = 0

h12 = x12u3 + u2(x11 − u1) = 0

h13 = x14 = 0

h14 = u2 − x13 = 0

h15 = x10x15 − x9x16 = 0

h16 = x12(x15 − u1)− x16(x11 − u1) = 0

h17 = u21 − 2x17u1 = 0

h18 = u22 + u23 − 2x17u2 − 2x18u3 = 0.

Using a computer to determine if g follows strictly from h1, . . . h18, we compute a reduced

Groebner basis for the ideal 〈h1, . . . , h18, 1− yg〉 ⊆ R[u1, u2, u3, x1, . . . , x18, y]. The com-

puter does not render a Groebner basis {1} so we check to see if g follows generically by

treating the independent variables as elements of the field of coefficients. We compute

the reduced Groebner basis for 〈h1, . . . , h18, 1− yg〉 ⊆ R(u1, u2, u3, )[x1, . . . , x18, y]. This

time the computer renders the reduced Groebner basis {1} which tells us that g van-

ishes on V (h1, . . . , h18). This confirms our conclusion that the centroid, orthocenter and

circumcenter of a triangle are collinear. In these examples, we had a specific conclusion

we wished to validate. To demonstrate the Groebner Basis Algorithm, we chose exam-

ples appropriate for the Cartesian plane but this algorithm is not restricted to proving

theorems in Euclidean space.
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Chapter 6

Conclusion

There are several strategies that can be used to prove geometric theorems.

Among them are proofs learned in secondary geometry that employ postulates, defi-

nitions and theorems arranged in paragraphs, two columns or flow charts to reason from

the given hypothesis to the desired conclusion, proofs by geometric construction using

a compass and straight edge and coordinate proofs. In this thesis, we explored the cor-

respondence between algebra and geometry and demonstrated how the Groebner Basis

Algorithm, an algebraic approach, can be used to prove geometric theorems. In partic-

ular, we explored the correspondence between varieties and ideals, specifically, radical

ideals.

An important part of our study concerned the mappings from ideals to varieties

and varieties to ideals. A crucial result was finding the one-to one correspondence be-

tween varieties and radical ideals. Once we expressed our hypotheses and conclusions as

polynomials, this bijection allowed us to translate a variety into an ideal and make use of

technology to determine if the conclusion polynomial vanished on the variety comprised

of the hypothesis polynomials by determining if the conclusion polynomial was a member

of the corresponding radical ideal. Translating the variety to a radical ideal is what made

the use of technology possible.

Applying the Groebner Basis Algorithm made for efficient interpretation of the

output from our computer application. The proof of Hilbert’s Nullstellensatz revealed a

convenient way to revise the ideal so that the reduced Groebner basis for the revised ideal

gave us a clear decision regarding the verification of the theorem. If the output was {1}
then we concluded that the theorem was verified. We encountered a problem with the

possibility of degenerate cases and resolved the issue by modifying the field of coefficients
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to include the independent variables.

Throughout this thesis, we laid the foundation for the use of technology to not

only assist with our proofs of geometric theorems but to carry out all of the compu-

tational tasks. The use of technology is a key component of algebraic geometry. The

ability to correlate geometric concepts such as affine varieties to the algebra of polyno-

mial rings allows us to take advantage of the algorithmic nature of computer applications

to prove geometric theorems algebraically. For a mathematician, discovering the links

between various branches of mathematics enhances understanding and motivates future

exploration.
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